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Purpose 

Optimal multiproduct time-varying hedge ratios not only  take into account the changing 

relationship of the spot and futures prices of commodities through time, but likewise the dynamic 

inter-relationship among prices from related factors of a production setting. The purpose of this 

article is to determine and contrast the risk mitigating effectiveness from optimal multiproduct 

time-varying hedge ratios, applied to the margin of a cattle feedlot operation, over single 

commodity time-varying and naive hedge ratios. 

Design/methodology/approach 

A parsimonious regime-switching dynamic correlations (RSDC) model is estimated in two-

stages, where the dynamic correlations among prices of numerous commodities vary 

proportionally between two different regimes/levels. This property simplifies estimation methods 

for a large number of parameters involved.  

Findings 

There is significant evidence that resulting simultaneous correlations among the prices of a 

commodity (e.g. live cattle spot and live cattle futures) reach different levels along the time-

series. Second, for in and out-of-sample data there is a substantial reduction in the operation’s 

margin variance provided from (both) multiproduct and single time-varying optimal hedge ratios 

over naive hedge ratios. Lastly, risk mitigation is attained at a lower cost given that average 

optimal multiproduct and single time-varying hedge ratios obtained for corn, feeder cattle and 

live cattle – using either in or out-of-sample data - are significantly below the naive full hedge 

ratio. 

Research limitations 

A limitation of the framework implemented in the study is that once the hedge position is set, it 

is not possible to modify or update the hedge position in the following period. 

Practical Implications 

Feedlot operators and related industries will benefit from the potential implementation of this 

parsimonious RSDC model for their hedging operations (in futures markets), as it provides 



average optimal hedge ratios significantly lower than one and a sizeable advantages in margin 

risk mitigation.  

Originality 

This paper illustrates significant benefits attained from applying time-varying optimal hedge 

ratios in the context of a multi-product setting, in this case a cattle feedlot operation, over naive 

hedge ratios. Thus incorporating the dynamic time element, as well as the inter-relationships 

among commodities (with futures market presence) from a common production setting, 

substantially strengthens the risk management strategy. 

 

Key Words: multiproduct optimal hedging, time-varying hedge ratios, feedlot operators, regime-

switching models 
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Introduction 

Agricultural crop markets have been experiencing substantial changes in their prices and 

volatility during the past decade, driven both by supply side factors such as unexpected severe 

weather conditions (droughts, floods), and by demand side factors in the form of unanticipated 

new economic conditions. Risk management tools that make use of financial instruments may 

facilitate mitigating the effect from these unexpected price swings through effective hedging. 

Production settings where inputs and outputs are exchanged in futures markets permit the 

application of multiproduct optimal hedging. This strategy takes into account a multivariate 

portfolio approach that potentially decreases risk more effectively than if applying single 

commodity hedging.  

     Early work by Anderson and Danthine (1980) presented the theoretical ground for an optimal 

multiproduct static scenario, where the hedge between multiple contracts in an efficient market 

responds to the covariance between the future and cash prices and the variance of the future 

prices. Later studies by Myers and Thompson (1989) and Baillie and Myers (1991) argued that 

optimal hedge ratios preferably required up-to-date information for estimating the variance and 

covariance of spot and futures prices, and thus determining dynamic optimal hedge ratios. This 

article determines time-varying (accounting for up-to-date information) hedge ratios in a 

multiproduct setting – a cattle feedlot operation – by applying a regime switching model of 

dynamic correlations (RSDC) to the multivariate series. The study uses a parsimonious RSDC 

model (Pelletier, 2006), identifying two different correlations regimes among pairs of prices, 

with the switch between regimes being governed by a Markov chain. 

     A broad review encompassing the development of theoretical foundations and the 

implementation of empirical frameworks and models for estimating optimal hedge ratios is 
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provided by Lien and Tse (2002). Multivariate models have been extensively applied in the 

financial field to estimate optimal hedge ratios. Park and Switzer (1995) estimated optimal time-

varying hedge ratios for three stock index futures, including S&P 500, by using a bivariate 

(accounting for dynamic spot and futures prices) co-integration structure within a GARCH 

model (Bollerslev, 1988), finding substantial hedging improvement over constant (OLS) hedging 

methods. Choudhry (2004) finds that time-varying hedge ratios using a diagonal VECH for 

correlations in a bivariate GARCH framework (Bollerslev et al., 1988) outperform traditional 

hedging strategies for Australia, Hong-Kong and Japan stock futures markets. Lien and Yang 

(2006) investigate the effects of spot-futures spread on returns of several major currencies and 

their impact on hedging strategies, by using a bivariate dynamic conditional correlation (DCC)  

framework (Engle, 2002). Results identify substantial improvements over naive hedging 

strategies.  

     Studies accounting for simultaneous multivariate relationships among various price indices 

for hedging strategies include Hammoudeh et al. (2010) who determine the hedging 

effectiveness of various multivariate GARCH models, including the DCC, applied to four major 

precious metals. Best results are obtained with the DCC model. A study by Zanotti et al. (2010) 

applied to three major European electric markets arrive at similar results. Ji and Fan (2011) apply 

a multiproduct portfolio hedging strategy to energy markets, including crude oil, heating oil and 

gasoline, using a modified DCC model that incorporates an error correction framework (DCC-

ECM_MVGARCH). Hedging effectiveness gains are obtained with the model in comparison to 

naïve or bivariate GARCH models. 

     Prior multiproduct hedge studies applied to a feedlot operation or a soybean complex 

incorporated some form of time-variant conditions. These include Peterson and Leuthold (1987), 
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Tzang and Leuthold (1990), Fackler and McNew (1993), Garcia et al. (1995), and Manfredo et 

al. (2000). The latter two studies used a multivariate GARCH model (Bollerslev, 1990), which 

has the drawback of constraining the conditional covariance (or correlation) estimate of the 

matrix of cash and futures prices to be positive semi-definite (PSD) for each period. Garcia et al. 

(1995) circumvented this estimation complexity - intensified for a larger number of parameters 

being estimated - by applying a constant (conditional) correlation. Manfredo et al. (2000) used a 

Risk Metrics procedure, with a moving-average, for the time-varying covariance matrix. Optimal 

findings were of modest improvement over single commodity hedging. A study by Collins 

(2000) applied out of sample data (60 months of average futures and cash prices) to the estimated 

optimal hedge ratios from multiproduct hedging studies by Tzang and Leuthold (1990) and 

Fackler and McNew (1993) – which used monthly average price data, and found no significant 

benefits of multiproduct optimal hedge ratios over naive (1:1) hedging. 

