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Abstract 
 

Apomixis is a complex trait of great interest to the agricultural community, 

as it has the potential to fix hybrid vigor in many agriculturally significant crops.  

Although apomixis has been studied extensively morphologically, the genetic 

and epigenetic factors responsible for apomixis are still very poorly understood.  

As no apomictic species has been sequenced and annotated, various low-cost 

tools and techniques are being utilized to begin profiling the trait.  These include 

cross-species microarrays using probe masking, which deletes information from 

array probes that do not hybridize to the genomic DNA of the cross species.  

Despite their limitations, these tools are providing a strong informatics 

foundation for which future, more robust profiling procedures can be conducted. 
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Introduction 

Apomixis 

Apomixis in flowering plants is a process in which viable seeds develop 

from maternal cells that are not products of genetic recombination and the fusion 

of male and female gametes (Ozias-Akins & van Dijk, 2007).  Apomixis occurs in 

all major clades of eukaryotes where sex predominates (Carman et al., 2011).  

There are two main phases of apomixis in eukaryotes.  The first is apomeiosis, 

which is the formation of a genetically unreduced, parthenogenetically 

competent egg from cells that would normally undergo female meiosis, or from 

cells closely associated with those that undergo female meiosis.  The second 

major phase is parthenogenesis, which is embryo formation without fertilization. 

Apomixis is of major interest because conferring the apomixis phenotype 

to domesticated plants, especially to agriculturally significant hybrids, would 

revolutionize global agriculture (Spillane et al., 2004).  Apomixis in the 

agriculture industry is predicted to slash hybrid seed production costs by 80%, 

and increase yield of existing inbred crops, by converting them to high yielding 

hybrids, by 15-30% (Carman, 2004; Ozias-Akins & van Dijk, 2007). 

Apomixis gives rise to viable embryos based completely on the maternal 

genome and appears visually to be quite similar to the normal sexual pathway 

with some important differences in how the final embryo is formed (Tucker & 

Koltunow, 2009).  Apomixis in angiosperms is generally divided into three 
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categories, apospory, diplospory, and adventitious embryony.  These categories 

are based on the method the species utilizes to form the embryo. 

Types of Apomixis 

In apospory, the megaspore mother cell (MMC) generally undergoes a 

normal meiosis as per usual in the sexual pathway.  However, all products of this 

meiosis degenerate.  Concurrently, one or more somatic cells in the surrounding 

nucellus produce a functional 2n embryo sac (megagametophyte) that contains a 

parthenogenetically competent 2n egg, which is genetically identical to the 

mother plant.  Diplospory, on the other hand, involves the production of a 

functional 2n embryo sac from an ameiotic MMC.  This may occur directly from 

the MMC, a process called Antennaria type diplospory, or after a modified 

meiosis that results in two unreduced spores that are genetically identical to the 

mother plant.  In the latter case, the embryo sac forms from one of the two 2n 

megaspores and the other one degenerates.  This is called Taraxacum type 

diplospory and is the form that occurs in the common dandelion.  Mature 

genetically unreduced embryo sacs of aposporous or diplosporous species are 

either 4-nucleate, with an egg, two synergids and a single polar body, or 8-

nucleate, with an egg, two synergids, two polar bodies (central cell), and three 

antipodals, depending on the species.  Fertilization of the egg is not required for 

embryo development in apomictic plants.  However, fertilization of the single 

polar body, in species that produce a 4-nucleate embryo sac, or of the central cell, 

in species that produce an 8-nucleate embryo sac, is often required for 
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endosperm development, a condition called pseudogamy.  Without endosperm 

development, parthenogenesis usually aborts.  However, some apomicts 

produce both embryos and endosperm without fertilization.  This is referred to 

as autonomous apomixis (Carman, 1997; Tucker & Koltunow, 2009). 

The genetic and molecular control of apomixis remains largely an enigma 

(Schranz et al., 2006; Tucker & Koltunow, 2009), although it is generally thought 

that apomixis has repeatedly arisen across time and space from sexual 

progenitors in multiple genera, families and kingdoms (Carman, 1997; Hörandl, 

2009; Lampert, 2008).  The pursuit to elucidate the functional control of apomixis 

has been a crop scientist goal for the past 100 years but with little or no success 

(Asker & Jerling, 1992).  As a result, there are at least three theories in the current 

literature that attempt to explain apomixis: 1) it is a mutation-based anomaly 

involving a simple or possibly complex genetic locus (Ozias-Akins & van Dijk, 

2007), 2) it is caused by developmental asynchronies that result from 

hybridization or polyploidization (Carman, 1997), and 3) it is an ancient 

epigenetically regulated alternative to sexual reproduction with remnant 

capacities more or less conserved across eukaryotes (Carman et al., 2011). 

The Het Chromosome 

A traditional approach to the apomixis question has been the idea that 

apomixis is controlled by a single locus, such as the Het chromosome (Ozias-

Akins & van Dijk, 2007).  These Het chromosomes, or heterochromatic 

chromosomes, are intriguing because of their presence in Boechera and are 
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reminiscent of apomixis-conferring chromosomal regions found in some grasses 

(Ozias-Akins & van Dijk, 2007).  However, when Schranz et al. crossed 92 

different lines of Boechera, with successful hybridizations of sexual and apomictic 

species, weak F1 seed production suggested that apomixis was not transferred in 

any of these crosses, including those that would have contained the Het 

chromosome (Schranz et al., 2005).  Although the Het chromosome may be 

involved in the apomixis phenotype, this is a strong argument against the single 

locus theory. 

Mutation of Sexual Pathway 

During most of the last century, apomixis was thought to be a result of the 

mutation of meiotic/syngamy genes in sexual species (Mogie, 1992; Savidan, 

2000).  In 1997, Carman proposed that most of the reproductive anomalies 

observed in angiosperms, such as bispory, tetraspory and apomixis, evolved 

through hybridization and asynchronous expression of the resulting combined 

transcriptomes.  Apomixis would have thus arisen as a sexual dysfunction 

created by duplicate genes in hybrids (Carman 1997; 2007).  Despite elements of 

Carman’s asynchrony hypothesis having recently been extended to include 

sequence variation in sRNAs and transposable elements that regulate aspects of 

sporogenesis, gametogenesis and embryogenesis (Tucker & Koltunow, 2009; 

Rodrigues et al., 2010; Armenta-Medina et al., 2011), there remains a 

fundamental weakness to this hypothesis.  As addressed by Carman et al., 

apomictic species do not occur randomly among angiosperms as would be 
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expected if apomixis is an “anomaly of sex” created de novo by hybridization-

induced asynchrony or epigenetic miss-communications (Carman et al., 2011).  

