A Flexible Rideshare Adapter System to Increase Space Access for "Express" Class 20-50 kg Small Satellite Missions

Clint T. Apland, Aaron Q. Rogers, David F. Persons, Robert A. Summers, and Calvin Kee

#### 13 August 2013



27th AIAA/USU Conference on Small Satellites

SSC13-V-4

# The Need

- Many missions cannot be fulfilled by 3U/6U CubeSats (up to 12 kg) but do not require an ESPAclass (181 kg).
- Need an intermediate spacecraft (nanosatellite) with a standardized LV interface, like CubeSats but not containerized, like ESPA.
- Rideshare compatibility helps reduce the total cost of missions using these small satellites.
- Intermediate size spacecraft needs to use available secondary launch mass and volume efficiently.
  - The N\*U scaling paradigm replaced by an enveloping analysis of LV secondary accommodation, volume and mass.
  - Needs an inexpensive hard-point separation system that can be used on virtually any launch vehicle.
- Result: The *Express-class* space vehicle, and LV interface, to enable 20-50 kg rideshare missions.
  - More capable than CubeSats; Less expensive than ESPA.



NASA Ames (3/6U) NLAS Dispenser



Configuration





2

# **Motivation for Investigation**

- An intermediary mission class standard is needed between ESPA (181 kg) and 3/6U CubeSat (~4-12 kg), to:
  - More optimally utilize excess LV secondary payload rideshare accommodation capability.
  - Enable lower cost missions when ESPA-class not needed.
  - Provide for more flexible and capable space vehicles than possible within the 3U CubeSat constraints (e.g. mass, volume, form factor).

> Key examples: Larger payloads, greater power generation, propulsion

Permit more ready-use of COTS components and technologies.





#### **Express Class: Reference Nanosatellite Design**



- Provides a standard, flexible spacecraft interface compatible with multiple LVs:
  - For secondary manifest:
    - o Space-X Falcon 1e/9/9H
    - o OSC Minotaur I/IV/V. Antares, Taurus XL
    - o ULA Atlas V, Delta IV
    - o LM/ATK Athena IIc
  - For primary manifest:
    - o ORS Super-Strypi
    - o SMDC SWORDS\*
    - o DARPA ALASA\*
- Bridges gap between 3U/6U and ESPA

\* To be investigated as data becomes available

- **Optional shroud alleviates** concerns of primary PL damage
- Protects/conceals contents from:
  - Visual inspection
  - Physical access and tampering
  - Aero-heating, thruster plume thermal
  - Acoustics and contamination



### **Express Features and Benefits**

| FEATURE                                                     | BENEFITS                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Configurations with or without propulsion.                  | <ul> <li>&gt; 225 m/s ΔV propulsion allows rideshare flexibility;</li> <li>enables formation flying and constellations.</li> <li>Non-propulsion is lower cost and accommodates larger payloads within standard volume.</li> </ul>       |  |  |  |  |  |  |  |
| Adapter is a plate with release nuts.                       | Simple, proven, low cost, allows axial or radial deployment, easily adapted to any LV.                                                                                                                                                  |  |  |  |  |  |  |  |
| Available shroud.                                           | Provides protected environment, prevents visual inspection, tamper-resistance prevents access.                                                                                                                                          |  |  |  |  |  |  |  |
| Size, shape and mass<br>less constraining than<br>CubeSats. | Allows more use of COTS components, can still benefit<br>from use of CubeSat components, appendages can<br>protrude if necessary,                                                                                                       |  |  |  |  |  |  |  |
| Multiple PL interfaces.                                     | Allows (min) two independent payloads.                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| Large payload volume.                                       | Propulsion:         6,500 cm <sup>3</sup> (400 in <sup>3</sup> )           Propulsion Extended:         35,000 cm <sup>3</sup> (2100 in <sup>3</sup> )           Non-propulsion:         20,000 cm <sup>3</sup> (1200 in <sup>3</sup> ) |  |  |  |  |  |  |  |





