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Abstract 

This paper focuses on the use of aerodynamic forces for CubeSat orbit control. This would enable fleets of CubeSats 

to fly in formation without the need for thrusters. To gain a better understanding of the behavior of satellites in orbit, 

a mathematical analysis of satellites in circular orbits with different altitudes was conducted first. This analysis 

shows that very small altitude differences could result in comparatively large changes in satellite separation over a 

reasonable time interval. A numerical-integrator based software simulation was developed to provide a more 

accurate orbit model and a control algorithm for changing satellite separation. Simulation results indicate that 

aerodynamic forces in low earth orbit would be strong enough for orbit control, but weak enough that any orbital 

maneuver would take days to weeks to complete (simulations at 600km altitude). This would allow satellite 

operators to determine satellite positions using NORAD data and Doppler shift measurements and control satellite 

configurations as needed from the ground.  

 

I. Introduction 

As technology has progressed, the presence of 

CubeSats in space has become more and more 

prevalent. These satellites are generally between 1 unit 

and 3 units in size, where a unit is considered a 

10x10x10cm cube with mass of no more than 1.33kg (a 

3 unit or 3U CubeSat will be a 10x10x30cm rectangular 

prism with mass under 4kg). Due to their small size and 

relatively low costs in comparison to traditional large 

satellites, many CubeSats are built by universities or 

other institutions that would otherwise lack the 

capability to build larger, more expensive satellites. 

These CubeSats generally ride as secondary payloads 

on other larger missions. In the beginning, CubeSats 

were seen as primarily educational tools with limited 

scientific value. Now, as electronics have become 

smaller and CubeSat technology has become more 

sophisticated, it has become possible to conduct 

valuable scientific studies and observations using 

CubeSats. While a single CubeSat may not be able to 

outperform a larger satellite, CubeSats have the 

advantage of being able to operate in fleets due to their 

relatively low costs and sizes. For the price of one large 

satellite, many CubeSats could be built. For example, 

the European QB-50 project plans to utilize this concept 

and launch a fleet of 50 CubeSats to investigate the 

 

lower thermosphere (90-320km altitudes). While the 

QB-50 project will have a dedicated launch, most other 

CubeSats that ride as secondary payloads have to meet 

strict rules and requirements to ensure that the CubeSat 

will not damage the primary payload. For example, for 

CubeSats that are launched by NASA as an ELaNa 

(Educational Launch of Nanosatellites) mission (many 

US CubeSats), thrusters are not allowed. The lack of 

thrusters makes CubeSat formation flight difficult. The 

purpose of this study is to show that the orbits of 

CubeSats can indeed be controlled without active 

thrusters, facilitating formation flight. This can be done 

by generating differential aerodynamic forces on two 

CubeSats initially along the same low Earth orbit, 

thereby altering their orbits and producing and 

maintaining a desired relative separation between the 

satellites. A CubeSat’s drag force is primarily 

determined by the free stream (ambient) density, 

satellite velocity, and surface area perpendicular to the 

velocity direction. By orienting a CubeSat such that the 

drag forces is greater, the satellite can be made to drop 

to a lower orbit and consequently have a shorter orbital 

period than a similar satellite that began in the same 

orbit, but had less drag. This procedure could be used to 

increase, decrease, or maintain the separation between 

two satellites in the same orbital plane. Aerodynamic 
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lift could also be utilized to facilitate a change in the 