     Haigh and Holt (2000) apply a BEKK MGARCH (Engle and Kroner, 1995) model for 

multiproduct hedging of wheat, soybeans and international freight rates, finding gains in 

reducing price variability in international grain trade for out-of-sample data. Noussinov and 

Leuthold (1999) study multiproduct hedging in a feedlot operation setting, yet they do not apply 

time-varying correlations to estimate optimal hedge ratios. Conversely, Sephton (1993) estimates 

single time-varying hedge ratios for wheat feed, barley feed and canola from Canada using a 

bivariate GARCH model, with constant conditional correlations, and finds improved 

performance over traditional (OLS) strategies. Bera et al. (1997) estimate single time-varying 

hedge ratios for corn and soybean, applying a diagonal VECH for correlations in the bivariate 

GARCH model, finding hedging improvement over the constant correlation bivariate GARCH 

models. More recently, Choudhry (2009) compares four different bivariate GARCH models in 
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estimating single time-varying hedge ratios of several agricultural commodities, finding 

moderate hedging improvement from the GARCH-X (Lee, 1994) model. Park and Jei (2010) 

estimate (bivariate) single time-varying hedge ratios for corn and soybeans using the dynamic 

conditional correlations (DCC) model, and find a small improvement over unconditional (OLS) 

hedging strategy. Bekkerman (2011) applies the DCC model in a multiproduct setting to estimate 

time-varying hedge ratios of linked wheat markets in Montana, finding improvements over 

single market-bivariate hedge ratios. Both of these cases estimate a time-varying, conditional 

covariance (correlation) matrix, of similar form to the RSDC model.  

     A study by Alizadeh and Nomikkos (2004) applies regime-switching models, governed by a 

Markov chain, to estimate optimal time-varying hedge ratios for FTSE 100 and S&P 500. 

Results obtained are of improved hedging performance over bivariate GARCH and naive 

models. Lee and Yoder (2007) extend the BEKK-MGARCH model to a regime-switching 

bivariate BEKK model to estimate state-dependent time-varying optimal hedge ratios. Results of 

estimated optimal hedge ratios for corn and nickel are of moderate variance reduction 

improvement in comparison to regular BEKK or naive methods. 

     This study makes use of a parsimonious RSDC model (Pelletier, 2006), which considers a 

reduced number of parameters to estimate. A benefit of the parsimonious RSDC model is the 

estimation improvement over the DCC model for a large number of parameters, given that 

correlation changes across regimes are proportional to each other. Thus, the parsimonious model 

requires estimating (time-invariant) correlation parameters for one regime and the proportional 

factor(s) with which the correlation parameters at the other regime(s) will be obtained as the 

product of the estimated parameters and the factor(s) (Pelletier, 2006). For simplicity, the model 
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estimates two different regimes,
1
 leaving the estimation of three or more for further study.  

Results of estimated optimal dynamic multiproduct hedge ratios and dynamic single commodity 

hedge ratios - for a feedlot operation - indicate significant improvement over naive hedge ratios 

for in sample data, becoming a considerable improvement for out-of-sample data. Moreover, the 

average estimated optimal multiproduct hedge ratios are significantly below naive hedge ratios, 

thus requiring less than a full hedge and lowering hedging costs. 

 

Hedging Methodology 

The methodology applied to determine the time-varying hedge ratios is the mean-variance hedge 

ratio derived from Myers and Thompson (1989), similar to that derived by Brorsen et al. (1998) 

and Leuthold et al. (1989). The latter frameworks stem from the five assumptions considered by 

Benninga et al. (1984) to show that the mean-variance hedge ratios developed by Johnson (1960) 

are likewise consistent with utility maximizing hedge ratios. Let an agent take a spot and futures 

position at period t-1, then the agent’s profit at liquidation t is  

𝜋𝑡 = 𝑝𝑡𝑞𝑡−1 − 𝑐(𝑞𝑡−1) − (𝑓𝑡 −  𝑓𝑡−1)𝑏𝑡−1       (1) 

where 𝜋𝑡 is profit, pt is the spot price in period t, qt-1 is the spot position chosen at t - 1, c is an 

increasing and convex cost function, ft is the futures price quoted at period t for delivery at some 

future date, and bt-1, is sales of futures contracts in t - 1 (purchases if negative). Allowing for 

stochastic production yields an agent that chooses qt-1 and bt-1 that maximizes a linear function of 

the mean and variance of profit, conditional on available information at t-1.  

 

                                                           
1
 Pelletier (2006) estimates up to three different regimes of dynamic correlations among four 

exchange rates, and finds that the likelihood ratio (LR) improvement over a model with two 

regimes is less than 1%. The downside being the larger number of parameters estimated 
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     First order conditions for optimization are applied by differentiating with respect to the spot 

position and sales of futures contracts, and equaling to zero (Myers and Thompson, 1989). 

General assumptions are applied (Brorsen et al., 1998) i.e., given an agent’s specific risk 

aversion level, non-existing transactions costs, and unbiased futures market; the resulting 

equations are thus simplified and the optimal hedge ratio (r*) becomes: 

r* = 
𝑏𝑡−1

𝑞𝑡−1
=

𝜎𝑠𝑓

𝜎𝑓
2              (2) 

where 𝜎𝑠𝑓 is the conditional covariance of the spot and futures price on information available at 

prior period t-1; i.e., 𝜎𝑠𝑓 = Cov(St , Ft|It-1).  Likewise, 𝜎𝑓
2 is the conditional variance of the 

futures price at t on information available at prior period t-1; i.e., 𝜎𝑓
2 = Var(Ft|It-1). Here bt-1 

represents a futures short (sell) position and qt-1 a cash position at period t-1, prior to period t 

where utility maximization occurs.2 

     A feedlot operation requires corn, soybean meal and feeder cattle as input to ‘fatten’ the calf, 

resulting in fed cattle as output for slaughter. For simplicity, veterinary costs, transportation costs 

and other costs are left constant. Thus the feedlot margin considered is the difference between 

the sale price of slaughter cattle and the purchasing price of corn, soybean meal and feeder cattle.  

The feedlot operator’s margin is established in line with a previous study by Noussinov and 

Leuthold (1999). It is assumed that 700-pound steers are purchased by the feedlot operator and 

fed with 42 bushels of corn and 100 pounds of soybean meal during four months (about 18 

                                                           
2 Brorsen et al. (1998) arrive similarly at the optimal futures and spot ratio being:  

𝑥𝑓

−𝑥𝑠
, estimated 

as the slope coefficient between futures and spot price changes. A long (buy) futures position 

here is positive.  
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weeks), for an approximate gain of 3.2 pounds a day. This results in a final weight of about 1,100 

pounds before sale for slaughter.
3
  

    Three stages are considered for a total of 22 periods or weeks. The first stage involves 

production planning where four weeks of planning are considered (i.e., previous to the actual 

purchase of inputs). Hence futures hedges include concurrently going long in corn
4
 (Fc,t-22), 

soybean meal (Fm,t-22)  and feeder cattle (Ffc,t-22)  and going short in fed cattle or live cattle (Flc,t-

22). The second stage, at the fifth week, begins the operation by purchasing the corn, soybean 

meal and feeder cattle in the cash market (Sc,t-18, Sm,t-18, Sfc,t-18, respectively) and concurrently 

placing a short (Fc,t-18, Fm,t-18, Ffc,t-18, respectively) in the futures market for these inputs, thus 

liquidating these previous long positions. Subsequently, after 18 weeks of a ‘fattening’ period, 

the producer sells the fed cattle (Slc, t) in the cash market and places a long in the futures markets 

for this output (Flc, t), liquidating its previous position. 

