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ABSTRACT 

 

 

The Micronutrient Profile of the Typical American Diet Enhances  

 

Colorectal Carcinogenesis  

 

 

by 

 

 

Stephany Perez Monsanto, Master of Science 

 

Utah State University, 2013 

 

 

Major Professor:  Dr. Abby D. Benninghoff 

Department:  Animal, Dairy and Veterinary Sciences 

 

 

The typical Western dietary pattern is characterized by the consumption of 

energy-dense, nutrient-poor foods and has been linked to increased risk of colorectal 

cancer (CRC). Our research group previously developed the total Western diet (TWD) 

that emulates typical human dietary intakes of macro- (carbohydrates, proteins, and fats) 

and micronutrients (vitamins and minerals) on an energy density basis for rodents. In the 

present study, we sought to determine the impact of TWD on biomarkers of metabolic 

syndrome and obesity in comparison to a commercial 45% fat diet used for models of 

diet-induced obesity (DIO diet) and the standard basal AIN93G diet, which is optimized 

for rodent health. Also, we included 2 additional test diets to evaluate the contribution of 

the micronutrient (vitamin- and mineral-modified diet, [VMM]) or macronutrient (macro-

modified diet [MM]) contents of the TWD in development of cancer, obesity, and 

glucose intolerance. A chemical carcinogenesis model of inflammation-associated colon 

cancer was employed to evaluate impact of diets on colon cancer in mice. As expected, 
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mice consuming the DIO diet acquired an obesity/metabolic syndrome phenotype 

typified by increased food energy intake, greater rate of body weight gain, increased 

proportion of body composition as fat mass, higher fasting glucose, impaired glucose 

tolerance, and higher circulating levels of leptin. However, consumption of TWD did not 

alter any of these classic biomarkers of metabolic health, as these mice adjusted food 

intake so that energy consumption was similar to that for mice fed AIN93G. A different 

pattern was observed for colon carcinogenesis. Consumption of the TWD or VMM diet 

markedly increased colon tumor multiplicity and size compared to the AIN93G control, 

whereas consumption of the DIO or MM diets did not enhance colon tumorigenesis. 

Collectively, these observations point to a critical role of dietary micronutrients in colon 

carcinogenesis, and that this promoting effect is likely unrelated to the metabolic 

syndrome phenotype induced by a high fat diet. Moreover, our observations emphasize 

the need to take into account the micronutrient content of rodent basal diets when 

modeling typical U.S. nutrition in pre-clinical animal experiments in order to improve the 

translation of these studies to human nutrition and dietary intervention programs. 

(93 pages)  
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PUBLIC ABSTRACT 

 

 

The Micronutrient Profile of the Typical American Diet Enhances  

 

Colorectal Carcinogenesis  

 

 

by 

 

 

Stephany Perez Monsanto, Master of Science 

 

Utah State University, 2013 

 

 

 The typical Western dietary pattern is characterized by the consumption of high-

energy foods that are low in essential nutrients and has been linked to increased risk of 

colorectal cancer (CRC). Our research group previously developed the total Western diet 

(TWD) to emulate typical human dietary intakes of macro- (carbohydrates, proteins, and 

fats) and micronutrients (vitamins and minerals) based on food energy basis for rodents. 

In the present study, we sought to determine the impact of TWD on indicators of 

metabolic syndrome and obesity in comparison to a commercial 45% fat diet used for 

models of diet-induced obesity (DIO diet) and the standard basal AIN93G diet, which is 

optimized for rodent health. Also, we included 2 additional test diets to evaluate the 

contribution of the micronutrient (vitamin- and mineral-modified diet, [VMM]) or 

macronutrient (macro-modified diet [MM]) contents of the TWD in development of 

cancer, obesity, and glucose intolerance. We employed a chemical carcinogen model of 

colon cancer in mice with an agent to induce inflammation of the gastrointestinal tract to 

evaluate the impact of these experimental diets on formation of colon tumors. As 

expected, mice consuming the DIO diet gained excess weight and had symptoms typical 
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of metabolic syndrome, including greater rate of body weight gain, increased proportion 

of body fat mass, higher levels of blood glucose, impaired glucose tolerance, and higher 

circulating levels of the hormone leptin. However, consumption of TWD did not alter any 

of these biomarkers of metabolic health, as these mice adjusted food intake so that energy 

consumption was similar to that for mice fed AIN93G. Conversely, consumption of the 

TWD or VMM diet markedly increased colon tumor number and size compared to the 

AIN93G control, whereas consumption of the DIO or MM diets did not enhance colon 

tumor formation. Collectively, these observations point to a critical role of micronutrients 

in the development of colon cancer, and that this promoting effect is likely unrelated to 

the metabolic syndrome symptoms acquired by mice consuming strictly a high fat diet. 

Moreover, our observations emphasize the need to take into account the micronutrient 

content of rodent basal diets when modeling typical U.S. nutrition in pre-clinical animal 

experiments in order to improve the translation of these studies to human nutrition and 

dietary intervention programs. 
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INTRODUCTION 

 

 

Colorectal cancer is the third leading cause of cancer death and the third most 

commonly diagnosed cancer in men and women in the United States (1). In the last 

twenty years, global incidence rates of colorectal cancer have been increasing, reportedly 

due to an increase in the prevalence of certain cancer-associated practices, such as 

decreased physical activity and “westernized” diets (2). The typical Western Diet is a 

dietary trend characterized by increased consumption of highly processed foods that 

contain excess levels of fat, sodium, and refined sugars and are generally low in essential 

vitamins, minerals, and fiber (3-5). This dietary pattern is believed to play a critical role 

in the development of several chronic conditions that have increased in prevalence over 

the last 50 years, including obesity, type II diabetes, metabolic syndrome (5, 6) as well as 

colorectal cancer (7-9). Because of the increasing socioeconomic burden of colorectal 

cancer, a large body of research has been dedicated to the study of the role of nutrition on 

the development of this and other related conditions with the purpose of elucidating the 

mechanisms behind their pathology. 

 

Statistics on colorectal cancer 

Colorectal cancer (CRC) is the fourth most common cause of death worldwide, 

with approximately 608,000 deaths occurring each year (10). Global incidences of CRC 

have increased over the last twenty years, and this disease is more prevalent in 

economically developed countries, which account for up to 60% of reported cases (2, 10). 

The lifetime risk of developing CRC in the U.S. is about 5%, and the risk is slightly 

lower in women than in men. Based on the level of economic development of the region, 
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Central and Eastern Europe are estimated to have the highest mortality rates in both sexes 

(20.1 for male, 12.2 for female per 100,000), while Middle Africa is estimated to have the 

lowest mortality rate (3.5 for male, 2.7 for female). In the United States, significant 

improvements in colorectal screening and treatment methods have caused mortality rates 

to decrease 2.8% per year in men and 2.6% per year in women since 1998. However, 

according to data collected between 1975 and 2007 from the Surveillance, Epidemiology, 

and End Results (SEER) Program, colorectal cancer incidence rates have declined in the 

U.S. among adults 50 years and older, but have increased among adults younger than 50 

years (1). Although the precise cause for this trend remains a topic of debate, current data 

point to several environmental factors as potential contributors to these apparent shifts in 

cancer risk. 

 

Risk factors for colorectal cancer 

 CRC risk is influenced by external modifiable factors (lifestyle and diet) and 

intrinsic non-modifiable factors (genetic predisposition). Heredity accounts for 

approximately 30% of all the diagnosed cases of CRC, of which 5% are attributed to 

well-characterized heritable genetic defects (11, 12). The remaining cases are generally 

attributed to either single-gene mutations that are less pervasive than those observed in 

well-characterized syndromes, or mutations on multiple susceptibility loci that result in 

additive effects. However, several hereditary syndromes are well described and have 

been strongly linked with CRC development. 

Lynch Syndrome (or hereditary nonpolyposis colorectal cancer) is an autosomal 

dominant cancer-susceptibility disorder caused primarily by germline mutations of 
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mismatch repair genes. Although it predisposes subjects to several other types of cancers, 

it accounts for about 3% of CRC cases and can increase CRC risk as much as 80% 

depending on the type of mutation (11, 13).  

Familial adenomatous polyposis (FAP) is one of the best-studied polyp-forming 

syndromes, although it accounts for less than 1% of CRC cases (11, 14). FAP is an 

autosomal dominant disease that results from germline mutations in the APC gene. The 

severity of the condition varies depending on the location of the mutation within the APC 

gene, which produces other variants of the condition (i.e. Attenuated FAP, Gardner 

syndrome, and Turcot syndrome).  

MUTYH-associated polyposis (MAP) is a germline inactivation of the base 

excision repair gene MUTYH (or MYH), which causes adenomatous polyposis of the 

colorectum and an increased risk of CRC. In patients carrying this mutation, the risk of 

CRC is nearly 100% by 60 years of age (11, 15).  

Hamartomatous polyposis syndromes are a group of inherited conditions that 

exhibit varying individual characteristics, but commonly show hamartomatous rather than 

epithelial polyp histology. Disease-associated mutations occur in different genes, some of 

which are STK11, SMAD4, and BMPR1A. Individuals with any of the related conditions 

have an increased risk for several types of cancer, including CRC. These syndromes 

account for less than 1% of CRC cases (11, 16). 

Familial non-syndromic colorectal cancer refers to any CRC cases involving an 

uncommon genetic defect that is sufficiently penetrant to give rise to an autosomal-

dominant segregation pattern. Thus, specific genetic markers for these cases are not 

available. Risk of CRC is approximately 2- to 3-fold greater for an individual with a first-
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degree relative that has been diagnosed with CRC after age 50. The disease can be caused 

by genetic polymorphisms, allelic variants, chromosomal instability, aberrant DNA 

methylation, and other environmental factors (11, 15, 17). 

Finally, another critical non-modifiable risk factor for CRC is individual medical 

history. Individuals who have been previously diagnosed with CRC (even if they have 

recovered), who have had one or more adenomatous polyps, who suffer from 

inflammatory conditions (e.g. Crohn’s disease, ulcerative colitis, and inflammatory bowel 

disease), or who suffer from a condition strongly associated with CRC (e.g. Type II 

diabetes or obesity), have an increased risk of developing CRC (1, 18). Additional 

conditions that have been strongly associated with an increased risk of CRC include 

obesity (9, 19, 20), metabolic syndrome (8, 21, 22), diabetes (23-25), and nonalcoholic 

fatty liver disease (7, 26, 27). 

 Lifestyle and diet are external modifiable factors that greatly influence CRC risk 

and disease progression, and global patterns of CRC incidence closely align with patterns 

of physical activity and dietary trends. High levels of physical activity have been 

associated with lower CRC risk and lower mortality (1, 28, 29), even after CRC diagnosis 

(30). Data for 2005 from the Centers for Disease Control and Prevention (CDC) show 

that more than half of U.S. adults fail to meet the amounts of physical activity 

recommended by the CDC and the American College of Sports Medicine (31), a figure 

that correlates with the high rates of CRC reported in the U.S. 
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Animal models of colorectal carcinogenesis 

In general, most pre-clinical studies of CRC employ a either a chemical 

carcinogenesis animal model, in which the hydrazine compounds 1,2-dimethylhydrazine 

(DMH) or its metabolite azoxymethane (AOM) are used to induce sporadic tumors in the 

colon, or a transgenic animal model, wherein mice carry a heterozygous mutation in the 

adenomatous polyposis coli (APC) gene leading to development of tumors in the small 

intestine and colon (see 32 for a comprehensive review). The most widely used 

transgenic model of intestinal and colon cancer is the APC
Min/+

 mouse (33). The APC 

gene regulates various cellular pathways, including Wnt-signaling (involved in cell 

proliferation), cell-cell adhesion, cell cycle progression, and apoptosis. When one or 

several of these pathways are disrupted via mutation, the cell could escape normal 

constraints on cell proliferation and acquire a survival advantage. For this reason, a 

mutation in the APC gene is considered one of the most important initiating events in 

sporadic CRC (34). The defining feature of this cancer model is a nonsense mutation that 

results in a truncated APC protein at amino acid 850, which induces the formation of 

polyps in the mouse intestine. The majority of these polyps develop in the small intestine, 

which is why this model is deemed more useful for the study of hereditary colon cancer 

types, such as FAP. However, others have developed modifications of this transgene to 

improve the cancer model so that it more closely emulates human CRC, including a) 

modifiers of Min (Mom), which comprise several loci located on different chromosomes 

which have an effect of tumor development (e.g. mom1, mom2); b) Apc variations, which 

include different truncations to the Apc protein (e.g. Apc
Δ716/+

; Apc
Δ14

); and c) compound 

mutants, which add a mutation to another gene (e.g. mismatch repair genes, Smad1) (33). 
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Chemically induced models of CRC are advantageous because they are highly 

reproducible, and the approach allows for testing on animals with different genetic 

backgrounds. Importantly, the pattern of cancer development in these models generally 

mimics the multistep process of carcinogenesis observed in human CRC, and most 

tumors develop in the distal colon. A number of chemicals have been show to effectively 

induce carcinogenesis in the colons of rats and/or mice, including the aforementioned 

hydrazine compounds DMH and AOM; some heterocyclic amines, such as 2-amino-1-

methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-33-methylimidazo[4,5-

f]quinolone (IQ); and the alkylnitrosamide compounds methylnitrosourea (MNU) and N-

methyl-N’-nitro-N-nitrosoguanidine (MNNG). AOM is now the most widely used 

chemical carcinogen for modeling sporadic colorectal cancer in rodents. AOM undergoes 

metabolic activation in the liver by the cytochrome P450 enzyme CYP2E1 to form the 

metabolite methylazoxymethane (MAM), which can readily generate a methyldiazonium 

ion that can alkylate DNA at the O
6
 or N

7
 position of guanine (35).  

Disruption of the canonical Wnt/β-catenin signaling pathway is often observed in 

animals initiated with AOM (reviewed in 36, 37). The protein β-catenin aides in cell 

adhesion by associating with either cadherin or catenin to connect the actin cytoskeleton; 

it also acts as a co-transcriptional activator of genes that are under regulation of the Wnt 

signaling pathway. AOM exposure can lead to mutations in codons 31 and 41 of β-

catenin, which prevents its degradation (37). Accumulation of the protein leads to 

transcriptional activation of a number of downstream gene targets that promote cell 

proliferation, such as cyclin D1 (38). AOM exposure also leads to mutations in the proto-

oncogene K-ras, a small G protein that regulates both mitogen-activated protein kinase 
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(MAPK) and phosphatidylinositol 3-kinase (PI3K)/Akt intracellular signaling pathways, 

resulting in dysregulation of cell growth, proliferation, and glucose metabolism (39). One 

of the hallmarks of sporadic and AOM-induced colon cancer is perturbation of the 

transforming growth factor-β (TGF-β) signaling cascade. TGF-β is an important anti-

inflammatory cytokine expressed in colon epithelial cells and serves as a key negative 

regulator of cell proliferation via control of cell growth and apoptotic pathways. The 

tumor suppressor function of TGF-β1 is often lost during tumorigenesis (32). Aberrant 

signaling of the TGF-β1 pathway has been shown in the AOM colon cancer model. 

Disruption of TGF-β1 signaling is characterized by decreased ratios of biologically active 

to inactive TGF-β1 in tumor cells (40), along with transcriptional repression of the TGF-

β1 receptor TβR-II (41).  

Sensitivity to AOM as a chemical carcinogen is highly influenced by the genetic 

background of the animal model used, as well as the route and frequency of 

administration (32, 42, 43). For example, SWR/J and A/J mouse strains are highly 

susceptible to AOM-induced tumors (16 to 36 tumors/mm colon following 8 repeated i.p. 

injections of 10 mg/kg AOM) compared to AKR/J mice, which are very insensitive (<1 

tumor/mm colon) (43). Also, it should be noted that colon carcinogenesis does not appear 

to be influenced by gender, as similar incidence, multiplicity, and size of tumors in males 

and females have been observed previously (42). 