orbital plane of a satellite. The use of these passive 

forces eliminates the risks and space/mass requirements 

that would be associated with a thruster system. All that 

would be needed would be 3-axis attitude control. This 

is achievable for many CubeSats. In this study, an 

analytical analysis of the angular separation as a 

function of time between two satellites in the same 

orbital plane but with slightly different altitudes is 

conducted. The concept of aerodynamic drag effects is 

then introduced and equations are derived for the 

calculation of the aerodynamic drag forces. The 

equations of motion of the satellites are then calculated 

based on gravitational and aerodynamic forces, and a 

numerical integrator is utilized to integrate these 

equations. A control algorithm to produce a desired 

change in satellite separation is then generated, and its 

effects are modeled by the numerical integrator. Data 

from the simulation are graphed and tabulated, and the 

feasibility of an aerodynamically based orbit control 

system is demonstrated.  In this study, only 

gravitational forces between the satellite and Earth 

(both treated as point masses) and aerodynamic drag 

forces are considered. In reality, there are other forces 

in space including solar radiation pressure, non-

uniformity in Earth’s gravitational field, magnetic 

hysteresis effects, and gravitational effects from the 

moon, sun, and other planets that will affect the 

satellites. Since both satellites will be in approximately 

the same orbit and will travel within minutes, or 

possibly even seconds, of each other, forces such as 

gravitational attraction that are independent of satellite 

orientation will act almost equally on both satellites, 

and will not cause one satellite’s orbit to be more 

perturbed than the other. Aerodynamic forces and solar 

radiation pressure both vary depending on satellite 

orientation, but aerodynamic force outweighs solar 

pressure below an altitude of about 600km
6
. 

Additionally, for this simulation, the satellites are only 

orientated to take advantage of differential aerodynamic 

forces, so solar pressure will have little effect as far as 

differential perturbations of the satellites’ orbits. For 

example, solar pressure may decrease the velocity of 

one satellite more than the other during the first half of 

an orbit but increase its velocity by the same amount 

during the second half. Thus, only aerodynamic forces 

are taken into account in this study. Future work will 

investigate the effects of other environmental forces, 

especially solar radiation pressure.  

 

II. Existing Literature and Expected 

Contributions 

There is much existing literature regarding the effects 

of aerodynamic forces on satellites. However the 

majority of this literature focuses on the effects that 

aerodynamic forces have on orbital decay.
5,7

 Research 

exists regarding the use of environmental forces such as 

aerodynamic drag and solar pressure for satellite orbit 

and attitude control, but most of these studies are 

geared towards larger satellites where a greater degree 

of precision is required.
1,4,6

 There is also some literature 

regarding the use of aerodynamic forces for CubeSat 

orbit control,
2,3

 but most of these studies are purely 

theoretical. The NanoSail-D CubeSat mission was 

launched in November 2010 to investigate the effects of 

a deployable drag sail on orbital decay, but this mission 

consisted of only a single satellite and there was no way 

to reduce the drag once the sail was deployed. The goal 

of this work is to provide a software simulation that will 

allow for the estimation of the effects of aerodynamic 

forces on CubeSats as well as an orbit control algorithm 

for the satellites. The results of these simulations will 

serve as groundwork for a mission to test the use of 

aerodynamic control algorithms for managing satellite 

fleets in space. The simulation code will be compiled 

into a software suite that will be useable by others 

without programming experience.  

 

III. Orbital Analysis 

Earth’s gravitational force (Fg=
   

  
) is by far the most 

powerful force that acts on a satellite in Earth orbit. 

From this, equations governing satellite orbits can be 

derived. A basic analysis of circular orbits was 

conducted first to gain a better understanding of 

fundamental orbital mechanics concepts and to provide 

preliminary numerical data regarding the behavior of 

satellites with different orbital conditions (caused by 

aerodynamic forces). In a circular orbit of radius r, 

translational velocity   v  √
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r
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The period of the circular orbit is given by   
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In the general case of an elliptical orbit, the orbital 

period is given by 
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    √
a 

 
 

(3) c 

 where “a” is the semi-major axis of the orbit. The 

derivations for these equations can be found in any 

basic Orbital Mechanics book. These equations show 

that as the altitude of an orbit is decreased, the 

translational velocity increases and the orbital period 

decreases. Thus, if two satellites are on the same orbit 

but are separated by a given distance and a satellite 

distance closure is desired, the chasing satellite must be 

brought to a lower altitude in order to catch up to the 

leading satellite. The leading satellite must then be 

brought down to the same altitude as the chasing 

satellite once the maneuver is finished to maintain the 

desired separation. To calculate the change in angular 

separation with respect to time between two satellites in 

circular orbits with different radii (which would result 

when the satellite with more drag drops more quickly 

than the other), we must compute the difference 

between the mean motions of the satellites (average 

change in true anomaly with respect to time). Mean 

motion (n) is calculated by  

n 
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The rate of change of satellite angular separation ( ) 

