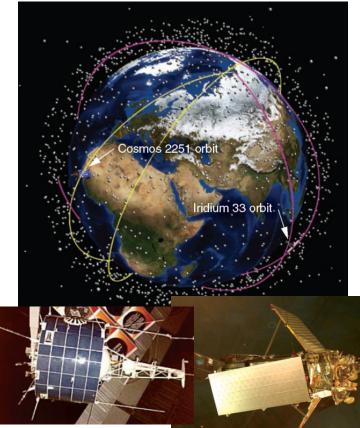
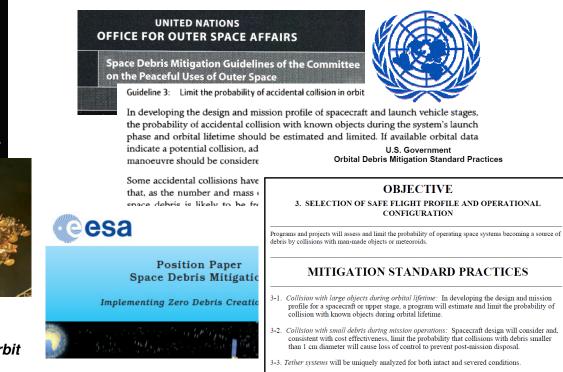
The Space-based Telescopes for Actionable Refinement of Ephemeris (STARE) mission


Vincent Riot, Willem de Vries, Lance Simms, Brian Bauman, Darrell Carter, Don Phillion, Scot Olivier Lawrence Livermore National Laboratory 7000 East Avenue, Livermore, CA 94550; 925-422-9798; riot1@llnl.gov

Lawrence Livermore National Laboratory

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.


UNCLASSIFIED

Motivation - Space Debris Problem and Mitigations

On February 10, 2009, the defunct Russian Cosmos 2251 satellite and the privately owned American Iridium 33 satellite collided in Low Earth orbit

- Space communities as well as governing bodies recognize space debris as being a threat.
- Collision avoidance is one of the major mitigations to this problem
- Orbit refinement enables confidence in probability
 assessment of accidental Collision

6/25/2010

Lawrence Livermore National Laboratory

UNCLASSIFIED

STARE Mission Requirements for an operational orbit refinement system

Requirement	Value	Flow down
Conjunction alarm rate per object	< 1 during a satellite lifetime (~ 10year)	Satellite have limited moving capabilities (~1 time move)
Alarm advance notice	> 24 hours	24 hours needed operationally to orchestrate a move
Completeness	> 99%, objects > 10cm	Defined by stakeholders. To be adjusted

Iridium constellation (89 satellites) conjunction rate (Apr-May 2010)

Separation Threshold	Per Month On constellation	Per Day On constellation	Relative Rate Reduction
10000m	36574	1219	
1000m	354	11.8	99.03%
100m	3	0.1	99.99%

By the time σ < 100m, the number of alert is one every 2 years/satellite

 ARIDUM 98
 ARIDUM 68

 ARIDUM 98
 ARIDUM 26

 ARIDUM 98
 ARIDUM 26

 ARIDUM 18
 ARIDUM 26

Lawrence Livermore National Laboratory

UNCLASSIFIED

Concept of Operations for LLNL Space-based Telescopes for Actionable Refinement of Ephemeris (STARE) Program

Observe space object that is predicted to pass close to an operational satellite, based on conjunction analysis using AFSPC catalog