Data from epidemiological studies have shown that CRC risk is strongly linked to 

long-term irritable bowel diseases (IBD), of which the most common types are Crohn’s 

disease and Ulcerative colitis (44-46). The chronic intestinal inflammation that 

characterizes these conditions is now recognized as an important factor in CRC due to its 
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involvement in the disruption of the same oncogenic pathways that are disrupted in CRC 

(47). Both Crohn’s disease and ulcerative colitis are caused by the mutation of several 

genes involved in the maintenance of the intestinal mucosal barrier that protects the 

intestinal wall from bacterial invasion. Dysfunction of this mucosal barrier leads to 

sustained damage of gut epithelial cells. This chronic injury to the gut triggers a 

compensatory immune response characterized by the up-regulation of cell proliferation 

and anti-apoptotic pathways that promote cell survival (48). Various molecules are 

involved in the activation of such pathways, including transcription factors (e.g. NF-κB, 

and STAT3), and various inflammatory cytokines (e.g. IL-6 and TNF- α), which are 

normally secreted during an inflammatory response. The resulting compensatory cell 

regeneration results in increased rates of mitosis that, when chronically active, increase 

DNA mutation rates (48, 49). Not only can this process promote the disruption of 

oncogenic pathways, but it can also provide cancerous cells with a nurturing environment 

due to the increased availability of proliferative and survival signals. This notion is 

supported by an animal study by Tanaka et al. (50), where they showed that a combined 

treatment of AOM with the inflammatory agent dextran sodium sulfate (DSS) 

significantly increased intestinal tumorigenesis in CD-1 mice. The AOM+DSS model 

yields a consistent, reproducible colon cancer outcome that is well defined in terms of 

mouse strain and AOM dosage (51). Moreover, this model recapitulates many of the 

molecular events that occur in spontaneous human colon cancer, such as -catenin 

accumulation and K-ras mutations (37). 
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Dietary factors that promote colorectal carcinogenesis 

 Diet is one of the most influential factors affecting overall cancer incidence, with 

colorectal cancer being one of the most well established examples. The Western diet is 

characterized by high intakes of red and processed meats, fried foods, sweet foods (often 

in the form of soft drinks), and refined grains (5). Conversely, those consuming a western 

type diet typically have low intakes of fruits, vegetables, and fish. Overall, this food 

consumption pattern results in an unbalanced diet that is high in simple sugars, fats, and 

sodium yet low in many essential vitamins, minerals, and fiber (3). Evidence from 

epidemiological and pre-clinical animal studies supports the notion that the Western diet 

is positively associated to a higher risk and incidence of colorectal cancer (3, 5). 

Many elements of a Western diet have been associated with higher rates of CRC. 

In developed countries, excess consumption of red meat has been linked to higher 

incidence of CRC (4, 52-54). Evidence from human case-control and cohort studies 

points to a positive correlation between high red meat consumption and CRC risk. A 6-

year follow-up study using a cohort of 47,949 men from the Health Professionals study 

determined that consumption of beef, pork, and lamb had a strong positive association 

with CRC risk (53). Norat et al. showed that CRC risk was significantly associated with 

pork and lamb consumption in a separate 5-year cohort study of 478,040 men and women 

from Western Europe (54). This association between red meat consumption and CRC risk 

has been attributed, in part, to the presence of N-nitroso compounds, which are known 

alkylating agents (52, 55, 56). Also, red meat naturally contains high levels of heme, 

which generates reactive oxygen species (52, 57). Finally, well-cooked or preserved 

meats can contain high amounts of mutagenic heterocyclic amines (52, 56, 57). 
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Overall, evidence for a role of dietary fat in the etiology of CRC in humans is 

inconsistent. In the previously mentioned Health Professionals Follow-up Study cohort, 

fat from red meat was positively associated with higher CRC risk in men, while no 

association was observed for total fat or non-red meat fat intake (i.e. poultry, dairy, and 

vegetable) (53). Willett and coworkers reported that intakes of animal-derived saturated 

and monounsaturated fats were linked to increased risk of CRC in a prospective study of 

mid-age, healthy women (58). Alternatively, Lin et al. (59) reported that neither total fat 

intake nor intakes of different types of fats or major fatty acids were related to risk of 

CRC in healthy women. Moreover, in a combined analysis of 13 case-control studies 

including 5,287 cases of CRC and 10,470 controls, no evidence of increased risk was 

observed for any dietary fat variable after adjustment for total food energy intake or after 

subgroup analyses by sex, age, or anatomic location of the cancer (60).  

In contrast to human data, the association between dietary fat intake and CRC 

promotion has been repeatedly demonstrated in different rodent models of colorectal 

carcinogenesis. As outlined above, chronic intestinal inflammation is a known risk factor 

for CRC. Researchers have repeatedly shown that intestinal inflammation is enhanced in 

C57BL/6J mice fed with diets with 20% (61), 45% (62), or  60%  kcal from fat (63). In 

chemical carcinogenesis rodent studies, researchers often measure development of 

preneoplastic lesions, termed aberrant crypt foci (ACF), as a biomarker of colorectal 

carcinogenesis. Development of these lesions, as well as fully developed colon tumors, 

has been linked to specific sources of dietary fat. For example, ACF multiplicity was 

significantly higher in the colons of rats fed diets containing 10 or 20% corn oil 

compared to animals consuming diets with 10% or  20% fish oil (38, 64). Evidence from 
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other rat cancer studies suggests that tumor abundance was also greater in animals fed 

corn oil (38, 65) or beef fat (38, 66). On the other hand, consumption of fish or flaxseed 

oil provided protection against colon carcinogenesis in rodents (67-70). Collectively, 

these animal studies provide convincing evidence that the source of dietary fat, rather 

than total fat intake, is the driving factor for modulating colon carcinogenesis in rodents. 

  A number studies have indicated that CRC risk is inversely correlated to the 

consumption of vegetables, fruits, and/or fiber, which are essential components of a 

balanced diet (71). However, current data is not completely consistent, suggesting that 

other interacting factors are likely modulating their effects. For instance, a prospective 

study including 136,089 men and women from the Nurses’ Health Study and Health 

Professionals’ Follow-up Study found no correlation between fruit and vegetable 

consumption, and colon or rectal cancer incidence (72). A meta-analysis of data from 13 

cohort studies analyzed in the Pooling Project of Prospective Studies of Diet and Cancer 

examined the association between dietary fiber intake and CRC risk. The authors 

observed that risk of colorectal cancer in an age-adjusted model was inversely associated 

with dietary fiber intake, although this association was no longer significant after 

adjusting for other risk factors (73). Conversely, a 5-year follow up study of 133,163 U.S. 

men and women examined the association between whole grains, fruit, vegetables, and 

dietary fiber and CRC (74). Although no independent association was observed between 

whole grains, fruit, or fiber and incidence of CRC, very low consumption of vegetables 

and fiber was associated with a 2-fold increase in the risk of colon cancer in men, while 

very low consumption of fruit was associated with a doubling of risk in women. In a 

separate meta-analysis of data from the Pooling Project of Prospective Studies of Diet 
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and Cancer, epidemiologists arrived at a similar conclusion, where the lowest intakes of 

fruits and vegetables (less than 200 g/day) were inversely associated with an elevated risk 

for distal colon cancer risk, but not proximal colon cancer (75). Finally, to examine the 

associations between food patterns and CRC incidence in older Americans, Wirfalt et al. 

(76) performed a cluster analysis in which individuals with similar characteristics were 

aggregated. Male subjects that consumed high amounts of fruits, vegetables, and low fat 

foods were less likely to develop CRC, even when considering other disease risk factors. 

On the other hand, female subjects in this “Vegetable and Fruit” cluster had lower CRC 

incidence, but not independently of other risk factors such as education, smoking, and 

ethnicity.  

Much of the evidence for a role of specific micronutrients in modulation of CRC 

centers on calcium and vitamin D, the latter referring collectively to a group of 

secosteroid molecules that are critical for the uptake of calcium in the intestine. D 

vitamins include cholecalciferol (vitamin D3), which is generally synthesized 

endogenously in response to ultraviolet light, usually in adequate amounts. However, 

some individuals do not obtain sufficient light exposure to maintain adequate levels of 

D3, which is often fortified in staple foods, such as milk, to avoid deficiency (77). 

Overall, evidence from human epidemiological and animal laboratory studies points to 

lower risk of CRC for high intakes of calcium and vitamin D, particularly for senior 

women. Feskanich et al. (78), examined CRC risk in a nested case-control study among 

women participating in the Nurses’ Health Study and determined that women ≥ 60 years 

of age with the plasma levels of 25-hydroxycholecalciferol (25(OH)D), a metabolite of 

D3 and the precursor to the bioactive form 1,25-dihydroxycolecalciferol (1,25(OH)2D), 
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had a much lower risk of CRC compared to subjects in the lowest quintile of 25(OH)D 

levels. Alternatively, this inverse relationship between circulating 25(OH)D and CRC 

risk was not observed in younger women. Lappe et al. (79) examined CRC in healthy, 

post-menopausal women receiving either a calcium supplement (1500 mg), a calcium 

supplement with 1100 IU vitamin D3,or a placebo. Women receiving the dual calcium 

and vitamin D supplement or the calcium supplement alone were more likely to remain 

cancer-free (breast, colon, lung, uterus, and hematopoietic cancers were examined) 

during the 6-year analysis period. Park et al. (80) examined CRC risk as a function of 

dietary calcium and vitamin D intakes, dairy food consumption, and gender and ethnicity 

in the large Multiethnic Cohort Study of more than 215,000 participants. This group 

observed that total calcium intake and consumption of dairy foods were inversely 

correlated with CRC risk in both healthy men and women, and that this relationship for 

calcium was consistent across the ethnic groups examined (African Americans, Native 

Hawaiians, Japanese Americans, Latinos, and Whites). Vitamin D was also found to have 

protective effects in those individuals who do not supplement their diet with additional 

calcium. Evidence from animal studies supports these epidemiological observations. 

Depletion of calcium from the rodent diet increased spontaneous tumor formation while 

vitamin D supplementation inhibited tumorigenesis in C57BL/6J (81) and in Apc
1638N/+

 

mice (82). 

Much of the research on B vitamins and CRC development has focused on 

vitamin B9 (folate), vitamin B6 (pyridoxal phosphate), and vitamin B12 (cobalamin), due 

to their function in the methyl donor pathway and one-carbon metabolism (83, 84). Folate 

is a required for the synthesis, repair, and methylation of DNA, but current data on folate 
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intake and CRC development are inconsistent. In human studies, higher folate intakes are 

generally associated with reduced CRC risk, but data from animal studies suggests that 

the dose and timing of folate intervention differentially modulate carcinogenesis. For 

instance, Sanjoaquin and coworkers (85) performed a meta-analysis that included 7 

cohort and 9 case control studies and found that CRC risk was 25% lower among those in 

the highest category of food-derived folate intake compared with those in the lowest 

category. When analyzing total folate intake (food-derived and supplemented folate), 

only a 5% lower risk was observed. A separate meta-analysis that included 18 case 

control studies and 9 cohort studies from fourteen countries found that CRC incidence 

was decreased 13-18% in the highest quintile of dietary folate intake (86). However, in a 

study where AOM treated rats were given one of 3 diets containing 0, 2, or 8 mg folic 

acid/kg diet, the total number of colonic ACF increased with rising dietary folic acid 

concentration. The total number of colonic ACF was 54% higher in rats fed the 8 mg/kg 

diet than in the rats receiving the 0 mg folic acid/kg diet, suggesting that folic acid 

enhanced colorectal tumorigenesis (87). A separate study using C57BL/6J mice 

determined that colon carcinogenesis was largely unaffected by supplementation with 

dietary folate, although higher intakes of folic acid were linked to a higher proportion of 

relatively large tumors (88). Moreover, neither plasma nor colon folate levels were 

significantly correlated with tumor number (88). 

 The role of vitamin B6 in the etiology or prevention of CRC is also unclear. Je et  

al. (89) performed a meta-analysis of 472 cases of CRC detailed in the Nurses’ Health 

Study, the Health Professionals Follow-up Study, and the Physicians’ Health Study and 

found no association with plasma levels of pyridoxal 5’-phosphate, the active form of B6, 
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and CRC mortality. In a meta-analysis of 8 studies on vitamin B6 intake and 4 studies on 

blood pyridoxal 5’-phosphate levels, Larsson et al. showed that both factors were 

inversely associated with the risk of colorectal cancer (90). Risk of CRC decreased by 

49% for every 100-pmol/mL increase in blood pyridoxal 5’-phosphate level, while high 

vitamin B6 intake was associated with a 20% decreased risk compared to low intake. 

Finally, in CD-1 mice, supplementation with 35 mg of pyridoxine HCl markedly reduced 

CRC incidence compared to a diet depleted in B6 (91). 

 Because of its key role as a cofactor in the one carbon metabolism pathway, many 

researchers have included vitamin B12 in cancer prevention studies. However, like many 

other micronutrients, the role of this particular vitamin in colorectal carcinogenesis 

remains uncertain. In a follow-up study including 226 cases and double matched referents 

from the population-based Northern Sweden Health and Disease Study, Dahlin and 

colleagues found that  plasma vitamin B12 concentrations were inversely associated with 

the risk of rectal cancer, while the association was less clear for colon cancer (92). These 

results are in agreement with an animal study by Choi and colleagues (93), where 30 

Sprague-Dawley rats were fed with either a diet with 50 μg/kg diet of vitamin B12, or a 

diet with no vitamin B12. After 10 wk, the colonic DNA of the deficient rats displayed a 

35% decrease in genomic methylation and a 105% increase in base substitution of uracil, 

which are anomalies that may increase the risk of colorectal carcinogenesis. In other 

studies, researchers often use a combination of vitamin B12 , folate, and vitamin B6, since 

these are all essential components of the one-carbon metabolism pathway, and hence act 

in conjunction. In a randomized, double-blind, placebo-controlled trial, 1,470 female 

health professionals from the Women’s Antioxidant and Folic Acid Cardiovascular Study 
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were randomly assigned to receive either a placebo or a combination pill of folic acid (2.5 

mg), vitamin B6 (50 mg), and vitamin B12 (1 mg). Researchers found no significant 

differences between the treatment and the placebo group (94). These variations and 

inconsistencies in the current data for B vitamins suggest interaction with other dietary 

factors may be modulating their impact on colorectal cancer. 

 Vitamins A (retinol), C (ascorbic acid), and E (tocopherols) are often studied in 

combination because of their known antioxidant activities, but their impact on CRC 

development has not been established conclusively. For instance, a recent study of 816 

CRC cases and 815 controls from the Fukuoka Colorectal Cancer Study showed that 

women with the highest retinol intake had significantly lower risk, while risk for men 

was not significantly different (95). However, carotene, vitamin C, and vitamin E intakes 

were not associated with CRC risk in either men or women. These results contradict the 

findings of a separate study that used data from the North Carolina Colon Cancer Study-

Phase II, which determined that the highest quartiles of  β-carotene intake (another form 

of vitamin A) were inversely associated with reduced risk of distal CRC risk in whites, 

but not in African Americans (96). In this same study, a strong decrease in distal CRC 

was observed in whites in the highest quartile for vitamin C, selenium, and food-derived 

vitamin E intake, but not in the group that included vitamin E supplementation. In an 

xenograft study by Park and colleagues (97), nude immunodeficient mice were injected 

with human CRC cells (HCT-116) and then fed diets containing 2,400 or 200,000 IU 

vitamin A/kg. In this experiment, vitamin A supplementation caused a 4-fold reduction in 

metastatic tumor multiplicity, although tumor size and morphology were unaffected. A 

separate study examined the effects of combined vitamin excess or deficiency in 
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C57Bl/6J mice or Apc
Min/+

 mice (98). Animals were fed either a control diet, a vitamin-

depleted diet (reduced to 33% of the recommended daily allowance [RDA] for mice), or 

a vitamin-supplemented diet (vitamin content increased by 5-fold compared to RDAs for 

mice); the vitamins modified included all of the B vitamins as well as vitamins A, C, D, 

E, and K. Interestingly, these researchers observed that the number and size of colon 

polyps were significantly higher for both experimental diets, suggesting that both 

conditions of vitamin deficiency and excess supplementation were harmful in terms of 

CRC risk. Moreover, this work also underscores the notion that supplementation of diet 

with high levels of vitamins, either individually or in combination, may not be the best 

strategy for CRC prevention.  

 

Modeling the Western diet in animal studies 

As outlined above, many components of a typical Western style diet have been 

shown to modulate cancer risk. Yet, in the vast majority of pre-clinical animal studies to 

investigate mechanisms of carcinogenesis or cancer prevention or to identify new 

strategies for dietary cancer prevention, researchers routinely employ standard formulated 

diets that are generally balanced with respect to macro- and micronutrient levels to 

optimize animal health, such as the American Institute of Nutrition AIN93G diet 

formulation (99). However, these optimally formulated rodent diets are not relevant to 

most human nutrition patterns, especially for at-risk populations that frequently consume 

energy-dense, nutrient-poor foods. Thus, researchers have employed several different 

strategies to model the Western style diet in studies employing rodents to assess impact 

of diet on disease risk and/or development. One such approach is the “cafeteria” diet, in 
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which the animals are allowed free access to standard chow and water, and are 

concurrently offered highly palatable, energy dense, unhealthy human foods ad libitum 

(100). This dietary protocol promotes hyperphagia, rapid weight gain, increased fat pad 

mass, and biomarkers of metabolic syndrome and diabetes, such as glucose intolerance 

and insulin resistance. Some experts argue that the cafeteria diet has limited value as an 

experimental model because of difficulty in replicating the specific dietary conditions 

across experiments or laboratories and because it is poorly defined with respect to 

micronutrient composition (100, 101).  