with respect to time is given by 
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If we set r2 = r1+ , where   is the difference in the 

orbital radii of the satellites, the term 
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where only the first term in the expansion is considered 

significant. Inserting this into the previous equation for 
  

 t
 gives us 
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(8) c 

where r1 is the orbital radius of the satellite with the 

lower altitude. We will assume this satellite is behind 

the satellite with orbital radius r2 and is trying to catch 

up to it. Since r1<r2<1.001r1 we can consider the above 

equation to be 

   √ (
   

 r
 
 ⁄
) t 

 

(9) c 

Below is a MATLAB plot of this function for different 

values of altitude difference ( )

 

Note that one degree corresponds to about 120km at an 

altitude of 600 km (Orbital radius = 6978km). In the 

course of a day, two satellites in circular orbits with an 

altitude difference of 1 km will change their relative 

Figure 1 
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separation by 143km. This rate is a good deal more than 

will be necessary for the types of maneuvers discussed 

in this study. This preliminary analysis provides us with 

a general sense of some of the physics behind satellite 

orbital mechanics and provides groundwork for the 

writing of a more accurate software simulation. One 

conclusion we can draw from the above data is that it is 

necessary to reduce the orbital radius of the chasing 

satellite in order for it to catch up to the leading 

satellite, and that very small altitude changes are 

enough to make substantial changes in satellite 

separation over reasonable time intervals.   

 

IV. Aerodynamic Effects 

This research hinges on the use of aerodynamic forces 

to induce satellite altitude changes. Orbital maneuvers 

that change an orbit’s semi-major axis operate on the 

principle of adding or removing energy from the orbit. 

The specific energy of an orbit is given by  

  
  

 
 
 

 
 
  

  
 

 

(10) c 

Where “a” is the semi-major axis of the orbit. Solving 

for “a” gives 

  
  

  
 

 

(11) c 

Note that the energy will be negative for elliptical 

orbits. Aerodynamic drag force will act parallel but 

opposite in direction to the velocity vector and thus will 

reduce the energy of the orbit (make it more negative) 

by an amount equal to the magnitude of the work done 

by the drag force. This, in turn, decreases the value of 

“a” which decreases the orbital period (    √
a 

 
). An 

analogous orbital maneuver is the traditional Hohmann 

transfer. A Hohmann transfer allows a satellite to 

transfer to a higher or lower orbit by adding or 

removing energy from the orbit. To transfer to a higher 

orbit(larger “a”), energy is added (forward thrust), 

while transferring to a lower orbit(smaller “a”) requires 

the removal of energy (retro-thrust) as shown in figures 

2 and 3.  

 
 

 
 

 Aerodynamic drag can be viewed as essentially an 

ongoing retro-thrusting maneuver that constantly 

removes energy and transfers the satellite to an 

increasingly lower orbit. This continuous force will 

cause the satellite to travel in a spiraling trajectory 

towards the center of Earth. This effect is exaggerated 

in figure 4.  

 
 

In reality, the change in orbital radius after each orbit is 

very small (generally less than ten meters per orbit) 

because aerodynamic forces are relatively weak. Thus, 

this spiral can be approximated by a series of circular 

orbits with steadily decreasing radii. Furthermore, 

Figure 2 

Figure 3 

Figure 4 
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elliptical low Earth orbits will tend to naturally 

circularize due to increased drag at the orbit’s perigee 

(caused by increased atmospheric density), adding 

validity to our initial analysis of circular orbits.  

