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ABSTRACT 

 

 

The Ecology and Genetics of Schoenoplectus maritimus, an  

 

Important Emergent Macrophyte, Across Diverse  

 

Hydrologic Conditions—Implications for  

 

Restoration 

 

 

by 

 

 

Amanda Sweetman, Master of Science 

 

Utah State University, 2013 

 

 

Major Professor: Dr. Karin M. Kettenring 

Program: Ecology 

 

 

Revegetation projects in wetlands are challenging due to questions surrounding 

where to obtain plant materials and how hydrologic conditions, which are often 

unpredictable at restoration sites, may impact restoration success.  We used a two-

pronged approach to inform decisions on seed sourcing.  Our study species, 

Schoenoplectus maritimus (alkali bulrush), is a widely distributed wetland plant.  First, 

we investigated how genetic diversity was partitioned within and among populations of S. 

maritimus.  We found five weakly differentiated populations and one distinct population.  

We found high levels of genetic diversity with the majority (92%) of diversity found 

within rather than among sites (8%).  Also, the proportion of viable seed produced was 

surprisingly high within stands (mean = 0.64 ± 0.02) given the supposed prevalence of 

asexual reproduction in the species.  Second, we conducted two studies to look at the 
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influence of hydrology, population of origin, and genetic diversity of seeds on the 

productivity of S. maritimus.  In a field survey we measured environmental variables and 

productivity within established S. maritimus stands.  In a greenhouse experiment we 

determined how source population identity and the genetic diversity of seeds impacted 

emergence and productivity under different hydrologic conditions.  We found that stands 

of S. maritimus differed in proportion of time with water present, mean water level, and 

soil conditions.  Productivity also differed, with 3-fold differences in stem density and 

biomass among sites.  In the greenhouse experiment, we found that water treatment 

impacted all productivity measures; source population impacted seedling emergence and 

biomass allocation; and, number of source populations impacted sensitivity to drought.  

Advice for future restoration projects includes (1) limiting translocation of seeds among 

populations to conserve historic lineages, (2) when it is necessary to translocate seeds, 

collect seeds from many parent plants within populations that are in close geographic 

proximity to the restoration site, and (3) water level management is extremely important 

at all life stages of S. maritimus and should be an important consideration in wetland 

restoration and management in this water-limited region. 

 (88 pages) 
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PUBLIC ABSTRACT 

 

Amanda Sweetman 

 

 

Wetlands in the Intermountain West are typically dominated by large monotypic stands 

of emergent wetland plants, are highly productive, and support millions of migratory 

birds as important stops along the Pacific Flyway.  In systems with low species diversity, 

such as these, diversity within a species (intraspecific diversity) can play an important 

role in population fitness and ecosystem functioning and can impact restoration success.  

Our research was designed to inform future restoration and management activities by 

studying the pattern of diversity within and among natural plant populations, and by 

studying how hydrology and plant materials used in restoration (source and diversity of 

seeds) influenced plant success (establishment and productivity).  We focused our 

research on Schoenoplectus maritimus L Lye. (alkali bulrush), a wide-spread wetland 

plant that is widely used in restoration projects in our study area due to its’ ecological 

importance.   

 

In our second chapter we evaluate genetic diversity within and among stands of S. 

maritimus at six sites of southern Idaho and Utah (Bear Lake, Salt Creek, Bear River, 

Ogden Bay, Farmington Bay, and Fish Springs).  We found that most genetic diversity 

was found within stands of S. maritimus and that all stands sampled are distinct 

populations.  One population, Fish Springs, which was an isolated spring complex in the 

West desert of Utah, was very distinct from the other populations.  We also found that the 

proportion of viable seeds produced was surprisingly high.  

 

In our third chapter we discuss a field study and a greenhouse experiment that were 

conducted to look at the influence of hydrology, population of origin, and genetic 

diversity of seeds on S. maritimus.  In the field study we measured environmental 

variables and productivity within established S. maritimus stands.  In the greenhouse 

experiment we determined how source population identity and the genetic diversity of 

seeds impacted emergence and productivity under different hydrologic conditions.  We 

found that stands of S. maritimus differed in proportion of time with water present, mean 

water level among sites, and soil conditions.  Productivity also differed, with 3-fold 

differences in stem density and biomass among sites.  In the greenhouse experiment, we 

found that productivity was reduced dramatically by drought and that seeds from some 

sources had greater seedling emergence and partitioned biomass to leaves or roots 

differently.  
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The results of the research presented here have important implications for the 

management and restoration of S. maritimusdominated wetlands. First, populations of S. 

maritimus are sufficiently differentiated such that there should be limited translocation of 

plant materials between populations to conserve historic lineages. Second, if there are no 

remnant populations at a restoration site from which to obtain seeds, restoration 

practitioners should target source populations in close physical proximity to the proposed 

restoration area as no one seed source outperformed others in the greenhouse experiment. 

Third, genetic diversity is high within sites and genetic diversity may increase restoration 

success and reduce the risk of inbreeding, make sure to collect from many parent plants at 

any given site.  Fourth, water level management is extremely important at all life stages 

of S. maritimus and should be an important consideration in wetland restoration and 

management in this water-limited region. 
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CHAPTER 1 

INTRODUCTION TO WETLANDS OF THE INTERMOUNTAIN WEST REGION OF 

THE UNITED STATES, STUDY SPECIES, AND STUDY QUESTIONS 

 

Restoration of wetlands in the arid Intermountain West region of the United States 

is becoming increasingly important as water resources become less predictable under 

continuing climate change. These wetlands are typically dominated by large monotypic 

stands of emergent wetland plants, are highly productive, and support millions of 

migratory birds as important stops along the Pacific Flyway (Olsen et al., 2004). In 

systems such as these, with low species diversity, research has shown that diversity 

within a species (intraspecific diversity) plays an important role in population fitness and 

ecosystem functioning, and can impact restoration success (Bangert et al., 2005; Reusch 

and Hughes, 2006).  Therefore, research is needed to better understand the pattern of 

diversity in these natural plant populations and the importance of intraspecific diversity to 

ecosystem functioning to improve restoration practices such as seed sourcing.  

Understanding the relationships between hydrology and productivity is also necessary to 

inform restoration success. To inform management and restoration practices, I evaluated 

the pattern and structure of genetic diversity in Schoenoplectus maritimus (alkali bulrush) 

to inform seed collection practices, and examined possible drivers of productivity and 

ecosystem functioning in these wetlands under diverse hydrologic conditions. 

Deciding where to obtain plant materials for a restoration projects is challenging. 

Current best management practice is to use locally collected, genetically diverse seeds 

(Sackville Hamilton, 2001; Johnson et al., 2010). However, without direct information on 

the pattern and structure of genetic diversity within a species it is difficult to know where 
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and how to collect seeds. The translocation of seeds between populations not historically 

connected via gene flow can result disrupt the genetic structure of the species and 

decrease landscape-scale diversity(Sackville Hamilton, 2001). The informed sourcing of 

seeds can avoid reductions in population fitness due to outbreeding depression (Montalvo 

and Ellstrand, 2001) and the displacement of local genotypes by more competitive alien 

genotypes (Saltonstall, 2002). 

Genetic diversity within populations is important to restoration success for two 

reasons: genetic variation is the source of adaptive potential within species to react to 

new selective pressures such as climate change (Slatkin, 1987; Rice and Emery, 2003), 

and genetic diversity is correlated with population fitness and ecosystem functioning 

(Reed and Frankham, 2003; Bailey et al., 2009). Using seeds from low diversity seed 

sources can increase the risk of inbreeding depression, which can negatively impact 

establishment (Williams, 2001) and reproductive success (Charpentier et al., 2000). Low 

levels of genetic diversity in plant populations have also been associated with reduced 

annual productivity (Crutsinger et al., 2006), arthropod diversity (Bangert et al., 2005), 

resistance to disturbance (Hughes et al., 2004), recovery after disturbance (Reusch et al., 

2005), and reproductive success (Reed and Frankham, 2003).   

Genetic diversity within a species can also plant drive response to hydrologic 

extremes. (Ennos, 1985; Howard, 2010). However, there is relatively little research on 

the effect of intraspecific diversity on wetland plant response to hydrologic extremes 

(Loreti and Oesterheld, 1996; Lessmann et al., 1997; Chen et al., 2009), which is crucial 

information for wetland revegetation projects as flooding and drought can be detrimental 

to the productivity and establishment of wetland plants. 
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In Chapter 2, I investigate the pattern and structure of genetic diversity in S. 

maritimus to make recommendations to practitioners concerning where to collect seeds 

for restoration of S. maritimus. Patterns of genetic diversity are particularly interesting 

within this species because it is widely used for restoration projects in the region and 

because of the lack of information on population structuring and genetic diversity within 

the species. I specifically address the questions: (1) how is genetic variation partitioned 

among stands of S. maritimus (2) what are the levels of within-population genetic 

diversity, and (3) are pairwise geographic and genetic distances correlated?  I collected 

genetic material from six stands of S. maritimus in Utah and Southern Idaho in the 

summer of 2009. The results of this study will indicate how similar populations of S. 

maritimus are to one another, and inform future seed sourcing.   