In a series of studies over the past twenty years, Newmark and colleagues have 

employed a selective approach in modeling the Western diet, wherein specific 

components of the diet are modified to emulate typical U.S. intakes (81, 102, 103). In 

their first study, Newmark et al. developed a “stress” diet, which was quite low in 

calcium and vitamin D3,  and modestly reduced in phosphate compared to the reference 

diet AIN76; also, the stress diet contained 20% fat as corn oil (40% of calories) compared 

to only 5% (12% of calories) in the reference diet (102). A subsequent study extended 

this stress diet to incorporate dietary components necessary for generation of methyl 

donors (folic acid, methionine, choline, and vitamin B12) and determined that this new 

Western diet (NWD) also enhanced spontaneous tumor development in aged C57BL/6J 

mice, an effect that was reversed when calcium and vitamin D were added back to the 

stress diet (81, 103). Although this series of studies has convincingly demonstrated a role 

for dietary calcium and vitamin D3 in modulating spontaneous colon carcinogenesis in 

mice, the scope of the diet remained limited in that it does not consider possible 

contribution of the dietary fat source, carbohydrates or proteins and does not reflect 
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typical human nutrition patterns for other key micronutrients, such as sodium, selenium, 

or vitamins A or E. Commercial Western diets have also been developed for the study of 

obesity; these diets (refered to as diet-induced obesity, or DIO, diets) typically contain 

45% or 60% of energy as fat and differ from the AIN93G diets primarily in their high 

lard and sucrose content (104). Although these high fat diets effectively induce obesity in 

rodents (105), they are extreme in their sugar and fat compositions when compared to a 

typical Western dietary pattern and do not differ substantially from AIN93G diets in 

micronutrient content (104).  

Importantly, none of the approaches described above for modeling typical 

Western nutrition appropriately considered the contribution of suboptimal micronutrient 

intakes in their disease models. To address this resource gap, our research team 

developed the new total Western diet (TWD) for rodents with energy and nutrient 

profiles that emulate a typical Western diet using available U.S. survey data (NHANES). 

The new TWD was formulated using a nutrient density approach, described in detail in a 

recent publication by members of our research group in the Journal of Agricultural and 

Food Sciences (106). Briefly, the amount of each macro- and micronutrient in the 

AIN93G basal diet, a diet routinely used in cancer studies today, was adjusted to match 

50
th

 percentile intakes for Americans as reported in NHANES survey data. These mass 

amounts were then adjusted for caloric intake. Overall, the TWD is not necessarily 

extreme in the level of any given nutrient, but rather reflects the overall dietary pattern of 

the U.S. The TWD has fewer calories from protein and carbohydrate sources, and twice 

that from fat as compared to the AIN93G diet. The new diet contains more saturated and 

monounsaturated fats, less polyunsaturated fat, more complex carbohydrates, and twice 
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the level of simple sugars. The TWD has less calcium, copper, folate, thiamine, and 

vitamins B6, B12, D, and E, but much more sodium. This newly devised diet that better 

represents typical U.S. nutrition is highly useful for studies employing animal models of 

human cancer. For example, results of a preliminary experiment in A/J mice initiated 

with AOM indicate that the TWD markedly enhanced development of preneoplastic ACF 

compared to the reference diet AIN93G (107).  

 

Project objectives and hypotheses 

The objectives of this thesis project were as follows:  1) to investigate the impact 

of dietary macronutrients (protein, carbohydrate, and fat) and micronutrients (vitamins 

and minerals) on biomarkers of metabolic syndrome and 2) to determine the relative 

importance of the macro- and micronutrient composition of the typical Western diet on 

colon cancer risk using a mouse model of inflammation-associated colorectal 

carcinogenesis. This study was designed to test the following working hypotheses: 

1. Mice consuming the TWD will acquire a metabolic syndrome phenotype, 

indicated by increased body weight, glucose intolerance, and insulin resistance, in 

a manner similar to the prototypical commercial high-fat diet (45% fat DIO diet) 

routinely used for diet-induced obesity pre-clinical studies.  

2. TWD consumption will promote colon tumorigenesis in the C57BL/6J strain of 

mouse, which is highly susceptible to diet-induced obesity and metabolic 

syndrome.  
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3. Tumorigenesis in mice fed TWD will be more severe (greater number of and 

larger tumors) compared to mice consuming the standard basal diet AIN93G, 

which was formulated to be optimal for rodent health. 

4. Tumor outcome will be more severe in mice fed TWD (reflecting typical U.S. 

nutrition with respect to both macro- and micronutrients) than in mice consuming 

a diet modified for macronutrient content only. In other words, a typical Western 

micronutrient profile will exacerbate the expected adverse effects of a high-fat, 

high-sugar diet on colon carcinogenesis.  

5. The new TWD will be at least as effective, if not more so, in promoting colon 

carcinogenesis as the DIO diet (high fat only).  
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MATERIALS AND METHODS 

 

 

Chemicals 

AOM was purchased from Sigma-Aldrich (St. Louis, MO; CAS No. 25843-45-2), 

and reagent grade DSS was purchased from MP Biomedicals (Solon, OH; MW=36,000-

50,000 Da). Phosphate buffered saline (PBS) solution was purchased from Caisson Labs 

(Logan, UT), and 10% buffered neutral formalin was purchased from VWR (Houston, 

TX). All other chemicals used were of reagent grade and purchased from general 

laboratory suppliers. 

 

Animals 

The Utah State University Institutional Animal Care and Use Committee 

approved all procedures for the handling and treatment of mice used in this study 

(protocols #2063 and #2114). Animals were housed in the Laboratory Animal Research 

Center (LARC) at Utah State University, which is an AAALAC approved facility. Mice 

were maintained in a pathogen-free vivarium at 18 to 23 °C with a 12:12 hour dark:light 

cycle and humidity between 20 to 50%. Mice were provided Bed-o’Cobs
®
 1/4 bedding 

(Andersons, Cincinnati, OH). Mice initiated with AOM were housed in HEPA-filtered 

cages on a IVC Air Handling Solutions ventilated housing system (Tecniplast, 

Buguggiate, Italy), while all other mice were housed in wire top cages within a ventilated 

Duo-Flo BioClean Unit (Lab Products, Inc.). Male C57BL/6J mice were obtained from 

Jackson Laboratories (Bar Harbor, ME) at 4 wk of age and acclimated to the vivarium for 

1 wk, during which time mice were provided free access to food and water. 
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Experimental diets 

Experimental test diets were obtained from Harlan-Teklad (Madison, WI). To 

determine the relative impact of dietary macro- and micronutrient composition on 

metabolic health and cancer outcome, we compared 5 different diet formulations as 

outlined in Table 1 and briefly described below:  

1) AIN93G, the standard diet routinely employed in rodent cancer studies 

2) The new total Western diet (TWD), as described in Hintze et al. (106) 

3) A macronutrient-modified diet (MM), which contained the same 

carbohydrate, protein, and lipid content as in the TWD, yet retained the 

vitamin and mineral profile of the reference AIN93G diet 

4) A vitamin- and mineral-modified diet (VMM), which matched the AIN93G 

diet for macronutrient content, yet contained a vitamin and mineral profile 

matching the TWD 

5) A commercial diet-induced obesity diet (DIO) that contained 45% of energy 

as fat (primarily lard) and matched the AIN93G for micronutrient content.  

Diets were obtained as a single lot from the vendor and maintained at 4 °C for the 

duration of the study. Fresh food was provided to mice twice per wk. 

 

Experimental design 

This study was performed in sequential parts, in which the treatment of sham 

mice preceding treatment of AOM+DSS-initiated mice. Sham mice were housed 

individually, whereas mice to be initiated with AOM were housed 5 animals per cage. At 

5 wk of age, mice were randomly assigned to one of the experimental diet groups  
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TABLE 1. Composition of experimental diets 

Nutrient AIN93G TWD VMM MM DIO 

Energy density (kcal/g) 3.8 4.4 3.7 4.4 4.6 

Macronutrient       

Carbohydrates (g/kg diet)      

Corn starch 398 230 398 230 85 

Maltodextrin 132 70 132 70 115 

Sucrose 100 261 100 261 200 

Cellulose 50 30 50 30 58 

kcal (% of total) 60.1% 54.5% 60.1% 54.5% 36.2% 

Proteins (g/kg)      

Casein 200 190 200 190 245 

L-cystine 3 2.8 3 2.8 3.5 

kcal (% of total) 18.8% 15.4% 18.8% 15.4% 19.0% 

Fats (g/kg)      

Soybean oil 70 31.4 70 31.4 30 

Anhydrous milk fat  36.3  36.3  

Olive oil  28.0  28.0  

Lard  28.0  28.0 195 

Beef tallow  24.8  24.8  

Corn oil  16.5  16.5  

Cholesterol  0.4  0.4  

kcal (% of total) 17.2% 34.5% 17.2% 34.5% 44.8% 

Micronutrients      

Minerals (mg/kg)      

Calcium 5000 2011 2011 5000 5000 

Phosphorus 3000 2757 2757 3000 3000 

Sodium 1019 7078 7078 1019 1019 

Potassium 3600 5333 5333 3600 3600 

Magnesium 507 589 589 507 507 

Iron 35 31 31 35 35 

Zinc 30 25 25 30 30 

Copper 6 2.6 2.6 6 6 

Selenium 0.15 0.2 0.2 0.15 0.15 

Vitamins (unit/kg)      

Thiamin (mg) 5 3.5 3.5 5 5 

Riboflavin (mg) 6 4.4 4.4 6 6 

Niacin (mg) 30 50.6 50.6 30 30 

Pyridoxine (mg) 6 3.9 3.9 6 6 

Folate (mg) 2 1.3 1.3 2 2 

Vitamin B12 (μg) 25 11 11 25 25 

Vitamin A (IU) 4000 4300 4300 4000 4000 

Vitamin D (IU) 1000 391 391 1000 1000 

Vitamin E (IU) 75 24.6 24.6 75 75 

Vitamin K (μg) 750 189 189 750 750 

Choline (mg) 1027 648 648 1027 1027 

Note: Abbreviations for experimental diets are as follows:  total Western diet, TWD; vitamin- and 

mineral-modified diet, VMM; macro-modified diet, MM; and diet-induced obesity diet, DIO. 

Composition of the TWD was published previously (106). No data are available in NHANES for 

chloride, manganese, iodine, pantothenic acid, biotin, or ultra-trace minerals. Thus, levels of these 

components in the AIN93G diet were used in the formulation of all experimental diets. 
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described above (N=10 per diet group for sham mice, N=30 per diet group for 

AOM+DSS-initiated mice). For AOM mice, individual animals were tracked using ear 

tags and/or ear punch. Fresh food was provided twice per wk, and food consumption was 

monitored at each change. Individual body weights were recorded once per wk for all 

mice. Body composition of sham mice was determined by MRI scan (EchoMRI-700; 

EchoMRI, Houston, TX) every 4 wk. At 7 wk of age, mice were administered with either 

a subcutaneous injection of 10 mg/kg body weight AOM or sham with an equivalent 

amount of the PBS vehicle. Mice initiated with AOM were also provided 1% DSS via 

their drinking water for 4 wk, then tap water for the remainder of the study. Sham mice 

were provided tap water for the entire study period. After a total of 16 wk on the 

experimental diets, all mice were euthanized by CO2 asphyxiation and necropsied. 

At necropsy of all mice, the liver, kidneys, spleen, and heart were collected, 

weighed, and fixed in 10% buffered neutral formalin. Additionally, to assess fat 

distribution in sham mice, the subcutaneous, gonadal, mesenteric, and retroperitoneal fat 

pads were excised and weighed. Whole blood was obtained from sham mice by cardiac 

venipuncture, and serum was collected by centrifugation (10,000 × g) for 5 min using 

serum separation spin tubes (Sarstedt, Newton, NC). Serum was aliquoted into triplicate 

cryotubes, immediately frozen in liquid nitrogen, and stored at -80°C for analysis of 

plasma hormone concentrations. To assess tumor outcome in AOM+DSS-initiated mice, 

colon tissues were collected from 20 mice per diet group were collected. (Tissue samples 

from the remaining 10 AOM mice per group were preserved for other analyses not 

reported here). Colons were rinsed with PBS, slit open longitudinally from the cecum to 

the anus, placed flat between paper towels, and stored in 70% ethanol solution at 4°C.  
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Fasting glucose and glucose tolerance in sham mice 

Fasting glucose was assessed in sham mice every 4 wk for the duration of the 

study. After a morning fasting period of 6 h, approximately 0.2 μl blood was drawn from 

a 1 mm cut on the tail tip. Glucose was measured using a standard glucose meter and 

glucose strips (Total Diabetes Supply, Boca Raton, FL) in triplicate for each animal. Oral 

glucose tolerance tests were performed on sham mice at wk 7 and 15 of the study. 

Following a morning 6 h fasting period, baseline glucose levels were obtained as 

described above. Then, mice were given a bolus of 10 mg/kg glucose delivered into the 

stomach by gavage needle (22 gauge, 3.81 cm long straight, 2.25 ball diameter). Plasma 

glucose was again measured in triplicate at 0, 15, 30, 60, and 120 min after oral gavage. 

The homeostatic model assessment (HOMA) method was used to assess insulin 

resistance in fasted sham mice using the formula, HOMA = [glucose × insulin]/405, 

where glucose is measured in mass units mg/dL and insulin is expressed as mU/L. 

 

Plasma hormone levels in sham mice 

In order to assess the impact of the experimental diets on biomarkers of 

inflammation and glucose metabolism, 17 plasma circulating hormones were selected for 

analysis: adiponectin, interleukin 2 (IL-2), IL-10, IL-6, monocyte chemotactic protein-1 

(MCP-1), insulin, C-peptide, ghrelin, gastric intestinal peptide (GIP), glucagon-like 

peptide 1, glucagon, leptin, pancreatic polypeptide, peptide YY, resistin, tumor necrosis 

factor alpha (TNFα), and amylin. Serum samples from the sham mice were analyzed 

using a Bio-Plex suspension array system (Bio-Rad Laboratories Inc., Hercules, CA) 

according to the manufacturer’s supplied protocol with no deviation.  
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 Assessment of tumorigenesis in AOM+DSS-initiated mice 

To determine the effect of the experimental diets on colorectal carcinogenesis, 

colon samples were analyzed under a dissecting microscope and tumors were counted. 

The researcher was blinded to the sample identification at the time of assessment. 

Measurements of colon length and tumor volumes were obtained using a pair of 

electronic calipers. Tumors were identified and counted using the following criteria: 1) 

defined, generally round or oval shape, 2) defined, easily distinguishable edges, and 3) 

lighter color with respect to surrounding tissue. Each tumor was measured for length, 

height, and width. Tumor multiplicity was calculated as the number of tumors per mm 

colon for each tumor-bearing animal. Colon volume was estimated using the formula, 

tumor volume = π/6(L×W×D), where L is the length, W is the width, and D is the depth of 

the tumor.  

ACF were identified in using criteria described previously (32, 43). Briefly, ACF 

were characterized as crypts of larger size and often slit-shaped, with increased 

pericryptal area, and thickened layer of epithelial cells which sometimes resulted in 

greater staining around the crypt. Colon tissues were stained in methylene blue for 

approximately 30 sec to facilitate detection of ACF. Colon samples were coded so that 

the corresponding treatment group was not known by the researcher assessing the number 

of foci and the number of crypt cells per foci. 

 

Statistical analyses 

Statistical analyses for food intake, energy intake, body weight, relative organ 

weights, metabolic efficiency, percentage fat and lean mass, fasting glucose, glucose 
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tolerance, plasma hormone concentration, HOMA, tumor multiplicity, tumor volume (log 

transformed), ACF number, and total crypts were performed using mixed models analysis 

of variance (Mixed procedure, SAS 9.3) with the Satterthwaite degrees of freedom 

approximation when needed to account for unequal variances among experimental 

groups. Data for sham or AOM+DSS-initiated mice were analyzed independently, as the 

key experimental question of interest was not the impact of AOM exposure, but rather the 

impact of experimental diet on biomarkers of metabolic health and colon carcinogenesis. 

For analysis of data from AOM+DSS-initiated mice, the parameter cage was included as 

a random factor nested within each diet group to account for cage effects on outcomes. 

Analysis of colon tumor incidence was performed using a quasi-likelihood logistic 

regression (SAS genmod procedure). Finally, all analyses included the Bonferroni 

multiple comparison adjustment to account for multiple testing.   



 

 

29 

RESULTS 

 

 

Food and energy intakes 

Food intakes are reported on a per wk basis (Fig. 1A-B) or for the entire 16 wk 

feeding period (Fig. 1C-D) for individual sham mice or on a per cage basis for 

AOM+DSS-initiated mice. Results of the statistical analyses for food and energy intakes 

by mice fed different experimental diets are presented in Table 2. Over the course of the 

16 wk feeding period, sham and mice fed the AIN93G or VMM diets consumed 

significantly more total food (9 to 16% increase for AIN93G group, 8 to 15% increase for 

VMM group) compared to their counterparts fed the TWD, MM or DIO diets (P < 0.05, 

Fig. 1). Although AOM+DSS-initiated mice were group housed, on a per cage basis, the 

same pattern was evident on a per-cage basis, where mice fed the AIN93G and VMM 

diets generally consumed more total food than mice provided TWD, MM or DIO diets 

(Fig. 1). Also of note was the observation that mice that were group housed consistently 

consumed less food than mice that were individually housed, even though food was 

maintained at sufficient amounts in the AOM+DSS cages throughout the study.  