 

Calculating Aerodynamic Drag Force 

The next step is to calculate the aerodynamic drag 

force. This force is given by the equation  

 d 
 

 
CdA   v 

  

 

(12) c 

Where Cd is the object’s drag coefficient, A  is the area 

of the object perpendicular to the velocity vector,  
 

 is 

the free stream (ambient) density, and v 
  is the free 

stream velocity (velocity of object relative to 

airstream). Cd is possibly the hardest value to determine 

in this equation since it is dependent upon the geometry 

and orientation of each individual structure as well as 

on flow characteristics, but a value of Cd = 2.22 is often 

used to model drag on satellites with reasonable 

accuracy
8,9

. This value has been calculated based on 

aerodynamic modeling and empirical observation, and 

its calculation will not be treated here. A more accurate 

Cd value would need to be calculated depending on the 

specific mission at hand. Since we are concerned 

primarily with the acceleration induced by the 

aerodynamic force rather than the value of the force 

itself we can use the knowledge that   ma (Newton’s 

second law) to calculate acceleration due to drag as 

   
  
  

 
  A 
   

 
 
v 
      v 

  

 

(13) c 

It is convenient to define CB (the ballistic coefficient) in 

order to have a single coefficient that handles satellite 

geometry, mass, and orientation. Drag force and 

acceleration act parallel to the velocity vector, so in 

vector form, 

 ⃗ d  ad ̂  C   v  ⃗   

 

(14) c 

Note that CB and ad for two satellites in an identical 

orbit (same velocity and density) are determined by the 

satellite geometry and perpendicular area to mass ratio. 

If two satellites have the same general geometry, then 

the difference in ad will be due solely to the value of 
  

 
. 

Thus, it is possible to have two satellites of different 

masses that will experience the same drag effects in a 

given orbit. Atmospheric density is another component 

of this equation that is often difficult to model. For any 

given altitude, density can vary by up to two order of 

magnitude based on solar and geomagnetic activity as 

shown in figure 5. 

 

 

 

 
 

CubeSats generally have the requirement to de-orbit 

within 25 years and have minimum orbital lifetime 

requirements dependent on specific mission at hand. As 

shown by figure 5, air density decreases exponentially 

with altitude. Thus, since drag force increases linearly 

with density, orbital lifetime will increase exponentially 

with altitude as shown by figure 5 below.  

 
 

The following calculations will assume an initial 

circular orbital altitude of 600km. This altitude is ideal 

because it allows for a de-orbit within 25 years and 

provides the satellite with an orbital lifetime long 

enough to conduct almost any mission. Also, based on 

atmospheric density, aerodynamic forces at 600km will 

be strong enough to generate a meaningful change in 

Figure 5 

JB2008 mean air density with altitude for 

low, moderate, and high long- and short-

term solar and geomagnetic activity 

Figure 6 
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the relative position between two satellites, but will be 

weak enough that this change will occur slowly (days 

or weeks). This would enable the satellite operators to 

track satellite positions and update the control 

algorithms as needed from the ground through the 

course of any maneuver.  

 

Equations of Motion 

To provide an accurate model of how a fleet of 

satellites will behave in the presence of a real 

atmosphere, it is necessary to use a software algorithm 

to numerically integrate the satellites’ equations of 

motion. A total acceleration equation is first derived by 

summing the gravitational and aerodynamically 

induced acceleration vectors. Gravitational acceleration 

acts along the radius vector (from the satellite to Earth’s 

center) and is given by the equation  

 ⃗ g 
 g

ms

 ̂ 
  

r 
 ̂ 

  

r 
   

(15) c 

 ⃗    ⃗    ⃗   
  

r 
   C   v  ⃗    

 

(16) c 

This total acceleration equation must be integrated 

twice with respect to time to obtain equations for    and 

 ⃗   as functions of time. No closed form solution for 

this integral exists, so the acceleration equation must be 

integrated over a series of time-steps using a numerical 

integrator to generate a position vector for a given time 

based on initial    and  ⃗   conditions. This is done using 

the Runge-Kutta fourth order integration algorithm.  

 

V. Java Simulation 

A software suite was written in Java using the 

NetBeans integrated development environment to 

model and display the satellites’ behavior in space. This 

program required the initial position and velocity 

vectors of two satellites as well as atmospheric density 

and CB values as inputs. These arguments were sent to a 

Runge-Kutta fourth order integration algorithm to 

calculate the resultant position and velocity vectors 

after a one second time step. Since a CubeSat fleet 

would most likely consist of two satellites launched 

from the same launch vehicle, these simulations 

modeled cases of two satellites that were in the same 

orbit with a 2000km initial separation between them. 