Ancient Mechanism 

A third hypothesis, based partially on preliminary data important to the 

research proposed herein and the results of a recent study of Sorghum bicolor 

(Carman et al., 2011), suggests that apomixis is actually an ancient mechanism 

conserved in its molecular components to a greater or lesser extent across 

eukaryotes.  Similar to what has been observed in cyclically apomictic animals, 

i.e., those that are apomictic during favorable conditions and sexual during stress, 

e.g., aphids and water fleas (Suomalainen et al., 1987), and facultatively 

apomictic plants (Knox & Heslop-Harrison, 1963), it is postulated that 

environmental control and stress signaling (either perceived or actual) could be 

the trigger that switches reproduction between the sexual and the asexual 

pathways.  This switching mechanism would be under epigenetic control and 

more or less conserved across eukaryotes (Carman et al., 2011).  If this is correct, 

it could represent a major paradigm shift in understanding the evolutionary 

relationship between sex and apomixis. 

 

Recent Genetic Profiling of Apomixis 

Genetic profiling research relative to apomixis is being studied in many 

species.  Zeng et al. recently used 454 sequencing to analyze differentially 

expressed genes between Pennisetum squamulatum and an apomictic derived 
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backcross line containing only one foreign chromosome that confers apomixis via 

a region of the chromosome referred to as the Apospory Specific Genomic 

Region (ASGR).  Interestingly, 6 of the 7 significant GO terms found when 

comparing all libraries were all related to ribosomal or translational functions 

(Zeng et al., 2011).  Also in the Pennisetum genus, Sahu et al. performed a 

transcriptome analysis of P. glacum and its apomeiotic interspecific hybrid 

(BC1GO) by using suppression subtractive hybridization (Sahu et al., 2011).  

Although the majority of differentially expressed transcripts (40%) were found to 

be of unknown function, the next largest significant categories were stress 

response (11%), metabolism related (10%), and translational functions (8%).  

In an expressed sequence tag (EST) and differential display analysis, 

Cervigni et al. compared sexual and apomictic genotypes of Eragrostis curvula, 

including across ploidy levels, through differential display.  Interestingly, in both 

apomictic vs. sexual comparisons, regardless of ploidy, both groups produced 

overexpressed genes of ribosomal and translational function in the apomictic 

groups.  Also in the apomicts were metabolism related genes, such as AMP and 

ATP synthase beta chains (Cervigni et al., 2008). 

Laspina et al. investigated differential expression between sexual and 

apomictic inflorescences in Paspalum notatum.  Results indicated that apomixis in 

Paspalum could be related to silencing of large genomic regions and altered 

expression of a signal transduction cascade (Laspina et al., 2008).  Ochogavia et al.  

continued this by investigating expression levels of retrotransposons in sexual 
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and apomictic P. notatum .  Two retrotransposons in particular, N17 and N22, 

were found to be highly expressed in the sexuals compared to the apomicts 

(Ochogavia et al., 2011). 

Further support of epigenetic control of the apomixis phenotype came 

from another differential expression study, also using differential display, by 

Polegri et al.  Two hundred and two cDNA-AFLP amplicons were generated 

from sexual and apomictic Paspalum simplex flowers, and of all apomixis-linked 

alleles, the most frequent biological functions were related to signal transduction 

and were interpreted as epigenetic regulators.  This lead the authors to suggest 

that even if the key genes to trigger apomixis were few, the downstream effects 

of these apomixis-linked factors could be great (Polegri et al., 2010). 

Based on these recent publications, it would be reasonable to assume that 

epigenetic regulators and signaling play a large role in the apomixis phenotype.  

In addition, ribosomal genes and translational processes appear to be heavily 

involved, which would also relate to significant metabolism functions.  Future 

research in the study could benefit from broader expression profile techniques, 

such as microarrays and next generation sequencing, to provide a larger picture 

of the differing transcriptomes of sexual and apomictic species.  Further work is 

needed to better challenge the existing hypotheses concerning the evolution of 

apomixis. 
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Boechera as a Model Genus 

Commonly used species for studying apomixis can be found in the genus, 

Boechera.  Boechera, until recently, was referred to as Arabis (Böcher 1951; 

Naumova et al., 2001), but was later renamed after the person who first 

demonstrated apomixis in the genus, Tyge W. Böcher.  It is considered a model 

genus for studying apomixis as it contains obligate to facultative apomicts and 

plants that are fully sexual.  The apomicts appear to be of hybridogenous origins 

(Sharbel et al., 2009; Beck et al., 2011).  Boechera is perhaps the only genus in 

which naturally occurring diploid apomicts exist (Rushworth et al., 2011).  

Essentially all other naturally occurring apomicts are polyploids (Carman, 1997).  

This makes it an ideal plant material for conventional genetic analyses and for 

gene expression comparisons (Sharbel et al., 2010).  Two of the aforementioned 

types of apomixis exist in the genus, apospory and diplospory.  Ovules of B. 

microphylla are nearly 100% diplosporous and about 30% aposporous, i.e., both 

mechanisms are observed to occur in about 30% of all ovules.  B. lignifera, on the 

other hand, is nearly 100% diplosporous (Carman et al., 2007).   Boechera also has 

a broad geographic distribution across North America, making it easily 

accessible for a large research community (Rushworth et al., 2011). 

  Additionally, helping to supplement genetic research, the morphological 

process of apomixis in Boechera has been well documented.  Boechera, although 

containing the only documented natural apomicts in the Brassicaceae (Schranz et 

al., 2006), is closely related to the heavily studied model organism Arabidopsis 
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thaliana (Al-Shehbaz et al., 2006; Beilstein et al., 2006).  The two genera are 

thought to be separated by only 12-19 million years (Arabidopsis Genome 

Initiative, 2000).  Consequently, this close relationship provides an abundant 

wealth of molecular data and genetic annotation that can be extrapolated, with 

caution, to Boechera for molecular analyses.  The impending release of the 

Boechera genome sequence will further increase the relevance of apomixis 

research involving Boechera (http://genome.jgi.doe.gov/genome-projects/). 

 

Expression Profiling and Analyses 

Microarrays and Preprocessing 

Miniaturized microarrays are powerful, high-throughput tools that have 

been used over the last decade to study entire transcriptomes of various well-

known genomes.  Microarrays have multiple uses, including the study of gene 

expression profiles, nucleotide polymorphisms, and genotyping through the 

targeting of nucleotides such as DNA, RNA, or cDNA.  Although various types 

of microarrays and manufacturers exist, Affymetrix has become a popular, cost-

effective provider of arrays over recent years.  Affymetrix GeneChip® arrays are 

one such type of microarray that have proven to be an effective, useful, and 

easily reproducible approach to studying gene expression, especially at the scale 

of the entire genome.  GeneChip® arrays are typically on a 1.28 cm2 chip 

containing over 500,000 locations that represent every transcribed gene in an 
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organism’s entire transcriptome, and are designed to follow a simple and 

effective protocol for optimal reproducibility (Lipschutz et al., 1999). 