In Chapter 3, I detail two studies exploring possible drivers of productivity and 

establishment of S. maritimus both in natural populations and in a controlled greenhouse 

study. In the descriptive field study, I measured productivity of four S. maritimus seed 

source populations, and quantified how water level and other abiotic factors might 

influence productivity in the summer of 2009. In the greenhouse trial, I focused on how 

hydrologic extremes, source population identity, and the number of source populations 

used for revegetation impacted emergence and productivity of S. maritimus. These 

findings will provide useful information for future management of limited water 

resources, and for the sourcing of seeds for restoration. 
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CHAPTER 2 

 

THE PATTERN AND STRUCTURE OF GENETIC DIVERSITY OF  

 

SCHOENOPLECTUS MARITIMUS: IMPLICATIONS FOR 

 

WETLAND REVEGETATION
12

 

 

 

Abstract 

 

When collecting seed for wetland restoration projects, it is important to 

understand the genetic diversity within and among source populations to balance the risks 

of inbreeding and outbreeding depression while maintaining genetic diversity to 

maximize adaptive potential.  To inform future restoration projects, we investigated the 

patterns and structure of genetic diversity of Schoenoplectus maritimus L. Lye. stands 

within six wetlands in Utah and Idaho, U.S.A.  S. maritimus, a perennial wetland plant, 

reproduces via seed and clonal spread and is an obligate outcrosser.  Our results indicate 

the presence of five weakly differentiated populations and one distinct population (Fish 

Springs).  We found high levels of genetic diversity with the majority (92%) of diversity 

found within rather than among sites (8%).  We also found that the proportion of viable 

seed produced was surprisingly high within stands (mean = 0.64 ± 0.02) given that S. 

maritimus is a clonally spreading plant.  Taken together, these findings indicate that (1) 

all populations sampled were genetically distinct and (2) that the high levels of genetic 

diversity, and therefore increased availability of outcross pollen, may contribute to the 

                                                        
1
 This chapter is co-authored by Amanda C. Sweetman, Karin M. Kettenring, and Karen 

E. Mock. 
2
 Reprinted from Aquatic Botany, 104, Sweetman, A.C., Kettenring, K.M., Mock, The 

pattern and structure of genetic diversity of Schoenoplectus maritimus: implications for 

wetland revegetation, p 47-54, Copyright (2013), with permission from Elsevier.  
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high proportion of viable seeds produced.  We suggest that each population be treated as 

an independent management unit to preserve population structure and that seeds be 

collected broadly within one or a few populations in close geographic proximity to a 

proposed restoration site to minimize the risk of inbreeding or outbreeding depression 

and increase the adaptive potential of restored plant populations. 

 

1. Introduction 

 
There is growing evidence that genetic diversity within and among plant 

populations is a form of biological insurance critical to the short- and long-term success 

of natural and restored populations (Hughes et al., 2004; Naeem, 2006; Bischoff et al., 

2008).  Genetic diversity within populations (i.e., allelic diversity) is positively related 

with population fitness (Reed and Frankham, 2003) and ecosystem function (Hersch-

Green et al., 2011), and it is a source of raw genetic material for species to adapt to novel 

selective pressures (Slatkin, 1987; Rice and Emery, 2003).  It follows that using low-

diversity plant materials in restorations can cause genetic bottlenecks that lead to reduced 

population fitness (Williams, 2001).  Genetic diversity among populations represents the 

species’ evolutionary history (unique combinations of genetic drift and selection) and 

potential adaptation to local conditions.  Disrupting population structure via the 

translocation of seeds for restoration may increase the risk of outbreeding depression (the 

reduced fitness in hybrids between local and non-local plants) (Montalvo and Ellstrand, 

2001).  Balancing the risks of inbreeding and outbreeding depression while maintaining 

diversity to maximize adaptive potential are common challenges in restoration (Edmands, 

2007). 



 

 
 

8 

Making appropriate decisions about seed source populations for restoration 

requires an understanding of genetic structuring in native populations of target species 

(Fenster and Dudash, 1994; Fant et al., 2008; Vander Mijnsbrugge et al., 2010).  Genetic 

structure within and among these populations is a function of the degree of sexual vs. 

asexual reproduction; the dispersal dynamics of rhizomes, pollen, and seed; and 

landscape features influencing seed germination and recruitment (Watkinson and Powell, 

1993; Silvertown and Charlesworth, 2001; Santamaria, 2002).  However, direct 

measurement of genetic structure is cost prohibitive for most restoration projects. 

Therefore, there is a need for studies that investigate genetic structure of plant species or 

groups of species, which are broadly utilized in restoration and underrepresented in the 

scientific literature, such as emergent wetland plants.  Emergent wetland plants, many of 

which spread via seed and clonal expansion, form large stands that provide important 

functions in wetlands (Zedler and Kercher, 2005; Mitsch and Gosselink, 2007).  The 

patterns of genetic diversity within and among populations of emergent wetland plants on 

the landscape are of particular interest because genetic structure within these species can 

be complex due to the addition of asexual reproduction.  Research that does exist on 

emergent wetland plants gives divergent predictions on genetic structuring (and therefore 

inconclusive recommendations for wetland revegetation projects) (Charpentier et al., 

2000; Santamaria, 2002; Bussell et al., 2006). 

For example, when rates of sexual reproduction are low in these species, 

particularly in obligate outcrossers, clones may become large and clonal richness (within 

population genetic diversity) may be quite low (Silvertown, 2008; Kettenring and Mock, 

2012) providing source populations of limited genetic material for restoration 
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(Charpentier et al., 2000).  Low levels of within-population genetic diversity would 

suggest that restoration practitioners should collect from multiple stands to capture high 

enough levels of diversity to avoid inbreeding and decreases in ecosystem function.   

In contrast, a combination of wind pollination and broad seed dispersal by 

migratory birds could result in a very low degree of population structuring (among 

population diversity) (Wongsriphuek et al., 2008), suggesting the use of broader seed 

collection zones within areas of natural gene flow to maximize allelic diversity in 

restored populations (Broadhurst et al., 2008).  Alternatively, populations of many 

aquatic species have high among-population genetic variation due to historic isolation via 

biological or geographical barriers to dispersal (Santamaria, 2002), resulting in 

pronounced population-level structure.  This structure suggests the use of small, localized 

seed collection zones in restoration to minimize interbreeding of divergent populations.  

In this study, we focus on the patterns of genetic diversity and how genetic 

diversity is related to one measure of fitness, viable seed production, in Schoenoplectus 

maritimus L. Lye (alkali bulrush) stands within six sites in Utah and Idaho, U.S.A.  We 

specifically address the questions: (1) how is genetic variation partitioned among 

populations of S. maritimus (i.e., number of populations and how different they are from 

one another), (2) what are the levels of within-population genetic diversity, and (3) how 

is genetic diversity related to reproduction?  S. maritimus was selected, in particular, 

because it is globally distributed and is one of the dominant species in wetlands of the 

study region (Great Salt Lake watershed).  It also has global importance as a source of 

food and nesting habitat for migratory birds that use the wetlands along the Great Salt 

Lake (GSL)—a critical stop for birds on the Pacific and Central Flyways (Olsen et al., 
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2004; Dugger et al., 2007).  Wetlands in the GSL watershed, as with many other wetland 

systems, have been highly impacted by land use conversion, water limitations due to 

upstream diversions for agriculture, and invasive species (Olsen et al., 2004; Denton, 

2007).  Improving our understanding of the pattern and structure of genetic diversity 

within S. maritimus will not only advance restoration with this important species, but can 

also suggest important avenues of inquiry for future work with other emergent wetland 

plants in disturbed systems.  

 

2. Methods 

 

2.1. Study species 

 

S. maritimus grows in large monospecific stands in fresh and brackish wetlands 

worldwide.  S. maritimus reproduces vegetatively through rhizomes and tubers.  

Rhizomes and aboveground shoots can live for one growing season while tubers can 

persist for several years (Lieffers and Shay, 1982).  Sexual reproduction via wind 

pollination produces achenes, which are buoyant, ripen in late summer, and are primarily 

dispersed by water and waterfowl (Charpentier et al., 2000).  The species is self-

incompatible, and stands with few genetic individuals can have reduced fecundity due to 

pollen limitation (Charpentier and Stuefer, 1999; Charpentier et al., 2000).  In our region 

of study, S. maritimus has been observed growing in widely different environments, and 

exhibits a broad range of phenotypes within and among different stands, suggesting 

possible genetic differentiation (Chapter 3). 
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2.2. Site selection and sampling 

 

We studied S. maritimus at six sites located on public lands in Utah and southern 

Idaho (Figure 2.1). Here we describe the sites. Sites are listed in geographical order, with 

the most northerly site being first and the most southerly site being last.  The Bear Lake 

National Wildlife Refuge (Bear Lake), located at 42°12’20.83” N 111°19’30.55” W, was 

the furthest north, at the highest elevation (1809 m), and separated from the other sites by 

the Bear River mountain range. The Salt Creek Waterfowl Management Area (Salt 

Creek), located at 41°40’19.76” N 112°13’30.94” W elevation 1302 m, was north of the 

GSL and primarily influenced by stream and spring discharge. The Bear River Migratory 

Bird Refuge (Bear River), located at 41°28’45.43” N 112°16’00.81” W elevation 1284 

m, was located at the northern end of the GSL.  The Ogden Bay Waterfowl Management 

Area (Ogden Bay), located at 41°10’37.40” N 112°09’49.40” W elevation 1286 m, was 

located along the eastern shore of the GSL. The Farmington Bay Waterfowl Management 

Area (Farmington Bay), located at 40°55’43.00” N 111°55’48.04” W elevation 1283 m, 

was located along the southeastern shore of the GSL.  The Fish Springs National Wildlife 

Refuge (Fish Springs), located at 39°53’50.80” N 113°23’04.77” W elevation 1308 m, 

was an isolated spring-fed wetland complex, separated from the other sites and the GSL 

by the West Desert.  Distances between sites ranged from 24 km to 172 km. Within each 

site we found three monotypic stands (>90% cover by S. maritimus) that were at least 150 

m apart.  Within each of these stands we haphazardly established three 1 m
2 

plots that 

were 5-20 m apart.  We recorded GPS coordinates for each plot to calculate geographic 

distances between each plot, stand, and site.  To look at patterns of S. maritimus genetic 

diversity within and among populations, we collected a single S. maritimus leaf in three 
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of the corners (haphazardly chosen) of each plot at five of the sites in fall 2009.  Leaves 

were immediately placed in a granular silica desiccant, where they were stored until DNA 

extraction.  The majority of plants had already senesced at Fish Springs in the fall of 

2009—which necessitated the collection of samples in August 2010 to obtain fresh tissue.  