Since the satellites would be at roughly the same 

altitude and since the changes in altitude would be very 

small for any maneuver(     ), the assumption was 

made that the atmospheric density experienced by each 

satellite would be roughly the same and would be 

constant throughout the maneuver. This method yields 

reasonable accuracy, but density changes with altitude 

would need to be taken into account and could easily be 

supplied to the integrator if a more accurate model is 

required. For this particular simulation, a model of two 

3kg, 3U CubeSats, each with two 10x30cm single 

deployed long-edge type solar panel arrays was used. 

 
 

For the purposes of this model, the satellites had two 

possible orientations; minimum drag, and maximum 

drag. The maximum drag option would have the large 

9U face (30x30cm) perpendicular to the velocity vector. 

In this configuration, the exposed area would be .09m
2
 

and CB would be calculated by  

C     
CdA 

  s

 
 . (.  m )

 ( kg)
 .   

  

  
 

 

(17) c 

For the minimum drag configuration, the 1U top face 

(10x10cm) would be facing forward (The panels will be 

very thin (<3mm), so they would not contribute much 

to the exposed surface area). Thus, A ≈(. x. )m .  m
2
, 

and 

C     
CdA 

  s

 
 . (.    )

 ( kg)
 .    ̅

  

  
 

 

(18) c 

As shown by the CB values, for a given density and 

velocity, a satellite in maximum drag configuration 

would have approximately nine times the drag of a 

satellite in minimum drag configuration. The software 

simulation allows drag coefficients to be changed 

during the simulation and includes an autonomous 

control algorithm for the satellites. The control 

algorithm works as follows: 

Figure 7 
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1. The user enters a desired satellite distance 

closure value in km.  

2. The CB of the satellite in front is changed to its 

minimum value, and the CB of the chasing 

satellite is changed to its maximum value. This 

makes the chasing satellite fall faster than the 

leading satellite, allowing it to catch up to the 

leading satellite.  

3. When half of the desired distance has been 

closed, the satellite orientations are switched; 

the leading satellite is set to its maximum drag 

coefficient value, while the chasing satellite is 

set to its minimum drag coefficient value. This 

allows the leading satellite to fall faster, 

bringing it closer to the altitude of the chasing 

satellite.  

4. When the change in satellite angular 

separation over time (
  

  
) = 0 (satellites at the 

same altitude), both satellites are set to the 

same minimum value of CB. If the density 

values are assumed constant, the ascent and 

descent paths of the satellites will be 

symmetrical, and the satellites should arrive at 

equal altitudes at the same time as the desired 

distance closure is achieved. 

Satellite and orbital characteristics for each satellite 

are displayed by the software while the simulation 

is running. These include velocity, orbital radius, 

true anomaly (angle from the horizontal), satellite 

angular separation, time, satellite separation in km, 

and satellite drag coefficient. Several tests were 

conducted using this simulator assuming two 3U 

3kg CubeSats in initial 600km altitude circular 

orbits (orbital radius = 6978 km), and the results 

were plotted using the software’s built in graphing 

utility.   

 

 

VI. Results 

 
 

Above is a screen-shot of the orbit simulator. The blue 

circle represents earth, while the red and black dots 

represent the leading and chasing satellites respectively 

(satellites 1 and 2). The satellites are traveling in a 

counter-clockwise orbit in this simulation. Velocity, 

orbital radius, true anomaly (angle from horizontal), 

and ballistic coefficient are shown for the selected 

satellite. The time and angular and distance separations 

between the satellites are also shown. The satellites in 

this simulation begin 2000km apart. The user can 

choose to either enter custom ballistic coefficients for 

each satellite and press the start button to initiate the 

Figure 8 
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simulation, or can input the desired closure in km and 

press the control button. This activates the autonomous 

control algorithm discussed earlier using the minimum 

and maximum CB values calculated above. All display 

fields as well as the graphic simulation update in real 

time while the simulation is running. The simulation 

can be paused and at any time by pressing the 

start/pause button. Ballistic coefficients can then be 

manually changed, a new control algorithm can be 

initiated, or the user can press the graph button to view 

graphs of orbital radius, altitude separation, and angular 

and distance separation of the satellites over time. In 

this simulation, a control algorithm to close the distance 

between the satellites by 1000km was initiated first. As 

soon as this was completed, another control algorithm 

was implemented to close the distance by another 

500km. Distance closures of 250km, 100km, 50km, 

25km, and 10km were conducted next. The figures 

below show the results of these control algorithms 

(except the 25km and 10km closures).   