2

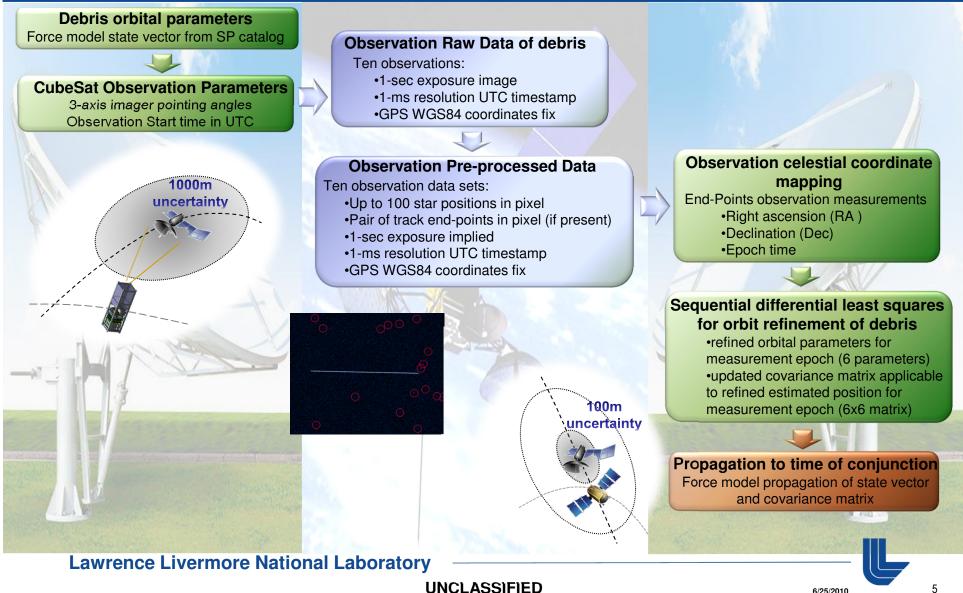
(1)

Transmit images and position of observation to ground

3

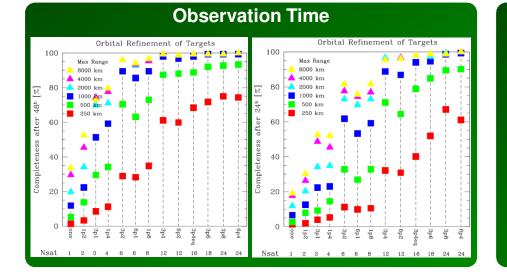
Refine orbital parameters of space object to reduce uncertainty in position estimate and improve accuracy of conjunction analysis 4

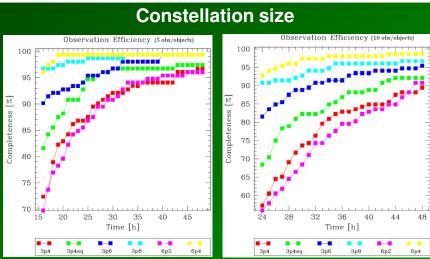
Notify operators of high-probability collision 5


Move satellite to safe orbit

IRIDIUM 14

Lawrence Livermore National Laboratory


STARE processing and data flow both on the ground and in Space



6/25/2010

STARE Mission Key parameters are inform from an extensive Constellation design trade-study

Requirement	Value
Uncertainty refinement	< 100m from < 10,000m
	< 10" fitting accuracy
	> 3 observations/object
Constellation size	> 12, <18
Range	> 200km, < 1000km
	> 10cm
Relative velocity	< 10km/s
Observation time	48hrs (72hours before conjunction to 24hrs before conjunction)
Orbital configuration	3 planes, 700km

Lawrence Livermore National Laboratory

UNCLASSIFIED

6/25/2010

UNCLASSIFIED **Concept of Operation was supported by capability trade studies for** opportunities, GNSS coverage and Power budget at the spacecraft level