Thus the hedged feedlot operator’s returns or margin for the three previous stages is: 

Rt = SLC,t  - ( SC,t-18  + SM,t-18 + SFC, t-18) +  bC,t-22(FC,t-18 – FC,t-22) + bM,t-22(FM,t-18 – FM,t-22) +  

 bFC,t-22(FFC,t-18 – FFC, t-22)  –  bLC,t-22(FLC,t – FLC,t-22) – c         ( 3) 

where bc, bm, bfc and blc are respectively corn, soybean meal, feeder cattle and fed or live cattle 

futures contracts on a per fed cattle basis (i.e., 1100 pounds) at the first time period t-22, and c is 

an operation cost assumed constant for simplicity. The optimal number of ‘pounds of fed cattle’ 

futures contracts determines the respective optimal hedge ratios 𝑏𝑖 (𝑖 ∈ 𝑐, 𝑚, 𝑓𝑐 𝑎𝑛𝑑 𝑙𝑐), 

obtained by minimizing the variation of the returns. 

                                                           
3
 This study considers hedging with futures instruments, leaving the alternative of hedging with 

options and forward cash markets for further study. 
4
 Corn is denoted by subscript “c”, Soybean meal is denoted by subscript “m”, Feeder cattle is 

denoted by subscript “fc” and Fed or Live cattle is denoted by subscript “lc”. 
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     The variance of the returns, conditional on information of the initial period t for selling 

‘fattened calf’ (considering data back to t-22), is:
5
 

V(R)   =    ∑ {𝑉(𝑆𝑖) +  𝑏𝑖
2𝑉(𝐹𝑖)}  +  ∑ ∑ 𝐶𝑜𝑣(𝑆𝑗 , 𝑆𝑘)𝑘≠𝑗𝑗𝑖 −  2 ∑ 𝐶𝑜𝑣(𝑗 𝑆𝑗 , 𝑆𝑙𝑐) +  

               2𝑏𝑗 ∑ 𝐶𝑜𝑣(𝐹𝑗 , 𝑆𝑙𝑐) 𝑗 +  − 2𝑏𝑗 ∑ ∑ 𝐶𝑜𝑣𝑘 (𝐹𝑗 , 𝑆𝑘)𝑗  − 2𝑏𝑙𝑐𝐶𝑜𝑣(𝐹𝑙𝑐, 𝑆𝑙𝑐) +    

                2𝑏𝑙𝑐 ∑ 𝐶𝑜𝑣(𝐹𝑙𝑐, 𝑆𝑗)𝑗 +  𝑏𝑗𝑏𝑘≠𝑗 ∑ ∑ 𝐶𝑜𝑣(𝐹𝑗 , 𝐹𝑘) − 2𝑏𝑗𝑏𝑙𝑐 ∑ 𝐶𝑜𝑣(𝐹𝑗 , 𝐹𝑙𝑐)𝑗𝑘≠𝑗𝑗           (4)                                    

       with 𝑖 ∈ 𝑐, 𝑚, 𝑓𝑐, 𝑙𝑐;  𝑎𝑛𝑑 𝑗, 𝑘 ∈ 𝑐, 𝑚, 𝑓𝑐;  

     Optimal minimum variance hedge ratios are obtained by partially differentiating the variance 

with respect to 𝑏𝑖 (𝑖 ∈ 𝑐, 𝑚, 𝑓𝑐 𝑎𝑛𝑑 𝑙𝑐) and equating each differentiated expression to zero. 

Subsequently, each corresponding equation is solved by applying Cramer’s rule (see Appendix 

1). Each of these multiproduct time-varying hedge ratios, as well as single time-varying hedge 

ratios, is computed from the estimated simultaneous time-varying variances and covariances.  

     The conditional mean and covariance of market prices need to be defined in order to estimate 

the conditional, time-varying covariance matrix. Following Garcia et al. (1995), the conditional 

mean of market prices at period t are the expected futures and expected spot prices of each 

commodity with information from (initial) period t-22. For corn, soybean meal and feeder cattle, 

the spot and future prices at time t considers the timing between planning (t-22) and the 

beginning of the operation period (t-18). This result in the following conditional ‘returns’ for 

corn, soybean meal and feeder cattle at period t with information from period t-22: 

Rx,t | It-22 = 10*[ ln(Px,t-18) – ln(Px,t-22) ]         or      

 Rx,t = 10*[ ln(Px,t-18) – lnPx,t-22) ] + up,x,t                   ( 5) 

                                                           
5
 The time scripts are omitted for simplicity. 
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where x is either corn (c), soybean meal (m) or feeder cattle (fc), and P are either spot or futures 

prices. 

     Likewise for live cattle, the spot and future prices consider the timing between planning (t-22) 

and selling (t), resulting in the following conditional ‘returns’: 

Rlc ,t | It-22 = 10*[ ln(Plc, t ) – ln( Plc, t-22)]       or        

 Rlc,t = 10*[ ln(Plc, t  ) – ln(Plc, t-22)] + up,lc,t                   ( 6) 

where P are either spot or futures prices. 

     The prediction errors between the actual and expected prices (6) and (7) are identified as the 

time-varying covariance matrix: 

 Ht = E(𝜀𝑡𝜀𝑡
′ | It-22)                              ( 7) 

where 𝜀𝑡 = (𝑢𝑠,𝑐,𝑡, 𝑢𝑓,𝑐,𝑡, 𝑢𝑠,𝑚,𝑡, 𝑢𝑓,𝑚,𝑡, 𝑢𝑠,𝑓𝑐,𝑡, 𝑢𝑓,𝑓𝑐,𝑡, 𝑢𝑠,𝑙𝑐,𝑡, 𝑢𝑓,𝑙𝑐,𝑡) 

 

Econometric Model 

The Regime Switching Dynamic Correlations (RSDC) model considers a 𝐾- multivariate time 

process:  

 𝑌𝑡 = 𝐻𝑡
1/2

𝑈𝑡                  ( 8) 

where 𝑈𝑡 ~ 𝑖. 𝑖. 𝑑. (0, 𝐼𝐾: identity matrix), Yt  are the previous price ‘returns’ from (5) and (6). 

     The estimated time-varying covariance matrix 𝐻𝑡 is decomposed into standard deviations and 

correlations. The series switch between different correlations regimes according to a Markov 

chain. 

         𝐻𝑡 ≡  𝑆𝑡Γ𝑡𝑆𝑡               ( 9) 

with 𝑆𝑡 being a diagonal matrix with standard deviations: 𝑠𝑘,𝑡; 𝑘 = 1 … . . 𝐾   and   Γ𝑡   is the 

correlations matrix. 
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     Standard deviations 𝑠𝑘,𝑡  for each time series 𝑘 - from diagonal matrix 𝑆𝑡 - are assumed to 

follow an ARMACH(1,1) model (Taylor, 1986): 

𝑠𝑡 =  𝜔 + �̃�|𝑦𝑡−1| + 𝛽𝑠𝑡−1     with �̃� = 𝛼 𝐸|�̃�𝑡⁄ |, for stationary purposes.         ( 10) 

     The time-varying correlation matrix Γ𝑡 is governed by a Markov chain, having different 

correlations at different regimes and denotes the parsimonious model from Pelletier (2006): 

Γ𝑡 = Γ𝜆(Δ𝑡) + 𝐼𝐾(1 − 𝜆(Δ𝑡))        ( 11) 

where Γ is a fixed 𝐾𝑥𝐾 correlation matrix. 𝐼𝐾 is a 𝐾𝑥𝐾 identity matrix, and 𝜆(Δ𝑡) 𝜖 [0,1] 

(assuring no possibilities of a non-PSD correlation matrix)  is a univariate random process 

governed by an unobserved Markov chain process Δ𝑡 that takes 𝑁 possible number of regimes 

(Δ𝑡 = 1,2 … 𝑁), and is independent of 𝑈𝑡. The ‘probability law’ governing the Markov chain 

process 𝛥𝑡  is defined by its constant transition probability matrix 𝛱𝑡, with elements of row 𝑖 and 

column 𝑗: 𝜋𝑡
𝑖,𝑗

, equivalent to the probability of going from regime i in period t-1 to regime j in 

period t. Thus switching between regimes becomes an endogenous process.  