We looked at stand-level data to assess the relationship between genetic diversity and 

viable seed production.  We haphazardly chose one S. maritimus seed head per plot for an 

assessment of viable seed production (n=3 seed heads per stand).  Note that Fish Springs 

was not included in this analysis as seeds could not be collected at all sites due to 

logistical constraints.  We assessed seed viability using an illuminated desk magnifier 

with a 1.75× magnification.  Achenes were considered viable if they were firm and brown 

in color and full of endosperm. Shriveled or shrunken achenes with little to no endosperm 

were considered non-viable.  Previous investigations found that these classifications 

reflected germination ability of non-dormant seeds (Kettenring, unpubl. data).  We 

averaged the total number of viable and non-viable seeds for the three seed heads to 

obtain the mean stand-level proportion of viable seeds. 

 

2.3. Genotypic analyses 

 

2.3.1. Methods for AFLPs and extraction  

 

Genomic DNA was extracted from genetic samples using a QIAGEN DNEasy 96 

Plant Kit, following the manufacturer’s protocol.  Amplified Fragment Length 

Polymorphisms (AFLPs) analysis was performed following Vos et al. (1995), with 

modifications described in Mock et al. (2004).  A set of 8 selective primer combinations 

were used in the AFLP analysis, all with a 6-FAM fluorescent label on the Eco primer: 
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(Eco-AGG/Mse-ACT; Eco-ACG/Mse-ACA; Eco-ACC/Mse-ACT; Eco-AGG/Mse-ACA; 

Eco-ACG/Mse-AGT; Eco-ATC/Mse-AAG; Eco-ATC/Mse-ACA; Eco-ACG/Mse-ATC).  

An ABI 3730 automated sequencer was used with a LIZ 500 (Applied Biosystems) size 

standard to separate the amplicons, which were scored using Genographer 2.1 software 

(Benham, 2001).  Ten percent of the samples were replicated from the extraction step as a 

quality control measure.  Individual loci were scored if they were polymorphic 

(maximum of 95% either present or absent) and if there was a clearly dichotomous 

pattern (present vs. absent) across the sample set.   

 

2.4. Data analysis 

 

2.4.1. Genet identification 

 

Due to the clonal nature of this species, we needed to determine how many of the 

individual samples (ramets) were the same genetic individual (a genet).  However, the 

presence of low-level polymorphism from somatic mutations and scoring errors 

prevented us from using the simple criterion of any mismatches to identify distinct 

genets.  Therefore, we used the strongly bimodal nature of the distribution of the number 

of mismatches present across all loci and individuals to distinguish distinct genets 

(Meirmans and Van Tienderen, 2004).  Multilocus AFLP genotypes differing by 0−7 

mismatches (mean 1.7, mode 0) were pooled into single genets (with the most common 

genotype considered representative), and genotypes differing by between 8 and 52 

mismatches (mean 29.1, mode 27) were considered as distinct genets. 
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2.4.2. Genetic variation among populations 

To determine the number of populations we analyzed population structuring at 

both the individual and site-level.  To assess the probability that an individual sampled at 

a site actually originated at that site (based on site allele frequencies), we used the 

population assignment test in AFLPop 1.1 (Duchesne and Bernatchez, 2002).  The 

number of populations (K) and the probability that individual samples assigned to those 

populations was found using the software program STRUCTURE (Pritchard et al., 2000).  

As per Falush et al. (2007), we used the admixture model and assumed correlated allele 

frequencies among populations.  We also used the default settings in STRUCTURE: 

alpha was inferred from the data and lambda was set to one.  Our burn-in length was 

10,000 iterations and we used 20,000 Markov chain Monte Carlo (MCMC) iterations.  

We tested K=1−8 with 20 iterations per K without using prior site identities.  We 

determined the best possible K by determining the maximum probability [lnP(D)] of the 

data and with the ΔK method described by Evanno et al. (2005). 

For our site-based analysis of population structuring we used linearized genetic 

distances (Smouse and Peakall, 1999) to perform an analysis of molecular variance 

(AMOVA; Excoffier et al., 1992) with GenAlEx software (Peakall and Smouse, 2006).  

The significance of the calculated Фpt was ascertained by permuting the data 1000×.  We 

also used the software program Tools for Population Genetic Analysis (Miller, 1997) to 

create a population-based UPGMA dendrogram with Nei’s (1972) genetic distance 

matrix.  We assessed nodal support by bootstrapping 1000x over the loci.  

The significance of genetic differentiation between sites was tested using 

permutational MANOVA (perMANOVA; Anderson, 2001) using the software program 
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R.  This test has no formal assumptions and can be used with any measure of 

dissimilarity between groups.  We used Nei’s genetic distance (1972) to characterize the 

level of genetic dissimilarity between pairs of sites.  Significance was assessed with 9999 

permutations and Bray Curtis dissimilarity.  We tested for homogeneity of multivariate 

dispersion with 1000 unstratified, free permutations to assure that differences in 

variability among groups were not overly influencing results, a common problem when 

using MANOVA.  Non-metric multidimensional scaling (NMDS) was used to create a 

visual representation of the perMANOVA results (McCune et al., 2002). 

To assess the pattern of genetic diversity on the landscape we used PC-ORD (v.6) 

to calculate the pairwise genetic [Фpt/(1 − Фpt)] (Rousset, 1997) and geographic (km) 

Euclidean distances between sites.  We averaged the plot and stand-level data by site for 

this analysis.  To create a visual representation of the relative genetic similarity of the 

sites, we ran a principle coordinates analysis (PCoA) in GenAlEx using a Nei’s (1972) 

genetic distance matrix.  A Mantel test (Mantel, 1967) was then used to assess the 

relationship between geographic and genetic distance matrices, and the probability of the 

observed correlation was assessed with 1000 permutations.  We also ran a Mantel test 

without the samples from Fish Springs, the most isolated of the populations, to assess the 

correlation between genetic distance and geographic distance at a finer scale. 

 

2.4.3. Genetic diversity within populations  

Once the number of populations was determined, population-level genetic 

diversity was estimated using two approaches.  The proportion of polymorphic bands out 

of the 104 bands scored, a measure of allelic diversity within individuals, was calculated 
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for each stand and across all stands within each population.  We also calculated genet 

richness for each stand across all stands with in each population as the proportion of 

genets found out of the total number of samples that ran successfully. 

 

2.4.4. Viable seed production and genetic diversity 

 

To look at the relationship between diversity and viable seed production, the 

average proportion of viable seeds produced per seed head per stand was compared to the 

stand-level genetic diversity metrics (genet richness and proportion polymorphic bands) 

using simple linear regression in SigmaPlot (Systat Software Inc., 2004).  

 

3. Results 

 

3.1. Genet identification 

 

We determined that individuals (ramets) with between 1 and 7 mismatches 

represented one genet (genetic individual) with minor variants due to somatic mutations 

or scoring error. This was a conservative estimate given the distribution of mismatches. 

This result led us to determine that out of the 152 samples that ran successfully, there 

were 85 unique genets represented by 1−6 ramets (Table 2.1).  

 

3.2. Genetic variation among populations 

 

Our individual assignment test showed that the probability of a sample being 

assigned to its’ population of origin ranged from 86−100% (Figure 2.2).  There were two 

noticeable patterns when an individual did not assign to its population of origin: (1) 

individuals sampled from northern populations tended to assign to more southern 

populations (Bear Lake to Salt Creek and Ogden Bay; Bear River to Ogden and 
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Farmington Bays; Ogden Bay to Farmington Bay), and (2) the three populations along 

the GSL (Bear River, Ogden Bay, Farmington Bay) had the highest level of mixing.  The 

high level of mixing is supported by the individual-based Baysian assignment analysis 

where we found that the optimal number of populations (K) was five or six depending on 

the metric used (highest lnP(D) optimal K=6, with greatest ΔK optimal K=5).  The 

STRUCTURE graph of K=6 shows high levels of admixture, especially among the 

populations along the GSL (Figure 2.3).  Fish Springs is the only population to show 

notable differentiation from the other populations.  

The AMOVA results showed that the majority of the genetic variation was found 

within (92%) vs. between (8%) populations.  The overall Фpt value was 0.085 (p<0.001), 

which indicated weak population structuring as suggested by the STRUCTURE results.  

Despite the weak structuring, the perMANOVA results indicated that genetic 

differentiation was significant between all pairs of sites (Table 2.1).  The permutation test 

for homogeneity of multivariate dispersion was non-significant (p>0.678) indicating that 

results were not overly influenced by differences in variability among groups.  The 

NMDS figure (not shown here) highlighted that individuals from Fish Springs were 

distinct from the individuals of other populations, which were closely grouped, which 

supports our finding of weak, but significant genetic structure.  Similarly, the UPGMA 

dendrogram showed that sites with direct connections to the GSL were more genetically 

similar while the other three sites were less genetically similar (Figure 2.4). 

PCoA results (data not shown) for genetic similarity among sites showed a very 

similar pattern to that in the UPGMA tree, with the sites located along the GSL being 

most genetically similar. Interestingly, the UPGMA dendrogram showed Bear Lake as 
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the most distinct population while the NMDS and perMANOVA showed that Fish 

Springs was the most distinct population.  One possible explanation for this discrepancy 

is that the nodal support value was very low (0.61) at the branching of Bear Lake and 

Fish Springs in the UPGMA tree, indicating that the placement of Fish Springs and Bear 

Lake on the tree was weakly supported.  The Mantel test showed that genetic distance 

and geographic distance were strongly correlated (slope= 7.49, R=0.68, p=0.012; Figure 

2.5).  The Mantel test run without the Fish Springs samples showed a much weaker 

relationship between genetic and geographic distance (slope = 0.0005, R=0.19, p=0.237).   

Taken together these results suggest that each site represented a distinct 

population; however, this structuring was weak with the exception of Fish Springs, which 

was clearly separate from all other populations. 