UNCLASSIFIED

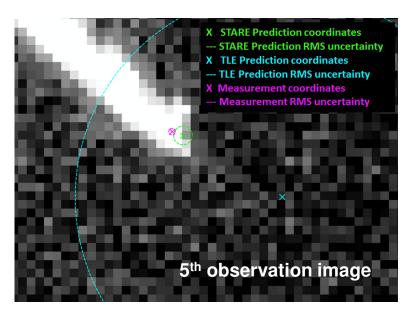
STARE Spacecraft Key parameters

- The satellite key parameters are:
 - Fitting accuracy < 10 arcsecond (flowed from refining to less < 100 meters)
 - Field of view > 3 degreesx3degree (flowed from initial uncertainty knowledge < 10,000m, differential velocities < 10km/s, minimum range of 200km, flowed from constellation size of > 12 with > 99% completeness 24 hours in advance of conjunction, integration time set at 1sec)
 - 10cm objects < 1000km, 10km/s relative velocity sensitivity (flowed from constellation size of > 12 with > 99% completeness 24 hours in advance of conjunction)

Fitting	Transverse	Initial	1 st Obs	2 nd Obs	3 rd Obs	4 th Obs
Accuracy [arcsecond RMS]	Error at 200 km [km]	σ _{combined} [km]				
1.8	0.002	1.101	0.339	0.099	0.040	0.019
3.6	0.004	1.101	0.347	0.111	0.069	0.036
7.2	0.007	1.101	0.361	0.124	0.096	0.063
14.4	0.014	1.101	0.378	0.154	0.111	0.093
28.8	0.028	1.101	0.388	0.214	0.116	0.110
115.2	0.112	1.101	0.401	0.309	0.125	0.123

6/25/2010

Lawrence Livermore National Laboratory

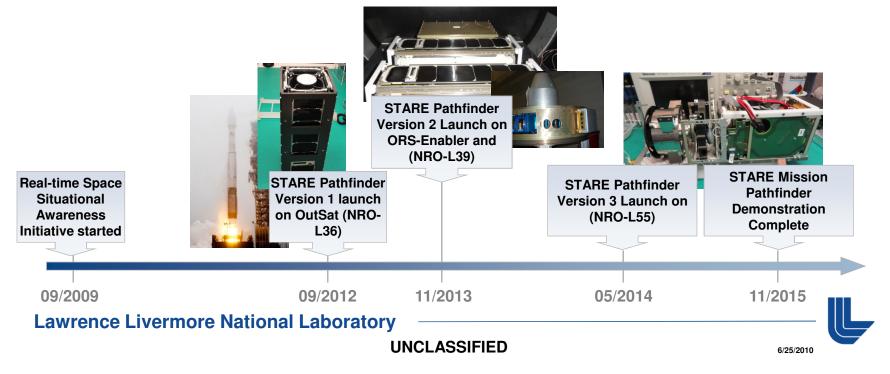

UNCLASSIFIED

Set of 4 observations for SaudiSat2 with various fitting accuracy

Performance validation was conducted with flight hardware on the ground

Obs. number	Delay [hours]	Obs. range [km]	End point	Error in STARE Prediction vs. Measured [m]	
5th	12.75	1526.737-	START	24.9	520.75
		1529.293	END	54.6	614.64
6th	35.5	1277.265-	START	30.0	575.74
		1279.703	END	29.3	526.34

NORAD 27006 orbit refinement performances using the STARE pathfinder flight hardware. Refinement was conducted using the first 4 observations and compared against the last two observation used as true reference



Lawrence Livermore National Laboratory

UNCLASSIFIED

STARE Development Summary at LLNL

- Pathfinder Phase 1 (2009 to 2012):
 - Internally funded at LLNL in collaboration with NRO (Colony II bus) and NPS/TAMU
 - Develop nano-satellite optical imaging capability (version 1 STARE payload)
 - Demonstrate space qualification of miniature optical design and advanced bus technology
- Pathfinder Phase 2 (2012 to 2014):
 - Internally funded at LLNL in collaboration with NRO (Next Generation Colony II bus) and NPS/TAMU
 - Performance driven design updates (V2 STARE payload)
- Pathfinder Phase 3 (2012 to 2015):
 - Internally funded at LLNL in collaboration with NRO (Next Generation Colony II bus) and NPS/TAMU
 - Performance driven design updates (V3 STARE payload, upgraded Colony II)