Energy intakes were calculated using the specific energy density for each 

experimental diet and the recorded food intake values on a per wk basis (Fig. 2A-B) and 

for the entire 16 wk feeding period (Fig. 2C-D). In sham mice, total energy intake for 

animals consuming AIN93G, TWD, or VMM diets was not significantly different (Fig. 

2A,C). On the other hand, energy intakes for mice fed either the MM or DIO diets were 

markedly higher (>5%) compared to all other diet groups (P < 0.05) (Fig. 2A,C; Table 2). 

The pattern of energy intakes across diet groups was slightly different for 
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FIGURE 1. Food consumption in sham or AOM+DSS-initiated mice. Mean food 

intake per wk ± SEM is shown for sham mice (N = 10 individuals) (A) or mice initiated 

with AOM+DSS (N = 4 cages, data normalized by number of mice per cage) (B). Total 

food consumption data for each diet group are represented in box-and-whisker plots (plus 

symbol indicates the treatment group mean and whiskers are 1.5 times the interquartile 

range) for sham (C) or AOM+DSS-initiated mice (D). Different letters indicate that 

treatment groups are significantly different as determined by ANOVA (SAS mixed 

procedure with Satterthwaite approximation); Bonferroni-adjusted P values for multiple 

comparisons among diet groups for sham and AOM+DSS-initiated mice are provided in 

Table 2.  
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FIGURE 2. Energy intake in sham or AOM+DSS-initiated mice. Mean energy intake 

per wk ± SEM is shown for sham mice (N = 10 individuals) (A) or AOM+DSS-initiated 

mice (N = 4 cages, data normalized by number of mice per cage) (B). Total energy intake 

data for each diet group are represented in box-and-whisker plots (plus symbol indicates 

the treatment group mean and whiskers are 1.5 times the interquartile range) for sham (C) 

or AOM+DSS-initiated mice (D). Different letters indicate that treatment groups are 

significantly different as determined by ANOVA (SAS mixed procedure with 

Satterthwaite approximation); Bonferroni-adjusted P values for multiple comparisons 

among diet groups for sham and AOM+DSS-initiated mice are provided in Table 2.  
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TABLE 2. Comparisons among diet groups for food and energy intakes. 

Comparison 

Sham  AOM+DSS-initiated 
 

Food intake Energy intake  Food intake Energy intake 

AIN93G vs. TWD <0.0001 1.0000  <0.0001 <0.0001 
AIN93G vs. VMM 1.0000 0.9568  1.0000 0.0165 

AIN93G vs. MM <0.0001 0.1645  <0.0001 <0.0001 

AIN93G vs. DIO 0.0005 <0.0001  <0.0001 <0.0001 

TWD vs. VMM <0.0001 1.0000  <0.0001 <0.0001 

TWD vs. MM 0.0309 0.0231  1.0000 0.9118 

TWD vs. DIO 0.0062 <0.0001  0.0415 <0.0001 

VMM vs. MM 0.0004 0.0013  <0.0001 <0.0001 

VMM vs. DIO 0.0021 <0.0001  <0.0001 <0.0001 

MM vs. DIO 1.0000 0.0527  1.0000 <0.0001 

Note: Analysis of each indicated parameter was performed by ANOVA (SAS mixed 

procedure) with the Satterthwaite method to approximate degrees of freedom to account 

for apparent unequal variances in parameter measurements among diet groups. For 

AOM+DSS-initiated mice, analyses of food and energy intakes were performed using 

cage data, rather than individual data for AOM+DSS-initiated mice; for all other 

parameters, cage was considered as a random factor nested within the diet treatment 

group. P values of the differences of least squares means are shown for each pair-wise 

comparison among diet groups, and significant differences are shown in bold.  

 

 

AOM+DSS-initiated mice. As in sham mice, energy intake values (normalized to the 

number of mice per cage) were not significantly different between AIN93G and VMM 

groups, and both of these groups had lower energy intakes than mice fed MM or DIO 

diets (Fig. 2D). However, unlike sham mice, energy intake for AOM+DSS-initiated 

animals fed TWD and MM was similar and significantly higher than those fed AIN93G 

(P < 0.0001). These differences in the patterns of food and energy intake among diet 

groups could be attributed to food competition, as AOM+DSS mice were housed in 

groups of 4 to 5 mice during the study. Regardless, as with sham mice, the AOM+DSS-

initiated mice fed the DIO diet consumed significantly more calories (>11%) than all 
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other groups (P<0.0001). Conversely, AOM+DSS-initiated mice fed the VMM 

consumed fewer calories than all other diet groups (P<0.05), reflecting the differences in 

energy density of the diets.  

 

Body weight, organ weights, and metabolic efficiency 

Sham and AOM+DSS-initiated mice gained weight steadily throughout the entire 

study period, although the rate of weight gain (and food consumption) for AOM+DSS-

initiated mice was slightly lower for all diet groups in the week following carcinogen 

injection (Fig. 3A-B). At the conclusion of the study, final body weights for mice 

consuming TWD or VMM diets were not different for mice fed the reference AIN93G 

diet, yet they were significantly lower (P <0.05) than mice fed either the MM or DIO 

diets (Fig. 3C; Tables 3 and 4). A similar pattern was observed for mice initiated with 

AOM (Fig. 3D). Sham or AOM+DSS-initiated mice fed the DIO diet gained about 10 or 

13% more weight, respectively, than their counterparts consuming the AIN93G reference 

diet. However, average final body weights were approximately 19% higher in DIO-fed 

mice (sham and AOM+DSS-initiated) than mice provided the VMM diet, representing 

the largest difference in body weight gain among the experimental diet groups. 

In general, the weights of liver, kidney, and spleen with respect to body weight 

were not markedly affected by dietary treatment, with a few notable exceptions. The 

average relative liver weight for mice that consumed the DIO diet was marginally lower 

(0.47 to 0.58%) compared to all other diet groups (P < 0.05); this pattern was also evident 

in AOM+DSS-initiated mice, though only significant between DIO and AIN93G or 

TWD groups (P = 0.0208 and 0.0002, respectively). However, the absolute liver weights  
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FIGURE 3. Body weight gain in sham or AOM+DSS-initiated mice. Values for body 

weight gain over time ± SEM are shown for sham (N = 10) (A) or AOM+DSS-initiated 

mice (N = 30) (B). Final body weight data for each diet group are represented in box-and-

whisker plots (plus symbol indicates the treatment group mean, and whiskers are 1.5 

times the interquartile range) for sham (C) or AOM+DSS-initiated mice (D). Different 

letters indicate that treatment groups are significantly different as determined by ANOVA 

(SAS mixed procedure with Satterthwaite approximation); Bonferroni-adjusted P values 

for multiple comparisons among diet groups for sham and AOM+DSS-initiated mice are 

provided in Table 4. 



 

 

35 

T
A

B
L

E
 3

. 
B

o
d

y
 o

rg
a
n

 w
ei

g
h

ts
 f

o
r 

sh
a
m

- 
a
n

d
 A

O
M

+
D

S
S

-i
n

it
ia

te
d

 m
ic

e.
 

 D
ie

t 
g
ro

u
p

  

B
o

d
y

 

w
ei

g
h

t 
(g

) 

L
iv

er
 

w
ei

g
h

t 
(g

) 

R
el

a
ti

v
e 

li
v
er

 

w
ei

g
h

t 
(%

) 

K
id

n
ey

 

w
ei

g
h

t 
(m

g
) 

R
el

a
ti

v
e 

k
id

n
ey

 

w
ei

g
h

t 
(%

) 

S
p

le
en

 

w
ei

g
h

t 
(m

g
) 

R
el

a
ti

v
e 

sp
le

en
 

w
ei

g
h

t 
(%

) 

S
h
am

 
 

 
 

 
 

 
 

A
IN

9
3
G

 
2

8
.4

±
1
.4

 
1

.0
6
±

0
.0

8
6
 

3
.7

4
±

0
.2

2
 

3
6
7
±

2
3
 

1
.3

0
±

0
.1

0
 

7
4

.0
±

9
.7

 
0

.2
6

1
±

0
.0

3
1
 

T
W

D
 

2
6

.4
±

1
.5

 
1

.0
0
±

0
.0

8
2
 

3
.7

7
±

0
.1

8
 

3
8
7
±

2
4
 

1
.4

7
±

0
.1

2
 

6
8

.0
±

9
.2

 
0

.2
5

9
±

0
.0

4
0
 

V
M

M
 

2
6

.4
±

3
.2

 
0

.9
9
3
±

0
.1

2
 

3
.7

8
±

0
.5

0
 

3
6
6
±

3
7
 

1
.3

9
±

0
.0

7
1
 

7
8

.0
±

1
3
 

0
.2

9
7

±
0

.0
5

2
 

M
M

 
3

0
.0

±
2
.4

 
1

.1
0
±

0
.0

7
6
 

3
.6

7
±

0
.2

0
 

3
7
6
±

2
5
 

1
.2

6
±

0
.0

8
5
 

7
4

.0
±

9
.7

 
0

.2
4

7
±

0
.0

3
0
 

D
IO

 
3

1
.4

±
3
.7

 
0

.9
9
8
±

0
.1

1
 

3
.2

0
±

0
.3

8
 

4
2
4
±

3
8
 

1
.3

6
±

0
.1

2
 

7
3

.0
±

1
4
 

0
.2

3
1

±
0

.0
2

3
 

A
O

M
+

D
S

S
-i

n
it

ia
te

d
 

 
 

 
 

 
 

A
IN

9
3
G

 
2

5
.3

±
1
.7

 
1

.0
9
±

0
.1

2
 

4
.3

0
±

0
.4

2
 

3
4
1
±

3
3
 

1
.3

5
±

0
.1

1
 

8
5

.7
±

1
5
 

0
.3

4
0

±
0

.0
6

3
 

T
W

D
 

2
6

.5
±

1
.6

 
1

.2
0
±

0
.1

5
 

4
.5

1
±

0
.4

8
 

3
8
2
±

4
1
 

1
.4

4
±

0
.1

1
 

1
8

8
±

1
0

4
 

0
.7

1
1

±
0

.4
0
 

V
M

M
 

2
5

.2
±

1
.7

 
1

.0
8
±

0
.1

3
 

4
.2

9
±

0
.5

1
 

3
5
8
±

4
0
 

1
.4

2
±

0
.1

4
 

1
4

8
±

1
0

1
 

0
.5

9
0

±
0

.4
2
 

M
M

 
2

8
.7

±
2
.5

 
1

.1
8
±

0
.1

7
 

4
.1

2
±

0
.4

2
 

3
9
1
±

5
0
 

1
.3

6
±

0
.1

1
 

8
0

.3
±

1
2
 

0
.2

8
1

±
0

.0
4

5
 

D
IO

 
3

0
.3

±
2
.0

 
1

.1
4
±

0
.1

4
 

3
.7

6
±

0
.3

5
 

4
3
8
±

6
7
 

1
.4

5
±

0
.2

3
 

8
5

.7
±

1
9
 

0
.2

8
4

±
0

.0
6

5
 

N
o
te

: 
 V

al
u
es

 s
h

o
w

n
 a

re
 a

v
er

ag
e 

b
o

d
y
 a

n
d

 o
rg

an
 w

ei
g
h
ts

 o
r 

th
e 

re
la

ti
v
e 

li
v
er

, 
k
id

n
ey

 a
n
d
 s

p
le

en
 w

ei
g
h

ts
 (

o
rg

an
 w

ei
g
h

t 
÷

 b
o
d

y
 w

ei
g
h

t 
×

 1
0

0
) 

±
 

st
an

d
ar

d
 d

ev
ia

ti
o

n
 f

o
r 

ea
ch

 t
re

at
m

en
t 

g
ro

u
p
 (

N
 =

 1
0
 f

o
r 

S
h
am

 g
ro

u
p
s;

 N
 =

 3
0
 f

o
r 

A
O

M
 g

ro
u
p
s)

. 
 

 
 



 

 

36 

T
A

B
L

E
 4

. 
C

o
m

p
a
ri

so
n

s 
a
m

o
n

g
 d

ie
t 

g
ro

u
p

s 
fo

r 
b

o
d

y
 a

n
d

 r
el

a
ti

v
e
 o

rg
a

n
  

w
ei

g
h

ts
 f

o
r 

sh
a
m

- 
a
n

d
 A

O
M

+
D

S
S

-i
n

it
ia

te
d

 m
ic

e.
 

C
o
m

p
a
ri

so
n

 

S
h

a
m

 
 

A
O

M
+

D
S

S
-i

n
it

ia
te

d
  

B
W

 (
g

) 
B

W
 g

a
in

 (
g
) 

L
W

 (
%

) 
K

W
 (

%
) 

S
W

 (
%

) 
 

B
W

 (
g
) 

B
W

 g
a
in

 (
g

) 
L

W
 (

%
) 

K
W

 (
%

) 
S

W
 (

%
) 

A
IN

9
3
G

 v
s.

 T
W

D
 

1
.0

0
0

0
 

0
.6

9
7

0
 

1
.0

0
0
0
 

0
.0

0
3
9
 

1
.0

0
0
0
 

 
0
.3

0
2
5
 

1
.0

0
0

0
 

1
.0

0
0

0
 

1
.0

0
0

0
 

<
0

.0
0

0
1
 

A
IN

9
3
G

 v
s.

 V
M

M
 

0
.9

9
0

5
 

0
.6

9
7

0
 

1
.0

0
0
0
 

0
.4

3
1
3
 

0
.3

0
8
0
 

 
1
.0

0
0
0
 

1
.0

0
0

0
 

1
.0

0
0

0
 

1
.0

0
0

0
 

0
.0

0
1

0
 

A
IN

9
3
G

 v
s.

 M
M

 
1

.0
0

0
0
 

1
.0

0
0

0
 

1
.0

0
0
0
 

1
.0

0
0
0
 

1
.0

0
0
0
 

 
<

0
.0

0
0
1
 

0
.0

0
0

2
 

1
.0

0
0

0
 

1
.0

0
0

0
 

1
.0

0
0

0
 

A
IN

9
3
G

 v
s.

 D
IO

 
0

.1
1

4
1
 

0
.0

4
1

3
 

0
.0

0
3
8
 

1
.0

0
0
0
 

0
.7

2
9
6
 

 
<

0
.0

0
0
1
 

<
0
.0

0
0

1
 

0
.0

2
0

8
 

0
.3

9
8

6
 

1
.0

0
0

0
 

T
W

D
 v

s.
 V

M
M

 
1

.0
0

0
0
 

1
.0

0
0

0
 

1
.0

0
0
0
 

0
.8

5
8
8
 

0
.2

1
7
6
 

 
0
.2

0
2
3
 

0
.4

8
7

7
 

0
.8

5
0

1
 

1
.0

0
0

0
 

0
.7

6
7

4
 

T
W

D
 v

s.
 M

M
 

0
.0

3
3

1
 

0
.0

1
4

1
 

1
.0

0
0
0
 

0
.0

0
0
2
 

1
.0

0
0
0
 

 
0
.0

0
5
3
 

0
.0

0
5

4
 

0
.3

6
0

6
 

1
.0

0
0

0
 

<
0

.0
0

0
1
 

T
W

D
 v

s.
 D

IO
 

0
.0

0
0

9
 

0
.0

0
0

1
 

0
.0

0
2
6
 

0
.1

6
7
5
 

0
.9

8
2
1
 

 
<

0
.0

0
0
1
 

<
0
.0

0
0

1
 

0
.0

0
0

2
 

1
.0

0
0

0
 

<
0

.0
0

0
1
 

V
M

M
 v

s.
 M

M
 

0
.0

3
1

6
 

0
.0

1
4

1
 

1
.0

0
0
0
 

0
.0

4
5
0
 

0
.0

3
4
3
 

 
<

0
.0

0
0
1
 

<
0
.0

0
0

1
 

1
.0

0
0

0
 

1
.0

0
0

0
 

<
0

.0
0

0
1
 

V
M

M
 v

s.
 D

IO
 

0
.0

0
0

8
 

0
.0

0
0

1
 

0
.0

0
1
6
 

1
.0

0
0
0
 

0
.0

0
1
9
 

 
<

0
.0

0
0
1
 

<
0
.0

0
0

1
 

0
.0

8
8

0
 

1
.0

0
0

0
 

<
0

.0
0

0
1
 

M
M

 v
s.