     Two different regimes are assumed for this process. Hence, the correlation matrix at time 𝑡 

(Γ𝑡) is a weighted average of two extreme states – uncorrelated returns by 𝜆(Δ𝑡) = 0, or (highly) 

correlated returns at 𝜆(Δ𝑡) = 1. For certain 𝑡 periods, the time series may be at one regime with a 

specific set of (higher) correlations, and for other 𝑡 periods it may be at another regime, with a 

different set of (lower) correlations. Changes among correlations from one regime to another are 

proportional by𝜆(Δ𝑡). 

 

Estimation: 

For equations (9) and (10), the log-likelihood can be written as: 
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𝐿 =  −
1

2
∑[𝐾𝑙𝑜𝑔(2𝜋) +  log (|𝐻𝑡

𝑇

𝑡=1

|) + 𝑌𝑡
′𝐻𝑡

−1𝑌𝑡] 

   =  −
1

2
∑ [𝐾𝑙𝑜𝑔(2𝜋) +  log (|𝑆𝑡Γ𝑡𝑆𝑡

𝑇
𝑡=1 |) + 𝑌𝑡

′𝑆𝑡
−1Γ𝑡

−1𝑆𝑡
−1𝑌𝑡] 

𝐿 =  −
1

2
∑ [𝐾𝑙𝑜𝑔(2𝜋) +  2log (|𝑆𝑡

𝑇
𝑡=1 |) + log(|Γ𝑡|) + �̃�𝑡

′Γ𝑡
−1�̃�𝑡]                   ( 12) 

where  �̃�𝑡 =  𝑆𝑡
−1𝑌𝑡  and �̃�𝑡 = [�̃�1,𝑡 … … … … . �̃�𝐾,𝑡]′ is a zero mean process with covariance  

matrix Γ𝑡; and |𝐻𝑡| = det (𝐻𝑡). 

     Estimation of model parameters is made in two separate steps. Standard deviations are 

estimated first and subsequently the correlations are estimated, both via maximum likelihood, 

and using a correlation targeting method to determine lambda and correlation parameters.
6
 

Estimation results are generated using Ox version 5.0 (Doornik, 2007). 

 

Data  

Weekly spot and futures prices are used for corn, soybean meal, feeder cattle and live cattle 

taken each Wednesday, and if missing, that week’s Tuesday or Thursday value is considered. All 

prices were converted to dollars on a “per fed cattle basis”. The corn cash prices are quotes from 

the Central Illinois elevator and the soybean meal cash prices are bid quotes from Decatur, 

Illinois. These prices were obtained from AMS - USDA. Cash prices for feeder cattle are from 

Oklahoma City and for fed cattle are from the average of Texas-Oklahoma, both obtained from 

the CRB database. The futures quotes for corn and soybean meal are closing prices at the 

Chicago Board of Trade (CBOT), and futures prices for feeder cattle and live cattle are from 

Chicago Mercantile Exchange (CME).  All futures prices are likewise obtained from CRB 

                                                           
6
 Further estimation details in Pelletier (2006). 
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database. Nearest to expiration futures contracts were used, leaving out data from the expiring 

delivery month. The in-sample data spans from the first week of December in 1998 until the first 

week in October 2008, consisting of 513 observations. The out-of-sample data consists of 

weekly prices from the second week of October 2008 till the third week of March 2012, for 181 

observations. A chart of the in-sample cash and futures prices - on dollars per fed cattle basis - 

are in Figure 1and for out-of-sample data in Figure 2. 

(Insert Figures 1 and 2 about here) 

 

Results 

Tables 1 and 2 present estimated correlations between cash and future prices of corn, soybean 

meal, feeder cattle and live cattle, for the two regimes considered. 

(Insert Tables 1 and 2 about here) 

     At each particular regime, the correlation between the cash and futures prices of each 

commodity is statistically significant. Moreover, the cash and futures price correlation for corn, 

soybean meal and live cattle is significantly different from one regime with respect to the other. 

Thus there is a (significantly) different correlation for the spot and futures prices of corn, 

soybean meal and live cattle between each regime. These different correlations range from 0.918 

at regime 1 to about 0.652 at regime 2 for corn, from 0.972 to 0.690 for soybean meal, and from 

0.639 to about 0.454 for live cattle, respectively. Figure 3 shows the dynamic correlations 

between live cattle cash prices and live cattle futures at each estimated regime.
7
 

                                                           
7 A separate study examines (weakly) exogenous factors that affect the changes between regimes 

by applying an extended model (Tejeda et al., 2009), to gauge the impact of underlying 

fundamentals in the dynamic process. 
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     In addition, correlations between prices of different commodities are likewise significantly 

different. E.g., correlations for corn spot prices and soybean meal futures range from 0.509 for 

regime 1 to 0.361 for regime 2; and for feeder cattle futures and live cattle futures range from 

0.296 to 0.210 at regimes 1 and 2, respectively.  

(Insert Figure 3 about here) 

     The ARMACH model results for each price are in Table 3. In general, the ARMACH 

parameters are significant for all price series, excepting the conditional volatility which is not 

(significantly) dependent upon the previous volatility level. 

(Insert Table 3 about here) 

     The optimal dynamic hedge ratios - for in sample data - of feeder cattle are in Figures 4 and 5. 

Specifically, these figures present optimal dynamic corn hedge ratios, at the two regimes, for 

multiproduct time-varying hedge and single time-varying hedge, respectively. In addition, there 

is a dynamic ‘minimum-variance-combination’ (MVC) hedge ratio, which picks the time-

varying hedge ratio - among the two regimes - that delivers the minimum margin variance at that 

particular date.  

(Insert Figures 4 and 5 about here) 

     The average of these optimal dynamic hedge ratios for corn, soybean meal, feeder cattle and 

live cattle – using in-sample data - are in Table 4. From this Table 4, the average optimal 

multiproduct dynamic hedge ratio in regime 2 for corn and feeder cattle is significantly higher 

and lower, respectively, than that of single time-varying correlations in regime 2. E.g. for corn it 

is 0.413 over 0.281; and for feeder cattle it is 0.110 below 0.252, respectively. This may also be 

(somewhat) inferred from the charts in Figures 4 and 5. In addition, the average MVC hedge 

ratio for corn and feeder cattle is significantly higher and lower, respectively, in the multiproduct 
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time-varying operation over the single commodity time-varying operation (i.e. 0.417 above 

0.336 for corn, and 0.227 below 0.302 for feeder cattle). Moreover, these MVC hedge ratios are 

significantly lower than one – the naive hedge ratio. Improvements obtained from the time-

varying hedge ratios suggest that take into account the dynamic variability of the correlation 

among related prices, substantially lowers the optimal hedge ratios. Thus identifying the effects 

of changing market conditions on related markets enables to depict superior hedge ratios and risk 

management tools.  