5

# Applicability of Express to SERB\* Payload List

#### \*Space Experiments Review Board

2010 SERB Matrix

| Experiment                                                                          |                     | Experiment                      | Flight<br>Ready | Mission<br>Duration | Orbit<br>Regime | Apogee (km) | Perigee (km)  | Inclination( | Power | Dimensions (cm)                                         | Volume                  | Mass |                      |
|-------------------------------------------------------------------------------------|---------------------|---------------------------------|-----------------|---------------------|-----------------|-------------|---------------|--------------|-------|---------------------------------------------------------|-------------------------|------|----------------------|
| Aerodynamic Drag Environment<br>Sensor                                              | ADES                | Payload -<br>Hosted             | Date<br>Jan-13  | (Months)<br>12      | LEO             | 500 2000    | 150 - 400     | 75 - 105     | 2     | 10 x 10 x 10                                            | 1000                    | 1    | Criteria:            |
| Active Thermal Tile                                                                 | ΑΤΤ                 | Payload -<br>Hosted             | Mar-12          | 12                  | Any             | Any Any     | Any - Any     | Any - Any    | 10    | 10 x 10 x 0.5                                           | 50                      | 0.1  | • V < 20,000         |
| Active Track Target Illumination<br>Augmentation                                    | ATTILA              | Payload -<br>Hosted             | Dec-11          | 12                  | LEO             | 400 650     | 400 - 650     | 40 - 65      | 10    | 63 x 8.7 x 8.7                                          | 4768                    | 4    | cm <sup>3</sup> (w/o |
| Chip Dosimeter and Telescope<br>Testbed                                             | СДТТ                | Payload -<br>Hosted             | Jan-12          | 24                  | GTO             | 24000 37000 | 400 - 1400    | -20 - 20     | 2     | 10.2 x 10.2 x 7.62                                      | 793                     | 1.5  | prop.)               |
| Cerberus                                                                            | Cerberus            | Payload -<br>Hosted             | Mar-13          | 12                  | LEO             | 500 700     | 300 - 500     | 0 - 98       | 1.5   | 30 x 30 x 10                                            | 9000                    | 1    | • P < 30             |
| Debris-Resistive / Acoustic Grid<br>Orbital Navy Sensor                             | DRAGONS             | Payload -<br>Hosted             | Apr-12          | 12                  | LEO             | 600 800     | 400 - 600     | 45 - 98      | 2     | 100 x 100 x 0.5                                         | 5000                    | 3    | watts                |
| Global Awarness Data-<br>exfiltration International Satellite                       | GLADIS              | Payload -<br>Hosted             | Oct-11          | 12                  | LEO             | 300 570     | 300 - 570     | 80 - 100     | 10    | 25.14 x 20.11 x 22.63                                   | 11441                   | 10   | • M < 15 kg          |
| Geostationary Radio Beacon                                                          | GRAB                | Payload -<br>Hosted             | Dec-11          | 12                  | GEO             | 29366 29466 | 29366 - 29466 | -3 - 3       | 20    | 10 x 8 x 5                                              | 400                     | 2    |                      |
| GPS Radio Occulation and<br>Ultraviolet Photometer on a<br>CubeSat                  | GROUP-C             | Full<br>Spacecraft<br>- CubeSat | Nov-11          | 12                  | LEO             | 400 1100    | 400 - 1100    | 40 - 98      | 10    | 10 x 10 x 30                                            | 3000                    | 4    | Results:             |
| Integrated Miniaturized<br>Electrostatic Analyzer-Reflight                          | iMESA-R             | Payload -<br>Hosted             | Jan-10          | 12                  | LEO             | 200 1000    | 200 - 1000    | 0 - 90       | 0     | 5 x 5 x 2                                               | 50                      | 0.15 | Suitable for         |
| Iso-grid, Structural-Thermal<br>Panel                                               | lso-Therm           | Payload -<br>Hosted             | Mar-12          | 12                  | Any             | Any Any     | Any - Any     | Any - Any    | 10    | 40 x 40 x 10                                            | 16000                   | 15   | 18 of 73             |
| Limb-imaging lonospheric and<br>Thermospheric Extreme-<br>ultraviolet Spectrographs | LITES               | Payload -<br>Hosted             | Jun-11          | 12                  | LEO             | 400 900     | 400 - 900     | Any - Any    | 7.5   | 17.8 x 14 x 33.7<br>8.9 x 3.8 x 2.5<br>25.4 x 33 x 15.3 | 8398<br>84.6<br>12824.5 | 10   | (25%) of             |
| Optimal Autonomous Orbit<br>Maneuver                                                | ΟΑΟΜ                | Payload -<br>Flight<br>Software | Feb-13          | 36                  | LEO             | 300 1000    | 300 - 1000    | 45 - 95      | 5     | 20 x 10 x 10                                            | 2000                    | 5    |                      |
| Payload Alert Cueing System                                                         | PACS                | Payload -<br>Hosted             | Jan-12          | 12                  | LEO             | 400 1200    | 400 - 1200    | 0 - 100      | 1     | 2.3 x 1.2 x 0.6                                         | 2                       | 1    | from 2010            |
| Spacecraft Plasma Diagnostic<br>Suite                                               | SPADE (data<br>TBD) | Payload -<br>Hosted             | Sep-14          | 12                  | LEO             | Any Any     | Any - Any     | Any - Any    | 2     | 20 x 20 x 7<br>10 x 15 x 3                              |                         | 2    | SEDR list            |
| Supra Thermal Electron, Ion,<br>Neutron Experiment                                  | STEIN               | Payload -<br>Hosted             | Jan-13          | 12                  | LEO             | 600 1200    | 500 - 900     | 50 - 100     | 0.6   | 10 x 10 x 10                                            | 1000                    | 1    | SERD list            |
| Small Wind And Temperature<br>Spectrometer                                          | SWATS               | Payload -<br>Hosted             | Dec-10          | 12                  | LEO             | 300 550     | 300 - 550     | 20 - 98      | 2     | 7.62 x 6.56 x 7.62                                      | 381                     | 1    |                      |
| Wireless Telemetry System                                                           | WiTS                | Payload -<br>Hosted             | Aug-12          | 6                   | Any             | 300 1000    | 300 - 1000    | 45 - 130     | 6     | 15 x 22.5 x 2                                           | 675                     | 2    |                      |