 D
IO

 
1

.0
0

0
0
 

1
.0

0
0

0
 

0
.0

1
8
3
 

0
.2

8
5
6
 

1
.0

0
0
0
 

 
0
.0

5
7
0
 

0
.1

5
0

4
 

0
.2

6
8

3
 

1
.0

0
0

0
 

1
.0

0
0

0
 

N
o
te

: 
A

n
al

y
si

s 
o

f 
ea

ch
 i

n
d
ic

at
ed

 p
ar

am
et

er
 w

as
 p

er
fo

rm
ed

 b
y
 A

N
O

V
A

 (
S

A
S

 m
ix

ed
 p

ro
ce

d
u
re

) 
w

it
h

 t
h
e 

S
at

te
rt

h
w

ai
te

 m
et

h
o

d
 t

o
 a

p
p

ro
x
im

at
e 

d
eg

re
es

 o
f 

fr
ee

d
o

m
 t

o
 a

cc
o
u

n
t 

fo
r 

ap
p

ar
en

t 
u
n
eq

u
al

 v
ar

ia
n
ce

s 
in

 p
ar

am
et

er
 m

ea
su

re
m

en
ts

 a
m

o
n
g
 d

ie
t 

g
ro

u
p
s.

 P
 v

al
u

es
 o

f 
th

e 
d
if

fe
re

n
ce

s 
o

f 
le

as
t 

sq
u
ar

es
 m

ea
n

s 
ar

e 
sh

o
w

n
 f

o
r 

ea
ch

 p
ai

r-
w

is
e 

co
m

p
ar

is
o
n
 a

m
o
n
g
 d

ie
t 

g
ro

u
p
s,

 a
n
d
 s

ig
n
if

ic
an

t 
v
al

u
es

 a
re

 s
h

o
w

n
 i

n
 b

o
ld

. 
A

b
b
re

v
ia

ti
o

n
s 

ar
e 

as
 

fo
ll

o
w

s:
 b

o
d
y
 w

ei
g
h

t,
 B

W
; 

li
v
er

 w
ei

g
h

t,
 L

W
; 

k
id

n
ey

 w
ei

g
h
t,

 K
W

; 
an

d
 s

p
le

en
 w

ei
g
h
t,

 S
W

. 

 



 

    

37 

were not different among diet groups (P > 0.05), suggesting that the difference in relative 

liver weight values was a reflection not of a change in liver health status, but rather the 

body weight of mice consuming the DIO diet. Average relative spleen weight was 

markedly higher (up to 2-fold) in mice consuming TWD or VMM diets compared to 

other diet groups (P ≤ 0.001), although this trend was not observed in sham mice (Tables 

3, 4).  

Metabolic efficiency was calculated for only sham mice, which were singly 

housed (Fig. 4). Animals fed the MM and DIO diets had significantly lower metabolic 

efficiency that TWD and VMM-fed mice, suggesting that they were less efficient and 

converting nutrients into energy. However, neither the MM nor DIO diet groups differed 

significantly from the AIN93-fed animals. Also, metabolic efficiency values for mice 

consuming diets modified in vitamin and mineral content (TWD and VMM diets) were 

not significantly different from mice fed AIN93G. 

 

Body composition and fat distribution  

To determine the impact of the experimental diets on fat accumulation, the body 

composition of sham mice was assessed periodically by MRI (Tables 5,6). In general, the 

rate of lean mass gain among any of the experimental diet groups was similar, and the 

average final lean mass was the same for all groups (Fig. 5A). However, when calculated 

as a percentage of body weight, lean mass at the end of the study was slightly lower in 

mice consuming the MM or DIO diets compared to the VMM diet (P<0.05), yet average 

percentage lean mass was not significantly different for any of the test diet groups 

compared to the reference AIN93G diet group (Fig. 5C). On the other had, a markedly 
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different pattern was observed for effect of diet on fat accumulation over time (Fig. 5B). 

At the end of the study, the average fat mass of mice fed either the MM or DIO diets was 

7 to 12% higher compared to mice fed TWD or VMM (Fig. 5D). A comparison of the 

relative lean and fat mass gain among experimental groups shows that the apparent 

differences in body weight gain in MM and DIO animals was attributed entirely to an 

increase in fat mass.  

 

FIGURE 4. Metabolic efficiency in sham mice. A, Mean metabolic efficiency 

(calculated as weekly energy intake divided by weekly body weight gain) is shown ± 

SEM (N = 10 individuals). B, Values for cumulative metabolic efficiency (total energy 

intake divided by total body weight gain) are represented in box-and-whisker plots (plus 

symbol indicates the treatment group mean and whiskers are 1.5 times the interquartile 

range). Different letters indicate that treatment groups are significantly different as 

determined by ANOVA (SAS mixed procedure with Satterthwaite approximation to 

account for apparent unequal variances); Bonferroni-adjusted P values for multiple 

comparisons among diet groups are provided in Table 5. 
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TABLE 5. Body composition in sham mice. 

Diet Group Week 0 Week 4 Week 8 Week 12 Week 16 

Fat mass      

AIN93G 1.88±1.06 2.53±0.43 3.09±1.31 3.64±0.64 5.34±1.38 

TWD 2.22±0.51 2.58±0.22 2.43±0.35 3.63±0.60 4.52±1.06 

VMM 2.16±0.64 2.59±0.41 2.85±0.70 3.33±1.01 4.14±1.41 

MM 2.72±0.62 3.12±0.49 3.60±0.47 5.38±1.50 7.13±1.92 

DIO 2.14±0.52 2.95±0.75 4.68±1.34 6.16±1.98 8.64±2.88 

Lean mass      

AIN93G 15.32±1.13 17.70±0.79 17.97±1.68 20.63±0.40 19.99±2.11 

TWD 15.33±1.00 16.75±0.74 18.26±0.51 19.75±0.59 19.52±0.93 

VMM 15.03±1.55 16.86±1.59 18.97±1.36 19.36±1.67 19.99±1.35 

MM 14.50±1.56 17.34±0.43 19.04±0.45 19.62±0.86 20.26±1.21 

DIO 15.67±0.80 17.49±0.90 18.97±1.00 20.31±1.81 20.48±1.17 

Note:  Values shown are the average fat or lean mass (g) determined by EchoMRI ± SD for each 

treatment group (N = 10). 

 

TABLE 6. Comparisons among diet groups for  

body composition in sham mice. 

 Lean mass  Fat mass 

Comparison g % of BW  g % of BW 

AIN93G vs. TWD 1.0000 1.0000  1.0000 1.0000 

AIN93G vs. VMM 1.0000 0.6791  1.0000 0.9477 

AIN93G vs. MM 1.0000 1.0000  0.3509 0.4761 

AIN93G vs. DIO 1.0000 0.5086  0.0023 0.0082 

TWD vs. VMM 1.0000 1.0000  1.0000 1.0000 

TWD vs. MM 1.0000 0.2837  0.0282 0.0377 

TWD vs. DIO 1.0000 0.0628  <0.0001 0.0003 

VMM vs. MM 1.0000 0.0204  0.0074 0.0051 

VMM vs. DIO 1.0000 0.0034  <0.0001 <0.0001 

MM vs. DIO 1.0000 1.0000  0.7317 1.0000 

Note: Analysis of each indicated parameter was performed by ANOVA (SAS mixed procedure) 

with the Satterthwaite method to approximate degrees of freedom to account for apparent unequal 

variances in parameter measurements among diet groups. Effects of diet treatment on final lean or 

fat weights (g) and relative weights (%) are were determined separately. P values of the 

differences of least squares means are shown for each pair-wise comparison among diet groups, 

and significant values are shown in bold. 
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FIGURE 5. Body composition of sham mice. Body composition was assessed by MRI 

at wk 0, 4, 8, 12, and 16. The change in lean (A) and fat (B) mass for each diet group over 

time is shown ± SEM (N = 10 individuals). Values for the lean mass (C) and fat mass (D) 

with respect to final body weight (fat mass ÷ body weight × 100) are represented in box-

and-whisker plots (plus symbol indicates the mean for the treatment group, and whiskers 

are 1.5 times the interquartile range). Different letters indicate that treatment groups are 

significantly different as determined by ANOVA (SAS mixed procedure with 

Satterthwaite approximation to account for apparent unequal variances); Bonferroni-

adjusted P values for multiple comparisons among diet groups are provided in Table 8. 
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To determine the impact of experiment diet on fat distribution, we assessed the 

relative mass of subcutaneous, gonadal, mesenteric, and retroperitoneal fat pads with 

respect to final body weight of sham mice at the conclusion of the experiment (Tables 7, 

8). A significant increase in the average percent fat mass was observed for all fat types, in 

animals that consumed either the MM or DIO diets, whereas no significant differences 

were apparent for mice fed AIN93G, TWD or VMM (Fig. 6). This effect of diet was 

most notable for subcutaneous fat, which was twice as abundant in mice fed DIO diet 

compared to the AIN93G, TWD or VMM diets (P < 0.0001). Additionally, a significant 

difference in the ratio of subcutaneous to visceral (gonadal, retroperitoneal, and 

mesenteric) fat was observed when comparing mice fed AIN93G (0.66 ratio) to those that 

consumed the DIO diet (0.91 ratio) (P <0.01), whereas this ratio was not different among 

mice fed either the TWD, VMM or MM diets. 

 

Fasting glucose and glucose tolerance in sham mice 

To assess the impact of experimental diets on biomarkers of metabolic syndrome, 

we measured fasting glucose and oral glucose tolerance periodically throughout the study 

in a subset of 6 mice randomly selected from each treatment group. At the start of the 

study, average fasting glucose levels were similar for all treatment groups (Fig. 7), and 

this trend among treatment groups was fairly consistent throughout the experiment (Table 

9). At the conclusion of the study, average fasting glucose levels were not significantly 

different compared between the reference AIN93G diet and the other experimental diet 

groups (Fig. 7C). However, fasting glucose was elevated in DIO-fed mice compared to 

those that consumed the VMM diet (P = 0.0043).  
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TABLE 8. Comparisons among diet groups for  

fat distribution in sham mice. 

Comparison 

Subcutaneous 

(% of BW) 

Gonadal 

(% of BW) 

Mesenteric 

(% of BW) 

Retroperitoneal 

(% of BW) 

AIN93G vs. TWD 1.0000 1.0000 1.0000 1.0000 

AIN93G vs. VMM 1.0000 1.0000 1.0000 0.6698 

AIN93G vs. MM 0.0079 0.0107 0.0011 0.0174 

AIN93G vs. DIO <0.0001 0.0007 <0.0001 <0.0001 

TWD vs. VMM 1.0000 1.0000 1.0000 1.0000 

TWD vs. MM 0.0389 0.0017 0.0033 0.0366 

TWD vs. DIO <0.0001 <0.0001 <0.0001 <0.0001 

VMM vs. MM 0.0412 0.0001 0.0002 1.0000 

VMM vs. DIO <0.0001 <0.0001 <0.0001 0.0023 

MM vs. DIO 0.0087 1.0000 0.1211 0.1265 

Note: Analysis of each indicated parameter was performed by ANOVA (SAS mixed procedure) 

with the Satterthwaite method to approximate degrees of freedom to account for apparent unequal 

variances in parameter measurements among diet groups. P values of the differences of least 

squares means are shown for each pair-wise comparison among diet groups, and significant 

values are shown in bold.  

 

 

Glucose tolerance was assessed by calculating the area under the curve (AUC) for 

oral glucose tolerance tests performed at wk 7 and 15 of the study (Fig. 8). Values for 

AUC for the DIO group were significantly higher (by about 50%) than mice fed the 

AIN93G and VMM diets at both time points assessed (Fig. 8; Table 9), but other dietary 

treatment groups did not alter glucose tolerance in comparison to the reference AIN93G 

diet.  

 

Plasma hormone levels in sham mice 

At the conclusion of the study, levels of a variety of hormones critical to 

regulation of food intake, inflammation, and development of metabolic syndrome were 

measured in blood samples collected from sham mice. Seven in the multiplex assay were 

reliably detected in all samples, including adiponectin, resistin, leptin, insulin, GIP, 
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FIGURE 6. Fat distribution in sham mice. Values for the percentage subcutaneous (A), 

gonadal (B), mesenteric (C), and retroperitoneal fat (D) and the ratio of subcutaneous fat 

to visceral fat (including gonadal, mesenteric and retroperitoneal) (E) are represented in 

box-and-whisker plots (plus symbol indicates the mean for the treatment group, and 

whiskers are 1.5 times the interquartile range). Different letters indicate that treatment 

groups are significantly different as determined by ANOVA (SAS mixed procedure with 

Satterthwaite approximation to account for apparent unequal variances); Bonferroni-

adjusted P values for multiple comparisons among diet groups are provided in Table 7.  
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FIGURE 7. Fasting glucose levels in sham mice. Fasting glucose was determined at the 

start of the study, then again at wk 4, 8, 12, and 16 (A). The change in fasting glucose for 

each diet group over time is shown ± SEM (N = 6). Values for fasting glucose at wk 0 (B) 

and at wk 16 (C) are represented in box-and-whisker plots (plus symbol indicates the 

mean for the treatment group, and whiskers are 1.5 times the interquartile range). 

Different letters indicate that treatment groups are significantly different as determined 

by ANOVA (SAS mixed procedure with Satterthwaite approximation to account for 

apparent unequal variances); Bonferroni-adjusted P values for multiple comparisons 

among diet groups for each time point are provided in Table 9. 
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TABLE 9. Comparisons among diet groups for fasting glucose levels  

and oral glucose tolerance in sham mice.  

 Fasting glucose  oGTT 

Comparison Wk 0 Wk 4 Wk 8 Wk 12 Wk 16  Wk 7 Wk 15 

AIN93G vs. TWD 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000 1.0000 

AIN93G vs. VMM 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000 1.0000 

AIN93G vs. MM 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000 1.0000 

AIN93G vs. DIO 0.0477 0.0395 1.0000 1.0000 0.3022  0.0477 0.0395 

TWD vs. VMM 1.0000 1.0000 1.0000 1.0000 0.3628  1.0000 1.0000 

TWD vs. MM 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000 1.0000 

TWD vs. DIO 0.1054 0.1202 1.0000 1.0000 1.0000  0.1054 0.1202 

VMM vs. MM 1.0000 1.0000 1.0000 1.0000 0.1589  1.0000 1.0000 

VMM vs. DIO 0.0277 0.0137 1.0000 0.7892 0.0043  0.0277 0.0137 

MM vs. DIO 0.1403 0.2396 1.0000 1.0000 1.0000  0.1403 0.2396 

Note: Analysis of each indicated parameter was performed by ANOVA (SAS mixed procedure) 

with the Satterthwaite method to approximate degrees of freedom to account for apparent unequal 

variances in parameter measurements among diet groups. P values of the differences of least 

squares means are shown for each pair-wise comparison among diet groups, and significant 

values are shown in bold. 

 

C-peptide, and IL-6, while the levels of the other 10 hormones were below the detection 

limit of the assay. For the most part, the experimental diets did not significantly impact 

circulating hormone levels (Fig. 9). Two notable exceptions included leptin, which was 

elevated in mice fed DIO approximately 2-fold compared to mice provided the AIN93G, 

VMM or TWD diets (P < 0.01); plasma leptin levels were also elevated in mice fed the 

MM diet compared to mice consuming the AIN93G, TWD, and VMM diets (Fig. 9C). 

Lastly, plasma levels of GIP were significantly higher in mice consuming TWD 

compared to the VMM-fed animals, although neither group were significantly different 

from the reference AIN93G diet or the DIO diet group (Fig. 9D). Finally, the HOMA 

method was used to calculate insulin resistance, which was significantly higher in mice 

fed the DIO diet compared to those fed TWD (P < 0.01), although neither group was 

significantly different from the AIN93G, VMM or MM groups (Fig. 10) 
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FIGURE 8. Oral glucose tolerance in sham mice. Results of oral glucose tolerance 

tests at wk 7 (A) and wk 15 (B) are shown. Symbols represent mean glucose levels ± 

SEM (N = 6). Glucose tolerance was assessed by calculating the area under the curve 

(AUC) with baseline set at 100 mg/dL. Calculated AUC values for oGTT at wk 7 (C) and 

at wk 15 (D) are represented in box-and-whisker plots (plus symbol indicates the mean 

for the treatment group, and whiskers are 1.5 times the interquartile range). Different 

letters indicate that treatment groups are significantly different as determined by ANOVA 

(SAS mixed procedure with Satterthwaite approximation to account for apparent unequal 

variances); Bonferroni-adjusted P values for multiple comparisons among diet groups for 

each time point are provided in Table 5. 
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FIGURE 9. Plasma hormone levels in sham mice. Mean plasma concentrations of 

adiponectin (A), resistin (B), leptin (C), gastric inhibitory peptide (GIP) (D), insulin (E), 

c-peptide (F) and IL-6 (G) are shown ± SEM (N = 6 to 10). Different letters indicate that 

treatment groups are significantly different as determined by ANOVA (SAS mixed 

procedure with the Bonferroni adjustment for multiple comparisons).  
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FIGURE 10. Insulin resistance by the homeostatic model assessment (HOMA) 

method. HOMA was calculated using matched values for fasting glucose and insulin at 

16 wk as described in Methods. Average HOMA values are shown ± SEM (N = 6). 