(Insert Table 4 about here) 

     The out-of-sample data results for optimal dynamic hedge ratios of feeder cattle are in Figures 

6 and 7. These include the MVC hedge ratio which ‘picks’ the hedge ratio, between the two 

regimes, that minimizes the margin variance. Table 5 presents the average of these optimal 

dynamic hedge ratios. Once again, in regime 2 the average optimal hedge ratios for corn and 

feeder cattle are significantly higher and lower, respectively, for multiproduct time-varying 

correlations over single time-varying correlations. E.g. for corn it is 0.436 over 0.317, and for 

feeder cattle it is 0.216 below 0.325.  The differences in feeder cattle can be observed in Figures 

6 and 7.  

(Insert Figures 6 and 7 about here) 

In addition, the average MVC hedge ratio is likewise higher for corn and lower for feeder cattle, 

upon considering multiproduct time-varying correlations over single time-varying correlations. 

These MVC hedge ratios are somewhat similar to the in-sample data. These results corroborate 

those from in-sample data. 

(Insert Table 5 about here) 
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     The hedging effectiveness results for in sample data are presented in Table 6. Here the 

variance of the margin without hedge is compared to the variance of the margin applying either a 

naive (1:1) hedge, or single commodity time-varying hedge ratios for each regime and the MVC 

of these two regimes. Likewise, it is compared with the multiproduct time-varying hedge ratios - 

considering each regime and the MVC of the two regimes. The naive hedge provides an 

immediate variance reduction of about 12% over the un-hedged operation. This variance 

reduction is surpassed by each of the two regimes, considering either single or multiproduct 

time-varying correlations, with values between 24.5%, and 23.6%; respectively. However, 

application of the MVC for either single or multiproduct time-varying correlations results in the 

largest margin variance reduction. In particular, applying the MVC for the multiproduct time-

varying correlations case results in a substantial margin variance reduction of 34.8%, and 

similarly in a 34.9% variance reduction for the single commodity time-varying hedge ratio. This 

is a substantial increase in reduction of margin variance by more than double-fold in comparison 

to the naive hedging strategy. These substantial improvements are a direct result of taking into 

account the dynamic (changing) conditions of the markets, given that relative changes in market 

conditions have different effects on each associated commodity.  

(Insert Table 6 about here) 

     The out of sample hedging effectiveness is presented in Table 7. The margin variance 

reduction for naive hedging is about 42%. This reduction is once again below that of the 

application of optimal hedge ratios, at each particular regime, from single or multiproduct time-

varying correlations. These latter hedging strategies result in a margin variance reduction of 

between 50% and 45% (regimes 1 and 2) and 52% and 46% (regimes 1 and 2), for single or 

multiproduct time-varying correlations, respectively. However, the MVC hedge ratios in both 
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single and multiproduct time-varying correlations deliver once again a larger drop in margin 

variance with 57.3% and 59.8% respectively. The MVC hedge ratio for single commodity is 

about 15% points larger than the naive strategy, and the MVC from multiproduct time-varying 

hedge ratios obtains an increase in margin reduction variance of about 41% (17.3% points) in 

comparison to the naive hedging strategy. Thus there is considerable improvement by applying 

the MVC of multiproduct optimal hedge ratios over the naive hedging strategy, for out-of-sample 

data for the feedlot operation considered.  

(Insert Table 7 about here) 

     These findings are obtained by applying two improvements from the prior study regarding 

multiproduct optimal time-varying hedging strategy of a cattle feedlot operation. First, the time-

series is a weekly process (instead of average monthly data) estimated with a time-varying 

correlations model that specifically characterizes the significant changes in correlations among 

the prices, along the time-series. Second is the extensive period of data for parameter estimation, 

with an in-sample set of weekly prices of about 10 years and out-of-sample data covering more 

than three years. Thus consistent with findings of Haigh and Holt (2000),
8
 considering the time-

varying estimation of multiproduct covariances (correlations) in a multi-product (related) setting, 

results in improvements over the case of naive hedging. Moreover, Noussinov and Leuthold 

(1999) study likewise arrived at a significantly lower optimal average feeder cattle hedge ratio. 

However, without estimating/applying simultaneous time-varying correlations, they reached 

mixed results for margin variance reduction over a naive hedging strategy. 

 

Conclusion 

                                                           
8
 This study likewise uses weekly data, for an in-sample period of over 11 years.  



17 
 

This article examines the application of estimated time-varying correlations to an optimal 

multiproduct hedge setting, specifically a cattle feedlot operation. The multiproduct time-varying 

hedge ratios are obtained by applying a regime switching dynamic correlations (RSDC) model 

(Pelletier, 2006) which estimates dynamic correlations that switch between two different levels 

or regimes. These time-varying correlations better characterize the dynamic relationships among 

prices than if estimated with a constant correlations model, since the model identifies significant 

price correlations at two different regimes, with the switch between regimes being governed by a 

first order Markov chain. 

     Findings of the study are three-fold. First, there is a significant correlation among each pair of 

commodity (spot and future) prices, as well as a significant difference between correlations of 

commodities in the operation from one regime to another. This latter occurs for spot and future 

prices of corn, soybean meal and live cattle (e.g. corn spot and future prices have two significant 

different dynamic correlations, same for soybean meal and live cattle), and more importantly, for 

some prices between two different commodities (e.g. corn spot prices and soybean meal future 

prices have two significantly different dynamic correlations).  

     Second, there is an improvement in the reduction of margin variance by applying time-

varying optimal hedge ratios with both multiproduct (RSDC) and single commodity settings, but 

more importantly, over the naive hedging strategy. This improvement is considerable for in-

sample data, by more than double-fold margin variance reduction over naive (1:1) hedging; 

though this difference moderates for out-of-sample data with about a 41% improvement in 

margin variance reduction over naive (1:1) hedging. This advance is obtained by applying a 

minimum-variance-combination (MVC) of the optimal dynamic hedge ratios estimated from 

each regime.  
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     Third, optimal average multiproduct hedge ratios are significantly below one, especially the 

MVC hedge ratios with corn at 0.46, feeder cattle at 0.36 and live cattle at 0.62 considering the 

multiproduct optimal hedging strategy. Similar values are obtained with the single commodity 

hedging strategy. These result in lower hedging costs for the agent as a full hedge is 

unwarranted. 