 

 
 

Figure 9 shows the altitude of each satellite over the 

course of the control algorithms. The red line represents 

the red satellite (leading satellite) and the black line 

represents the black satellite (chasing satellite). Each 

intersection point between the two lines represents the 

completion of a control algorithm (the satellites end up 

at the same final altitude so that 
d 

dt
≈ ). We see that 

during each control algorithm, the black line is always 

below the  

 

red line. This makes sense because the chasing satellite 

must be at a lower altitude if it is to catch up to the 

leading satellite. If it were desired that the satellites 

increase their separation by a given amount, the red line 

would be where the black line is and the black line 

where the red line is (assuming same initial orbital 

conditions). The slopes of the lines and the times 

required would be identical to those for the distance 

closure algorithms shown above.  

 

Figure 9 
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Figure 10 is essentially the difference between the red 

and black curves in figure 9. It provides a better visual 

representation of the altitude separation between the 

satellites over time. Each triangle represents a complete 

control algorithm (1000, 500, 250, 100, and 50 

kilometers of closure). The first half of the triangle 

(positive slope) is where the trailing satellite has 

maximum drag, and the leading satellite has minimum 

drag. The apex of the triangle is where the drag 

configurations are switched (leading satellite has max 

drag, while chasing satellite has min drag) in order to 

bring the satellites to the same altitude by the end of the 

control algorithm.

 

 

Figure 10 

 

Figure 11 
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Figure 11 shows the separation between the satellites in 

both angular and distance terms. The black dots on the 

graph mark the ends of each control algorithm. They 

correspond to the intersections between the red and 

black curves on figure 9. Note that at the end of each 

control algorithm, the separation between the satellites 

remains roughly constant. In this simulation, a new 

control algorithm was initiated as soon as the original 

one was finished, but if the simulation were left to run 

after all control algorithms were complete, the slope of 

the line (changes in separation over time) would be 

zero. The green dots on the graph (inflection points) 

represent the points at which the drag configurations of 

the satellites are swapped. These points correspond to 

the tips of the triangles in figure 11.    

 

Desired Distance 

Closed(km) 

Time required(days) Total Altitude 

loss(meters) 

Max Altitude 

Difference ( ) 

(meters) 

Estimated Closure 

(km)  ased on   and 

Δϕ Eq. 

1000 23.073 771.00 617.36 999.747 

500 16.319 545.10 436.63 500.097 

250 11.534 385.47 308.70 249.899 

100 7.263 242.08 194.74 99.270 

50 5.168 172.78 137.81 49.986 

25 3.628 121.01 97.06 24.715 

10 2.286 76.12 61.18 9.816 

 

 

Figure 12 displays the information graphed in figures 

10, 11, and 12 in tabular form. This shows the specific 

numerical values associated with each control 

algorithm.  he average altitude difference ( avg) and the 

equation  

   √ (
   

 r
 
 ⁄
) t 

(19) c 

were used to calculate the change in angular separation 

resulting from satellites in circular orbits with altitude 

differences  avg. The average value theorem states that 

the average value, A, of a function f(x) over the interval 

“a” to “b” is given by the equation  

  
 

   
∫  ( )
 

 

   

 

(20) c 

 hus  avg can be computed by 

 avg 
 

 t
(
 

 
 t max) 

 max

 
 

 

(21) c 

The change in distance between the satellites can be 

found by multiplying average orbital radius by the 

change in angular separation found by solving the    

equation using  avg. This data was calculated and 

tabulated for comparison with the data obtained by the 

numerical integrator. As the table shows, the values 

from this equation differed from the values provided by 

the integrator by generally less than 2%, showing that 

the assumptions made in the derivation of the    

equation were reasonable, and that the integrator is 

providing precise and expected values.   

