

Autonomous Assembly of a Reconfigurable Space Telescope (AAReST) – A CuubeSat/Microsatellite Based Technology Demonstrator

SSC-VI-5

Craig Underwood¹, Sergio Pellegrino², Vaios Lappas¹,

Chris Bridges¹, Ben Taylor¹, Savan Chhaniyara¹, Theodoros Theodorou¹, Peter Shaw¹, Manan Arya², James Breckinridge², Kristina Hogstrom², Keith D. Patterson², John Steeves², Lee Wilson², Nadjim Horri³

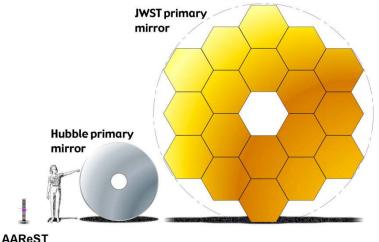
¹Surrey Space Centre, University of Surrey, Guildford, Surrey, GU2 7XH, UK ²GALCIT, California Institute of Technology (CalTech), Pasadena, CA 91125, USA ³Department of Aerospace and Electrical Engineering, Coventry University, CV1 5FB, UK.


c.underwood@surrey.ac.uk, sergiop@caltech.edu, v.lappas@surrey.ac.uk

27th Annual AIAA/USU Conference on Small Satellites, Utah, 2013

The Vision

Introduction



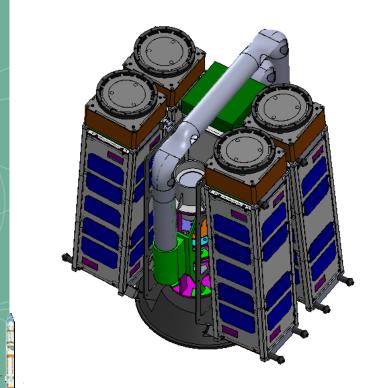
• Project Scope:

- The James Webb Space Telescope (JWST) has the largest aperture feasible with today's launch technology at 6.6m.
- Future larger aperture telescopes of ~20m diameter will require in orbit assembly.
- Proposing a small scale CubeSat based demonstration mission.

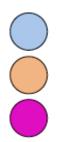
Next Generation 20m telescope

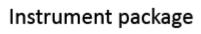
• Key Objectives:

- Demonstrate all key aspects of autonomous assembly and reconfiguration of a space telescope based on multiple mirror elements.
- Demonstrate the capability of providing high-quality images.
- Provide opportunities for education in space engineering at Caltech and University of Surrey and to foster links between the two.
- To use this demonstration to provide outreach activities worldwide, to encourage participation of young people in science, technology and engineering.

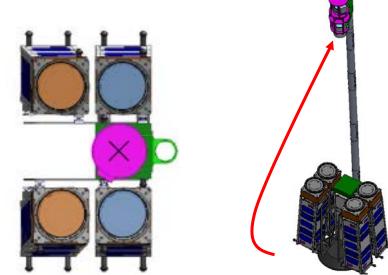


- Launched as a single "microsat" into LEO
- Comprises a "Fixed Core NanoSat" + 2 separable "MirrorSats"
- Total Mass (incl. attach fitting) < 40kg
- Envelope c. 40cm x 40cm x 60cm





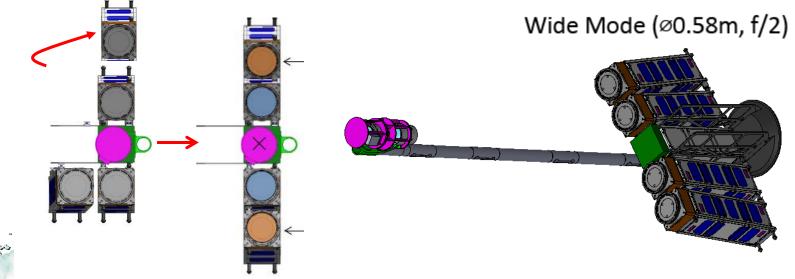
- Science Mission Phase 1: (Minimum Mission Objective)
 - Image stars, Moon and Earth with fixed mirrors (c. 1° FoV)
 - Demonstrate "precision" (c. 0.5°) 3-axis control
 - Demonstrate acceptable jitter/drift (< 0.02 º/s)
 - Calibrate image sensitivity, noise, etc.
- Science Mission Phase 2: (Key Science Objective 1)
 - Image with combined deformable and fixed mirrors in "compact mode"
 - Demonstrate deformable mirror technology



Rigid mirror

Deformable mirror

Compact Mode (Ø0.34m, f/3)