     A limitation of the framework implemented is that once the hedge is set, it is not possible to 

modify or update the hedge position in the next period. This is something that may be introduced 

in future work.  
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Appendix 1 

Multiproduct Time-Varying Hedge Ratios: 

bc,t-22 =   

𝐶𝑜𝑣(𝐹𝑐, 𝑆𝑐) + 𝐶𝑜𝑣(𝐹𝑐, 𝑆𝑚) + 𝐶𝑜𝑣(𝐹𝑐, 𝑆𝑓𝑐) − 𝐶𝑜𝑣(𝐹𝑐, 𝑆𝑙𝑐)  𝐶𝑜𝑣(𝐹𝑐, 𝐹𝑚) 𝐶𝑜𝑣(𝐹𝑐, 𝐹𝑓𝑐)       − 𝐶𝑜𝑣(𝐹𝑐 , 𝐹𝑙𝑐)

𝐶𝑜𝑣(𝐹𝑚, 𝑆𝑐) + 𝐶𝑜𝑣(𝐹𝑚, 𝑆𝑚) + 𝐶𝑜𝑣(𝐹𝑚, 𝑆𝑓𝑐) − 𝐶𝑜𝑣(𝐹𝑚, 𝑆𝑙𝑐) 𝑉𝑎𝑟(𝐹𝑚) 𝐶𝑜𝑣(𝐹𝑚, 𝐹𝑓𝑐)     − 𝐶𝑜𝑣(𝐹𝑚, 𝑆𝑙𝑐)

𝐶𝑜𝑣(𝐹𝑓𝑐 , 𝑆𝑚) + 𝐶𝑜𝑣(𝐹𝑓𝑐, 𝑆𝑚) + 𝐶𝑜𝑣(𝐹𝑓𝑐, 𝑆𝑓𝑐) − 𝐶𝑜𝑣(𝐹𝑓𝑐 , 𝑆𝑙𝑐)   𝐶𝑜𝑣(𝐹𝑓𝑐 , 𝐹𝑚) 𝑉𝑎𝑟(𝐹𝑓𝑐)           − 𝐶𝑜𝑣(𝐹𝑓𝑐 , 𝐹𝑙𝑐)

   

𝐶𝑜𝑣(𝐹𝑙𝑐 , 𝑆𝑐) + 𝐶𝑜𝑣(𝐹𝑙𝑐 , 𝑆𝑚) + 𝐶𝑜𝑣(𝐹𝑙𝑐 , 𝑆𝑓𝑐) − 𝐶𝑜𝑣(𝐹𝑙𝑐 , 𝑆𝑙𝑐)           𝐶𝑜𝑣(𝐹𝑚, 𝐹𝑙𝑐)      𝐶𝑜𝑣(𝐹𝑓𝑐 , 𝐹𝑙𝑐)         − 𝑉𝑎𝑟(𝐹𝑙𝑐) 

 

     D  

 

 

bm,t-22 =   

   𝑉𝑎𝑟(𝐹𝑐) 𝐶𝑜𝑣(𝐹𝑐 , 𝑆𝑐) + 𝐶𝑜𝑣(𝐹𝑐 , 𝑆𝑚) + 𝐶𝑜𝑣(𝐹𝑐 , 𝑆𝑓𝑐) − 𝐶𝑜𝑣(𝐹𝑐 , 𝑆𝑙𝑐)      𝐶𝑜𝑣(𝐹𝑐, 𝐹𝑓𝑐)       − 𝐶𝑜𝑣(𝐹𝑐, 𝐹𝑙𝑐)

𝐶𝑜𝑣(𝐹𝑐, 𝐹𝑚)  𝐶𝑜𝑣(𝐹𝑚, 𝑆𝑐) + 𝐶𝑜𝑣(𝐹𝑚, 𝑆𝑚) + 𝐶𝑜𝑣(𝐹𝑚, 𝑆𝑓𝑐) − 𝐶𝑜𝑣(𝐹𝑚, 𝑆𝑙𝑐)   𝐶𝑜𝑣(𝐹𝑚, 𝐹𝑓𝑐)     − 𝐶𝑜𝑣(𝐹𝑚, 𝑆𝑙𝑐)

𝐶𝑜𝑣(𝐹𝑐 , 𝐹𝑓𝑐)       𝐶𝑜𝑣(𝐹𝑓𝑐 , 𝑆𝑚) + 𝐶𝑜𝑣(𝐹𝑓𝑐 , 𝑆𝑚) + 𝐶𝑜𝑣(𝐹𝑓𝑐 , 𝑆𝑓𝑐) − 𝐶𝑜𝑣(𝐹𝑓𝑐 , 𝑆𝑙𝑐) 𝑉𝑎𝑟(𝐹𝑓𝑐)           − 𝐶𝑜𝑣(𝐹𝑓𝑐 , 𝐹𝑙𝑐)

    

𝐶𝑜𝑣(𝐹𝑐 , 𝐹𝑙𝑐)          𝐶𝑜𝑣(𝐹𝑙𝑐 , 𝑆𝑐) + 𝐶𝑜𝑣(𝐹𝑙𝑐 , 𝑆𝑚) + 𝐶𝑜𝑣(𝐹𝑙𝑐 , 𝑆𝑓𝑐) − 𝐶𝑜𝑣(𝐹𝑙𝑐 , 𝑆𝑙𝑐)           𝐶𝑜𝑣(𝐹𝑓𝑐 , 𝐹𝑙𝑐)         − 𝑉𝑎𝑟(𝐹𝑙𝑐) 

   

     D 

 

 

bfc,t-22 =   

   𝑉𝑎𝑟(𝐹𝑐)       𝐶𝑜𝑣(𝐹𝑐 , 𝐹𝑚)  𝐶𝑜𝑣(𝐹𝑐, 𝑆𝑐) + 𝐶𝑜𝑣(𝐹𝑐, 𝑆𝑚) + 𝐶𝑜𝑣(𝐹𝑐, 𝑆𝑓𝑐) − 𝐶𝑜𝑣(𝐹𝑐, 𝑆𝑙𝑐)       − 𝐶𝑜𝑣(𝐹𝑐 , 𝐹𝑙𝑐)

𝐶𝑜𝑣(𝐹𝑐, 𝐹𝑚)     𝑉𝑎𝑟(𝐹𝑚)    𝐶𝑜𝑣(𝐹𝑚, 𝑆𝑐) + 𝐶𝑜𝑣(𝐹𝑚, 𝑆𝑚) + 𝐶𝑜𝑣(𝐹𝑚, 𝑆𝑓𝑐) − 𝐶𝑜𝑣(𝐹𝑚, 𝑆𝑙𝑐)        − 𝐶𝑜𝑣(𝐹𝑚, 𝑆𝑙𝑐)       

𝐶𝑜𝑣(𝐹𝑐 , 𝐹𝑓𝑐)     𝐶𝑜𝑣(𝐹𝑓𝑐 , 𝐹𝑚)    𝐶𝑜𝑣(𝐹𝑓𝑐 , 𝑆𝑚) + 𝐶𝑜𝑣(𝐹𝑓𝑐 , 𝑆𝑚) + 𝐶𝑜𝑣(𝐹𝑓𝑐 , 𝑆𝑓𝑐) − 𝐶𝑜𝑣(𝐹𝑓𝑐 , 𝑆𝑙𝑐)      − 𝐶𝑜𝑣(𝐹𝑓𝑐, 𝐹𝑙𝑐)   

 

𝐶𝑜𝑣(𝐹𝑐 , 𝐹𝑙𝑐) 𝐶𝑜𝑣(𝐹𝑚, 𝐹𝑙𝑐) 𝐶𝑜𝑣(𝐹𝑙𝑐 , 𝑆𝑐) + 𝐶𝑜𝑣(𝐹𝑙𝑐 , 𝑆𝑚) + 𝐶𝑜𝑣(𝐹𝑙𝑐 , 𝑆𝑓𝑐) − 𝐶𝑜𝑣(𝐹𝑙𝑐 , 𝑆𝑙𝑐)         −𝑉𝑎𝑟(𝐹𝑙𝑐) 

