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ABSTRACT

The Eyesafe Ladar Test-bed (ELT) is a experimental ladar system with the capability of digitizing return laser
pulse waveforms at 2 GHz. These waveforms can then be exploited off-line in the laboratory to develop signal
processing techniques for noise reduction, range resolution improvement, and range discrimination between two
surfaces of similar range interrogated by a single laser pulse.

This paper presents the results of experiments with new deconvolution algorithms with the hoped for gains
of improving the range discrimination of the ladar system. The sparsity of ladar returns is exploited to solve
the deconvolution problem in two steps. The first step is to estimate a point target response using a database of
measured calibration data. This basic target response is used to construct a dictionary of target responses with
different delays/ranges. Using this dictionary ladar returns from a wide variety of surface configurations can be
synthesized by taking linear combinations. A sparse linear combination matches the physical reality that ladar
returns consist of the overlapping of only a few pulses. The dictionary construction process is a pre-processing
step that is performed only once.

The deconvolution step is performed by minimizing the error between the measured ladar return and the
dictionary model while constraining the coefficient vector to be sparse. Other constraints such as the non-
negativity of the coefficients are also applied. The results of the proposed technique are presented in the paper
and are shown to compare favorably with previously investigated deconvolution techniques.

Keywords: lidar, ladar, waveform processing, sparse deconvolution, surface response, range resolution enhance-
ment

1. INTRODUCTION

The availability of waveform digitizing ladar systems is stimulating the growth of signal processing techniques
to improve the resolution and reduce the range error of ladar measurements. Other performance parameters,
such as false alarm rate and signal detection thresholds can be optimized since the returned waveform can be
observed.

There are several techniques that have been applied to ladar waveforms to improve performance. Gaussian
decomposition is a commonly used method that provides an estimate of amplitude and timing of return pulses
by fitting the waveform with a sum of Gaussian pulses.1–5

Other methods have been developed that approach the problem as an ideal “surface response” that have been
blurred by convolution with the laser pulse waveform.5–7 The goal of deconvolution is to remove the effects of
convolution and obtain the original surface response.

In a previous work, Neilsen et al investigated several different methods for deconvolution to find the surface
response when two surfaces are offset by a known amount.8 The minimum distance that was resolvable using their
method and ladar system was a separation of 11 cm. The best results were obtained using a non-negative least-
squares (LS) technique based on the Levenberg-Marquardt algorithm.9 The resolution of the system without
waveform processing was 29 cm.

There has been a recent interest in applying the theory of compressive sensing and reconstruction to improve
the methods for deconvolution.10 These methods attempt to deconvolve the signal by computing the LS solution
with the additional constraint that the solution be as sparse as possible. This allows an additional parameter
for regularization of the solution.
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In general, our research is focused on improving ladar range resolution to discriminate surfaces that are closely
spaced in range (the sub-15 centimeter regime). This paper presents results of exploring a family of deconvolution
methods that exploit the sparsity of the ladar returns. Using these methods, the deconvolution problem can
be posed as a LS optimization problem with a special form of regularization involving a free parameter. We
explore the solution space over the useful range of this free parameter. Interestingly, this technique subsumes
non-negative LS as a special case. Therefore, the work reported here may be viewed as a generalization of our
previous results.

The paper is organized as follows. Section 2 provides an introduction to the system used to collect data.
Section 3 outlines the techniques used for signal processing. Section 4 contains the experiment used to compare
methods, and conclusions are given in Section 5.

2. THE EYESAFE LADAR TEST-BED

The Vehicle Integrated Sensor Suite for Targeting Applications (VISSTA) van was developed to provide a mobile
sensor platform for multiple modes of data collection.11 As shown in Fig. 1, the ELT, mounted in the VISSTA
van, has a single sensor flying spot laser scanner that sits inside a movable turret on top of the van. A color
camera is mounted coaxially with the eyesafe laser to allow the operator to observe the field of view of the ELT
scanner. This also enables 3D texel images to be formed by fusing the camera image with the 3D point cloud.12

Figure 1. The VISSTA van. The ELT aperture can be seen at the right side in the turret behind the cab.

The ELT is capable of scanning a 4◦ × 4◦ field of view at up to a 100 kHz pulse rate. The range gate of the
digitizer can be set up to 500 m for a 20 kHz pulse rate. The ELT digitizes the return pulse waveform at 2 GHz
to enable offline data analysis. The laser pulse width is 1.5 ns at full-with half-maximum (FWHM), resulting in
waveforms sampled at two times the Nyquist frequency.