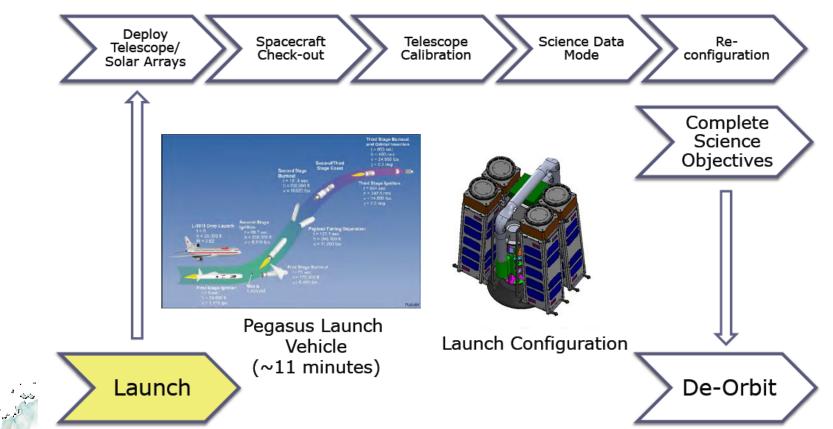


- Science Mission Phase 3: (Key Science Objective 2)

- Autonomously deploy and re-acquire "MirrorSat" (manoeuvres are within c. 20cm-30cm distance)
- Demonstrate electromagnetic docking technology
- Demonstrate ability to re-focus and image in compact mode

- Science Mission Phase 4: (Key Science Objective 3)

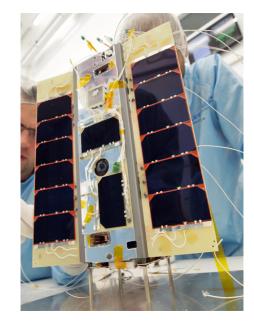
- Autonomously deploy MirrorSat and re-configure to "wide mode" (manoeuvres are within c. 3-4m distance)
- Demonstrate Lidar/camera RDV sensors and butane propulsion
- Demonstrate ability to re-focus and image in wide mode

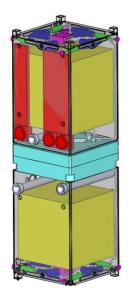


- Science Mission Phase 5: (Extended Mission Objective)

- Deploy and recover MirrorSat from beyond 10m (up to 1 km distance)
- Demonstrate ISL/differential GPS

Overall Mission Plan:


Spacecraft Bus



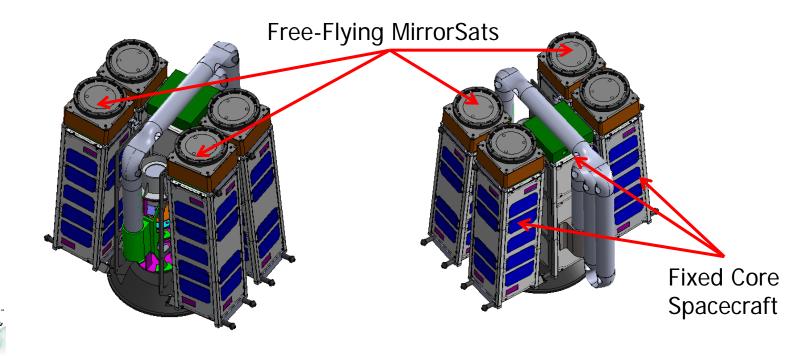
Spacecraft Bus – Design Approach

- Low-cost approach based on CubeSat technology
 - Heritage from Surrey's SNAP-1 NanoSat Programme (2000) (particularly butane propulsion and pitch MW/magnetic ADCS)
 - **Incremental** hardware, software and rendezvous/docking concepts developed through Surrey's STRaND-1, STRaND-2, and QB50/CubeSail missions currently under development.

SNAP-1 (2000)

STRaND-1 (2013)

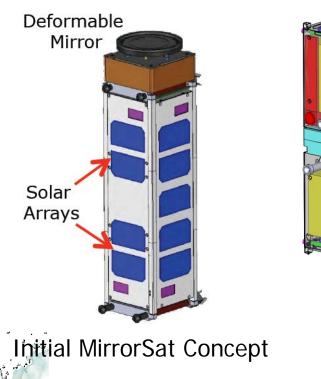
STRaND-2 (2014?)