Genes on a GeneChip® array are represented by sets of “probes,” which 

are short oligonucleotides, typically 25 base-pairs that have been specifically 

designed to target unique regions of each gene (Lipschutz et al., 1999).  Although 

the number of probes per set can vary by organism, a typical GeneChip® probe 

set can contain 11-20 probe “pairs” (Bolstad et al., 2005).  A probe pair is a duo of 

probes that are designed to target the same region of a specific gene but are 

different from each other in that one contains a single-nucleotide polymorphism 

at the thirteenth base-pair (Mismatch probe, or MM probe), while the other 

matches the gene region perfectly (Perfect Match probe, or PM probe) (Lipschutz 

et al., 1999).  Thus, each gene in the organism is represented by a unique set of 

PM and MM probe pairs that target unique regions of the gene.  As an example, 

for each gene in the Arabidopsis thaliana transcriptome, there are 11 PM and 11 

MM probes that target each of the approximate 22,800 genes on the chip 

(Affymetrix, 2010).  This specific targeting of a probe pair to a unique region of 

only one gene is intended to strengthen the results by allowing each probe set to 

detect only a single gene.  When the chips are manufactured, probe sets are 

attached and randomly scattered across the array. 

For gene expression analyses, RNA is derived from the sample and is 

labeled with biotin.  Once prepped, labeled RNA is then washed across the array 

and hybridization begins to occur.  Hybridization refers to the matching and 
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binding of the array-attached probe sets to their complementary regions of the 

sample RNA.  More RNA of a particular gene means more hybridization to the 

complementary probe pairs on the array.  Once the washing is completed, a laser 

is used to induce biotin fluorescence.  Light detectors and filters are used to 

collect the emitted signal and a computer then reads and interprets the intensity 

emitted from each probe (Lipschutz et al., 1999).  Resulting intensities for each 

individual probe are then recorded and written into a large data storage (CEL) 

file, which can then be used for expression analysis (Gautier et al., 2004). 

Before microarray data can be interpreted however, it is necessary to 

preprocess the data – especially when comparing across multiple samples.  

Various algorithms exist, such as the Robust Multichip Average (RMA), GCRMA, 

MAS 5.0, or PLIER.  Typical steps for most algorithms include correcting for 

background noise, normalization to account for systematic and technical 

differences between arrays, and summarization of the probe intensities to the 

gene expression level (Bolstad et al., 2005).  Many studies have been done as an 

attempt to distinguish a “best” algorithm, though there is no definitive answer 

(Bolstad et al., 2003; 2005).  For example, the RMA algorithm was shown to be 

superior over the commonly used MAS 5.0 algorithm in a classic statistical study 

(Irizarry et al., 2003).  Nevertheless, which normalization algorithm that is used 

is typically dependent on the data being studied or simply by user preference. 

To preprocess microarray data, probe intensity files (CEL) are first read 

into bioinformatic software, such as R with Bioconductor packages, GeneSpring, 
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or HarVEST (Gautier et al., 2004; Morinaga et al., 2008).  Quality control of the 

data can be done, followed by the use of any elected preprocessing algorithm.  

Regardless of the algorithm chosen, during preprocessing the algorithm utilizes 

an important file called the Chip Description File (CDF), which is what allows 

the software to interpret the raw probe intensity file.  A Chip Description File is a 

key or map to the CEL files that annotate and describe each and every probe in 

the half-million locations on the entire chip (Gautier et al., 2004).  CDFs are 

designed by the manufacturer and are specific to each type of chip made.  For 

example, the Arabidopsis ATH1121501 GeneChip® has its own designated CDF, 

while each human genome GeneChip® has a separate, distinct CDF (Affymetrix, 

2010).  As is discussed with probe masking, modification of the CDF can also 

cause specific probes to be ignored completely by the preprocessing algorithm.  

The results of preprocessing are a conversion from a raw probe intensity file to a 

data set of summarized gene expression levels for each gene on the array. 

Once microarray data has been preprocessed, analysis of the expression 

levels and subsequent interpretation can finally be done.  In the case of testing 

multiple species or treatment groups, a very common and informative analysis is 

a differential expression test, which is a method of identifying genes that differ 

significantly in their expression across treatments (Scholtens & von Heydebreck, 

2005).  There are many types of differential expression algorithms, ranging from 

linear model based approaches such as limma (Smyth, 2005), to permutation-

based approaches like SAM (Significance Analysis of Microarrays, Tusher et al., 
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2001) and maxT (Pollard et al., 2005), and just as with preprocessing, selection of 

an algorithm can simply be user preference.  Regardless of choice, differential 

expression tests are powerful tools for discovering meaningful genes at a 

statistical level, even finding significant genes that might have been missed in 

biological assays. For example, Tusher et al. identified genes that were being 

expressed in human lymphoblastoid cell lines as a direct result of exposure to 

ionizing radiation by utilizing a differential expression analysis.  Microarrays 

were performed for the lymphoblastoid cells at both exposed and non-exposed 

treatment levels, and the resulting gene expression levels were compared against 

each other using SAM.  As a result of the analysis, previously unrecognized 

genes were identified that participate in repair of damaged DNA (Tusher et al., 

2001). 

As powerful, easily available, and cost-effective microarrays are, there is 

still a severe limitation to the use of microarrays to a large part of the scientific 

community.  Chips are designed by organism, and are limited only to well-

known genomes that are mostly or fully sequenced.  This fact increases their 

power, but also limits studies to a select number of organisms, thus making non-

sequenced genomes, even those with high economic or scientific value, very 

difficult to study at the entire transcriptome level.   

More recent platforms have helped to overcome weaknesses inherit in the 

microarray technology, such as next-generation (NGS) pyrosequencing 

techniques.  Unlike microarrays, platforms such as 454 Sequencing, Illumina, and 
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SOLiD can evaluate absolute transcript levels of sequenced and unsequenced 

organisms, detect novel transcripts and isoforms, identify previously annotated 

50 and 30 cDNA ends, map exon/intron boundaries, reveal sequence variations 

(e.g. SNPs) and splice variants and many more (Mutz et al., 2012).  Although not 

as powerful as NGS techniques, this microarray transcriptome data will certainly 

provide useful and insightful information moving forward and will supplement 

future next-generation and third generation platform experiments. 