 

VII. Conclusions 

Fleet Control 

Based on the above results, it is easy to see that the use 

of aerodynamic forces is an effective way to control 

satellite orbits. This opens many new doors for 

satellites such as CubeSats that lack thrusters. Perhaps 

the greatest aspect of this method is the opportunity for 

such satellites to fly in controlled formations. It is now 

possible for many small, low cost satellites to be built 

and launched and for those satellites to be distributed 

throughout an orbital plane to provide resolution 

through time (when one satellite is unable to view an 

area, the next satellite advances to a position where it 

can view that area). If an operator wants to reduce the 

separation between two satellites that are in the same 

orbit but a given distance apart, the chasing satellite 

could be oriented such that it experiences more 

aerodynamic drag than the leading satellite. This would 

cause the chasing satellite to drop to a lower altitude 

than the leading satellite. The lower altitude would 

cause it to travel with a faster velocity and have a 

shorter orbital period, allowing it to catch up to the 

leading satellite. The satellites would then be brought to 

Figure 12 
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the same orbital radius by increasing drag on the higher 

altitude satellite (allowing it to drop). The time required 

for this maneuver is dependent on the exposed surface 

area to mass ratio (CB) and the ambient atmospheric 

density value. Higher density and CB values result in a 

higher drag-induced acceleration. Since density 

decreases with altitude, this maneuver will take longer 

at higher altitudes. For example, at an altitude of 

600km, it would take about 7.26 days to change the 

separation between two satellites by 100km, assuming 

that both satellites experience roughly the same 

atmospheric density throughout the maneuver (a 

reasonable assumption since altitude differences will 

generally be less than 1km). These times are long 

enough that at higher altitudes (such as 600km), it 

would be possible to utilize NORAD radar data 

augmented with Doppler shift obersvations to 

determine the positions of  satellites in a fleet and 

decide from the ground when orbital maneuvering 

would be required. The satellites could then be supplied 

commands from a ground station specifying desired 

orientations and times between orientation changes. 

Since any maneuver will likely take days, it would be 

feasible to rely on the methods mentioned above to 

track the satellites throughout the maneuver and update 

their control schemes as necessary. This method would 

enable a fleet-based mission without requiring the 

satellites to communicate with each other or to have 

advanced position determination and control systems 

onboard. This would greatly simplify such missions, 

allowing them to be conducted by universities or other 

groups that are unable to implement more advanced 

fleet control techniques. It is important to note that the 

time it takes to change a certain distance between 

satellites is not a linear function. If it takes time t1 to 

change satellite separation by a distance x1, then the 

time t2 it will take to change separation by a distance x2 

can be calculated by  

t  √
x 

x 
t  

 

(22) c 

According to this equation, it would take √   times the 

amount of time to close a distance of 1000km than it 

would be to close a distance of 100km. This non-

linearity is because a maneuver designed to change 

satellite separation by 1000km would allow the 

satellites to achieve a greater maximum separation 

before the satellites must begin to be brought back 

together. This greater separation value would allow a 

greater change in separation over time. Thus it is more 

efficient, both in terms of time and total altitude loss, to 

perform one 1000km maneuver than to perform ten 

100km maneuvers. For this reason, it would be a better 

idea to wait for the required separation change to be as 

large as possible before performing any maneuvers.   

  

Orbital Decay 

Controlling satellite orbits using differential 

aerodynamic forces may slightly increase the rate of 

orbital decay, but these changes will be small and 

relatively insignificant as they will only apply for the 

duration of the maneuver. During the maneuvers 

described in this paper, each satellite will spend half of 

the maneuver in minimum drag configuration (1U 

facing forward) and the other half of the time in 

maximum drag configuration (9U panel array facing 

forward). This will have roughly the same effect on 

overall orbital decay as having a 5U area facing 

forward throughout the maneuver (1U area represents a 

10x10cm face). If a satellite such as the one shown in 

figure 7 is assumed to have each of its faces facing 

forward for an equal amount of time during normal 

mission operation, the average frontal surface area can 

be calculated to be Aavg=(9+3+3+3+1+1)/6=3.333U.  