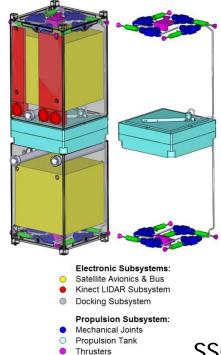


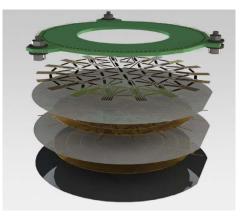
Spacecraft Bus

Spacecraft Bus – Design Approach

- Maximise use of COTS technology.
- \neq Modular approach, where each module is essentially a CubeSat
- Spacecraft bus is treated as a **9U** and two **3U CubeSats** fitted to a framework/attach fitting structure.
 - Two fixed MirrorSats + Central Box = **9U Fixed Core Spacecraft**
 - Two Free-Flyer **3U MirrorSats** with Deformable Mirrors
- Raw power is shared by MirrorSats through docking ports.





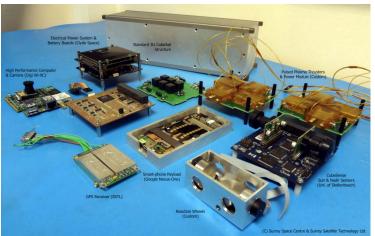

MirrorSat Requirements

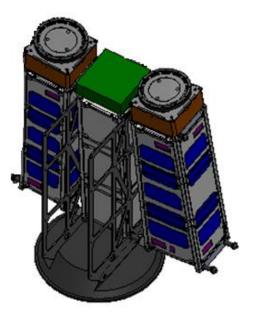
- Based on Surrey's STRaND-1 and STRaND-2 developments
- Supports Deformable Mirror Payload (DMP)
- Must be able to operate independently of other units (at least over 3-4m separation ideally out to 1km)
- Must be able to communicate with the core spacecraft (ISL)
- Must be able to undock, rendezvous and re-dock multiple times

Valves

CalTech Deformable Mirror

Spacecraft Bus

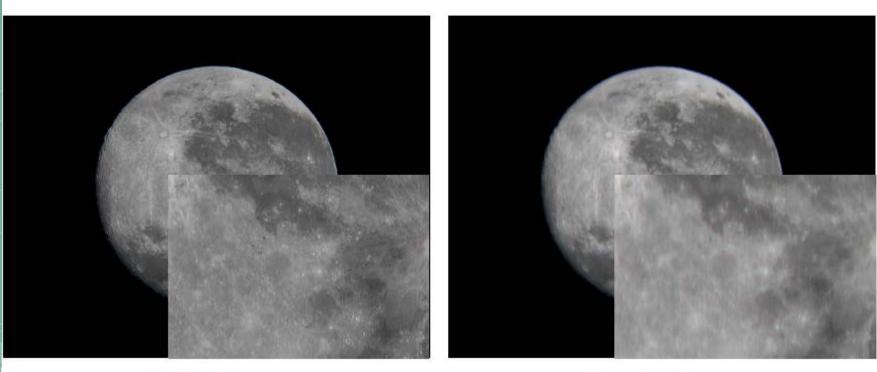



Fixed Core Spacecraft Requirements

- Supports Space Telescope Payload (STP) and Science Imaging
- Must be able to point accurately (< 0.5° error all axes)
- Must be stable in attitude (< 0.02°/s for 600s)
- Must be able to supply 2W dc continuous to 2 Deformable
 Mirror Payloads when in docked configuration during imaging
- Must be able to communicate with the MirrorSat spacecraft and the ground at a minimum data rate of 9.6 kbps.
- Must be able to operate with Sun $>20^{\circ}$ off optical (Z) axis.

Design Approach

Mixture of COTS and bespoke technology


Spacecraft Bus

• Example of Expected Imagery

 Optical Model Simulation of Telescope in "Compact" and "Wide" Modes

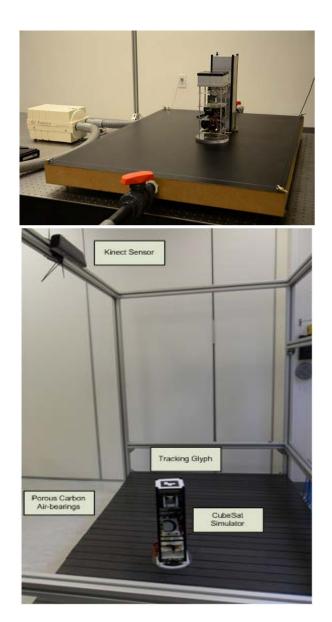
> 0.5° angular diameter 1280 x 1024 pixels

Perfect image

Aberrated image

MirrorSat EM Docking System

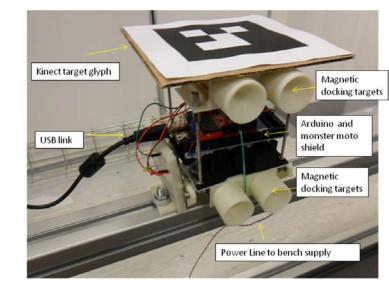
- Investigations at CalTech by Prof. Underwood using Surrey's electro-magnets showed:
 - Capture distance was between 20-30cm for two pairs
 - Automatic self-alignment worked, but...
 - Choice of polarities was important to avoid missalignment/false-capture.
 - Attractive force was highly non-linear!
 - Biases due to the air-bearing table were problematic
- Modelling by CalTech confirmed results.