 

3.3. Genetic diversity within populations  

 

Within populations, the proportion of polymorphic bands ranged from 0.67 to 

0.81 (Table 2.1).  Genet richness ranged from 0.40 at Bear Lake to 0.77 at Ogden Bay 

(Table 2.1).  There were no genets found at multiple sites or stands, indicating that clone 

size was relatively small and/or that rhizome dispersal was limited.  There was only one 

genet detected in multiple plots; these samples were separated by 9 m and occurred at 

Salt Creek.  Within plots, we found 1−3 genets (of three possible; Table 2.3).  At one 

extreme was Bear Lake, with most plots consisting of identical genets indicating fewer, 

larger clones.  On the other extreme, plots at Ogden Bay usually consisted of three unique 

genets, an indication of more, smaller clones.   
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3.4. Viable seed production and genetic diversity 

 

The average proportion of viable seeds produced per stand ranged from 0.28 to 

0.82 (mean = 0.64±0.02) (Table 2.4).  We found no relationship between stand-level 

proportion of viable seeds and genet richness (r
2
 = 0.021) or between proportion of viable 

seeds and the proportion of polymorphic bands (r
2
 = 0.021).  

 

4. Discussion 

 
Our results reveal a pattern of genetic diversity and population structuring that 

contradicts past research and will be important for restoration projects in the future.  

There was weak, yet significant differentiation among all sampled sites, indicating that 

each stand was a discrete population.  Also, clones were small, sites had generally high 

levels of genetic diversity (genet richness and proportion of polymorphic bands), and a 

high proportion of viable seed was produced. Here we suggest reasons for why our 

findings may have differed from past research, and discuss important implications of 

these findings for the restoration of S. maritimus-dominated wetlands. 

 

4.1.1. Genetic variation among populations 

 

We found shallow, yet significant, levels of genetic divergence among 

populations despite pronounced physical barriers to dispersal (i.e., Bear River Mountain 

Range and the West Desert), expansive physical distances between sites, habitat 

fragmentation, and evidence of genetic exchange between populations of S. maritimus.  

These results are in contrast to another native emergent wetland species, Phragmites 

australis subsp. americanus, occurring in the same geographic range, which is also a 

wind-pollinated outcrossing species (Kettenring and Mock, 2012).  We suggest that bird 
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dispersal may be at least partially responsible for this difference. S. maritimus is an 

important food source for many migratory bird species (Olsen et al., 2004), especially 

during the southern migration when seeds are ripe (Sweetman, personal observation); 

whereas, P. australis subsp. americanus is not a significant food source for migratory 

birds.  Past research has shown that waterfowl are potentially capable of dispersing S. 

maritimus up to 2,520 km (Wongsriphuek et al., 2008).  Use as an avian food source 

would promote the movement of seeds from northern populations such as Bear Lake to 

more southern populations such as Salt Creek and Ogden Bay as birds migrate south.  We 

also found evidence of seed dispersal among sites located along the GSL.  We believe 

this result may be due to the prolonged residence time of the birds on the GSL, a major 

staging area during the winter migration (Evans and Martinson, 2008), which would 

promote migration of seeds between these sites either via mud on feet or gut passage. 

We note that the genetic distances among pairs of populations along the GSL 

were more genetically similar than expected based on the overall isolation by distance 

pattern (Figure 2.5).  The differentiation of Fish Springs from all other sites is likely due 

to geographic isolation.  There was no evidence of seed dispersal to this site from other 

study sites even though Wongsriphuek et al. (2008) suggested that birds could disperse 

seeds of S. maritimus much further than the 172 km separating this site from the next 

closest study site.  However, the number of seeds Wongsriphuek et al. (2008) found that 

could be dispersed at this distance was very low.  We also know that fewer birds utilize 

Fish Springs during the fall migration in comparison with GSL wetlands, which could 

lead to effective isolation of this site (Amezaga et al., 2002).  
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4.2. Genetic diversity within populations 

 

The relatively high genet richness (number of genetically distinct individuals) is 

an unexpected finding because seedling recruitment is rarely observed for emergent 

wetland plants (Clevering, 1995), and work done by Charpentier et al. (2000) in southern 

France suggested that stands of this species in small ponds (ranging from 10m
2 

to 400m
2
) 

were often composed of one or a few large clones.  Surprisingly high levels of genet 

richness were also found in other populations of clonal wetland species such as 

Phragmites australis (in North America), Mesomelaena pseudostygia, and Alexgeorgea 

nitens (Bussell et al., 2006; Kettenring et al., 2010; Sinclair et al., 2010), and were 

attributed to high rates of pollen transfer and successful seeding.   

Clonal richness is also often correlated with the age of populations and how 

frequently populations are disturbed (Silvertown, 2008).  The sites with the highest levels 

of genet richness, i.e., the populations with many smaller clones (Bear River and Ogden 

Bay), are located along the GSL.  These sites, while protected by a system of dikes, do 

experience disturbance due to flooding.  However, Farmington Bay, which is also located 

along the GSL and is highly disturbed by upstream water usage and pollution, had 

intermediate levels of genet richness, suggesting either that flood-disturbance may not be 

uniform or that other factors are working to drive genet richness at sites.  Small-scale 

disturbances, such as variability in water level during the growing season could also 

impact genetic diversity.  A study by Baldwin et al. (2010) suggests that frequent, small-

scale disturbance could increase opportunities for successful seedling establishment in an 

area and thus increase genetic diversity within stands of emergent wetland plants. Drivers 

of these patterns within stands of S. maritimus require further investigation.  
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4.3. Viable seed production 

 

Past research has shown that S. maritimus had limited fecundity when self-

pollinated, and in stands with limited numbers of genetic individuals there was limited 

production of viable seed (Charpentier et al., 2000).  However, we found no stands with 

extremely low genetic diversity.  We believe the presence of multiple genets in GSL S. 

maritimus populations contributed to the high viable seed production we observed i.e., 

there was an adequate number genetic individuals within the stand to provide sufficient 

outcross pollen.  A similar finding was found for invasive P. australis, another emergent 

wetland perennial, where most patches (roughly spatially equivalent to our “stands”) 

evaluated in the Chesapeake Bay had >1 genotype present and when that occurred, seed 

viability was significantly greater (Kettenring et al., 2011).  A controlled pollination 

experiment confirmed that increased seed viability was due to the availability of outcross 

pollen. 

 

4.4. Implications for restoration 

 

Our results indicate the presence of five weakly differentiated populations and 

one distinct population (Fish Springs), and that substantial viable seed production may be 

due to high levels of genetic diversity within stands.  Other work on intraspecific 

variation within this species has shown that the population of origin did impact the 

number and timing of seedling emergence and root: shoot ratios in greenhouse 

experiments (this document, chapter 3).  While this variation may or may not correspond 

with selective pressures or adaptive variance at these sites, it does suggest genetic 

divergence that might be lost as a result of the introduction of other lineages as part of the 
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translocation of plant materials for restoration (Moritz, 2002).  Thus, the most 

conservative approach to the conservation of genetic variation within these sites would be 

to designate each as its own management unit (Moritz, 1999).  Management units have 

been defined as demographically independent populations that are shallowly, yet 

significantly different populations and are useful designations for maximizing 

conservation efforts (Markwith and Parker, 2007).  This approach may seem unnecessary 

due to natural translocation that likely occurs via bird dispersal.  However, due to the 

large amount of plant materials that humans introduce to new sites during restoration, 

these restoration practices could easily disrupt pre-existing genetic structuring if source 

populations are too distant from the restoration site.  

Management and restoration of this species, including decisions about the 

sourcing of seeds, should consider the number of individual plants sampled (i.e. the 

allelic diversity), and the biological connectivity and geographic distances between these 

wetlands.  For example, since the populations directly along the GSL show high levels of 

migration among them, one approach to revegetating a site along the GSL would be to 

gather a large proportion of the seeds from many individuals in one geographically 

proximal neighboring wetland and gather a small proportion of seeds from other sites 

along the lake or from more northern populations.  This practice would preserve 

population structure while increasing genetic diversity, which might increase seed 

production.  We believe it would be inappropriate to transfer seeds in or out of the Fish 

Springs population or other similarly isolated populations due to potential genetic 

isolation and potential adaptive divergence from other populations.  This approach is 

consistent with recommendations by other researchers to collect broadly from local 
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sources in order to capture high levels of genetic variation without disrupting population 

structuring (Montalvo et al., 1997; Lesica and Allendorf, 1999; Gustafson et al., 2002).  

Our findings suggest that that maintaining genetic diversity is important to the 

production of viable seeds, potentially impacting the long-term success of restoration 

projects and the persistence of populations (Falk et al., 2006; Bischoff et al., 2008).  

Genetic diversity within and among populations, natural or restored, can also be thought 

of as biological insurance against future environmental fluctuations, which will be of 

growing importance as the effects of climate change become more prevalent (Bischoff et 

al., 2008).  Thus, it is important to create guidelines such as these to preserve and 

maintain the historic patterns and structure of genetic diversity within a species.  
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Table 2.1 Genet richness and genetic diversity in S. maritimus populations in Utah and 

southern Idaho.  The proportion of polymorphic bands (P) represents the diversity among 

genets.  Note that the number of samples varies among sites because some samples failed 

to give AFLP data. 

 

 

 

 

 

 

 

 

 

 

 

Site 

No. 

samples 

No. of 

genets 

Genet 

richness 

P 

 

Bear Lake 25 10 0.4 0.73 

Salt Creek 24 10 0.41 0.69 

Bear River 21 15 0.71 0.78 

Ogden Bay 27 21 0.77 0.81 

Farmington Bay 27 15 0.55 0.68 

Fish Springs 26 14 0.54 0.69 



 

 
 

 

Table 2.2 perMANOVA p-values for pairwise comparisons of genetic distance by site. F-values are below and R
2
 values are above the  

dash.  