Cross-Species Arrays and Probe Masking 

Due to the wealth of gene expression information that can be obtained 

from a microarray, many have recently tried utilizing cross-species hybridization 

(CSH) as a cost-effective approach to allow the study of organisms for which no 

microarray is designed.  CSH microarray analyses are done by applying sample 

RNA to a target array for which the sample was not designed, usually a closely 

related species (Bar-Or et al., 2007).  There are many successful examples of 

cross-species microarrays, such as bovine, pig, and dog on human arrays (Ji et al., 

2004), Brassica oleracea on Arabidopsis thaliana arrays (Hammond et al., 2005), 

canine on human (Grigoryev et al., 2005), two Thlapsi species on A. thaliana 

(Hammond et al., 2006), chimpanzee on human (Toleno et al., 2009), banana on 

rice (Davey et al., 2009), horse on human (Graham et al., 2009), and many others 

(Spiewak Rinaudo & Gerin, 2004; Becher et al., 2004; Hudson et al., 2007; 

Morinaga et al., 2008; NASCArrays:Xspecies, 2010).   
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There are fundamental problems that must be solved before conducting 

CSH studies.  These include genome dissimilarity, cross-hybridization, and 

sequence polymorphisms, which can lead to bias.  For example, if the sample 

RNA has amply diverged in terms of sequence, not necessarily in function, from 

the oligonucleotide probes on the array, that particular gene may be called as low 

expressed or not present at all.  Even with good hybridization in some probes, if 

a sufficient amount of probes in a set do not hybridize well enough, a gene will 

be classified as low or not present, leading to its possible exclusion from the 

analysis.  As an example, Benovoy et al. showed that simply a single nucleotide 

polymorphism in a probe’s target sequence is enough to disrupt hybridization, 

with increasing severity depending on the SNP’s position in the sequence 

(Benovoy et al., 2008).  To counter this problem, various microarray procedure 

modifications can be taken to help insure that the quality of the expression data 

is good and not misinterpreted such as increasing the amount of repetitive 

samples, using longer oligonucleotide probes, or bioinformatic data filtration 

(Bar-Or et al., 2007).  Data filtration is perhaps the most cost-effective example, 

due to the ease of massive data manipulation using bioinformatic software.   

Although various methods of data filtration have been used over the last 

few years, gDNA-based filtration, first introduced by the Nottingham Arabidopsis 

Stock Centre (Craigon et al., 2004), has become an increasingly effective and 

simplistic data filtration method, and is considered an excellent choice for 

researchers that study non-sequenced species (Bar-Or et al., 2007).  This is due to 
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the fact that gDNA-based filtration does not require any prior genomic 

knowledge of the species being studied, including its relation to the target 

microarray being used, though any information known increases the power of 

any data-filtration approach.  gDNA-based data filtration is a three step process: 

1) gDNA is used for an initial cross-species array, 2) probe masking is conducted 

based on the gDNA test using Xspecies procedures, and 3) results from probe 

masking are used in subsequent CSH array analyses. 

In the first step, gDNA is applied directly to the target microarray.  For 

example, before testing expression levels of drought and stress response genes in 

Musa (banana) on rice microarrays, gDNA samples were first taken from Musa 

leaves and applied to a rice array (Davey et al., 2009).  Genomic DNA, where 

every gene is present, represents the best possible scenario for the CSH array and 

judges hybridization efficiency of the sample to the target array.  If a probe has 

good hybridization to the genomic DNA, then that probe will be used in the gene 

expression analysis.  On the contrary, probes with less hybridization affinity to 

the gDNA are removed from the study though masking.  gDNA arrays are 

performed for each species being studied, and are done on the same array that 

the subsequent gene expression analysis will be done on.  Intensities for the 

gDNA arrays are read as a standard microarray and are stored as a CEL file, 

which are then used to calibrate chips for probe-masking (Hammond et al., 2005).  

Probe-masking, the next step in gDNA-based filtration, involves reducing 

the number of array probes used in microarray analysis, and has been utilized by 
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groups and methods other than just gDNA-based approaches.  Probe reduction 

can be done by a variety of criteria, ranging from known percent-sequence 

similarity between probe and target, to comparative performance of 

homologous-species probes (Ji et al., 2004; Grigoryev et al., 2005) without losing 

specificity of detection or sensitivity (Antipova et al., 2002).  In the case of gDNA 

filtration, probe masking is individual probe intensity-based, which determines a 

probe’s inclusion to the analysis by how well each probe hybridized to gDNA.  

For example, if a particular probe did not hybridize well to the target gDNA 

sample, then it will be filtered out as probe masking begins.  

As outlined by Hammond et al., probes are analyzed and removed by a 

Perl script called “Xspecies,” which reads a gDNA CEL file.  Xspecies is given a 

user-defined intensity threshold, and removes all probes with individual 

intensities below that defined threshold.  If all probes of a particular probe set are 

removed, the probe set is also removed.  After analysis of the gDNA CEL is 

completed, a new Chip Description File (CDF) is produced that only contains the 

remaining probe pairs and probe sets, which becomes a species-specific CDF that 

optimizes cross-species array analyses.  As threshold selection is user-defined 

and therefore very subjective, masking at multiple thresholds is typically done to 

maximize probe set retention while optimizing the number of significant genes 

(Hammond et al., 2005). 

The final step to gDNA-based filtration is the substitution of the Xspecies 

created CDF into the cross-species array analyses (NASCArrays:Xspecies 2010).  
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For gene expression studies, rather than the actual designed CDF for the array, 

the custom CDF is used to interpret the probe intensities, limiting the study only 

to those probes with good intensities, or in other words, utilizing only probes 

with good hybridization (Chain et al., 2008).  RMA is typically used for probe 

masking as it excludes all MM probes in the analysis, as MM probes have been 

shown to disrupt microarray analyses by detecting true signal (Irizarry et al., 

2003), and sometimes hybridizing more efficiently to cross-species arrays than 

their PM counterparts (Grigoryev et al., 2005).   

Retaining only probes with good hybridization intensities through gDNA-

based masking has been well demonstrated in cross-species arrays to increase the 

array sensitivity, detect greater numbers of significant genes, and provide 

expression levels consistent with other methods of measuring gene expression 

for a wide range of organisms that vary in similarity to the cross-species array 

targets (Hammond et al., 2005; Morinaga et al., 2008; Davey et al., 2009; Graham 

et al., 2009).  gDNA-based masking has even been shown to improve 

homologous-species arrays (Graham et al., 2007).  For example, when Hammond 

et al. studied shoot transcriptomes of two different Thlapsi species, gDNA-based 

data filtration was done utilizing unique CDFs for both of the Thlapsi species on 

cross-species Arabidopsis thaliana microarray results.  Not only was detection of 

significant genes increased in both species, results were more consistent with RT-

PCR expression levels (Hammond et al., 2006). 
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Although presenting its own unique set of challenges, cross-species 

hybridization microarrays are a viable and cost-effective option in the studying 

of species that do not have pre-manufactured chips.  Through additional 

measures such as data filtration using gDNA-based probe masking, cross-species 

arrays can be further strengthened, and novel traits and organisms can be 

explored at the entire transcriptome level. 