      

     D 
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blc,t-22 =   

 𝑉𝑎𝑟(𝐹𝑐)  𝐶𝑜𝑣(𝐹𝑐, 𝐹𝑚) 𝐶𝑜𝑣(𝐹𝑐 , 𝐹𝑓𝑐)      𝐶𝑜𝑣(𝐹𝑐 , 𝑆𝑐) + 𝐶𝑜𝑣(𝐹𝑐 , 𝑆𝑚) + 𝐶𝑜𝑣(𝐹𝑐 , 𝑆𝑓𝑐) − 𝐶𝑜𝑣(𝐹𝑐 , 𝑆𝑙𝑐)

𝐶𝑜𝑣(𝐹𝑐, 𝐹𝑚) 𝑉𝑎𝑟(𝐹𝑚) 𝐶𝑜𝑣(𝐹𝑚, 𝐹𝑓𝑐)    𝐶𝑜𝑣(𝐹𝑚, 𝑆𝑐) + 𝐶𝑜𝑣(𝐹𝑚, 𝑆𝑚) + 𝐶𝑜𝑣(𝐹𝑚, 𝑆𝑓𝑐) − 𝐶𝑜𝑣(𝐹𝑚, 𝑆𝑙𝑐)

𝐶𝑜𝑣(𝐹𝑐 , 𝐹𝑓𝑐)      𝐶𝑜𝑣(𝐹𝑓𝑐, 𝐹𝑚)        𝑉𝑎𝑟(𝐹𝑓𝑐)          𝐶𝑜𝑣(𝐹𝑓𝑐 , 𝑆𝑚) + 𝐶𝑜𝑣(𝐹𝑓𝑐 , 𝑆𝑚) + 𝐶𝑜𝑣(𝐹𝑓𝑐 , 𝑆𝑓𝑐) − 𝐶𝑜𝑣(𝐹𝑓𝑐 , 𝑆𝑙𝑐)

   

 𝐶𝑜𝑣(𝐹𝑐, 𝐹𝑙𝑐)          𝐶𝑜𝑣(𝐹𝑚, 𝐹𝑙𝑐)        𝐶𝑜𝑣(𝐹𝑓𝑐 , 𝐹𝑙𝑐)        𝐶𝑜𝑣(𝐹𝑙𝑐 , 𝑆𝑐) + 𝐶𝑜𝑣(𝐹𝑙𝑐 , 𝑆𝑚) + 𝐶𝑜𝑣(𝐹𝑙𝑐 , 𝑆𝑓𝑐) − 𝐶𝑜𝑣(𝐹𝑙𝑐 , 𝑆𝑙𝑐) 

 

     D 

 

 

 

D =   

  𝑉𝑎𝑟(𝐹𝑐)        𝐶𝑜𝑣(𝐹𝑐, 𝐹𝑚)        𝐶𝑜𝑣(𝐹𝑐, 𝐹𝑓𝑐)        − 𝐶𝑜𝑣(𝐹𝑐 , 𝐹𝑙𝑐)  

𝐶𝑜𝑣(𝐹𝑐, 𝐹𝑚)        𝑉𝑎𝑟(𝐹𝑚)  𝐶𝑜𝑣(𝐹𝑚, 𝐹𝑓𝑐)        − 𝐶𝑜𝑣(𝐹𝑚, 𝑆𝑙𝑐)

𝐶𝑜𝑣(𝐹𝑐 , 𝐹𝑓𝑐)      𝐶𝑜𝑣(𝐹𝑓𝑐, 𝐹𝑚) 𝑉𝑎𝑟(𝐹𝑓𝑐)          − 𝐶𝑜𝑣(𝐹𝑓𝑐 , 𝐹𝑙𝑐) 

 

𝐶𝑜𝑣(𝐹𝑐 , 𝐹𝑙𝑐)       𝐶𝑜𝑣(𝐹𝑚, 𝐹𝑙𝑐)        𝐶𝑜𝑣(𝐹𝑓𝑐 , 𝐹𝑙𝑐)          −𝑉𝑎𝑟(𝐹𝑙𝑐) 

 

 

 

Single Time-Varying Hedge Ratios 

bc,t-22 = 
𝐶𝑜𝑣(𝐹𝑐,𝑆𝑐)

 𝑉𝑎𝑟(𝐹𝑐)
  ;  

bm,t-22 = 
𝐶𝑜𝑣(𝐹𝑚,𝑆𝑚)

 𝑉𝑎𝑟(𝐹𝑚)
 ; 

bfc,t-22 = 
𝐶𝑜𝑣(𝐹𝑓𝑐,𝑆𝑓𝑐)

 𝑉𝑎𝑟(𝐹𝑓𝑐)
 ; 

blc,t-22= 
𝐶𝑜𝑣(𝐹𝑙𝑐,𝑆𝑙𝑐)

 𝑉𝑎𝑟(𝐹𝑙𝑐)
; 



 

Figure 1: Corn, Soybean Meal, Feeder Cattle and Live Cattle Cash & Futures Prices 

 – In Sample Data 
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Figure 2: Corn, Soybean Meal, Feeder Cattle and Live Cattle Cash & Futures Prices 

 – Out of Sample Data 
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Figure 3: Dynamic Correlation for Live Cattle Cash Prices & Live Cattle Futures 
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Figure. 4. In-Sample: Dynamic Multiproduct Hedge Ratios – Feeder Cattle Futures 
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Figure. 5. In-Sample: Dynamic Single Hedge Ratios – Feeder Cattle Futures 
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Figure. 6. Out-of-Sample: Dynamic Multiproduct Hedge Ratios – Feeder Cattle Futures 
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Figure. 7. Out-of-Sample: Dynamic Single Hedge Ratios – Feeder Cattle Futures 
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Table 1 Regime 1 -  Correlation Values
2
 for Feedlot Operation 

Regime 1 Corn Cash 

Soybean Meal       

Cash 

Feeder 

Cattle Cash 

Live   

Cattle 

Cash   
Corn 

Futures 

Soybean 

Meal 

Futures 

Feeder Cattle 

Futures 

Live Cattle 

Futures 

Corn Cash 1.0000 

        
 

- 
        Soybean Meal Cash 0.5286

*
 1.0000 

       
 

(0.0732) - 
       Feeder Cattle Cash -0.1293 -0.0143 1.0000 

      
 

(0.1327) (0.1360) - 

      Live Cattle Cash -0.0205 -0.1355 0.0254 1.0000 

     
 

(0.1589) (0.1543) (0.1109) - 

               Corn Futures 0.9175
*
 0.5214

*
 -0.1337 0.0130 

 
1.0000 

   
 

(0.0111) (0.0716) (0.1318) (0.1573) 

 
- 

   Soybean Meal Futures 0.5087
*
 0.9722

*
 -0.0786 -0.1402 

 

0.5077
*
 1.0000 

  
 

(0.0782) (0.0022) (0.1323) (0.1510) 

 

(0.0759) - 

  Feeder Cattle Futures -0.1705 -0.0945 0.3951
*
 0.2075

*
 

 
-0.1285 -0.0847 1.0000 

 
 

(0.1406) (0.1524) (0.0656) (0.1041) 
 