 
Bear Lake Salt Creek Bear River Ogden Bay Farmington Bay Fish Springs 

Bear Lake -- 0.174 0.102 0.092 0.181 0.214 

Salt Creek 3.798** -- 0.218 0.094 0.206 0.274 

Bear River 2.620* 6.416*** -- 0.065 0.110 0.169 

Ogden Bay 2.937* 2.995* 2.345* -- 0.069 0.183 

Farmington Bay 5.081** 5.967*** 3.463** 2.506* -- 0.292 

Fish Springs 5.974*** 8.288*** 5.473*** 7.390*** 11.119*** -- 

 

Significance: *p<0.05, **p<0.01, ***p<0.001 
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Table 2.3 The relative diversity among and within 1 m
2
 plots of S. maritimus.  Three leaf 

samples were taken per plot.  

 

 Among plot 

diversity 
 

Within plot diversity 

Site 

Proportion of plots 

where genets are 

shared  

Proportion of 

plots with 1 

genet 

Proportion of 

plots with 2 

genets 

Proportion of 

plots with 3 

genets 

Bear Lake 0  0.89 0.11 0.00 

Salt Creek 0.1  0.63 0.38 0.00 

Bear River 0  0.14 0.57 0.29 

Ogden Bay 0  0.22 0.22 0.56 

Farmington Bay 0  0.56 0.22 0.22 

Fish Springs 0  0.44 0.56 0.00 

Total  0.02  0.49 0.33 0.18 
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Table 2.4 Proportion of viable seed produced per seed head at each stand (mean ± 1 s.e.). 

 

Site Stand 

Proportion 

viable 

Bear Lake  1 0.47±0.17 

Bear Lake  2 0.82±0.04 

Bear Lake  3 0.73±0.04 

Salt Creek 1 0.56±0.16 

Salt Creek 2 0.80±0.06 

Salt Creek 3 0.79±0.04 

Bear River 1 0.43±0.06 

Bear River 2 0.59±0.19 

Bear River 3 0.67±0.02 

Ogden Bay 1 0.60±0.28 

Ogden Bay 2 0.78±0.05 

Ogden Bay 3 0.73±0.04 

Farmington Bay 1 0.28±0.20 

Farmington Bay 2 0.62±0.12 

Farmington Bay 3 0.68±0.12 

Overall mean 0.64±0.02 
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Figure 2.1 Sample site locations in Utah and southern Idaho.  Genetic samples were taken 

at all six sites.  Phenotypic and environmental data were collected at all sites except Fish 

Springs. 
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Figure 2.2 Results of the assignment test for genetically unique samples of S. maritimus.  

Each unique sample is represented within each bar; the color of the individual indicates 

its most likely population of origin as listed in the legend. Note that populations are 

arranged based on geographic location with the most northern population at the left and 

the most southern population on the right. 
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Figure 2.3 STRUCTURE results showing the probability that individual samples 

assigned to one of the populations (K=6).  Black lines within the figure delineate 

populations. Numbers below the figure indicate source population (1=Bear Lake, 2= Salt 

Creek, 3= Bear River, 4= Ogden Bay, 5= Farmington, 6= Fish Springs). 
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Figure 2.4 A population-based UPGMA dendrogram organized by sampling site, created 

with the AFLP data from S. maritimus and Nei’s (1972) distance matrix.  Nodal support 

based on proportion of 1000x replicates is shown at each node. 
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Figure 2.5 The relationship between genetic distance and geographic distance (km) in 

pairs of populations.  A Mantel test was used to test for a significant relationship between 

these two metrics. 
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CHAPTER 3 

 

DRIVERS OF EMERGENCE AND PRODUCTIVITY OF A WIDESPREAD  

 

WETLAND PLANT: THE ROLES OF SEED SOURCE IDENITTY, 

 

 SEED SOURCE DIVERSITY AND HYDROLOGY 

 

 

Abstract 

 

We conducted two studies to look at the influence of hydrology, population of 

origin, and genetic diversity of seeds on the productivity of a widely distributed wetland 

plant, Schoenoplectus maritimus.  In a field survey we measured environmental variables 

and productivity within established S. maritimus stands.  In a greenhouse experiment we 

determined how source population identity and the genetic diversity of seeds impacted 

emergence and productivity under different hydrologic conditions.  We found that stands 

of S. maritimus differed in proportion of time with water present, mean water level 

among sites, and soil conditions.  Productivity also differed, with 3-fold differences in 

stem density and biomass among sites.  In the greenhouse experiment, we found that 

water treatment impacted all productivity measures; source population impacted seedling 

emergence and biomass allocation; and number of source populations impacted 

sensitivity to drought.  Our results indicate that (1) water level management is important 

for productivity within established stands and for the establishment of seedlings; (2) 

water level during the establishment of seedlings may impact biomass allocation and, 

potentially, long-term fitness; and (3) seed sources differed in terms of establishment and 

biomass allocation, suggesting that seeds should be collected from multiple individual 

plants within one site.  
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Introduction  

 

The goal of most wetland restoration projects is to establish productive systems, 

which provide habitat and wetland functions such as erosion control, water quality 

improvement, and floodwater retention (Zedler 2000).  To achieve these goals in wetland 

restoration, active revegetation with seeds is usually necessary to overcome dispersal 

limitations (Neff and Baldwin 2005; Fraser and Madson 2008; Kettenring and 

Galatowitsch 2011).  Seeding is a common practice due to the additional costs associated 

with the use of rhizomes and seedlings (Galatowitsch et al. 1999).  Therefore, the success 

of many of these projects is dependent on seedling establishment and the productivity of 

the species of interest.  The rate at which seeds establish is important for short- and long-

term restoration success.  Faster establishment rates are essential because wetlands are 

dynamic systems in which the window of opportunity for germination and establishment 

may be short.  Also, rapid establishment of a desired species can reduce the number of 

invasive species at a site by decreasing available light and nutrients for competitors 

(Iannone III and Galatowitsch 2008).  Plant productivity (defined here as stem density, 

stem height, and aboveground biomass) of desired species can also impact restoration 

because increasing productivity leads to increases in ecosystem functions (Zedler 2000). 

Hydrologic regime (depth, duration, and frequency of flooding at a site) plays an 

important role in determining seedling establishment and productivity of wetland plants 

(Casanova and Brock 2000; Güsewell et al. 2003).  The presence of too much water at the 

onset of a reseeding project can lead to the drowning of seedlings and the formation of 

aerenchyma, and shallow root systems (i.e., low root:shoot ratios) (Rea and Ganf 1994a; 

Clevering and Hundscheid 1998; Lenssen et al. 2004) which can cause plants to be 
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poorly suited to lower water levels in the future. On the other hand, the presence of too 

little water at the onset of a project can lead to seedling mortality and slow development 

of aboveground biomass (i.e., high root:shoot ratios) which can cause plants to be less 

productive and poorly suited to higher water levels in the future (Touchette et al. 2010).  

Therefore, it is important for wetland restoration practitioners to understand the response 

of a species of interest to water levels to increase seedling survival and biomass 

production.  

Controlling water levels can be particularly challenging in restored wetlands 

where water levels are known to be more variable within and among years than in their 

natural counterparts (Bohnen and Galatowitsch 2005).  However, selecting seed materials 

with high genetic diversity and from appropriate sources can promote seedling 

establishment and productivity and mitigate the effects of extreme hydrologic conditions.  

The rate at which seeds establish can be different among source populations (Bischoff et 

al. 2006).  Therefore, it is important to understand the rate and timing of seedling 

establishment of plants from all potential source populations to determine the source 

population(s) most suited to the conditions at the restoration site.  Increasing genetic 

diversity (number of genotypes) in a population can also lead to greater productivity and 

resistance to disturbance (Hughes et al. 2004; Crutsinger et al. 2006; Reusch and Hughes 

2006).  In some instances, the effects of genetic diversity are only measurable under 

stress, such as flooding or drought.  For example, when two white clover (Trifolium 

repens) genotypes, one with short roots and the other with longer roots, were planted 

together, the population had greater biomass production than populations of either 

genotype when planted alone only in drought conditions (Ennos 1985).  Most research on 
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how hydrology, seed source, and genetic diversity impacts on restoration has simply 

assessed genetic effects by manipulating the number of clones present at a site. But, due 

to the pervasive use of seeds for restoration work (Vander Mijnsbrugge et al. 2010), 

research that manipulates genetic diversity in seed mixes is also important.   

To investigate how hydrology and genetic factors impact restoration success of 

populations grown from seed, we conducted a descriptive study of natural populations 

and a controlled greenhouse experiment with Schoenoplectus maritimus (alkali bulrush).  

In the present research we focus on three factors–hydrology, population of origin of the 

seeds, and the number of donor plants (i.e., genetic diversity)–that may impact seedling 

establishment and productivity.  Not only is restoration success dependent on these 

factors, but it is also often possible to control water level, seed source, and genetic 

diversity during the restoration process.  S. maritimus is one of the dominant species in 

wetlands in the Intermountain West region of the United States, which are typified by 

large monotypic stands of emergent wetland plants and where hydrologic extremes are 

part of the annual hydrologic cycle (Wise 2012).  We selected S. maritimus for our study 

because it has been observed growing in widely divergent environments (e.g. different 

water levels and soil types) where noticeable phenotypic differences among individuals 

and populations have been observed (Sweetman pers. obs.).  S. maritimus populations in 

the region are known to have high levels of neutral genetic diversity and low, yet 

significant, levels of population differentiation (Sweetman et al. 2013) all of which is 

suggestive of neutral or adaptive genetic variation among populations.  Our research 

objective for the descriptive study was to establish baseline data on the environmental 

conditions and productivity within established stands of S. maritimus.  The objectives for 



 

 

43 

our greenhouse experiment were to quantify how (1) population origin of seeds, and (2) 

genetic diversity impacts seedling establishment and productivity of S. maritimus plants 

under experimentally manipulated hydrologic conditions.  