Gene Ontologies and Enrichments 

 Another useful tool for the bioinformatic study of transcriptomes is the 

use of known genetic annotation, such as Gene Ontology (GO).  GO is a 

structured hierarchical classification system that categorizes genes into groups 

based on certain criteria, which are of three types: Molecular Function (MF), 

Biological Process (BP), or Cellular Component (CC) (Gene Ontology, 2000).  

GOs span across organisms, and allow for database interoperability.  For 

example, if a gene was found to be part of the electron transport chain, it would 

be assigned a GO of GO:0006118, and would be considered a part of a Biological 

Process (BP).  Thus, any genes found to be involved in the electron transport 

chain would also be assigned this same GO value thus demonstrating a clear 

relationship of any genes involved in similar processes no matter the organism.  

The same could be said of any gene found in similar cellular locations or 

molecular functions (Gene Ontology, 2000).  

 GOs can also be used as information in filtering and useful statistical tests 

as well.  For example, it could be valuable to test for differential expression of 
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genes in a specific ontology only.  Even GOs themselves can be used as a test of 

significance, as categories of genes can be tested for over-representation in a 

transcriptome.  Since many complex phenotypes can involve the use of multiple 

genes or gene products, GOs can be used to identify significant processes or 

functions that may be strongly correlated to the resulting phenotype of interest.  

By using one of many global testing algorithms, such as the publicly available 

AmiGO (Gene Ontology, 2000), GOrilla (Eden et al., 2009), or GOEAST (Zheng & 

Wang, 2008), specific groups of genes can be found to be significant, even in 

large datasets with large expression profiles. 

 With the establishment of the Gene Ontology Consortium in 2000, the 

number and specificity of GOs have continued to expand and evolve, providing 

a powerful, multi-organismal reference.  Using GOs not only increases data 

interoperability between variable research projects but also provides additional 

biological relevance to informatics results.  All Gene Ontology information can 

be found on the consortium’s website at www.geneontology.org. 

 

Development for Analyses of Microarray Data 

gDNA-based Probe Selection 

Probe-pairs from the A. thaliana ATH1-121501 Gene-Chip® array 

(Affymetrix, 2010) were selected for transcriptome analysis of Boechera species 

using a gDNA-based probe-selection strategy based on the hybridization of 

gDNA to the PM probe. Total genomic DNA was extracted from B. formosa, B. 
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microphylla, and B. lignifera leaves and mailed to the Nottingham Arabidopsis 

Stock Center, UK.  In return, a .CEL file containing the gDNA hybridization 

intensities between genomic DNA fragments of the three Boechera species was 

generated.  Probe-pairs from the .CEL file were selected for subsequent 

transcriptome analysis using a .CEL file parser script (Xspecies) written in the 

Perl programming language.  The Perl script (NASCArrays:Xspecies, 2010) was 

designed to create probe mask (.CDF) files compatible with a range of microarray 

analysis software packages.  A probe-set was selected when it was represented 

by one or more PM probe-pair(s) per probe-set.  Modification of the Xspecies Perl 

code was also done to allow multiple thresholds of “minimum probe” 

restrictions, so as to test masking against a minimum of 2-7 probes per probe set, 

including restrictions on odd or even numbers (Appendix). 

There is no a priori restriction of a suitable gDNA hybridization intensity 

threshold for probe mask file generation in a target species.  Thus, the algorithm 

allows for a user-specified gDNA hybridization intensity threshold for probe 

mask file generation.  Files (.CDF) were generated using a range of gDNA 

hybridization intensity thresholds (from 0 to 1000). Thresholds generating the 

best balance of significant gene results and gene set retention were used 

(Appendix).  After an optimal threshold was chosen for each species, a 

combined-species CDF was selected that utilizes all probes retained from every 

optimal threshold file (Appendix).  This was done to insure that no artificial 
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significance would be introduced due to probes being masked in one species' 

array, and not the other. 

Differential Expression Analyses 

All differential expression analyses were done in R using multiple 

Bioconductor packages including those for quality control (Appendix).  For the 

Affymetrix ATH1 arrays, the affy package (Gautier et al., 2004) was used to load 

expression data.  In order to use the custom .CDF files for probe masking, the 

makecdfenv package (Irizzary et al., 2006) was used.  For array quality control, the 

affyPLM package (Bolstad et al., 2005) was used.  The RMA (Robust Multi-chip 

Average) algorithm using default parameters was used to normalize chip data.  

This normalization algorithm does not use the mismatch (MM) probes and is 

more appropriate for probe masking.  The samr package (Tibshirani et al., 2010), 

which implements the Significance Analysis of Microarrays (Tusher et al., 2001) 

permutation algorithm, was used to determine significance for each differential 

analysis.  For additional confirmation of significant genes, a permutation-based, 

nested factorial model was also used, called affyNFM (Stevens et al., 2010).  For 

all analyses default parameters and a Benjamini-Hochberg false discovery rate 

(BH-FDR) of 0.05 was used (Benjamini & Hochberg, 1995).   

Python Data Organization 

 Various scripts were written to organize and analyze data sets in both 

Boechera and Sorghum.  Manipulation of results delivered in R, GOEAST, and 

TAIR (Lamesch et al., 2011) was important and common throughout analyses.  
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Most Python scripts for Boechera projects were created ad hoc to fulfill various 

reporting and data manipulation needs.  In the case of the Sorghum project, a 

Kashiwa BioImaging script (KBI: Kashiwa BioImaging, 2007) was modified to 

run my own created module, allowing for large gene sets to be BLASTed against 

the TAIR database.  A Python script was also written to utilize the online TAIR 

gene search tool.  Excerpts and examples of the Python code can be found in the 

appendix. 

 

Results 

Utilizing Affymetrix ATHI Arabidopsis thaliana GeneChip arrays, 

differential expression was tested between various species of Boechera of both 

sexual and apomictic reproductive type, testing at comparable stages of ovule 

and whole pistil development.  Ovules of sexual B. formosa and apomictic B. 

microphylla and B. lignifera were collected by the Carman lab from 2005-2010 and 

processed using microarrays.  For consistency between studies, additional data 

involving collected pistils, instead of ovules, were obtained for apomictic B. 

lignifera and sexual B. stricta using the microarray platform.  Five separate tests 

were conducted, utilizing 28 microarrays, between stages 1 and 3 of sexual B. 

formosa and B. stricta, and apomictic B. lignifora and B. microphylla, with 2 reps per 

stage.  Two stages of development with two reps of whole pistils were also 

compared – between apomictic B. lignifora and obligate sexual B. stricta.  Every 
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analysis was repeated using optimal masking thresholds (Appendix), and results 

can be seen in Table 1.   

 
Table 1 Results for all SAM analyses, both masked and non-masked.  L – Boechera lignifora, M 
– Boechera microphylla, F – Boechera formosa, S – Boechera stricta. 