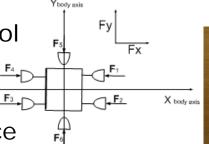


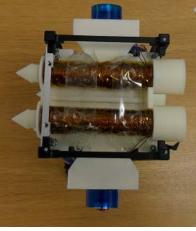
RDV/Docking Research

Developed New RDV/Docking Test-Bed

- CalTech (air jet) air bearing table was easy to work with, but residual biases made it hard to establish the effect of (tiny) magnetic forces at distances beyond 30cm.
- Established at SSC a new instrumented 2D Air Bearing Table based on micro-porous carbon technology. (100x150cm)
- First results look promising no sign of bias – but very hard to align all units level to the micron accuracy needed!

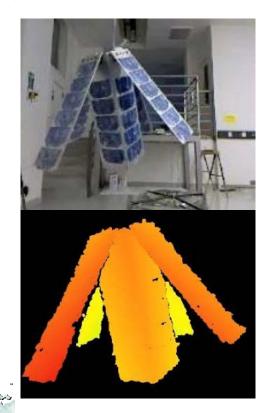



RDV/Docking Research



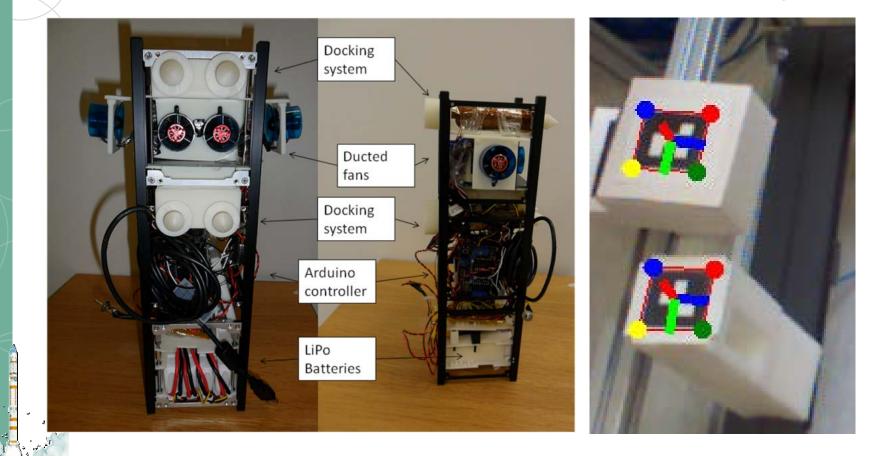
Developed Test-Bed CubeSat and RDV Target

- Used a combination of COTS
 CubeSat parts (e.g. ISIS
 structure) and 3D printed rapid prototyping to develop a host
 CubeSat and RDV target.
- Used Zigbee and Arduino technology to establish ISL, and autonomous command and control from a PC.


- Used 6 compact high-performance ducted-fans to represent thrusters
- Re-fabricated EM docking system using 3D printing RP technology.

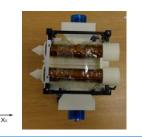
Investigated Microsoft Kinect[®]

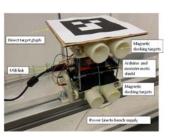
- We calibrated the Kinect[®] and assessed its accuracy at providing pose and range estimates.
- Accuracy was good (<3mm lateral error, <2cm depth error) from within the EM docking system's acquisition distance (30cm) out to 8-10m.


Kinect[®] Depth View from a 3U CubeSat Model with Solar Panels in the SSC Space System Development Laboratory

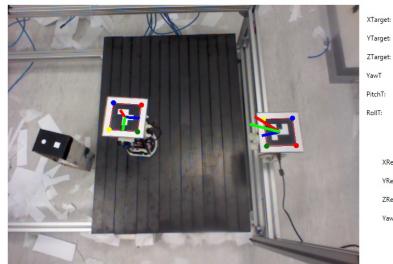
Developed Initial Autonomous RDV Controller

- Used machine vision techniques in combination with "gyphs" to establish unique ID, pose and distances between targets
- Developed and demonstrated a initial Steering Controller and a Continuous Feedback Controller to control RDV and docking.