 

Methods 

 

Study species 

 

 S. maritimus grows in large monospecific stands in fresh and brackish wetlands 

worldwide (Charpentier and Stuefer 1999).  Vegetative reproduction via rhizomes and 

tubers is common; rhizomes and aboveground shoots live for one growing season while 

tubers can persist for several (Lieffers and Shay 1982).  S. maritimus is wind pollinated 

and has achenes that ripen in the late summer, which are primarily dispersed by water and 

waterfowl (Charpentier et al. 2000).  The species is self-incompatible and populations 

with few genetic individuals can have reduced fecundity due to pollen limitation 

(Charpentier et al. 2000); however, previous work on populations of S. maritimus in our 

study region revealed high levels of genetic diversity and sexual reproduction within 

populations (Sweetman et al. 2013). 

 

Descriptive study 

 

To address our first objective, we studied stands of S. maritimus under natural 

conditions to evaluate differences in plant productivity and water level variation in four 

sites located in Utah (Figure 3.1) during the summer of 2009.  Two of the sites, Ogden 

Bay Waterfowl Management Area (Ogden) and Farmington Bay Waterfowl Management 

Area (Farmington), were located on the shores of the GSL.  The Bear River Migratory 

Bird Refuge (Bear River) site was located on the historic delta of the Bear River at the 
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northeast arm of the GSL and was influenced hydrologically by both the Bear River and 

the GSL.  The Salt Creek Waterfowl Management Area (Salt Creek) was northeast of the 

GSL, was not influenced by lacustrine inputs, and received the majority of its water from 

Salt Creek and springs in the region (Christiansen and Low 1970).  Within each site we 

located three monotypic stands (< 10% cover by species other than S. maritimus) that 

were at least 150 m
 
apart.  Within each of these stands, we haphazardly established three 

1m
2 

plots that were between 5 and 20 m apart.  To measure productivity we measured the 

height of five marked plants once a month, and, after 5 months, we measured stem 

density and collected aboveground biomass at each plot.  For biomass sampling all S. 

maritimus stems in a plot were harvested, dried at 60° C to a constant weight (at least 24 

hours), and weighed to 0.1 g.  As the three plots were subsamples, we used the mean 

value of the three plots to obtain stand-level data, which was used for comparisons within 

and among sites. 

We also measured abiotic factors (water level and soil properties) that might have 

influenced S. maritimus productivity.  Water level was measured at each plot at two-week 

intervals for a total of five months.  If there was no standing water, visual and tactile 

assessments were used to determine if soils were saturated, damp, or dry.  If the soil was 

saturated we recorded the water level as 0cm; if the soil was damp we recorded the water 

level as -1cm; and, if the soil was completely dry we recorded the water level as -5cm.  

We created hydrographs to better visualize the differences among and within sites.  One 

soil sample was taken at each plot (n=36) and analyzed by the Utah State University 

Analytical Lab for pH, electrical conductivity (EC; dS/m), phosphorus (mg/kg), 

potassium (mg/kg), nitrate (mg/kg), and ammonium (mg/kg).  Again, the mean value of 
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the three plots within each stand was calculated to obtain stand-level data, which was 

used for comparisons within and among sites. 

 

Greenhouse experiment 

 

Experimental design: To evaluate the effects of seed source population, the 

genetic diversity of seed sources, and water levels on S. maritimus establishment and 

productivity, we conducted a complete factorial experiment in a greenhouse on the Utah 

State University campus (41°45'28.71"N, 111°48'47.17"W).  Our main factors were seed 

treatment and water level (3 levels: flood, control, and drought).  Seed treatment is an 

overarching term for source population (n=5) and the diversity of seed sources in a mix 

(n=6; seeds from the five populations planted singly—referred to by collection site 

name—and seeds from all source populations mixed together in equal proportions—

referred to as “mixed” seed treatment). 

Seed collection: Seeds were collected by hand from each site described in the 

descriptive study (see above); we also used seeds collected from a fifth site, Timpie 

Springs (Figure 3.1).  Timpie Springs was not included in the descriptive study due to 

logistical constraints.  We included seeds from this site due to availability and to increase 

the number of seed sources evaluated.  At each site, seeds were collected from 

haphazardly selected plants ≥3m apart over a 150 m
2 

area to obtain a genetically diverse 

sample representative of the population (as per Bischoff et al. 2008).  Seeds were cleaned 

and stored at room temperature until sowing.  Seeds were collected in fall 2008 from 

Bear River, Ogden, Farmington, and Salt Creek, and in fall 2009 from Timpie.  
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Water levels: The water treatments were designed to approximate the hydrologic 

extremes that this plant was known to experience in the field (see descriptive study).  

Field surveys in our region demonstrated S. maritimus growing in water levels of 0 to 

39.5 cm (Figure 3.2).  Water level was controlled by the height of a pot within a pool.  

Flood treated pots were submerged to a depth of 5 cm.  Control pots, which had five 

small holes drilled into the bottom, were kept moist by resting in 5 cm of water.  This 

treatment was designed to minimize stress from either flooding or drought.  The drought 

pots were raised above the water entirely and were kept just above the permanent wilting 

point (~8% water content for our soil type–sandy loam soils).  We used simulations run 

on the software package, HYDRUS, to determine the amount of water to add to achieve 

our drought treatment (Šimůnek et al. 2008).  Based on the results of this simulation, we 

developed a watering scheme where all pots were brought up to saturation at the onset of 

the water manipulation experiment, the drought pots received a 0.5 cm precipitation event 

5 days after water manipulations began, and after that drought pots received a 1 cm 

precipitation event every 7 days.  To track the actual water content drought pots received, 

they were weighed pre- and post-watering.  For the duration of the water manipulation, 

the drought pots ranged from 18-22% water capacity just post-watering and 5-10% water 

content pre-watering.  Water level within the ponds was adjusted by hand every few days. 

Experiment implementation: Fifty-four viable seeds were sown onto the surface of 

each pot (volume = 2.66 liters; surface area 0.3 m
2
)—a realistic approximation of field-

observed stem densities (see descriptive study).  To promote germination, seeds were 

treated with a 3% bleach solution for 12 hours (Kettenring unpublished data), thoroughly 

rinsed with tap water, and planted immediately post treatment on April 3, 2010.  Each pot 
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was filled with a sandy loam mixture and received 35 g of Osmocote 15-9-12 at the 

beginning of the experiment.  

Pots were randomly assigned to one of three artificial ponds (1.2 m by 3.65 m) 

and randomly placed within that pond.  There was space for 32 pots per pond (=block). 

So each water level x seed treatment (n=18) was represented at least once in each pond 

and the remaining spaces in the pools were assigned treatments randomly.  When two 

pots of the same treatment were present within the same pond they were considered 

subsamples; response variables associated with those pots were averaged to avoid 

pseudoreplication.  Temperatures within the greenhouse ranged from 25° C during the 

day to 18° C at night.  A 16-hour photoperiod was maintained with 1000 W high-pressure 

sodium lamps.  After planting, to elevate humidity and surface temperature to improve 

germination, pots were covered with cellophane until germination began.  Pots were kept 

saturated for four weeks prior to the onset of the water manipulation experiment (i.e., the 

establishment period).  The experiment ran for nine weeks (i.e., the experimental period) 

after the four-week establishment period. 

Plant response measurements: The total number of emerged seedlings was 

measured weekly during the establishment period.  During the experimental period, we 

measured mean maximum stem height and the number of stems per pot every two weeks.  

At the conclusion of the study, aboveground biomass was collected by clipping stems at 

the soil surface.  Belowground biomass was collected by rinsing roots over a fiberglass 

screen with 0.025cm diameter mesh.  Biomass samples were processed as described 

above. 
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Tests for possible maternal effects: Using seed directly sourced from natural 

populations could have lead to non-genetic effects impacting our results.  For example, 

environmental conditions experienced by maternal plants can affect seed mass and thus 

potentially germination.  To look for effects of provisioning by maternal plants we used t-

tests to compare the mean seed mass of each site (Richards et al. 2010).  Simple linear 

regression was also used to assess the impact of mean seed mass on percent germination 

at the conclusion of the four-week establishment period.   

Outliers: Three pots in which no plants successfully established prior to the 

beginning of the water-level manipulation were excluded from data analysis.  Two other 

pots in which no germination had occurred until the seventh and ninth weeks of the 

experiment were also excluded due to their late germination. 

Analysis: We ran analyses for total biomass and root: shoot ratios using a two-

way ANOVA in a randomized block design.  The fixed effects were water level (3 levels: 

flood, control, and drought) and seedling mix (5 levels).  We ran analyses for the 

proportion of seedlings emerging, mean maximum height, and stem count using a two-

way ANOVA in a randomized block design with repeated measures in time using the 

most parsimonious covariance structure for each response to account for autocorrelation 

in time, based on the lowest corrected Akaike information criteria (AICc) (with smaller 

values being better) (Table 3.1).  The fixed effects were water level (3 levels: flood, 

control, and drought), seedling mix (5 levels), and time (number of levels).  Block was 

included as a random effect in all models.  Degrees of freedom were calculated using the 

Satterthwaite (1946) approximation.  Some variables were transformed prior to analysis 

to better meet the model assumptions of normality and homogeneity of variance (Table 
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3.1).  We used an alpha of (0.05) as our critical significance level.  However, when 

multiple comparisons were made within a treatment to test for the effect of individual 

seed treatments, on repeated or non-repeated measures, we used the Tukey-Kramer 

method and we assessed results at α= 0.11 to increase power (Day and Quinn 1989).  

Data analyses were obtained using the GLIMMIX procedure in SAS/STAT software 

version 9.2 in the SAS system for Windows (SAS Institute Inc. 2009). 