Ovule Analyses 
No Masking Masking 

Stages Species Up Down Total Up Down Total 
1 L vs. M 2 0 2 1 0 1 

1-2 L 0 0 0 0 0 0 
1-2 M 0 1 1 0 1 1 
2 F vs. L 368 378 746 695 778 1473 
2 F vs. M 482 441 923 1009 913 1922 
2 L vs. M 5 3 8 16 7 23 

2-3 L 0 0 0 0 0 0 
2-3 M 0 0 0 0 0 0 
2-3 F 0 1 1 0 0 0 
3 F vs. L 415 1495 1910 622 1676 2298 
3 F vs. M 1038 1971 3009 1433 2102 3535 
3 L vs. M 0 0 0 3 1 4 

3-4 L 1487 2309 3796 1646 2027 3673 
3-4 M 1142 993 2135 1375 1319 2694 
4 L vs. M 2932 1202 4134 2920 2059 4979 

1-3 L 0 0 0 0 0 0 
1-3 M 2 1 3 4 0 4 

                                                   Pistil Analyses  
1-1 L vs. S 995 969 1964 1172 1298 2470 
1-2 L vs. S 595 817 1412 408 439 847 
1-2 S vs. L 968 699 1667 949 781 1730 
1-2 L 148 89 237 117 3 120 
1-2 S 311 328 639 82 154 236 
2-2 L vs. S 320 497 817 92 374 466 

 

 A nested factorial model was additionally used, and results were 

compared against the SAM results for additional confirmation of significance, 

and as a gauge of the efficacy of masking.  NFM results can be found in Table 2.   
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Table 2: Comparison of similarities between significant genes produced by SAM and NFM results.  
L – Boechera lignifora, M – Boechera microphylla, F – Boechera formosa, S – Boechera stricta. 

Stage Analysis NFM NFM Masked 

2 F vs. L 2981 2918 

2 F vs. M 3064 3008 

3 F vs. L 3253 3054 

3 F vs. M 3303 3154 

1 L vs. S 3365 3184 

2 L vs. S 2938 2655 
 
Similarity between the methods, both with masking and without, can be seen in 
Table 3. 
 
 
Table 3 Comparison of results between NFM and SAM.  L – Boechera lignifora, M – Boechera 
microphylla, F – Boechera formosa, S – Boechera stricta. 

SAM & NFM 

Stage Analysis SAM In Common % Similar 

1 L vs. S 1964 1402 71.4% 

2 L vs. S 817 717 87.8% 

2 F vs. L & M 304 286 94.1% 

3 F vs. L & M 1184 892 75.3% 

1-3 Sex vs. Apomixis 55 40 72.7% 

1-3 Sex vs. Apomixis 17 13 76.5% 

 
SAM & NFM Masked 

 

1 L vs. S 2470 1661 67.2% 

2 L vs. S 466 413 88.6% 

2 F vs. L & M 815 666 81.7% 

3 F vs. L & M 1602 1093 68.2% 

1-3 Sex vs. Apomixis 132 74 56.1% 

1-3 Sex vs. Apomixis 20 12 60.0% 
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 All significant genes were then uploaded to GOEAST for Gene Ontology 

enrichment.  GOs were generated for both masked and non-masked significant 

gene sets, and totals can be found in Table 4.  Overall, masking showed an 

increase in the total number of significant genes, but a lower number of enriched 

gene ontologies. 

Table 4 Number of enriched Gene Ontologies per stage-by-stage masked comparison.  L – 
Boechera lignifora, M – Boechera microphylla, F – Boechera formosa, S – Boechera stricta. 

Stage Analysis Non-Masked GOs Masked GOs 

1 
 

L vs. S 247 127 

2 L vs. S 118 91 

2 F vs. L 99 103 

2 F vs. M 182 194 

3 
 

F vs. L 327 279 

3 F vs. M 336 327 

1-3 S vs. A 45 47 

1-3 S vs. A 25 12 
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Appendix 
 
Code 
 
Quality controls using R 

#Look at images of residuals: 

library(affyPLM) 

Pset <- rmaPLM(abatch.raw)  #abatch.raw = affy object of CEL files 

par(mfrow=c(2,2)) 

image(Pset, type="sign.resids”) 

 

#Look at raw intensity histographs: 

Tment = c(rep(0,8),rep(1,16))  #sexuals = 0; apomicts = 1 

hist(abatch.raw,col=Tment+1) 

Tment = c(0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12)  #each stage/mode had own T-

level 

hist(abatch.raw,col=Tment+1) 

 

#Check covariance: 

e.mat <- 2^exprs(all.eset) 

gene.mean <- apply(e.mat,1,mean) 

gene.sd <- apply(e.mat,1,sd) 

gene.cv <- gene.sd/gene.mean 

hist(gene.cv) 

hist(log2(gene.mean)) 

hist(gene.cv, xlim=0:1) 

eset.all = rma(abatch.raw) 

 

#MA plot: 

par(mfrow=c(3,3)) 

MAplot(abatch.raw[,(selected_arrays)], loess.col='white', cex=1, cex.main=0.5) 

 

Normalization and DE tests examples using R 

#Non-masked SAM: 

#Lignifora stage 1 vs Stricta stage 1 

library(affy) 

abatch.raw = ReadAffy() 

L1vsS1.exprs = exprs(rma(abatch.raw[,c(1,2,5,6)])) 

T.cell = c(1,1,2,2) 

gn <- rownames(L1vsS1.exprs) 

data <- list(x= L1vsS1.exprs, y=T.cell,geneid=gn, genenames=gn, logged2=TRUE) 

samr.obj <- samr(data, resp.type="Two class unpaired",nperms=1000, random.seed=42) 

delta.table <- samr.compute.delta.table(samr.obj) 

delta.table[,c(1,4,5)] 

delta.table <- samr.compute.delta.table(samr.obj, dels = seq(.54,.7,by=.001)) 

delta.table[,c(1,4,5)] 

#Best delta = 0.566     FDR = 0.04941315 

SAM.tab <- samr.compute.siggenes.table(samr.obj, 0.566, data,delta.table) 

gn.up <- SAM.tab$genes.up[,3]; gn.dn <- SAM.tab$genes.lo[,3] 
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gn.SAM <- c(gn.up,gn.dn) 

length(gn.SAM) 

SAM.tab$ngenes.up 

SAM.tab$ngenes.lo 

 

#Masking using SAM: 

library(makecdfenv) 

allLMF = make.cdf.env("allLMF.cdf", cdf.path = "~/Documents/2009-2011 Utah 

State/Dissertation/Microarray Data/New Boechera Arrays/Work Folder") 

abatch.raw@cdfName <- "allLMF" 

#Lignifora vs. Microphylla stage 1: 

library(affy) 

abatch.raw = ReadAffy() 