3. SIGNAL PROCESSING

The signal model for the ELT ladar receiver is given in Fig. 2.8 The transmitted pulse is detected using electronics
that are separate from the receiver system, which is of the same design. Since these are separate systems, different
transfer functions (H(s)) are used in modeling the digitized exiting pulse and the return pulse.

The input to the system model is a Dirac delta function δ(t), which is the ideal transmitted pulse shape. The
actual transmitted laser pulse is created by convolving the delta function with the laser pulse transfer function
P (s). The pulse then travels to the target, where it is convolved with the target surface response S(s). Noise
sources from backscattered radiation, solar background, dark current, and receiver electronics are added to the
signal as white noise nt(t). Amplitude dependent (multiplicative) shot noise from the avalanche photodiode
(APD) is also added. The signal then proceeds through the receiver electronics H(s). Finally, quantization and
measurement noise nq(n) in the A/D converter is added to obtain the stored waveform r(n).
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Figure 2. Signal model for the received waveform.

The model was simplified by assuming the multiplicative noise can be modelled as additive white noise with
variance proportional to the average value of the pulse waveform. This leads to the frequency-domain sampled
signal

R(f) = P (f)S(f)H(f) +N(f)H(f) +Nq(f), (1)

where

N(f) = Nt(f) +

√
ps(t)Ns(f), (2)

ps(t) = p(t) ∗ s(t), (3)

and where ps(t) is the time average of ps(t) during the duration of the pulse, f is the normalized discrete
frequency, Nt(f) and Ns(f) are white noise, and p(t) and s(t) are the inverse Laplace transforms of P (s) and
S(s) respectively.

The signal processing goal is to recover the discrete-time surface response s(n) from the received waveform
r(n). This is achieved by the process of filtering, interpolation, deconvolution, and range discrimination as shown
in Fig. 3, where z is used to denote a discrete-time transfer function. The interpolation upsampling rate N used
in this work was 10. See Neilsen et al for details.8 Since this paper presents a study of sparse deconvolution
methods, only the deconvolution methods will be described here.
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Figure 3. Processing method used in the VISSTA ELT.

3.1 Deconvolution

Deconvolution allows us to determine the surface response of the target and use it to potentially obtain an
estimate of the range to multiple surfaces within the beam footprint. Applying the lowpass filters L(z) and I(z)
to (1) leads to

R(z)L(z)I(z) = (P (z)S(z)H(z) +N(z)H(z) +Nq(z))L(z)I(z), (4)

which can be rearranged to obtain the target surface response

S(z) =
R̃(z)

H̃(z)
+ Ñ(z) (5)

where
R̃(z) = R(z)L(z)I(z), (6)

H̃(z) = P (z)H(z)L(z)I(z), (7)



and

Ñ(z) =
N(z)

P (z)
+

Nq(z)

P (z)H(z)
. (8)

Deconvolution is possible only if R̃(z) and H̃(z) are known and effects from Ñ(z) can be minimized. R̃(z)
is the measured waveform after filtering and interpolation. To obtain R̃(z), the locations of the returns in the
signal are found using a simple threshold, and r(n) is segmented into signal segments around the detected return.
Each signal segment can then be processed individually.

H̃(z) (the blur function in the dictionary of ladar returns) is obtained by holding the scanner stationary while
aimed at a flat surface oriented normal to the ELT, and averaging many returns together. Averaging substantially
reduces noise and provides an accurate estimate of the blur function. Alternatively, the transmitted pulse for
each shot could be used to estimate the blur function,5 but noise on each transmitted pulse waveform, combined
with differences in the electronics in the ELT used in the capture of the transmitted pulse, produce a poorer
estimate of the blur than the averaging method used.

3.1.1 Family of Least Squares Deconvolution Methods

Least squares deconvolution methods are based upon a model in which the measured waveform r(t) consists of
a superposition of delayed and scaled replicas of a basic pulse b(t) which represents the response of the ladar
system to an idealized point target reflector at zero range. The model may be expressed mathematically as

r(t) =

∫
s(τ)b(t− τ)dτ + e(t), (9)

where e(t) represents noise plus unmodeled effects and s(τ) is the scene spatial reflectivity structure. Note that
s(τ) ≥ 0 because negative reflectivity is physically meaningless.

Variations on this basic model are possible. If the laser has perpendicular incidence on a flat surface s(τ) =
a1δ(τ − τ1), then the signal model (9) simplifies to

r(t) = a1b(t− τ1) + e(t), a1 ≥ 0, (10)

where the pulse amplitude a1 accounts for range loss and other losses and τ = 2R/c is the two-way time delay to
the target surface. In the single-surface case, the deconvolution problem is solved by estimating a1 and τ1 given
measurements of r(t).