Different letters indicate that treatment groups are significantly different as determined 

by ANOVA (SAS mixed procedure with the Bonferroni adjustment for multiple 

comparisons).  

 

Impact of experimental diets on colon tumorigenesis 

The most critical objective of this study was to assess the impact of experimental 

diet on colorectal carcinogenesis. At the end of the feeding trial, the number of 

preneoplastic lesions and the incidence, abundance and size of colon tumors were 

determined in a subset of mice initiated with AOM+DSS (N = 20) (Tables 10, 11). 

Values for all of these parameters are expressed on a colon length basis, as colon tissues 

with high tumor burden tend to be shorter in length and thus have less surface area. As 

expected with this initiation protocol, nearly all animals fed the reference AIN93G diet 

acquired colon cancer. However, tumors were detected in only 80% of the mice fed DIO  

diet, which was marginally significantly different (P=0.0479) from the 100% cancer 

incidence observed in mice fed TWD, VMM or MM diets (Table 10).  

On the other hand, striking significant effects of experimental diet on tumor 

multiplicity and size were observed. Mice provided either the TWD or VMM diets had 
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nearly twice as many tumors as their AIN93-fed counterparts (P< 0.01), and about 3-

times the number of tumors as animals provided the MM or DIO diets (P <0.0001) (Fig. 

11A). However, tumor multiplicity was not significantly different in animals fed the MM 

or DIO diets compared to the AIN93G group.  

A very similar pattern for tumor volume was also evident, as the average tumor 

size in mice provided TWD or VMM diets was about 3.6- to 2.5-fold higher than in mice 

fed AIN93G diet (P <0.01) (Fig. 11B). An even more pronounced increase in tumor 

volume was observed, a nearly 10-fold difference, when comparing the TWD and VMM 

groups to mice fed MM or DIO diets (P < 0.0001). Moreover, average tumor volumes in 

mice fed TWD and VMM were significantly greater than tumor volume for the reference 

AIN93G group (P = 0.0009 and 0.022, respectively).  

To determine whether mice fed MM or DIO diets acquired a large number of 

preneoplastic lesions that failed to progress to tumors, we counted the average number of 

aberrant crypts and the number of ACF (Fig. 11C-D) (Table 10). No significant 

differences among diet groups were observed (Table 11), although the low variance 

evident in the TWD and VMM likely reflects that many of the preneoplastic in these diet 

groups progressed to form colon tumors. 
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TABLE 11. Comparisons among diet groups for colon tumorigenesis in mice 

initiated with AOM+DSS. 

 Tumor outcome  Aberrant crypts 

Comparison Incidence Multiplicity Volume  Number foci Total crypts 

AIN93G vs. TWD 1.0000 0.0031 <0.0001  0.6413 1.0000 

AIN93G vs. VMM 1.0000 <0.0001 0.0027  1.0000 1.0000 

AIN93G vs. MM 1.0000 1.0000 0.0009  1.0000 1.0000 

AIN93G vs. DIO 0.2982 0.1177 0.0220  1.0000 1.0000 

TWD vs. VMM 1.0000 1.0000 1.0000  1.0000 1.0000 

TWD vs. MM 1.0000 <0.0001 <0.0001  1.0000 1.0000 

TWD vs. DIO 0.0479 <0.0001 <0.0001  0.2880 0.1877 

VMM vs. MM 1.0000 <0.0001 <0.0001  1.0000 1.0000 

VMM vs. DIO 0.0479 <0.0001 <0.0001  1.0000 0.6011 

MM vs. DIO 0.0479 1.0000 1.0000  1.0000 1.0000 

Note: Analysis of tumor incidence was performed using a quasi-likelihood logistic regression 

(SAS genmod procedure), while tumor multiplicity, tumor volume (log-transformed), number of 

aberrant crypt foci and number of crypts per foci were analyzed using a mixed model ANOVA 

(SAS mixed procedure) with the Satterthwaite method to approximate degrees of freedom to 

account for apparent unequal variances in parameter measurements among diet groups. P values 

of the differences of least squares means are shown for each pair-wise comparison among diet 

groups, and significant values are shown in bold.  
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FIGURE 11. Colon tumorigenesis in mice initiated with AOM+DSS. Tumor 

multiplicity (number of tumors for tumor-bearing animals normalized by the colon 

length) (A), tumor volume (calculated as V = π/6 (L×W×D) where L is length, W is width, 

and D is depth) (B), aberrant crypt foci (number of foci for mice with foci) (C), and total 

crypts (total number of aberrant crypts for animals with foci) (D) are represented in box-

and-whisker plots (plus symbol indicates the mean for the treatment group, and whiskers 

are 1.5 times the interquartile range). Different letters indicate that treatment groups are 

significantly different as determined by ANOVA (SAS mixed procedure with 

Satterthwaite approximation to account for apparent unequal variances); Bonferroni-

adjusted P values for multiple comparisons among diet groups are provided in Table 10. 
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DISCUSSION 

 

 

We report for the first time that a newly devised diet that recapitulates U.S. 

nutrition patterns with respect to macro- and micronutrient content markedly enhanced 

colorectal carcinogenesis in a mouse model of inflammation-associated colon cancer 

compared to a basal diet optimized for rodent health. Moreover, we determined that the 

micronutrient components of the TWD were primarily responsible for increased cancer 

susceptibility in these mice. This study is the second from our group to show that this diet 

functions to promote colon cancer in mice. Previously, we showed that A/J mice initiated 

with AOM and fed TWD for 16 wk developed significantly more ACF and total crypt 

cells than mice fed the AIN93G diet (107). Interestingly, green tea supplementation 

(0.2% Polyphenon E) markedly reduced the accumulation of aberrant crypts in animals 

fed the TWD, but did not alter colon carcinogenesis in animals consuming AIN93G. 

These observations pointed to a complex, yet critical interaction between basal diet and 

the activity of a well-established anticancer agent.  

In an effort to understand better the impact of this westernized diet on cancer 

susceptibility, we sought to determine the relative impacts of the macro- and 

micronutrient components of the TWD on colon cancer as well as on biomarkers of 

metabolic syndrome and obesity in comparison to the commercial 45% fat DIO diet. As 

expected, mice consuming the DIO diet acquired an obesity/metabolic syndrome 

phenotype typified by increased food energy intake, greater rate of body weight gain, 

increased proportion of body composition as fat mass, higher fasting glucose, impaired 

glucose tolerance, and higher circulating levels of leptin. However, the TWD did not 
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significantly alter any of these classic biomarkers of metabolic health, a somewhat 

surprising observation considering that this diet contains substantially more fat than the 

AIN93G diet (35 compared to 17 percent of total kcal, respectively). Furthermore, our 

observations also suggest that the DIO diet does not enhance colon cancer in the 

AOM+DSS model, a finding somewhat contrary to prior observations for ACF in rats 

(66, 108). While this later finding was admittedly unexpected, it points to the critical 

need to employ a diet model that represents typical human nutrition. Had the experiment 

design included only DIO diet as the model obesogenic Western diet, we could have 

easily (and erroneously) concluded that colorectal cancer risk in mice was unaffected by 

the Western nutrition pattern. Moreover, we would have missed the more remarkable 

discovery that inappropriate micronutrient consumption strongly increased colon 

tumorigenesis in this mouse model, as evidenced by highly similar results for the TWD 

and the VMM diets, both of which had vitamin and mineral content that reflects typical 

American nutrition. Modification of macronutrient content alone (i.e., DIO and MM 

diets) did not increase colorectal carcinogenesis, an observation that also points to a 

critical role for micronutrients in promoting colorectal carcinogenesis in this pre-clinical 

mouse model.  

Numerous studies have shown that consumption of a high fat diet promotes a gain 

in relative fat mass in a dose-dependent manner (109). The higher adiposity observed in 

animals fed either the MM or DIO diets reflected the relatively high fat content of these 

diets (34 and 45%, respectively). However, new evidence points to a role in the source of 

dietary fat for influencing fat deposition and subsequent impacts on parameters of 

metabolic health. Catta-Preta et al. (110) reported that C57BL/6J mice fed a diet 
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containing 60% fat from lard or olive oil had higher levels of plasma insulin, resistin, and 

leptin, compared to mice fed diets with 60% sunflower oil or canola oil. Moreover, the 

ratio of subcutaneous to visceral fat was at least 40% smaller in animals fed the lard or 

olive oil diets compared to animals provided diets containing other lipid sources. The fat 

source for the DIO diet is primarily lard, whereas the fat content of the AIN93G and 

VMM diets is exclusively soybean oil. The MM and TWD diets incorporate a variety of 

fat sources relevant to typical Western nutrition, including soybean oil, milk fat, lard, 

olive oil, beef tallow, and corn oil. Interestingly, in this study, the ratio of subcutaneous 

to visceral fat was significantly higher in mice fed DIO compared to the reference 

AIN93G diet. However, we did not detect a difference in the fat type ratio between the 

DIO and MM diets, although these diets are not directly comparable due to their 

difference in total fat concentration. In another study by Huang et al. (111), higher levels 

of leptin and the pro-inflammatory hormones resistin, MCP-1 and CD192 were observed 

in C57BL/6J mice fed a 38% safflower oil diet rich in polyunsaturated fatty acids 

compared to isocaloric diets containing lard and milk fat. Our analysis of plasma 

hormones also included adiponectin, resistin, insulin, GIP, C-peptide, and IL-6. These 

hormones and cytokines, which are involved in energy balance and inflammation, are 

important biomarkers for systemic inflammation and colorectal cancer (19, 112). 

Unfortunately, the results of the hormone analysis for our study were limited because of 

the high variability in measurements among mice or because plasma concentrations of 

some hormones were below the assay limit of detection. However, blood plasma levels of 

leptin were closely correlated with body composition, as expected for this fat-derived 

hormone (113).  
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The consumption of a high fat diet is strongly linked to high rates of obesity due 

to increased energy intake, as opposed to greater food mass consumption (see review by 

109). Observations from our study concur with this model, in that mice fed the DIO diet 

had significantly greater energy intake than their AIN93G-fed counterparts, yet lower 

food mass consumption. Importantly, these animals did not completely adjust their food 

consumption so that their energy intake was on par with animals consuming the reference 

diet. Moreover, this pattern was consistent throughout the study, indicating that DIO-fed 

mice did not adequately adapt over time to the high fat content of their diet. On the other 

hand, sham mice fed TWD consumed the least mass of food of any diet group, and this 

decrease was sufficient to normalize their total energy intake to that of the AIN93G-fed 

mice. As a consequence, mice fed the TWD did not gain excess weight nor develop 

biomarkers of obesity-induced metabolic syndrome. This difference in energy intake 

cannot be attributed solely to the modest 10% difference in fat content of these 2 diets, as 

sham mice fed the MM diet (matched to TWD for all macronutrients) had significantly 

greater food and energy intake compared to TWD-fed animals. That these observations 

were not entirely consistent for AOM+DSS-initiated mice could be attributed to 

competition among cage-mates or other behavior effects present in group-housed male 

mice.  

The results of this study indicate that micronutrients contribute to colorectal 

carcinogenesis to a greater extent than do macronutrients in a mouse model of 

inflammation-associated colon cancer. For many endpoints evaluated, we observed that 

the data segregated into groups based on similarity in response:  MM and DIO diets (with 

high fat the common feature); TWD and VMM diets (with modified vitamins and 
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minerals the common feature) and then the reference diet AIN93G. For endpoints 

associated with obesity and metabolic syndrome, significant effects were often observed 

for the MM and DIO diets, but not the others. The opposite pattern was evident for colon 

cancer outcome, with significant effects of diet apparent only for mice fed TWD or MM 

diets. Evidently, increased tumorigenesis in mice fed either of these diets was not linked 

to higher rates of obesity or metabolic syndrome. Because the TWD models the typical 

U.S. diet with respect to nearly all major micro- and macronutrient components, it is not 

possible to confidently single out one (or a few) constituents responsible for its tumor 

promoting effect. Nevertheless, our strategy is an important advance on prior studies that 

investigated the impact of only one or a select few components of the Western diet on 

colon cancer. 

The nutrient density approach was previously employed by Newmark et al. (102) 

to construct a Western-type diet containing the levels of fat, phosphorous, calcium, and 

vitamin D observed in average American diets. Compared to the AIN76A diet, their 

Western diet contained higher levels of fat and phosphorous, and lower levels of calcium 

and vitamin D. C57BL/6J mice fed their Western diet promoted spontaneous hyper-

proliferation and hyperplasia in colonic epithelium. In a subsequent study, this further 

modified this experimental diet by reducing levels of components critical for methyl 

donor generation, including folic acid, methionine, and vitamin B12 (103). Consumption 

of this modified western diet led to higher rates of spontaneous colon adenoma and 

carcinoma development in normal mouse colon. Other number of other rodent studies 

using the AOM model of CRC point to a role for high fat diet in enhancing colorectal 
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carcinogenesis, even though the fat composition in these experiments varied widely (38, 

63, 97, 114, 115).  

Alternatively, the importance of various dietary micronutrients on CRC 

development has also been shown in a number of animal and human studies. The TWD 

contains low amounts of several essential micronutrients when compared to both the DIO 

diet and RDA values for humans (106). On an energy density basis, amounts of vitamins 

B6, B12, and folate are about 33 to 50% of the TWD compared to the AIN93G control 

diet, while calcium and vitamin D levels are approximately 60% lower.  

As outlined in the introduction, evidence from human epidemiological studies and 

experiments in animal models points to a role for both calcium and vitamin D in 

modulation of CRC (116-118). Calcium functions to regulate cellular signaling, cell 

proliferation and cell growth, while vitamin D is critical for adequate uptake of calcium 

in the small intestine. A 24-wk study on Apc
1638N/+ 

mice, which have a truncation on 

codon 1638 of the tumor suppressor Apc gene, found that feeding a modified AIN76A 

diet with half the content of vitamin D and 90% less calcium resulted in the formation of 

colonic adenomas and a carcinomas, and enhanced expression of cyclin D1 and anti-

apoptotic protein Bcl-2, which are commonly overexpressed in colorectal cancer (82). In 

a different study using this same diet fed to C57BL/6J mice over a period of 3 and 6 

months, researchers identified important transcriptome changes associated with induction 

of the oxidative stress response pathway (119). Moreover, calcium and vitamin D were 

determined to be important regulators of bile acid synthesis and excretion. Vitamin D has 

been shown to be involved in the detoxification of bile acids through the regulation of 

fibroblast growth factor 15 (120) and the vitamin D receptor (121) in the intestine, while 
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calcium has been shown to increase fecal fatty acid excretion (122, 123). Bile acids 

contribute to colorectal carcinogenesis by increasing cellular oxidative stress, and they 

have been associated with the promotion of cell populations resistant to their apoptotic 

effects (124). Bile acids are the main pathway for cholesterol catabolism in mammals, 

and hence they are generally found in high levels in individuals that consume a high-fat 

diet (125). Thus, the combined impact of excess fat with low calcium and vitamin D 

content in the TWD could explain the promoting effect of this diet on colon 

tumorigenesis observed in this study. 

Choline, folate, and vitamins B6 and B12 are essential in cellular biosynthetic 

pathways due to their roles as donors of methyl groups for one carbon-metabolism (84). 

These micronutrients are present in the AIN93G diet at substantially greater levels than 

the RDA value for humans, when compared on an energy density basis (106). Moreover, 

the TWD contains substantially lower levels of these micronutrients than are present in 

the AIN93G diet. A case-control study of subjects from the Multiethnic Cohort study 

found that people in the highest quartile for pyridoxal-5’-phosphate intake (active form of 

B6) had a 48% reduction in CRC risk (126). A meta-analysis that included 7 cohort-

studies and 9 case-control studies found a 25% lower risk of CRC among those in the 

highest category of dietary folate intake compared with those in the lowest category, 

while only a 5% lower risk was observed for total folate intake (including supplements) 

(85). An animal study using male Sprague-Dawley rats fed with either a diet with 50 

μg/kg diet of vitamin B12 or a diet with no vitamin B12 found that, after 10 wk of feeding, 

rats fed the deficient diet displayed a 35 percent decrease in genomic methylation and a 

105 percent increase in base substitution of uracil. Although some studies have found 
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weak or no association between CRC risk or development and dietary B-vitamins (87, 89, 

127), the supporting evidence points to a complex interaction between other nutrients in 

the diet. Also, the low levels of B-vitamins in the TWD could explain the promoting 

effect on tumorigenesis observed in animals fed this diet. 