(0.1416) (0.1511) - 
 Live Cattle Futures -0.0182 -0.1391 -0.0583 0.6387

*
 

 
-0.0018 -0.1317 0.2959

*
 1.0000 

 
(0.1615) (0.1589) (0.1096) (0.0342) 

 
(0.1598) (0.1555) (0.0965) - 

 

2
 Standard errors in parenthesis. 

 

 



Table 2. Regime 2 -  Correlation Values
2
 for Feedlot Operation 

Regime 2 Corn Cash 

Soybean 

Meal 

Cash 

Feeder Cattle 

Cash 

Live 

Cattle 

Cash   
Corn 

Futures 

Soybean 

Meal Futures 

Feeder 

Cattle 

Futures 

Live Cattle 

Futures 

Corn Cash 1.0000 

        
 

- 

        Soybean Meal Cash 0.37547
*
 1.0000 

       
 

(0.0654) - 
       Feeder Cattle Cash -0.0918 -0.0101 1.0000 

      
 

(0.0947) (0.0966) - 
      Live Cattle Cash -0.0146 -0.0962 0.0180 1.0000 

     
 

(0.1129) (0.1101) (0.0788) - 

               Corn Futures 0.6516
*
 0.3703

*
 -0.0949 0.0092 

 
1.0000 

   
 

(0.0693) (0.0642) (0.0941) (0.1117) 

 
- 

   Soybean Meal Futures 0.3613
*
 0.6904

*
 -0.0558 -0.0996 

 

0.3606
*
 1.0000 

  
 

(0.0674) (0.0730) (0.0941) (0.1077) 
 

(0.0660) - 

  Feeder Cattle Futures -0.1211 -0.0671 0.2806
*
 0.1474

*
 

 

-0.0912 -0.0602 1.0000 

 
 

(0.1006) (0.1085) (0.0552) (0.0756) 
 

(0.1010) (0.1075) - 
 Live Cattle Futures -0.0129 -0.0988 -0.0414 0.4536

*
 

 

-0.0013 -0.0935 0.2102
*
 1.0000 

 
(0.1147) (0.1133) (0.0779) (0.0537) 

 

(0.1135) (0.1109) (0.0720) - 

 

2
 Standard errors in parenthesis. 

 

 



 

Table 3     Armach values – Feedlot Operation 

 
Corn Soybean Meal Feeder Cattle Live Cattle 

 
Cash Futures Cash Futures Cash Futures Cash Futures 

ω - omega 0.3288 0.3761
*
 0.3594

+
 0.25598

+
 0.2870 0.1782

*
 0.2692 0.2807

*
 

 
(0.2047) (0.1401) (0.1928) (0.1492) (0.1938) (0.0622) (0.1648) (0.0948) 

α~ - alpha tilda 0.5339
*
 0.4943

*
 0.5263

*
 0.5045

*
 0.4904

*
 0.5998

*
 0.7369

*
 0.7224

*
 

 
(0.1479) (0.0871) (0.1103) (0.1703) (0.1374) (0.1342) (0.3634) (0.2180) 

β   - beta 0.0758 0.0041 0.0719 0.2069 0.0167 0.0003 0.0001 0.0007 

 
(0.4056) (0.2586) (0.3317) (0.3434) (0.4872) (0.2368) (0.5046) (0.2675) 

 

*
 Significant at the 5% level or less 

                                                                       +
 Significant at the 10% level or less 

 



Table 4     Average Hedge Ratios for Feedlot Operation
3
 – In Sample data 

Average Hedge Ratio - RSDC Model - In Sample 

 

 
Corn Soybean Meal Feeder Cattle Live Cattle 

Regime 1 0.4241 1.2753 0.3318 0.7607 

 (0.0115) (0.0119) (0.0164) (0.0192) 

Regime 2 0.4132 0.9221 0.1099 0.5206 

 (0.0081) (0.0092) (0.0115) (0.0133) 

   Min. Var. Comb. 0.4171 1.1015 0.2269     0.6394 
 (0.0100) (0.0132) (0.0141)      (0.0167) 

 
   

 Average Hedge Ratio - Single Hedge - In Sample 

 

 
Corn Soybean Meal Feeder Cattle Live Cattle 

Regime 1 0.3952 1.2643 0.3551 0.7170 

 (0.0120) (0.0117) (0.0151) (0.0191) 

Regime 2 0.2806 0.8979 0.2522 0.5092 

 (0.0085) (0.0083) (0.0107) (0.0136) 

   Min. Var. Comb. 0.3361 1.0831 0.3021     0.6135 

 (0.0106) (0.0131) (0.0129)       (0.0166) 
 

3
 Standard errors in parenthesis. 

 

 

 



Table 5     Average Hedge Ratios for Feedlot Operation
3
 – Out of Sample data 

Average Hedge Ratio - RSDC Model - Out of Sample 

 
Corn Soybean Meal Feeder Cattle Live Cattle 

Regime 1 0.4705 1.2979 0.4553 0.7309 

 (0.0166) (0.0314) (0.0348) (0.0232) 

Regime 2 0.4364 0.9579 0.2158 0.4947 

 (0.0101) (0.0236) (0.0231) (0.0158) 

 Min. Var. Comb. 0.4596 1.1415 0.3610      0.6206 

 (0.0139) (0.0328) (0.0341)       ( 0.0216) 

     

     Average Hedge Ratio - Single Hedge - Out of Sample 

 
Corn Soybean Meal Feeder Cattle Live Cattle 

Regime 1 0.4458 1.2760 0.4577 0.6629 

 (0.0178) (0.0311) (0.0322) (0.0221) 

Regime 2 0.3166 0.9062 0.3251 0.4708 

 (0.0126) (0.0221) (0.0229) (0.0157) 

 Min. Var. Comb. 0.3891 1.1067 0.4056     0.5733 

 (0.0166) (0.0325) (0.0309)       (0.0204) 
 

3
 Standard errors in parenthesis. 

 

 



Table 6     Hedging Effectiveness – Feedlot Operation: In Sample data 

 

  

Hedging Effectiveness - In Sample 

Model Mean  Variance Percent Reduction 

Unhedged 54.1423 8480.7683 

 Naive 44.8410 7451.9638 12.1310 

Single Regime 1 51.9309 6392.3778 24.6250 

 

Regime 2 54.0209 6404.6396 24.4804 

 

Min Var. Comb. 52.8325 5517.4400 34.9417 

RSDC  Regime 1 50.8833 6480.3451 23.5878 

 

Regime 2 53.4095 6477.9097 23.6165 

 

Min Var. Comb. 52.1240 5527.2425 34.8262 

 

 



Table 7.  Hedging Effectiveness – Feedlot Operation: Out of Sample data 

 

  

Hedging Effectiveness - Out of Sample 

Model Mean  Variance Percent Reduction 

Unhedged 95.3895 7619.9329 

 Naive 70.1029 4378.8699 42.5340 

Single Regime 1 75.6884 3786.8429 50.3035 

 

Regime 2 81.3983 4234.0453 44.4346 

 

Min Var. Comb. 78.0494 3252.5224 57.3156 

RSDC  Regime 1 74.8222 3695.1007 51.5074 

 

Regime 2 80.8219 4098.9267 46.2078 

 

Min Var. Comb. 77.5238 3062.8159 59.8052 
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