Another special case, which is especially relevant to the current work, is the two-surface model s(t) =
a1δ(τ − τ1) + a2δ(τ − τ2) which leads to

r(t) = a1b(t− τ1) + a2b(t− τ2) + e(t), a1, a2 ≥ 0. (11)

This model holds when the footprint of the laser falls across an edge. Reflections from both near far surfaces
are measured with time delays related to the range to the two surfaces. The sizes of the amplitudes a1 and a2
are functions of the fraction of laser footprint incident on each surface as well as the surface reflectivities. In the
two-surface case, the deconvolution problem is solved by estimating a1, a2, τ1 and τ2 given measurements of r(t).

The full generality of the integral model is needed to account for oblique incidence angles. In this case, a
continuum of pulses are reflected back and are measured by the ladar system. In the following the one and two
surface models are investigated in greater depth.

As described previously, the ELT samples at 2 GHz leading to 7.5 cm of range resolution followed by upsam-
pling by a factor of 10 leading to 7.5 mm resolution. After sampling and interpolation by 10, the single-surface
model (10) becomes

r(nT ) = a1b(nT − τ1) + e(nT ), a1 ≥ 0, (12)

where T is the sample period.



Due to oversampling and assuming that the b(t) is a smooth function, the point target response delayed by a
non-integer multiple of the sample time τ1 may be approximated as the superposition of the two nearest integer
delays

b(nT − τ1) = b
([
n− τ1

T

]
T
)
≈ α1b([n− k1]T ) + β1b([n− (k1 + 1)]T ). (13)

Substituting this approximation into the one and two surface models leads to

r(nT ) = α1b([n− k1]T ) + β1b([n− (k1 + 1)]T ) + e(nT ), (14)

r(nT ) = α1b([n− k1]T ) + β1b([n− (k1 + 1)]T ) + α2b([n− k2]T ) + β2b([n− (k2 + 1)]T ) + e(nT ), (15)

subject to αi, βi ≥ 0. The deconvolution problem is to estimate the parameters αi, βi and ki. In practice, the
number of surfaces is not known and must be determined.

Introducing integer delays into the model enables a convenient matrix-vector formulation. This is accom-
plished as follows. Stack samples of the measured waveform into the vector r, and arrange samples of the delayed
point response into the vector bk,

r =




r(0T )
r(1T )
r(2T )

...
r([N − 1]T )



, bk =




b([0− k]T )
b([1− k]T )
b([2− k]T )

...
b([N − 1− k]T )



. (16)

Define an error vector e similar to r. Then the models (14) and (15) can be written as

r = α1bk1
+ β1bk1+1 + e, α1, β1 ≥ 0, (17)

r = α1bk1
+ β1bk1+1 + α2bk2

+ β2bk2+1 + e, α1, α2, β1, β2 ≥ 0. (18)

Collect the delayed response vectors into the columns of a matrix

B =
[
b0 b1 b2 · · · bM−1

]
. (19)

Note that the B matrix will be wide, i.e. have more columns than rows. Using these definitions, the one and
two surface models in (14) and (15) may be written as

r = Bs + e, s ≥ 0, (20)

where the s vector is mostly zeros with a few non-zero coefficients placed in a fashion to select and scale the
appropriate columns of the B matrix,

s =
[

0 · · · 0 α1 β1 0 · · · 0 α2 β2 0 · · · 0
]T
, (21)

where the α1, β1 values occupy the k1, k1 + 1 positions and the α2, β2 values occupy the k2, k2 + 1 positions in
the vector. Vectors such as s in (21) having only a few non-zero elements are called sparse vectors.

The matrix-vector model (20) subsumes the single-surface and double-surface models as special cases. It is
also more general in that more than two surfaces can be modeled as well. As the number of surfaces increases,
the vector becomes less and less sparse. Because the laser footprint is small spatially, the probability of large
numbers of surfaces is very small. The most likely scenarios are one and two surfaces. Therefore, a complete
specification of the model for the received data must include a statement about the sparsity of s, such as

r = Bs + e subject to s ≥ 0 and s is sparse. (22)

Notice that the statement about the sparsity of s places no constraints on the location of the non-zeros in s or
the exact number of non-zeros.