In conclusion, evidence from this work supports the idea that a rodent diet more 

representative of the diet consumed by the majority of Americans is necessary to 

appropriately evaluate colon cancer risk and to develop specific and effective prevention 

strategies. Diets that modeled Western nutrition with respect to macronutrient content 

only yielded a greatly different disease phenotype than did a diet that also took into 

account suboptimal micronutrient consumption. The health consequences of chronic low 

intakes of multiple micronutrients are not well understood and should be studied in the 

context of modern dietary patterns. To extend upon this work, our research group plans to 

investigate the impact of TWD using the well-established APC
Min/+

 genetic mouse model 

of gastrointestinal carcinogenesis. Also, our group will continue to investigate molecular 

markers of colorectal carcinogenesis in colon mucosa obtained from sham and 

AOM+DSS-initiated mice from this project using global gene expression microarrays 

and immunohistochemistry. Finally, given the profound impact of the TWD on colon 

carcinogenesis and the mounting evidence for perinatal or transgenerational impacts of 

diet on cancer risk (128-135), we plan to investigate the impact of TWD provided via the 

maternal diet on risk of cancer to offspring.  

  



 

    

62 

6
2

 

LITERATURE CITED 

 

1. Alteri R, Bandi P, Brooks D, Cokkinides V, Doroshenk M, Gansler T, Graves K, 

Jacobs E, Kirkland D, Levin B, et al. Colorectal cancer facts & figures 2011-

2013. American Cancer Society; 2011. 

2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer 

statistics. CA-Cancer J Clin. 2011;61:69-90. 

3. Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA, O’Keefe 

JH, Brand-Miller J. Origins and evolution of the Western diet: health implications 

for the 21st century. Amer J Clin Nutr. 2005;81:341-54. 

4. Astrup A, Dyerberg J, Selleck M, Stender S. Nutrition transition and its 

relationship to the development of obesity and related chronic diseases. Obesity 

Rev. 2008;9:48-52. 

5. Carrera-Bastos P, Fontes-Villalba M, O'Keefe J, Lindeberg S, Cordain L. The 

western diet and lifestyle and diseases of civilization. Res Rep Clin Oncol. 2011. 

6. Misra A, Singhal N, Khurana L. Obesity, the metabolic syndrome, and type 2 

diabetes in developing countries: role of dietary fats and oils. J Am Coll Nutr. 

2010;29:289S-301S. 

7. Muhidin SO, Magan AA, Osman KA, Syed S, Ahmed MH. The relationship 

between nonalcoholic fatty liver disease and colorectal cancer: the future 

challenges and outcomes of the metabolic syndrome. J Obesity. 

2012;2012:637538. 



 

    

63 

6
3

 

8. Ahmed RL, Schmitz KH, Anderson KE, Rosamond WD, Folsom AR. The 

metabolic syndrome and risk of incident colorectal cancer. Cancer. 2006;107:28-

36. 

9. Moghaddam AA, Woodward M, Huxley R. Obesity and risk of colorectal cancer: 

a meta-analysis of 31 Studies with 70,000 events. Cancer Epidemiol Biomarkers 

Prev. 2007;16:2533-47. 

10. GLOBOCAN 2008 v2.0. Cancer incidence and mortality worldwide: IARC 

CancerBase No. 10. [cited 2013]; Available from: http://globocan.iarc.fr 

11. Jasperson KW, Tuohy TM, Neklason DW, Burt RW. Hereditary and Familial 

Colon Cancer. Gastroenterology. 2010;138:2044-58. 

12. Lynch HT, de la Chapelle A. Hereditary colorectal cancer. N Engl J Med. 

2003;348:919-32. 

13. Bonadona V, Bonaiti B, Olschwang S, Grandjouan S, Huiart L, Longy M, 

Guimbaud R, Buecher B, Bignon YJ, Caron O, et al. Cancer risks associated with 

germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. 

JAMA. 2011;305:2304-10. 

14. Half E, Bercovich D, Rozen P. Familial adenomatous polyposis. Orphanet J Rare 

Dis. 2009;4:22. 

15. Markowitz SD, Bertagnolli MM. Molecular basis of colorectal cancer. N Engl J 

Med. 2009;361:2449-60. 

16. Gammon A, Jasperson K, Kohlmann W, Burt RW. Hamartomatous polyposis 

syndromes. Best Pract Res Cl Ga. 2009;23:219-31. 

http://globocan.iarc.fr/


 

    

64 

6
4

 

17. Fuchs CS, Giovannucci EL, Colditz GA, Hunter DJ, Speizer FE, Willett WC. A 

prospective study of family history and the risk of colorectal cancer. New Engl J 

Med. 1994;331:1669-74. 

18. Winawer SJ, Zauber AG, Gerdes H, O'Brien MJ, Gottlieb LS, Sternberg SS, Bond 

JH, Waye JD, Schapiro M, Panish JF, et al. Risk of colorectal cancer in the 

families of patients with adenomatous polyps. N Engl J Med. 1996;334:82-7. 

19. Aleksandrova K, Nimptsch K, Pischon T. Influence of obesity and related 

metabolic alterations on colorectal cancer risk. Curr Nutr Rep. 2012;2:1-9. 

20. Frezza EE, Wachtel MS, Chiriva-Internati M. Influence of obesity on the risk of 

developing colon cancer. Gut. 2006;55:285-91. 

21. Pais R, Silaghi H, Silaghi AC, Rusu ML, Dumitrascu DL. Metabolic syndrome 

and risk of subsequent colorectal cancer. World J Gastroentero. 2009;15:5141-8. 

22. Stocks T, Lukanova A, Johansson M, Rinaldi S, Palmqvist R, Hallmans G, Kaaks 

R, Stattin P. Components of the metabolic syndrome and colorectal cancer risk; a 

prospective study. Int J Obes. 2007;32:304-14. 

23. Larsson SC, Orsini N, Wolk A. Diabetes mellitus and risk of colorectal cancer: a 

meta-analysis. J Natl Cancer Inst. 2005;97:1679-87. 

24. Jeon JY, Jeong DH, Park MG, Lee J-W, Chu SH, Park J-H, Lee MK, Sato K, 

Ligibel JA, Meyerhardt JA, et al. Impact of diabetes on oncologic outcome of 

colorectal cancer patients: colon vs. rectal cancer. PloS One. 2013;8:e55196. 

25. Nilsen TIL, Vatten LJ. Prospective study of colorectal cancer risk and physical 

activity, diabetes, blood glucose and BMI: exploring the hyperinsulinaemia 

hypothesis. Br J Cancer. 2001;84:417-22. 



 

    

65 

6
5

 

26. Stadlmayr A, Aigner E, Steger B, Scharinger L, Lederer D, Mayr A, Strasser M, 

Brunner E, Heuberger A, Hohla F, et al. Nonalcoholic fatty liver disease: an 

independent risk factor for colorectal neoplasia. J Intern Med. 2011;270:41-9. 

27. Wong VW-S, Wong GL-H, Tsang SW-C, Fan T, Chu WC-W, Woo J, Chan AW-

H, Choi PC-L, Chim AM-L, Lau JY-W, et al. High prevalence of colorectal 

neoplasm in patients with non-alcoholic steatohepatitis. Gut. 2011;60:829-36. 

28. Giovannucci E. Metabolic syndrome, hyperinsulinemia, and colon cancer: a 

review. Am J Clin Nutr. 2007;86:836S-42S. 

29. Samad AKA, Taylor RS, Marshall T, Chapman MaS. A meta-analysis of the 

association of physical activity with reduced risk of colorectal cancer. Colorectal 

Dis. 2005;7:204-13. 

30. Meyerhardt JA, Niedzwiecki D, Hollis D, Saltz LB, Hu FB, Mayer RJ, Nelson H, 

Whittom R, Hantel A, Thomas J, et al. Association of dietary patterns with cancer 

recurrence and survival in patients with stage III colon cancer. JAMA. 

2007;298:754-64. 

31. Haskell WL, Lee I, Pate RR, Powell KE, Blair SN, Franklin BA, Macera CA, 

Heath GW, Thompson PD, Bauman A. Physical activity and public health: 

updated recommendation for adults from the American College of Sports 

Medicine and the American Heart Association. Circulation. 2007;116:1081-93. 

32. Rosenberg DW, Giardina C, Tanaka T. Mouse models for the study of colon 

carcinogenesis. Carcinogenesis. 2009;30:183-96. 

33. McCart AE, Vickaryous NK, Silver A. Apc mice: models, modifiers and mutants. 

Path Res Pract. 2008;204:479-90. 



 

    

66 

6
6

 

34. Fearnhead NS, Britton MP, Bodmer WF. The ABC of APC. Hum Mol Genet. 

2001;10:721-33. 

35. Sohn OS, Fiala ES, Requeijo SP, Weisburger JH, Gonzalez FJ. Differential 

effects of CYP2E1 status on the metabolic activation of the colon carcinogens 

azoxymethane and methylazoxymethanol. Cancer Res. 2001;61:8435-40. 

36. Chen J, Huang X-F. The signal pathways in azoxymethane-induced colon cancer 

and preventive implications. Cancer Biol Ther. 2009;8:1313-7. 

37. Takahashi M, Wakabayashi K. Gene mutations and altered gene expression in 

azoxymethane-induced colon carcinogenesis in rodents. Cancer Sci. 2004;95:475-

80. 

38. Fujise T, Iwakiri R, Kakimoto T, Shiraishi R, Sakata Y, Wu B, Tsunada S, Ootani 

A, Fujimoto K. Long-term feeding of various fat diets modulates azoxymethane-

induced colon carcinogenesis through Wnt/β-catenin signaling in rats. Am J 

Physiol Gastrointest Liver Physiol. 2007;292:G1150-G6. 

39. O'Toole SM, Pegg AE, Swenberg JA. Repair of O
6
-methylguanine and O

4
-

methylthymidine in F344 rat liver following treatment with 1,2-

dimethylhydrazine and O
6
-benzylguanine. Cancer Res. 1993;53:3895-8. 

40. Guda K, Claffey KP, Dong M, Nambiar PR, Rosenberg DW. Defective 

processing of the transforming growth factor-beta1 in azoxymethane-induced 

mouse colon tumors. Mol Carcinog. 2003;37:51-9. 

41. Guda K, Giardina C, Nambiar P, Cui H, Rosenberg DW. Aberrant transforming 

growth factor-beta signaling in azoxymethane-induced mouse colon tumors. Mol 

Carcinog. 2001;31:204-13. 



 

    

67 

6
7

 

42. Bissahoyo A, Pearsall RS, Hanlon K, Amann V, Hicks D, Godfrey VL, Threadgill 

DW. Azoxymethane is a genetic background-dependent colorectal tumor initiator 

and promoter in mice: effects of dose, route, and diet. Toxicol Sci. 2005;88:340-5. 

43. Papanikolaou A, Wang QS, Delker DA, Rosenberg DW. Azoxymethane-induced 

colon tumors and aberrant crypt foci in mice of different genetic susceptibility. 

Cancer Lett. 1998;130:29-34. 

44. Bernstein CN, Blanchard JF, Kliewer E, Wajda A. Cancer risk in patients with 

inflammatory bowel disease: a population-based study. Cancer. 2001;91:854-62. 

45. Canavan C, Abrams KR, Mayberry J. Meta-analysis: colorectal and small bowel 

cancer risk in patients with Crohn's disease. Aliment Pharmacol Ther. 

2006;23:1097-104. 

46. Munkholm P. Review article: the incidence and prevalence of colorectal cancer in 

inflammatory bowel disease. Aliment Pharmacol Ther. 2003;18 Suppl 2:1-5. 

47. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. 

Nature. 2008;454:436-44. 

48. Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel 

disease. Nature. 2007;448:427-34. 

49. Triantafillidis JK, Nasioulas G, Kosmidis PA. Colorectal cancer and 

inflammatory bowel disease: epidemiology, risk factors, mechanisms of 

carcinogenesis and prevention strategies. Anticancer Res. 2009;29:2727-37. 

50. Tanaka T, Kohno H, Suzuki R, Yamada Y, Sugie S, Mori H. A novel 

inflammation-related mouse colon carcinogenesis model induced by 

azoxymethane and dextran sodium sulfate. Cancer Sci. 2003;94:965-73. 



 

    

68 

6
8

 

51. Clapper ML, Cooper HS, Chang WC. Dextran sulfate sodium-induced colitis-

associated neoplasia: a promising model for the development of chemopreventive 

interventions. Acta Pharmacol Sin. 2007;28:1450-9. 

52. Chao A TMJ. Meat consumption and risk of colorectal cancer. JAMA. 

2005;293:172-82. 

53. Giovannucci E, Rimm EB, Stampfer MJ, Colditz GA, Ascherio A, Willett WC. 

Intake of fat, meat, and fiber in relation to risk of colon cancer in men. Cancer 

Res. 1994;54:2390-7. 

54. Norat T, Bingham S, Ferrari P, Slimani N, Jenab M, Mazuir M, Overvad K, Olsen 

A, Tjønneland A, Clavel F, et al. Meat, fish, and colorectal cancer risk: the 

European prospective investigation into cancer and nutrition. J Natl Cancer Inst. 

2005;97:906-16. 

55. Bingham SA, Pignatelli B, Pollock JRA, Ellul A, Malaveille C, Gross G, 

Runswick S, Cummings JH, O'Neill IK. Does increased endogenous formation of 

N-nitroso compounds in the human colon explain the association between red 

meat and colon cancer? Carcinogenesis. 1996;17:515-23. 

56. Key TJ, Schatzkin A, Willett WC, Allen NE, Spencer EA, Travis RC. Diet, 

nutrition and the prevention of cancer. Public Health Nutr. 2004;7:187-200. 

57. Sesink ALA, Termont DSML, Kleibeuker JH, Meer RVd. Red meat and colon 

cancer the cytotoxic and hyperproliferative effects of dietary heme. Cancer Res. 

1999;59:5704-9. 



 

    

69 

6
9

 

58. Willett WC, Stampfer MJ, Colditz GA, Rosner BA, Speizer FE. Relation of meat, 

fat, and fiber intake to the risk of colon cancer in a prospective study among 

women. N Engl J Med. 1990;323:1664-72. 

59. Lin J, Zhang SM, Cook NR, Lee IM, Buring JE. Dietary fat and fatty acids and 

risk of colorectal cancer in women. Am J Epidemiol. 2004;160:1011-22. 

60. Howe GR, Aronson KJ, Benito E, Castelleto R, Cornée J, Duffy S, Gallagher RP, 

Iscovich JM, Deng-ao J, Kaaks R, et al. The relationship between dietary fat 

intake and risk of colorectal cancer: evidence from the combined analysis of 13 

case-control studies. Cancer Cause Control. 1997;8:215-28. 

61. Aslam MN, Paruchuri T, Bhagavathula N, Varani J. A mineral-rich red rlgae 

extract enhibits polyp formation and inflammation in the gastrointestinal tract of 

mice on a high-fat diet. Integr Cancer Ther. 2010;9:93-9. 

62. Ding S, Chi MM, Scull BP, Rigby R, Schwerbrock NMJ, Magness S, Jobin C, 

Lund PK. High-fat diet: bacteria interactions promote intestinal inflammation 

which precedes and correlates with obesity and insulin resistance in mouse. PLoS 

One. 2010;5:e12191. 

63. Kim K-A, Gu W, Lee I-A, Joh E-H, Kim D-H. High fat diet-induced gut 

microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling 

pathway. PLoS ONE. 2012;7:e47713. 

64. Dommels YE, Heemskerk S, van den Berg H, Alink GM, van Bladeren PJ, van 

Ommen B. Effects of high fat fish oil and high fat corn oil diets on initiation of 

AOM-induced colonic aberrant crypt foci in male F344 rats. Food Chem Toxicol. 

2003;41:1739-47. 



 

    

70 

7
0

 

65. Reddy BS, Maeura Y. Tumor promotion by dietary fat in azoxymethane-induced 

colon carcinogenesis in female F344 rats: influence of amount and source of 

dietary fat. J Natl Cancer Inst. 1984;72:745-50. 

66. Bull AW, Soullier BK, Wilson PS, Hayden MT, Nigro ND. Promotion of 

azoxymethane-induced intestinal cancer by high-fat diet in rats. Cancer Res. 

1979;39:4956-9. 

67. Cho Y, Turner ND, Davidson LA, Chapkin RS, Carroll RJ, Lupton JR. A 

chemoprotective fish oil/pectin diet enhances apoptosis via Bcl-2 promoter 

methylation in rat azoxymethane-induced carcinomas. Exp Biol Med (Maywood). 

2012;237:1387-93. 

68. van Beelen VA, Spenkelink B, Mooibroek H, Sijtsma L, Bosch D, Rietjens 

IMCM, Alink GM. An n-3 PUFA-rich microalgal oil diet protects to a similar 

extent as a fish oil-rich diet against AOM-induced colonic aberrant crypt foci in 

F344 rats. Food Chem Toxicol. 2009;47:316-20. 