6

### EELV, F-9/Heavy, Antares Accommodation: ESPA



#### EELV, F-9/Heavy, Antares Accommodation: ESPA + FPA







(Figures courtesy of Moog CSA)

# Adapter System

- Provides common SV mounting interface, Independent of launch vehicle
- Hard points on one end of SV; not canisterized
  - Simple and reliable
  - SV secure during launch; no rattle
  - Mounting maintains cantilevered frequency ≥ 35 Hz
  - Allows solar arrays, deployable and fixed appendages, instruments, to be mounted externally to the bus envelope
- Tunable deployment velocity (1-2 m/s nominal)
- Optional shroud to:
  - Protect/conceal sensitive spacecraft; tamper resistant
  - Acoustics, EMI/EMC, contamination protection
  - Thruster plume thermal protection
  - Alleviate concerns of primary payload damage
  - Shroud mass can be traded for SV mass







### Adapter System Mechanism Concept

#### • Simple and reliable

- Single machined deck from flat plate
- Two separation nuts
- Two spherical snubbers
- Separation nuts are:
  - Simultaneous with low shock
  - Reliable with heritage
  - Nonexplosive actuators are available
- Integral separation connectors
- Same dispenser mechanism for:
  - Shrouded or un-shrouded
  - With an ESPA, flat plate (or ABC)
  - All compatible launch vehicles

Design is simpler, more reliable, more cost effective and requires less volume than a ring type separation system.



27th AIAA/USU Conference on Small Satellites

### **Space Vehicle Interfaces to Adapter System**

- Simple and reliable
  - Single machined deck from flat plate
  - Separation system features integrated into bottom deck of SV, reducing separation system volume and mass
  - Two spherical snubbers
  - Two bolt catchers
- Spherical snubbers:
  - Are adjustable in plane
  - Are preloaded to eliminate gapping during launch
  - Allow alignment flexibility
  - Allow for interface thermal gradients
- Integral separation connectors
  - Redundant break-wire separation indication
  - Battery charging



Deck: 3/8" AL 7075-T73

Adjustable in-plane and out (with shims)





27th AIAA/USU Conference on Small Satellites

#### **Express Adapter Prototype Hardware**

#### Design characterization and full environmental qualification in process



#### System with Mass Model

#### Adapter Deployment H/W





#### **Shroud Assembly**





27th AIAA/USU Conference on Small Satellites

# **Prototype Flight Qualification Testing**

- Pre-Environment deployments
  - Instrumented for shock measurement
- Vibration testing to enveloped LV environments
  - Test level in each axis:
    - > Pre-test Sine Sweep ( 0.25g)
    - Sine Vibration, 15g
    - Random vibration, 14.1grms (GEVS)
    - Post-test Sine Sweep
- Thermal testing to ± 65° C to envelope Earth-orbiting and interplanetary missions
- Deployment testing: separation and tip-off rate measurement (future)









### Summary and Next Steps

#### Summary

- Community need exits for an intermediary 20-50 kg space vehicle class standard for rideshare (and primary) missions: *Express*
- APL has designed and developed the enabling adaptor, separation system and optional shroud
- Prototype hardware fabrication and assembly complete
- Testing will be conducted in September 2013
- Next Steps
  - Perform testing results analysis, model correlation, documentation
  - Develop draft Users Guide
    - > To include: interfaces, test requirements, and key design specifications
  - Continue coordination with launch vehicle community
  - Pursue Express mission concepts as a consumer of the capability
  - Continue engagement with industry technology transition partners





# **Questions?**



**Applied Physics Laboratory** 