Sensitivity to flooding and drought: As per Kercher and Zedler (2004), the 

sensitivity of each seed treatment to flooding and drought was calculated as (1 – [mean 

(response) flood or drought / mean (response) control]).  Response variables evaluated 

were total biomass, final mean maximum height, and final mean stem count.  Sensitivity 

values could have ranged from -1 to 1.  Higher positive values indicated a sensitive seed 

treatment (i.e., a seed treatment that was affected more by the water level treatment).  

Lower, positive numbers indicated a tolerant seed treatment.  Negative numbers indicated 

a responsive seed treatment (i.e., a seed treatment that benefitted from the water level 

treatment).  

 

Results 

 

Descriptive study 

 

We found dramatic differences in stem density, biomass, proportion of time wet, 

mean water level, and soil conditions (Figure 3.2, Figure 3.3, Table 3.2) among sites and 

between stands within sites.  There were 3-fold differences in average stem density and 

biomass production among sites; Salt Creek plots had the highest stem densities and 
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biomass production while Bear River had the lowest stem density and Ogden had the 

lowest biomass production.  

 The hydrographs revealed highly divergent patterns of timing, duration, and depth 

of flooding among the sites (Figure 3.2).  The proportion of time a site had water present 

ranged from 20-100%.  Bear River was the driest site, with peaks early and late in the 

season.  Farmington had the highest mean water level and the greatest variation among 

stands.  Ogden also had high among-stand variation, and at the site-level Ogden had 

water present more often than any other site.  Salt Creek had low water levels, and the 

least among stand variation.  Salt Creek was the most moderate site—plants experienced 

neither excessive flooding nor drought.  

 We also found highly variable soil conditions among the sites (Table 3.2).  

Ammonium was 2.6 times higher at Farmington than at Salt Creek.  Nitrate was 3.5 times 

higher at Bear River than at Ogden.  EC and Potassium were respectfully 3.8- and 1.2-

times higher at Bear River than at Salt Creek. Phosphorus was 3.8-times higher at 

Farmington than at Bear River. 

 

Greenhouse experiment 

 

Tests for possible maternal effects:  Seed mass did have a very weak positive 

linear relationship with percent germination (p=0.017, adjusted r
2
= 0.0902).  However, it 

is doubtful that there was a significant maternal effect as Timpie, the seed treatment with 

the lowest mean seed mass, had the highest total seedling emergence, the opposite pattern 

from what you would expect with a maternal effect. 
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Seedling emergence: Seedling emergence was affected by seed treatment, time, 

and seed treatment*time (Table 3.1, Figure 3.4).  Within seed treatment, Timpie seedling 

emergence was greater than emergence of seeds collected from Bear River, Farmington, 

Ogden, and Salt Creek.  Within time, seedling emergences at times one and two were 

different from each other and from emergences at times three and four, which were 

statistically the same.  

Productivity: Stem count and mean maximum height were affected by water 

level, time, and water*time (Table 3.1).  Stem count was significantly lower in drought 

pots than at other water levels. The mean maximum stem height was significantly 

different at all water levels.  Stem count and mean maximum height increased 

significantly at every 2-week interval.  

 Total biomass was significantly lower in drought pots than at other water levels, 

whereas root:shoot ratios were different at all water levels.  Root:shoot ratios were also 

impacted by the water*seed treatment interaction (Table 3.1, Figure 3.5).  Within the 

drought treatment, the root: shoot ratios of Timpie plants were lower than those of Bear 

River, Farmington, and Ogden, and the root:shoot ratios of Ogden plants were higher 

than those of the Mixed treatment.  Within the control water treatment, root:shoot ratios 

of Bear River plants were significantly lower than those of Salt Creek and Mixed plants.  

The flood treatment did not yield significantly different root:shoot ratios between any 

seed treatment.  Within seed treatments, the root:shoot ratios of all seed treatments except 

Salt Creek were much higher in the drought treatments than in the flooding and control 

treatments.  The Salt Creek root:shoot ratios responded differently to all three water level 

treatments.  
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Sensitivity to flooding and drought: Ogden was the most drought-sensitive with 

the highest sensitivity value for all responses; the mixed seed treatment had the least 

reduction in stem count in the drought treatment (Figure 3.6).  Interestingly, there was 

greater variation in seed treatment sensitivity to flooding than to drought conditions.  

 

Discussion 

 

Seed source populations of S. maritimus experienced highly divergent abiotic 

conditions in the field and levels of productivity were highly variable among sites and 

among stands within sites.  Under controlled greenhouse conditions, hydrology—not seed 

source population or diversity—had an overall significant effect on productivity.  

However, the location from which seeds originated impacted biomass partitioning and 

establishment success, whereas seed source diversity impacted sensitivity to drought.  

Here we discuss possible drivers of the patterns seen in the four natural populations of S. 

maritimus and the response of the plants under greenhouse settings.  We particularly 

focus on restoration implications of how seed source population, diversity, and 

hydrologic extremes can affect the establishment and productivity of S. maritimus.  

 Our results highlight the differences in hydrologic patterns among and within sites 

that reflect the intersection of water availability with management practices.  In the past, 

the wetlands in the region experienced high water levels in early spring due to montane-

derived snowmelt runoff and then gradual lowering due to low precipitation and high 

evapotranspiration in the summer months.  Thus, the depth and duration of flooding in 

the spring was influenced by large-scale climate cycles that drove annual winter 

snowpack, all of which led to large seasonal and inter-annual variation in water level at 
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these wetlands.  Now, due to agricultural diversions and the creation of reservoirs 

upstream, water resources are limited and seasonal and inter-annual hydrologic patterns 

have been altered (Christiansen and Low 1970).  In order to maintain suitable habitat for 

migratory birds, private and governmental organizations have purchased important 

wildlife habitat and impounded the majority of remaining wetlands.  Impoundment 

allows land managers to manipulate water levels to maximize waterfowl production 

(Olsen et al. 2004).  Interestingly, the hydrographs of these heavily manipulated wetland 

impoundments rarely mimic what would have occurred naturally.  The interaction of 

upstream water use and management practice is especially apparent in the severe 

decrease in water level during the growing season in the Bear River wetlands.  Because 

the Refuge has a lower priority water right to upstream agricultural uses, most growing 

seasons including during our study year, many wetland impoundments can go dry 

(Downard 2010).  The large-scale alterations of hydrologic conditions in these wetlands 

may have long-term effects on wetland plant populations, including their productivity, 

and is an interesting area of future research in controlled experiments such as our 

greenhouse trial and in longer-term field-based experiments.  

 Hydrologic conditions affected productivity of the observed populations as well 

as those grown in the greenhouse.  Biomass production at Salt Creek, which had low but 

relatively constant water levels, was more than double that of any other site.  These 

findings are similar to results in an experimental study on effect of water level 

stabilization on Typha X glauca (invasive, hybrid cattail) that showed plants grown at a 

constant 5-10 cm water level had 56% higher biomass accumulation than plants grown in 

fluctuating conditions (Boers and Zedler 2008).  Other studies have shown that water 
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levels greater than 20 cm, which were commonly recorded at some of the least productive 

sites (Farmington and Ogden), can severely retard growth of S. maritimus and other 

members of the genus (Clevering and Hundscheid 1998; Blanch et al. 1999).  Field sites, 

such as Bear River, that experienced dewatered conditions had surprisingly high 

productivity given the extreme negative response drought conditions had on the plants 

grown in the greenhouse.  This discrepancy could be due to the presence of well-

developed belowground resources in field populations that buffered them from the 

dewatered conditions, or the difference in the severity of drought conditions between the 

field and greenhouse.  Also, it is possible that the majority of growth in the field had 

occurred prior to the dewatering of units, as other studies have shown that the presence of 

water early in the season is most important for productivity of other emergent graminoids 

(Yetka and Galatowitsch 1999).  

 Other factors such as nutrient levels, salinity, temperature, population dynamics, 

and genetic variation could also impact plant productivity.  Increasing nutrient levels in 

wetlands, particularly nitrate as it is often limiting in these systems, can increase wetland 

plant productivity (Venterink et al. 2002).  Also, increasing salinity and clone age 

decreases productivity of S. maritimus stands (Lieffers and Shay 1982; Jelinski et al. 

2001; Lillebø et al. 2003).  Neutral or adaptive genetic variation among sites could also 

result in differences in productivity among sites.  A study on the patterns of neutral 

genetic variation within populations of S. maritimus in the region showed low, but 

significant, levels of population differentiation (Sweetman et al. 2013).  The results of the 

greenhouse experiment are a first step in linking neutral genetic variation between plants 
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from different sites to quantitative trait variation, and in quantifying how these 

differences might impact productivity and response to hydrologic extremes.  

 Our results show that different seed sources partitioned biomass differently in 

response to hydrologic conditions in the greenhouse—which may be an adaptive 

response to past hydrologic conditions at sites because water regime is a strong selective 

pressure on wetland plants (Silvertown et al. 2001).  Herbaceous plants alter root:shoot 

ratios in response to changing water levels (Rea and Ganf 1994c; Kennedy et al. 2003; 

Touchette et al. 2008).  Similar to past research, root:shoot ratios of plants in our 

greenhouse study increased in drought conditions as compared to the control or flood 

conditions (Sala and Nowak 1997).  Higher root:shoot ratios in the drought treatment can 

potentially increase foraging for water resources, making some seed sources better suited 

to low water conditions.  Past research on a suite of emergent wetland species, including 

S. maritimus, showed that root:shoot ratios of flood treated plants decreased in response 

to flood as shoots elongated to emerge from the water (Rea and Ganf 1994c; Clevering 

and Hundscheid 1998).  In our study, only Salt Creek communities had significantly 

lower root:shoot ratios in response to flood conditions.  There was an overall non-

significant trend for flood treated communities to have lower root:shoot ratios, and it is 

possible that our flood treatment water level was too shallow to have elicited elongation 

of shoots at the expense of belowground structures as had been documented in past 

studies. 