The deconvolution problem may now be stated as

min.
s
‖r−Bs‖2 subject to s ≥ 0 and s is sparse. (23)

Note that a solution to this problem provides full information about both the surfaces falling under the laser
footprint. Because s is constrained to be sparse, the location of the non-zero elements provides information
about the range to the surfaces. A non-zero element in the kth position indicates a reflecting surface near the
range R = c/kT . The value of the non-zero elements provide a measure of the strength of the reflection from
the surface.

The statement about the sparsity of s in (23) is usually expressed in terms of the so called 0-norm ‖s‖0, which
simply counts the number of non-zero elements in a vector. The value of ‖s‖0 in (21) is 4 because there are
exactly 4 non-zero elements in the vector. A sparse vector will generally have a small value for ‖s‖0. Therefore,
one way to formulate the sparse optimization problems is by augmenting the penalty function

min.
s
‖r−Bs‖2 + λ‖s‖0 subject to s ≥ 0 (24)

where λ is a user selectable parameter that is used to weight the relative importance of fitting the data (i.e.
making ‖r−Bs‖2 small) versus finding a sparse solution (i.e. making ‖s‖0 small). Note that setting λ = 0 leads
to the non-negative LS problem

min.
s
‖r−Bs‖2 subject to s ≥ 0. (25)

Typically LS solutions are dense rather than sparse because all the columns of B are used to approximate r.

At the other extreme is a very large value for λ. In this case, the penalty function places so much weight on
encouraging the elements of s to be zero that they all become zero. As λ runs the gamut from λ = 0 to large
values, the solution s to (24) starts off dense and becomes more and more sparse until finally the solution is all
zeros. Therefore the value of λ can be used to encourage s to be sparse. In the context of deconvolution of ladar
data, sparse solutions are physically meaningful. Thus, the optimization in (24) can be used for deconvolution.

It is well known from the theory of compressive sensing and sparse reconstruction10 that the 0-norm regular-
ized problem (24) is NP hard, and it is common to substitute a 1-norm leading to the relaxed problem

min.
s
‖r−Bs‖2 + λ‖s‖1 subject to s ≥ 0. (26)

The 1-norm relaxation yields a convex optimization problem13 which is easily solved using readily available
computer codes.14,15 Solutions to the modified problem (26) approximate the solutions of (24). The utility of
the relaxation is mathematical tractability. The quality of the results are evaluated on real ladar data.

The sparsity algorithms were evaluated on a small set of ladar pulses. Figures 4 and 6 show deconvolution
results for two example ladar shots at a calibrated target panel consisting of two surfaces separated by 25 cm
(Fig. 4) and by 5 cm (Fig. 6). The data were oversampled by 4, giving the estimated coefficients the physical
meaning of range measurements quantized to approximately (7.5cm)/4 = 1.875 cm resolution. These results show
that the solution to unconstrained LS problems tend to be dense (all coefficients are non-zero). Enforcing the
non-negativity constraint alone leads to solutions in which many coefficients are zero. The dominant coefficients
provide information about the range to the targets (and the distance between surfaces). The non-negatively
constrained solution still leaves spurious non-zero elements that may be detected as false reflections. The non-
negative LS results correspond to λ = 0 in the 1-norm regularlized non-negative LS problem (26). To further
reduce these spurious coefficients and drive toward more sparse solutions, the λ parameter is increased. As λ
increases from 0 to larger values, the spurious coefficients shrink to zero and solution becomes more and more
sparse. Note that in the 25 cm separation example, raising λ does not significantly alter the retrieval of the 25
cm separation between surfaces. This may be observed in Fig. 5 where the gap between the dominant coefficients
is about 14 which corresponds to a physical separation of 14× 1.875cm = 26.25cm, a close match to the 25 cm
of actual separation.
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Figure 4. Deconvolution results for surfaces separated by 25 cm for six LS based algorithms: unconstrained LS (top left),
non-negative LS (top right), and for 1-norm regularized non-negative LS using four different values for the regularization.
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Figure 5. Same as Fig. 4 but zoomed to see detail around the dominant coefficients.

In the 5 cm separation example, the zoomed detail in Fig. 7 shows the dominant NNLS coefficients are sepa-
rated by about 6 coefficients which corresponds to 6×1.875cm = 11.25cm of estimated separation. As λ increases
to λ = 1.6, the gap decreases to 3 coefficients corresponding to 3× 1.875cm = 5.625cm of estimated separation.
In this case, we see that regularization improves the estimation accuracy and gives a good approximation to the
actual separation of 5 cm.