Lign1vMicro1.eset = exprs(rma(abatch.raw[,c(9:10,17:18)])) #normalization 

T.cell = c(1,1,2,2) 

gn <- rownames(Lign1vMicro1.eset) 

data <- list(x= Lign1vMicro1.eset, y=T.cell,geneid=gn, genenames=gn, logged2=TRUE) 

samr.obj <- samr(data, resp.type="Two class unpaired",nperms=500, random.seed=42) 

delta.table <- samr.compute.delta.table(samr.obj,) 

delta.table[,c(1,4,5)] 

#Best delta = 2.005705009        FDR =  0.0000000 

SAM.tab <- samr.compute.siggenes.table(samr.obj, 2.005705009, data,delta.table) 

gn.up <- SAM.tab$genes.up[,3]; gn.dn <- SAM.tab$genes.lo[,3] 

gn.SAM <- c(gn.up,gn.dn) 

length(gn.SAM) 

SAM.tab$ngenes.up 

SAM.tab$ngenes.lo 

 

#NFM: 

library(affy) 

abatch.raw = ReadAffy() 

library(nlme);library(perm) 

use.t1 <- c(1, 2) 

use.t2 = c(3,4) 

use.abatch = abatch.raw[,c(7,8,23,24)] 

set.seed(1234) 

use.gn <- geneNames(use.abatch) 

use.wd <- getwd() 

use.filename <- "Form2vsLign2_NFM" 

source("http://www.stat.usu.edu/~jrstevens/affyNFM.R") 

affyNFM(abatch = use.abatch, t1 = use.t1, t2 = use.t2, gn = use.gn, wd = use.wd, filename = 

use.filename) 

 

#Masking using NFM: 

library(makecdfenv) 

allLMF = make.cdf.env("allLMF.cdf", cdf.path = "~/Documents/2009-2011 Utah 

State/Dissertation/Microarray Data/New Boechera Arrays/Work Folder") 

abatch.raw@cdfName <- "allLMF" 

library(affy) 
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abatch.raw = ReadAffy() 

library(nlme);library(perm) 

use.t1 <- c(1, 2) 

use.t2 = c(3,4) 

use.abatch = abatch.raw[,c(7,8,35,36)] 

set.seed(1234) 

use.gn <- geneNames(use.abatch) 

use.wd <- getwd() 

use.filename <- "Form2vsMicro2_NFM_MASKED" 

source("http://www.stat.usu.edu/~jrstevens/affyNFM.R") 

affyNFM(abatch = use.abatch, t1 = use.t1, t2 = use.t2, gn = use.gn, wd = use.wd, filename = 

use.filename) 

 

#Organizing final results in NFM, masked and non-masked: 

source("http://www.stat.usu.edu/~jrstevens/affyNFM.R") 

library(value) 

library(affy) 

library(nlme) 

library(perm) 

use.wd = getwd() 

use.filename = 'Form2vsLign2_NFM'  

use.frame <- read.csv(paste(use.wd, "/", use.filename, ".csv", sep = "")) 

pframe <- nfm.pvals(use.frame) 

head(pframe) 

use.abatch = abatch.raw[,c(7,8,23,24)] 

gn.abatch = geneNames(use.abatch) 

pframe$q <- qvalue(p = pframe$p)$q 

conc.ctl <- as.numeric(pData(use.abatch)[1, ]) 

conc.trt <- as.numeric(pData(use.abatch)[4, ]) 

f <- data.frame(gn = gn.abatch, C = conc.ctl, T = conc.trt)39  

g <- merge(f, pframe) 

write.csv(g[g$p<=0.05,], file = "Form2vsLign2_NFM_RESULTS.csv") 

 

Data organization using Python 

#!/usr/bin/env python 

#GOID_matcher.py 

'''This code is used to find GOs that are in GOEAST outputs, and then organize  

them into a table, showing which GOs are represented in more than one analysis'''  

 

import csv 

 

GOID_and_counts = {} 

GOID_and_files = {} 

GOID_and_term = {} 

filenames = [] 

output = [] 

 

#Shell code to get FileNames.txt: find . -name '*GOs.txt' > GO_FileNames.txt 

filenamefile = open('GO_FileNames.txt','r') 
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GOfile = open('GOs UpDown Reg Gene Counts Masked.csv','r') 

 

for row in filenamefile: 

    filenames.append(row.strip()) 

     

for row in GOfile: 

    GOID_and_term[row.strip().split(',')[1]] = row.strip().split(',')[2] 

 

def GOID_in_set_counter(GOID): 

    '''Counts the number of times a GOID is found in GOEAST outputs''' 

    if GOID in GOID_and_counts: 

        GOID_and_counts[GOID] = GOID_and_counts[GOID] + 1 

    else: 

        GOID_and_counts[GOID] = 1 

   

def GOID_in_set_names(GOID, containing_file): 

    '''Attaches the names of the files for in which the GOID is contained''' 

    if GOID in GOID_and_files: 

        GOID_and_files[GOID] = GOID_and_files[GOID] + "; " + str(containing_file) 

    else: 

        GOID_and_files[GOID] = str(containing_file) 

         

 

if __name__ == '__main__': 

    for filename in filenames: 

        print filename 

        current_file = open(filename.strip(),'r') 

        for row in current_file: 

            GOID_in_set_counter(row.strip().split('\t')[0]) 

            GOID_in_set_names(row.strip().split('\t')[0],filename.strip().split('/')[-1]) 

             

    for key, val in GOID_and_counts.items(): 

        output.append([key,GOID_and_term[key],val,GOID_and_files[key]]) 

         

    print "Results saved as \'GOs in common.csv\'" 

     

    outfile = open('GOs in common.csv','wb') 

    outwriter = csv.writer(outfile) 

    outwriter.writerows(output) 

    outfile.close() 

            

 

#GO_Counter.py 

'''This code matches and counts the number of GOIDs found in each given file, 

and summarizes them into a table''' 

 

import csv 

GOs = {} 

GOs_and_loci = [] 
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GOs_and_terms = {} 

last_GOID = "GO:00000000" 

output = [] 

 

def loci_in_GOIDs(GOID, locus): 

    if GOID in GOs: 

        if locus in GOs_and_loci: 

            print "already found" 

        else: 

            GOs[GOID] = GOs[GOID] + 1 

            GOs_and_loci.append(locus) 

    else: 

        GOs[GOID] = 1 

        GOs_and_loci.append(locus) 

 

         

if __name__ == '__main__': 

    datafile = open('1-3_SignificantGenes*_GOs_Masked.txt', 'r') 

    for row in datafile: 

        #print row 

        GOID = row.strip().split('\t')[4] 

        term = row.strip().split('\t')[3] 

        locus = row.strip().split('\t')[0] 

        if len(locus) >= 10: 

            print "Bad locus:" + locus 

        current_GOID = GOID 

        if current_GOID != last_GOID: 