69. Williams D, Verghese M, Walker LT, Boateng J, Shackelford L, Chawan CB. 

Flax seed oil and flax seed meal reduce the formation of aberrant crypt foci (ACF) 

in azoxymethane-induced colon cancer in Fisher 344 male rats. Food Chem 

Toxicol. 2007;45:153-9. 

70. Bommareddy A, Zhang X, Schrader D, Kaushik RS, Zeman D, Matthees DP, 

Dwivedi C. Effects of dietary flaxseed on intestinal tumorigenesis in Apc min 

mouse. Nutr Cancer. 2009;61:276-83. 



 

    

71 

7
1

 

71. Oguntibeju OO, Truter EJ, Esterhuyse AJ. The role of fruit and vegetable 

consumption in human health and disease prevention. In: Oguntibeju O, editor. 

Diabetes Mellitus - Insights and Perspectives: InTech; 2013. 

72. Michels KB, Edward G, Joshipura KJ, Rosner BA, Stampfer MJ, Fuchs CS, 

Colditz GA, Speizer FE, Willett WC. Prospective study of fruit and vegetable 

consumption and incidence of colon and rectal cancers. J Natl Cancer Inst. 

2000;92:1740-52. 

73. Park Y HDJ. Dietary fiber intake and risk of colorectal cancer: a pooled analysis 

of prospective cohort studies. JAMA. 2005;294:2849-57. 

74. McCullough ML, Robertson AS, Chao A, Jacobs EJ, Stampfer MJ, Jacobs DR, 

Diver WR, Calle EE, Thun MJ. A prospective study of whole grains, fruits, 

vegetables and colon cancer risk. Cancer Cause Control. 2003;14:959-70. 

75. Koushik A, Hunter DJ, Spiegelman D, Beeson WL, Brandt PAvd, Buring JE, 

Calle EE, Cho E, Fraser GE, Freudenheim JL, et al. Fruits, vegetables, and colon 

cancer risk in a pooled analysis of 14 cohort studies. J Natl Cancer Inst. 

2007;99:1471-83. 

76. Wirfalt E, Midthune D, Reedy J, Mitrou P, Flood A, Subar AF, Leitzmann M, 

Mouw T, Hollenbeck AR, Schatzkin A, et al. Associations between food patterns 

defined by cluster analysis and colorectal cancer incidence in the NIH-AARP diet 

and health study. Eur J Clin Nutr. 2009;63:707-17. 

77. Calvo MS, Whiting SJ, Barton CN. Vitamin D fortification in the United States 

and Canada: current status and data needs. Am J Clin Nutr. 2004;80:1710s-6s. 



 

    

72 

7
2

 

78. Feskanich D, Ma J, Fuchs CS, Kirkner GJ, Hankinson SE, Hollis BW, 

Giovannucci EL. Plasma vitamin D metabolites and risk of colorectal cancer in 

women. Cancer Epidemiol Biomarkers Prev. 2004;13:1502-8. 

79. Lappe JM, Travers-Gustafson D, Davies KM, Recker RR, Heaney RP. Vitamin D 

and calcium supplementation reduces cancer risk: results of a randomized trial. 

Am J Clin Nutr. 2007;85:1586-91. 

80. Park S-Y, Murphy SP, Wilkens LR, Nomura AMY, Henderson BE, Kolonel LN. 

Calcium and vitamin D intake and risk of colorectal cancer: the multiethnic cohort 

study. Am J Epidemiol. 2007;165:784-93. 

81. Newmark HL, Yang K, Kurihara N, Fan K, Augenlicht LH, Lipkin M. Western-

style diet-induced colonic tumors and their modulation by calcium and vitamin D 

in C57Bl/6 mice: a preclinical model for human sporadic colon cancer. 

Carcinogenesis. 2009;30:88-92. 

82. Yang K, Lamprecht SA, Shinozaki H, Fan K, Yang W, Newmark HL, Kopelovich 

L, Edelmann W, Jin B, Gravaghi C, et al. Dietary calcium and cholecalciferol 

modulate cyclin D1 expression, apoptosis, and tumorigenesis in intestine of 

adenomatous polyposis coli1638n/+ mice. J Nutr. 2008;138:1658-63. 

83. Depeint F, Bruce WR, Shangari N, Mehta R, O'Brien PJ. Mitochondrial function 

and toxicity: role of B vitamins on the one-carbon transfer pathways. Chem Biol 

Interact. 2006;163:113-32. 

84. Niculescu MD, Zeisel SH. Diet, methyl donors and DNA methylation: 

interactions between dietary folate, methionine and choline. J Nutr. 

2002;132:2333S-5S. 



 

    

73 

7
3

 

85. Sanjoaquin MA, Allen N, Couto E, Roddam AW, Key TJ. Folate intake and 

colorectal cancer risk: a meta-analytical approach. Int J Cancer. 2005;113:825-8. 

86. Kennedy DA, Stern SJ, Moretti M, Matok I, Sarkar M, Nickel C, Koren G. Folate 

intake and the risk of colorectal cancer: a systematic review and meta-analysis. 

Cancer Epidemiol. 2011;35:2-10. 

87. Lindzon GM, Medline A, Sohn K-J, Depeint F, Croxford R, Kim Y-I. Effect of 

folic acid supplementation on the progression of colorectal aberrant crypt foci. 

Carcinogenesis. 2009;30:1536-43. 

88. Macfarlane AJ, Behan NA, Matias FM, Green J, Caldwell D, Brooks SP. Dietary 

folate does not significantly affect the intestinal microbiome, inflammation or 

tumorigenesis in azoxymethane-dextran sodium sulphate-treated mice. Br J Nutr. 

2012:1-9. 

89. Je Y, Lee JE, Ma J, Zhang X, Cho E, Rosner B, Selhub J, Fuchs CS, Meyerhardt 

J, Giovannucci E. Prediagnostic plasma vitamin B6 (pyridoxal 5'-phosphate) and 

survival in patients with colorectal cancer. Cancer Cause Control. 2013;24:719-

29. 

90. Larsson SC, Orsini N, Wolk A. Vitamin B6 and risk of colorectal cancer: a meta-

analysis of prospective studies. JAMA. 2010;303:1077-83. 

91. Komatsu SI, Watanabe H, Oka T, Tsuge H, Nii H, Kato N. Vitamin B-6-

supplemented diets compared with a low vitamin B-6 diet suppress 

azoxymethane-induced colon tumorigenesis in mice by reducing cell 

proliferation. J Nutr. 2001;131:2204-7. 



 

    

74 

7
4

 

92. Dahlin AM, Van Guelpen B, Hultdin J, Johansson I, Hallmans G, Palmqvist R. 

Plasma vitamin B12 concentrations and the risk of colorectal cancer: a nested 

case-referent study. Int J Cancer. 2008;122:2057-61. 

93. Choi S-W, Friso S, Ghandour H, Bagley PJ, Selhub J, Mason JB. Vitamin B-12 

deficiency induces anomalies of base substitution and methylation in the DNA of 

rat colonic epithelium. J Nutr. 2004;134:750-5. 

94. Song Y, Manson JE, Lee IM, Cook NR, Paul L, Selhub J, Giovannucci E, Zhang 

SM. Effect of combined folic acid, vitamin B6, and vitamin B12 on colorectal 

adenoma. J Natl Cancer Inst. 2012;104:1562-75. 

95. Wang Z, Joshi AM, Ohnaka K, Morita M, Toyomura K, Kono S, Ueki T, Tanaka 

M, Kakeji Y, Maehara Y, et al. Dietary intakes of retinol, carotenes, vitamin C, 

and vitamin E and colorectal cancer risk: the Fukuoka colorectal cancer study. 

Nutr Cancer. 2012;64:798-805. 

96. Williams CD, Satia JA, Adair LS, Stevens J, Galanko J, Keku TO, Sandler RS. 

Antioxidant and DNA methylation-related nutrients and risk of distal colorectal 

cancer. Cancer Cause Control. 2010;21:1171-81. 

97. Park EY, Pinali D, Lindley K, Lane MA. Hepatic vitamin a preloading reduces 

colorectal cancer metastatic multiplicity in a mouse xenograft model. Nutr 

Cancer. 2012;64:732-40. 

98. Bashir O, FitzGerald AJ, Goodlad RA. Both suboptimal and elevated vitamin 

intake increase intestinal neoplasia and alter crypt fission in the ApcMin/+ mouse. 

Carcinogenesis. 2004;25:1507-15. 



 

    

75 

7
5

 

99. Reeves PG, Nielsen FH, Fahey GC, Jr. AIN-93 purified diets for laboratory 

rodents: final report of the American Institute of Nutrition ad hoc writing 

committee on the reformulation of the AIN-76A rodent diet. J Nutr. 

1993;123:1939-51. 

100. Rothwell NJ, Stock MJ. The cafeteria diet as a tool for studies of thermogenesis. J 

Nutr. 1988;118:925-8. 

101. Moore BJ. The cafeteria diet--an inappropriate tool for studies of thermogenesis. J 

Nutr. 1987;117:227-31. 

102. Newmark HL, Lipkin M, Maheshwari N. Colonic hyperplasia and 

hyperproliferation induced by a nutritional stress diet with four components of 

western-style diet. J Natl Cancer Inst. 1990;82:491-6. 

103. Newmark HL, Yang K, Lipkin M, Kopelovich L, Liu Y, Fan K, Shinozaki H. A 

Western-style diet induces benign and malignant neoplasms in the colon of 

normal C57Bl/6 mice. Carcinogenesis. 2001;22:1871-5. 

104. Harlan-Teklad Laboratories. Teklad custom research diets: diet induced obesity. 

[cited 2013]; Available from: http://www.harlan.com 

105. Jawien J, Nastalek P, Korbut R. Mouse models of experimental atherosclerosis. J 

Physiol Pharmacol. 2004;55:503-17. 

106. Hintze KJ, Benninghoff AD, Ward RE. Formulation of the total western diet 

(TWD) as a basal diet for rodent cancer studies. J Agric Food Chem. 

2012;60:6736-42. 

http://www.harlan.com/


 

    

76 

7
6

 

107. Hintze KJ, Benninghoff AD, Ward RE. Total Western Diet (TWD) increases 

azoxymethane induced aberrant crypt foci (ACF) compared to the AIN93G diet. 

Agricultural and Food Chemistry Division; 2012 August 21; Philadelphia, PA. 

108. Morotomi M, Sakaitani Y, Satou M, Takahashi T, Takagi A, Onoue M. Effects of 

a high-fat diet on azoxymethane-induced aberrant crypt foci and fecal 

biochemistry and microbial activity in rats. Nutr Cancer. 1997;27:84-91. 

109. Hariri N, Thibault L. High-fat diet-induced obesity in animal models. Nutr Res 

Rev. 2010;23:270-99. 

110. Catta-Preta M, Martins MA, Cunha Brunini TM, Mendes-Ribeiro AC, Mandarim-

de-Lacerda CA, Aguila MB. Modulation of cytokines, resistin, and distribution of 

adipose tissue in C57BL/6 mice by different high-fat diets. Nutrition. 

2012;28:212-9. 

111. Huang EY, Leone VA, Devkota S, Wang Y, Brady MJ, Chang EB. Composition 

of dietary fat source shapes gut microbiota architecture and alters host 

inflammatory mediators in mouse adipose tissue. JPEN J Parenter Enteral Nutr. 

2013. 

112. Hsieh J, Hayashi AA, Webb J, Adeli K. Postprandial dyslipidemia in insulin 

resistance: Mechanisms and role of intestinal insulin sensitivity. Atherosclerosis 

Supp. 2008;9:7-13. 

113. Adamczak M, Wiecek A. The adipose tissue as an endocrine organ. Semin 

Nephrol. 2013;33:2-13. 

114. Sikalidis AK, Fitch MD, Fleming SE. Diet induced obesity increases the risk of 

colonic tumorigenesis in mice. Patho Oncol Res. 2013:1-10. 



 

    

77 

7
7

 

115. Rao CV, Hirose Y, Indranie C, Reddy BS. Modulation of experimental colon 

tumorigenesis by types and amounts of dietary fatty acids. Cancer Res. 

2001;61:1927-33. 

116. Kune G, Watson L. Colorectal cancer protective effects and the dietary 

micronutrients folate, methionine, vitamins B6, B12, C, E, selenium, and 

lycopene. Nutr Cancer. 2006;56:11-21. 

117. Hara A, Sasazuki S, Inoue M, Iwasaki M, Shimazu T, Sawada N, Yamaji T, 

Takachi R, Tsugane S. Zinc and heme iron intakes and risk of colorectal cancer: a 

population-based prospective cohort study in Japan. Am J Clin Nutr. 

2012;96:864-73. 

118. Gupta D, Lis CG, Granick J, Grutsch JF, Vashi PG, Lammersfeld CA. 

Malnutrition was associated with poor quality of life in colorectal cancer: a 

retrospective analysis. J Clin Epidemiol. 2006;59:704-9. 

119. Erdelyi I, Levenkova N, Lin EY, Pinto JT, Lipkin M, Quimby FW, Holt PR. 

Western-style diets induce oxidative stress and dysregulate immune responses in 

the colon in a mouse model of sporadic colon cancer. J Nutr. 2009;139:2072-8. 

120. Schmidt DR, Holmstrom SR, Fon Tacer K, Bookout AL, Kliewer SA, 

Mangelsdorf DJ. Regulation of bile acid synthesis by fat-soluble vitamins A and 

D. J Biol Chem. 2010;285:14486-94. 

121. Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, Haussler 

MR, Mangelsdorf DJ. Vitamin D receptor as an intestinal bile acid sensor. 

Science. 2002;296:1313-6. 



 

    

78 

7
8

 

122. Lapre JA, De Vries HT, Van der Meer R. Cytotoxicity of fecal water is dependent 

on the type of dietary fat and is reduced by supplemental calcium phosphate in 

rats. J Nutr. 1993;123:578-85. 

123. Govers MJ, Van der Meet R. Effects of dietary calcium and phosphate on the 

intestinal interactions between calcium, phosphate, fatty acids, and bile acids. 

Gut. 1993;34:365-70. 

124. Payne CM, Bernstein C, Dvorak K, Bernstein H. Hydrophobic bile acids, 

genomic instability, Darwinian selection, and colon carcinogenesis. Clin Exp 

Gastroenterol. 2008;1:19-47. 

125. Barrasa JI, Olmo N, Lizarbe MA, Turnay J. Bile acids in the colon, from healthy 

to cytotoxic molecules. Toxicol In Vitro. 2013;27:964-77. 

126. Marchand LL, White KK, Nomura AMY, Wilkens LR, Selhub JS, Tiirikainen M, 

Goodman MT, Murphy SP, Henderson BE, Kolonel LN. Plasma levels of B 

vitamins and colorectal cancer risk: the multiethnic cohort study. Cancer 

Epidemiol Biomarkers Prev. 2009;18:2195-201. 

127. Otani T, Iwasaki M, Hanaoka T, Kobayashi M, Ishihara J, Natsukawa S, Shaura 

K, Koizumi Y, Kasuga Y, Yoshimura K, et al. Folate, vitamin B6, vitamin B12, 

and vitamin B2 intake, genetic polymorphisms of related enzymes, and risk of 

colorectal cancer in a hospital-based case-control study in Japan. Nutr Cancer. 

2005;53:42-50. 

128. vel Szic KS, Ndlovu MN, Haegeman G, Vanden Berghe W. Nature or nurture: let 

food be your epigenetic medicine in chronic inflammatory disorders. Biochem 

Pharmacol. 2010;80:1816-32. 



 

    

79 

7
9

 

129. Kim KC, Friso S, Choi SW. DNA methylation, an epigenetic mechanism 

connecting folate to healthy embryonic development and aging. J Nutr Biochem. 

2009;20:917-26. 

130. Hilakivi-Clarke L, de Assis S. Fetal origins of breast cancer. Trends Endocrinol 

Metab. 2006;17:340-8. 

131. Stover PJ, Garza C. Nutrition and developmental biology--implications for public 

health. Nutr Rev. 2006;64:S60-71; discussion S2-91. 

132. Dolinoy DC, Weidman JR, Waterland RA, Jirtle RL. Maternal genistein alters 

coat color and protects Avy mouse offspring from obesity by modifying the fetal 

epigenome. Environ Health Perspect. 2006;114:567-72. 

133. Jensen CD, Block G, Buffler P, Ma X, Selvin S, Month S. Maternal dietary risk 

factors in childhood acute lymphoblastic leukemia (United States). Cancer Cause 

Control. 2004;15:559-70. 

134. Walker BE, Kurth LA. Multigenerational effects of dietary fat carcinogenesis in 

mice. Cancer Res. 1997;57:4162-3. 

135. Gallou-Kabani C, Junien C. Nutritional epigenomics of metabolic syndrome: new 

perspective against the epidemic. Diabetes. 2005;54:1899-906. 

 

 


	The micronutrient profile of the typical American diet enhances colorectal carcinogenesis
	Recommended Citation

	tmp.1380043334.pdf.wNKmR