 Similar to past research, we found that seed source population affected seedling 

establishment of S. maritimus (Keller and Kollmann 1999; Bischoff et al. 2006).  Rapid 

establishment can have lasting impacts on the competitive ability of a plant species 
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(Keller and Kollmann 1999), and is particularly important in dynamic systems such as 

wetlands because the duration of favorable conditions for germination and establishment 

is often limited (Rea and Ganf 1994b).  We used field-collected seeds in our experiment 

to maximize the relevance of our findings to restoration.  One limitation of this approach 

is that we cannot definitively say that differences among seed sources are due to genetic 

affects rather than non-genetic effects such as abiotic impacts on maternal plants during 

seed production (Baskin and Baskin 1998).  However, our results suggest that maternal 

effects, as measured by seed mass, did not appear to affect establishment or productivity.  

Further research is needed to confirm that the origin of any differences among seed 

sources in establishment (or productivity) is genetic rather than environmental.  

 The amount of genetic variation present within a species and within populations 

has been shown to positively affect individual- and population-level fitness (Charpentier 

et al. 2000; Reed and Frankham 2003) and ecological processes such as annual 

productivity and resistance to disturbance (for review see Crutsinger et al. 2006; Hughes 

et al. 2008).  While the mixed seed treatment did not impact productivity or establishment 

in our statistical tests, it was the least sensitive to drought (i.e., it had the least reduction 

in stem count in drought conditions as compared to the control).  This result is similar to 

those from a study on genotypic diversity of sea grass beds (Zostera mariana), in which 

clonal diversity only had a measurable effect after a major disturbance (Hughes et al. 

2004), rather than under non-stress conditions.  Similarly, only when exposed to drought 

conditions did stands of white clover (Trifolium repens) with multiple genotypes planted 

together have significantly higher biomass production than stands planted with one 

genotype (Ennos 1985).  One possible explanation for the lack of a diversity effect for 



 

 

57 

other response factors is that genetic diversity was already high within each seed source 

population (Sweetman et al. 2013), and there was no additional benefit to adding seeds 

from multiple sources.  

 

Implications for Management and Restoration 

 

Our results indicate that hydrology, seed source identity, and seed source diversity 

impact establishment and productivity of S. maritimus populations.  These findings have 

important implications for the management and restoration of S. maritimus populations.  

First, the management of water level is important for the establishment of seedlings and 

may impact the productivity of established stands.  Second, the water level during the 

initial growth of seedlings can impact root:shoot ratios.  Therefore it is important to 

consider the prevailing conditions at a potential restoration site to maximize seedling 

survival (e.g., if a site is prone to drought but seedlings are grown in flooded conditions 

then those plants may have lower root:shoot ratios and thus be vulnerable to drought in 

the future) (Elcan and Pezeshki 2002).  Third, when sourcing seeds for revegetation 

projects, the most conservative choice is to collect widely within one proximal and 

ecologically similar site as no one seed source appears to have a clear advantage over 

other sources, and there is broad variation within seed sources.  This practice will capture 

a large amount of genetic variation, which may decrease sensitivity to drought, while 

preserving the population structuring found in past research (Sweetman et al. 2013).  We 

hope that the information here will land managers and aid in successful restoration of 

wetlands.     
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Table 3.1: ANOVA table – Summary of test statistics for greenhouse experiment. 

Response (transformation, 

covariance structure) 
Effect df F Value Pr > F 

Root-to-shoot (log, none) W 2 , 33 129.81 <0.0001 

 ST 5 , 33 0.92 0.48 

 W*ST 10 , 33 4.27 0.0007 

Total biomass¹ (sqrt, none) W 2 , 15.71 319.71 <0.0001 

 ST 5 , 23.36 0.65 0.66 

 W*ST 10 , 17.01 0.23 0.99 

Seedling emergence (sqrt, arh(1)) W 2 , 33.65 1.64 0.21 

 ST 5 , 33.65 2.12 0.09 

 W*ST 10 , 33.65 1.26 0.29 

 T 3 , 60.66 60.67 <0.0001 

 W*T 6 , 71.74 0.94 0.47 

 ST*T 15 , 82.79 1.58 0.09 

 
W*ST*T 30 , 83.13 1.01 0.46 

Stem count (sqrt, arh(1)+re) W 2 , 32.07 10.51 0.0003 

 ST 5 , 32.07 1.93 0.12 

 W*ST 10 , 32.06 0.66 0.75 

 T 3 , 49.56 435.07 <0.0001 

 W*T 6 , 59.78 33.99 <0.0001 

 ST*T 15 , 70.54 0.34 0.99 

 W*ST*T 30 , 71.1 0.49 0.98 

Mean max height (sqrt, toep) 
W 2 , 37.41 114.59 <0.0001 

 ST 5 , 37.41 1.61 0.18 

 W*ST 10 , 37.41 0.67 0.75 

 T 3 , 62.98 384.89 <0.0001 

 W*T 6 , 72.12 50.27 <0.0001 

 ST*T 15 , 79.82 0.58 0.89 

  W*ST*T 30 , 78.07 0.68 0.88 

 

df= degrees of freedom, W=water, ST=seed treatment T=time; sqrt=squareroot 

transformed, ¹analyzed with heterogeneous variance for water, arh (1) + re= 

heterogeneous autoregressive with random statement, toep= Toeplitz. 
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Table 3.2: Soil characteristics at stands of S. maritimus within sites.  

 

Site, stand pH EC Phosphorus Potassium Nitrate Ammonium 

Salt Creek S1 7.55 4.32 18.50 579.00 7.78 13.40 

Salt Creek S2 7.79 6.51 15.77 655.00 4.83 9.95 

Salt Creek S3 8.17 10.94 22.20 678.00 7.30 5.69 

Bear River S1 7.21 21.82 12.37 842.00 8.90 6.87 

Bear River S2 7.44 29.13 8.70 890.67 8.50 8.13 

Bear River S3 7.23 34.13 11.63 696.33 13.65 6.82 

Ogden S1 8.06 9.86 43.33 619.67 2.76 12.45 

Ogden S2 7.98 9.93 39.33 853.67 3.56 10.00 

Ogden S3 7.59 13.56 42.00 900.00 2.42 20.77 

Farmington S1 8.01 11.86 20.75 846.50 2.94 22.70 

Farmington S2 7.62 22.33 74.00 900.00 10.63 7.73 

Farmington S3 7.46 4.60 33.50 434.00 3.30 26.40 
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Figure 3.1: Sample site locations in Utah. Sites marked with circles were studied for the 

field study. Seeds were collected at all sites.  
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Figure 3.2: Mean water level by stand and site for the duration of the field study.  
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Figure 3.3: Stand-level phenotypic characteristics of four populations of S. maritimus 

growing in the field. 
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Figure 3.4: Effect of seed treatment on the number of seedlings emerging through time. 

Measurements were taken weekly for four weeks.  
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Figure 3.5: The effect of seed treatment and water treatment on plant productivity in the 

greenhouse experiment. 

  



 

 

70 

 

 

 

Figure 3.6: Sensitivity of S. maritimus total biomass, stem height, and stem count to 

flooding and drought. Higher values show greater sensitivity to the treatment; lower 

values show tolerance to treatment (negative values indicate better overall response to the 

treatment relative to the control). 
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CHAPTER 4 

 

SUMMARY AND CONCLUSIONS 

 

 

Revegetation projects in wetlands are challenging due to competing interests for 

limited water resources and the unpredictable conditions often found at restoration sites 

(Bohnen and Galatowitsch, 2005).  Using seeds from local, genetically diverse sources 

has been shown to improve revegetation efforts (Vander Mijnsbrugge et al., 2010). 

However, little information existed on how seed source or diversity might impact 

restoration success under the extreme hydrologic conditions known to exist in many 

restoration projects.  This thesis was designed to provide information on the ecology and 

genetics of Schoenoplectus maritimus so that future restoration and management actions 

may be more appropriately executed. Specifically, I examined patterns of population 

structuring and genetic diversity of S. maritimus (Ch 2); and how seed source population, 

the number source populations, and hydrologic extremes impacted establishment and 

productivity of seedlings (Ch 3). 

My studies described in Chapter 2 on the patterns of population structuring and 

genetic diversity revealed shallow population structuring, high levels of within-

population diversity, and that seed viability was surprisingly high.  These results were 

unexpected given the low level of sexual reproduction though to occur in established 

stands of S. maritimus (Charpentier et al., 2000) and the geographic barriers to gene flow 

among the studied populations which could have led to much higher levels of population 

structuring and lower levels of genetic diversity. I hypothesized that the observed patterns 

were the result of seed dispersal by birds and disturbance patterns. Past research has 
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shown that this species can be widely dispersed by waterfowl (Wongsriphuek et al., 

2008). And the strong isolation by distance gradient and the patterns of apparent gene 

flow seen in the individual assignment tests are both indicative of bird dispersal, which 

would be high among geographically proximal sites and follow migration routes. 

In Chapter 3, I discuss possible drivers of the differences in productivity among 

natural stands of S. maritimus, and how seed source population, the number of source 

populations, and hydrologic extremes impacted establishment and productivity of 

seedlings.  Natural stands of S. maritimus experienced drastically different hydrologic 

conditions and other abiotic conditions and productivity varied greatly among stands.  In 

the greenhouse experiment, we found that drought strongly negatively influenced 

productivity, seed source population identity impacted seedling establishment, while the 

number of seed sources had a slight impact on sensitivity to drought.  

The results of the research presented here have important implications for the 

management and restoration of S. maritimusdominated wetlands. First, populations of S. 

maritimus are sufficiently differentiated such that there should be limited translocation of 

plant materials between populations to conserve historic lineages. Second, restoration 

practitioners should target source populations in close physical proximity to the proposed 

restoration area because geographic distance was strongly correlated with genetic 

distance and no one seed source outperformed others in the greenhouse experiment. 

Third, water level management is extremely important at all life stages of S. maritimus 

and should be an important consideration in wetland restoration and management in this 

water-limited region.   
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