Thus, the rate of orbital decay during a maneuver will 

be (5/3.333)=1.5 times the rate of decay under average 

mission conditions. Since maneuvering will probably 

only be done during   % or less of a mission’s lifetime, 

these maneuvers will not have an appreciable effect in 

terms of increasing orbital decay and reducing mission 

lifetime. However, if specific orientations were not 

required for the mission at hand, both satellites could be 

oriented into a minimum, maximum, or intermediate 

drag configuration for all times during the mission 

when maneuvering was not required. A mission with 

satellites in minimum drag configuration would have a 

lifetime about 9 times as long as that of a mission with 

satellites constantly in maximum drag configuration. 

These concepts could be utilized to make a satellite de-

orbit faster or slower depending on the specific mission 

requirements and desires. 

 

VIII. Future Work 

As of now, this simulator assumes a constant density 

value throughout maneuvers. This is a reasonable 

assumption because altitude changes are small, and 

maneuvers take long enough for an average density 

value to be a good approximation. In reality, density 
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will change with altitude and can fluctuate by up to two 

order of magnitude for a given altitude based on solar 

and geomagnetic activity. It will be important to take 

this into account to improve simulator accuracy. Solar 

pressure, interactions with the Earth’s magnetic field, 

and external gravitational forces will also affect 

satellites’ orbits. Future simulations must take these 

into account as well. Additionally, a large drag plate on 

a satellite could be oriented at an angle to the velocity 

vector to generate aerodynamic lift which would act 

perpendicular to the velocity vector and allow for 

possible out of plane maneuvers by the satellite. 

However, this lift force is relatively weak compared to 

drag forces, and small out of plane transfers would 

likely be less useful than changing satellite relative 

positions within the same orbital plane. Nevertheless, 

aerodynamic lift forces will be important to consider in 

future simulations.

Acknowledgements 

The author has benefitted from conversations with Dr. D.A. Cicci (Aerospace Engineering Department, Auburn 

University). This work was supported by the Auburn University Student Space Program with funds from the 

Alabama Space Grant Consortium and the Auburn University Physics Department. 

 

References 

1. Varma, Surjit, "Control of satellites using environmental forces: aerodynamic drag / solar radiation 

pressure" (2011). Theses and dissertations. Paper 676  

2. Horsely,  athew, “An investigation into using differential drag for controlling a formation of CubeSats,” 

Lawrence Livermore National Laboratory, LLNL-CONF 498275 

3. Daniel, N.J, and du Plessis, J.J., and Steyn, W.H., “Using Atmospheric Drag for         Constellation Control 

of Low Earth Orbit Micro-Satellites,” Dept. of Electrical and Electronic Engineering University of 

Stellenbosch, 7600, Republic of South Africa. 

4. Haiping, chen and Zhaokui, Wang, “Ultra-Low Earth Orbit Formation Flying Control Using Aerodynamic 

 orces”  

5. “Space environment (natural and artificial) — Earth upper atmosphere,” International Organization For 

Standardization 

6. Klinkrad, H., and  ritsche,  ., “Orbit and Attiude Perturbations Due to Aerodynamics and Radiation 

Pressure,” Mission Analysis Section, ESA/ESOC, D-64293 Darmstadt Germany 

7. Vallado, David and Finkleman, David, “A critical Assessment of Satellite Drag and Atmospheric Density 

 odeling,” Center for Space Standards and Innovation, Colorado Springs, Colorado, 80920 

8. Cook  .E., “Satellite Drag Coefficients”(  6 ), Royal Aircraft Establishment, Technical Report No. 65005 

9.  aposchkin E. ., Coster A.J. “Analysis of Satellite Drag”(  88), The Lincoln Laboratory Journal, Volume 

1, Number 2(1988)  

10. Vallado D.A. “ undamentals of Astrodynamics and Applications Second Edition”(    ), Space 

Technology Library 

 