4. EXPERIMENT ON DECONVOLUTION TECHNIQUES

To measure the ability to resolve two surfaces, a flat target was placed 493 meters from the ELT. The face of
the target had a 20 cm × 20 cm square hole, or slot, cut out from the middle. The area surrounding the slot



0 20 40 60 80 100
−1000

−500

0

500

1000
Least Squares (LS)

0 50 100
0

5

Nonneg. Least Squares (NNLS)

0 50 100
0

5

L1-Reg. NNLS, λ=0.4000

0 50 100
0

5

L1-Reg. NNLS, λ=0.8000

0 50 100
0

5

L1-Reg. NNLS, λ=1.2000

0 50 100
0

5

L1-Reg. NNLS, λ=1.6000

Figure 6. Deconvolution results for surfaces separated by 5 cm for six LS based algorithms: unconstrained LS (top left),
non-negative LS (top right), and for 1-norm regularized non-negative LS using four different values for the regularization.
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Figure 7. Same as Fig. 6 but zoomed to see detail around the dominant coefficients.
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Figure 8. Estimated depth of the slot. The value of λ = 0 is the non-negative LS solution. Circles mark the mean values
and error bars mark one standard deviation. (The values are slightly offset to prevent overlapping symbols.)

was large enough to act as a front surface. A second surface was placed directly behind the slot, which was
adjustable to different depths, creating two surfaces that have a variable distance between them.

To obtain shots that hit both surfaces, the ELT scanner was set to scan across the slot in the board. From the
pointcloud, ten or more shots that hit both surfaces were found and processed using the different deconvolution
techniques. Figure 8 shows the results of the experiment as the distance between the two surfaces varied between
14 cm and 10 cm. These surface separations are at values at the low end of resolution performance obtained
previously,8 and allow for better understanding of the different sparse deconvolution methods investigated. In
the figure, circles mark the mean of the shot depth, and vertical error bars mark one standard deviation in the
measurements. The position of the points in the figure were offset slightly to prevent overlap from obscuring the
different cases.

The plots show that as the slot depth decreases, the non-negative LS solution diverges from the true value and
remains at about 13 cm. In contrast, the sparsity algorithms continue to estimate a decreasing depth. Although
some bias is present, the best performance is obtained when λ is between 2.0 and 2.25. The variance of the
measurements, as marked by error bars, indicates that the uncertainty of the measurements is less than 1.5 cm,
and is approximately the same as the depth decreases.

An example of the point cloud extracted from the waveform data taken at a slot depth of 14 cm is given in
Figure 9. Red points represent the location of first returns, and blue points are from second returns. Note that
the second returns appear at the edge of the slot. Of interest, but not yet understood, is the slight amount of
“splitting” of the single returns in the center of the slot visible in the figure.

An example of a processed return waveform with detections is given in Figure 10, where both a 10 cm depth
and a 14 cm depth are shown. A constant fraction method was used to detect the returns.16 To prevent multiple
false detections that are possible if the deconvolved surface response alone is used (see Figures 5 and 7), frequency
domain regularization is also applied as discussed by Neilsen,17 with a bandwidth of about 1

4 of the upsampled
rate.

5. CONCLUSION

The LS solution to the deconvolution problem leads to a dense solution that is of little use. This is because of
the noise in the system, which leads to the spurious deconvolution signal is matched with no constraint. When
the non-negative constraint is applied, which meets physical constraints of the surface response, the solution
becomes sparse. However, when additional sparsity constraints are applied with a reasonable level of weighting,



Figure 9. Example point cloud from detections. The view is from the top looking at several scans across the slot. Red
points are first returns, blue points are second returns.
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Figure 10. Example pulses with two detections. The detected signal with a separation of 10 cm (top), and the signal with
a separation of 14 cm (bottom). The red vertical lines mark the detection points.



the solution moves to a more sparse solution and has the potential to improve the solution. Experiments indicate
that the solution at small surface separations is improved slightly.

The resolution of the surface response is affected by the sample rate. The original signal is sampled at a rate
that contains only a few samples per pulse, spaced at 7.5 cm in range. When the signal is upsampled and sparse
deconvolution is applied, the resolution improves and the variance of the solution is less than 1/3 of the original
sample distance. The effect on upsample rate remains a parameter for study in sparse deconvolution of ladar
signals.
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[16] Kilpelä, A., Pulsed Time-of-Flight Laser Range Finder Techniques for Fast, High Precision Measurement
Applications, PhD thesis, University of Oulu (2004).

[17] Neilsen, K. D. and Budge, S. E., “Enhanced resolution edge and surface estimation from ladar point clouds
containing multiple return data,” Opt. Eng. 52, 113103 (Nov. 2013).