RDV/Docking Research

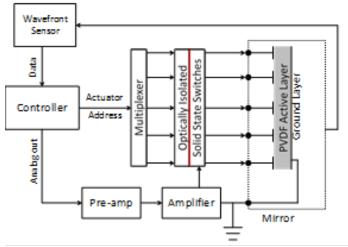


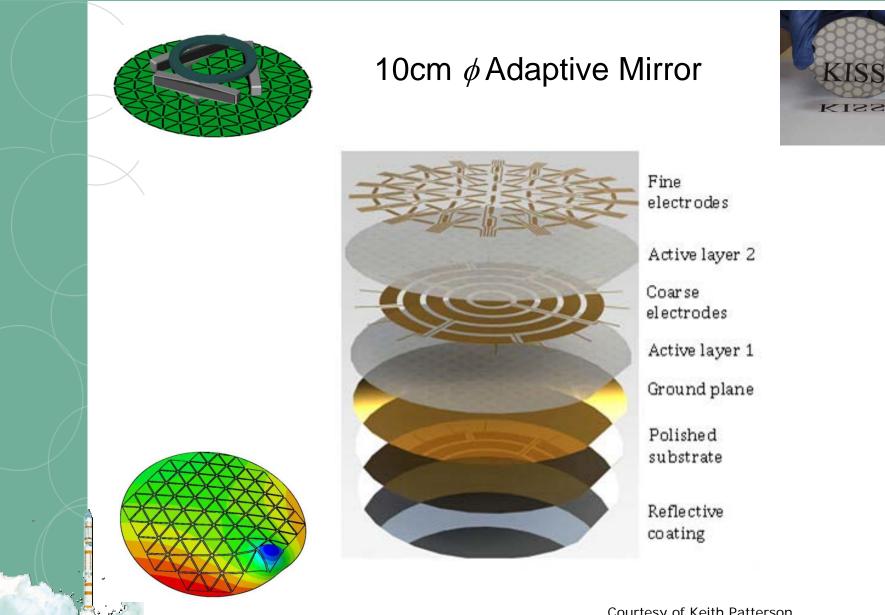
Performed Autonomous Docking/Un-Docking


Multiple autonomous rendezvous docking/un-docking
 manoeuvres were carried out using EM docking system and
 ducted-fan propulsion under wireless computer control.

AAReST Kinect Interface

Target:	971.8226	XChaser:	401.0854	
Target:	-454.482025	YChaser:	-383.7173	
Target:	1339.255	ZChaser:	1203.232	
awT	-20.53711	YawC:	-126.6232	
itchT:	27.1866	PitchC:	19.11911	
ollT:	-147,2093	RollC:	123,6263	


XRel: 570.7372 YRel: -70.76474 ZRel: 106.0861 YawR 106.0861


•

- Design and Fabrication of 10cm Diameter Thin Shell Mirrors
 - Shape correction capability
 - Low CTE materials
 - PVDF piezoelectric, flexible polymer active layers
 - Actuator addressing and multiplexing electronics
 - Supporting mount and spacecraft interfaces
- Optical Testbed for Mirror Behavior /Capability Validation
 - Wavefrontsensing for mirror shape determination
 - Electronics and software for closed-loop active mirror shape control
 - Later on: Setup to be expanded for telescope mirror array

CalTech Mirror Development 🋴 UNIVERSITY OF

Courtesy of Keith Patterson

Conclusions

- AAReST demonstrates how nano-satellite technology can be used to provide confidence building demonstrations of advanced space concepts.
- This joint effort has brought together students and researchers from CalTech and the University of Surrey to pool their expertise and is a good model for international collaboration in space.
- The spacecraft bus and docking systems will be based on flight proven systems through Surrey's SNAP-1 and STRaND programs, whilst the optical payload is undergoing extensive design and ground testing.
 - The mission will demonstrate autonomous rendezvous and docking, reconfiguration and the ability to operate a multimirror telescope in space.
 - Launch is planned for 2015.

 We wish to acknowledge and thank the teams at the University of Surrey and CalTech contributing to the AAReST project – in particular, Keith Paterson at Caltech for the work on the mirrors; Chris Bridges, Pete Shaw, Theo Theodorou, Lourens Visage, Vaios Lappas at the Surrey Space Centre and Shaun Kenyon at SSTL for their work on STRaND-1.

The air-bearing table simulator was developed through funding from the UK Engineering and Physical Sciences Research Council (EPSRC) under grant EP/J016837/1.

Thank-You

c.underwood@surrey.ac.uk

sergiop@caltech.edu

www.ee.surrey.ac.uk/SSC