            GOs_and_loci = [] 

        loci_in_GOIDs(GOID, locus) 

        last_GOID = current_GOID 

        GOs_and_terms[GOID] = term 

         

    for key, val in GOs.items(): 

        output.append([key,GOs_and_terms[key],val]) 

         

    print "Results can be found in \'Summarized GOs.csv\'" 

         

    outfile = open('Summarized GOs.csv','wb') 

    outwriter = csv.writer(outfile) 

    outwriter.writerows(output) 

    outfile.close() 

 

 

#!/usr/bin/env python 

#Siggene_matcher.py 

'''This code is used to find significant genes that are in multiple DE analyses 

outputs, and then organize them into a table, showing which genes are  

represented in more than one analysis'''  
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import csv 

 

probes_and_counts = {} 

probes_and_files = {} 

probes_and_loci = {} 

filenames = [] 

output = [] 

 

#Shell code to get FileNames.txt: find . -name *RESULTS.csv > FileNames.txt 

filenamefile = open('FileNames.txt','r') 

locusfile = open('AllArrayProbes_NoMasking_LocusFile.txt','r') 

 

for row in filenamefile: 

    filenames.append(row.strip()) 

     

for row in locusfile: 

    probes_and_loci[row.strip().split('\t')[0]] = row.strip().split('\t')[1] 

 

def gene_in_set_counter(gene): 

    '''Counts the number of times a gene is found in siggene outputs''' 

    if gene in probes_and_counts: 

        probes_and_counts[gene] = probes_and_counts[gene] + 1 

    else: 

        probes_and_counts[gene] = 1 

   

def gene_in_set_names(gene, containing_file): 

    '''Attaches the names of the files in which the gene is contained''' 

    if gene in probes_and_files: 

        probes_and_files[gene] = probes_and_files[gene] + "; " + str(containing_file) 

    else: 

        probes_and_files[gene] = str(containing_file) 

         

if __name__ == '__main__': 

    for filename in filenames: 

        print filename 

        current_file = open(filename.strip(),'r') 

        for row in current_file: 

            #print len(row) 

            gene_in_set_counter(row.strip().split(',')[1]) 

            gene_in_set_names(row.strip().split(',')[1],filename.strip().split('/')[-1]) 

             

    for key, val in probes_and_counts.items(): 

        output.append([key,probes_and_loci[key],val,probes_and_files[key]]) 

         

    outfile = open('Significant_Genes_in_Common.csv','wb') 

    outwriter = csv.writer(outfile) 

    outwriter.writerows(output) 

    outfile.close() 
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    print "Output saved as Significant_Genes_in_Common.csv" 

                               

 

#!/usr/bin/env python 

#GO_Result_Organizer.py 

'''The purpose of this script is to read in the "plain text" GOEAST output and 

then find the corresponding SAM output file, with the purpose of matching the  

enriched GO categories to the actual significant genes that enriched them, 

denoting the number of genes that were found to be up-regulated and down- 

regulated in a final count.''' 

 

 

from __future__ import division 

import csv 

 

def up_down_gene_counter(GOID, genesset, GO_up_reg, GO_down_reg, up_reg_genes, down_reg_genes): 

    '''Takes the counts of up and down-regulated genes for all genes for a  

    given GOID''' 

    genes = [] 

    #print row[0] 

    genes.append(genesset) 

    #print row[7].strip().split("//") 

    GO_up_reg[GOID] = 0 

    GO_down_reg[GOID] = 0 

    for geneset in genes: 

        while (len(geneset)>0): 

            probe = "\""+geneset.pop().strip()+"\"" 

            #print probe 

            if probe in up_reg_genes: 

                #print "upreg!" 

                if GOID in GO_up_reg: 

                    GO_up_reg[GOID] = GO_up_reg[GOID] + 1 

                else: 

                    GO_up_reg[GOID] = 1 

            if probe in down_reg_genes: 

                #print "downreg!" 

                if GOID in GO_down_reg: 

                    GO_down_reg[GOID] = GO_down_reg[GOID] + 1 

                else: 

                    GO_down_reg[GOID] = 1 

     

    return GO_up_reg, GO_down_reg 

 

def GOEAST_loader(open_file): 

    '''Loads the GOEAST file into a list''' 

    header = 0 

    GOEAST_data_array = [] 

    datafile = open(open_file, 'r') 

    for row in datafile: 



44 

        if header == 0: 

            header = 1 

        else: 

            GOEAST_data_array.append(row.strip().split('\t')) 

     

    return GOEAST_data_array 

 

def SAM_output_loader(open_file): 

    '''loads corresponding SAM output file''' 

    header = 0 

    directories = {} 

    up_reg_genes = [] 

    down_reg_genes = [] 

    CSV_name_file = open("../FileNames.txt") 

    for directory in CSV_name_file: 

        directories[directory.strip().split("/")[-1].split("_")[0]] = directory.strip() 

    test_name = open_file.strip().split(".txt")[0].split("_")[0] 

    print "Parsed: " + test_name 

         

    datafile = open("../"+directories[test_name], 'r') 

    for row in datafile: 

        if header == 0: 

            header = 1 

        else: 

            gene = row.strip().split(",")[1] 

            score = float(row.strip().split(",")[2].strip("\"")) 

            if score > 0: 

                up_reg_genes.append(gene) 

            elif score < 0: 

                down_reg_genes.append(gene) 

             

    return up_reg_genes, down_reg_genes 

 

 

def count_up_reg(GO, gene): 

    '''Adds to GO dictionary if the gene is found to be upregulated''' 

    if gene in probes_and_counts: 

        probes_and_counts[gene] = probes_and_counts[gene] + 1 

    else: 

        probes_and_counts[gene] = 1 

 

 

 

if __name__ == '__main__': 

     

    #Shell code to get FileNames.txt: find . -name *GOs.txt > FileNames.txt 

    filenamefile = open('GO_FileNames.txt','r') 

     

    output = [["Stage Comparion","GOID","Term","#Up","#Down","Total"]] 
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    for filename in filenamefile: 

        print filename 

        GO_up_reg = {} 

        GO_down_reg = {} 

        genes = [] 

        header = 0 

        current_file_name = filename.strip().split('/')[-1] 

        input_GOEAST_file = GOEAST_loader(current_file_name) 

        up_reg_genes, down_reg_genes = SAM_output_loader(current_file_name) 

        for row in input_GOEAST_file: 

            GO_up_reg, GO_down_reg = 

up_down_gene_counter(row[0],row[7].strip().split("//"),GO_up_reg,GO_down_reg,up_reg_genes, 

down_reg_genes) 

             

            output.append([current_file_name.strip().split(".txt")[0].split("_")[0], row[0], 

row[2],GO_up_reg[row[0]], GO_down_reg[row[0]],row[3]]) 

     

    outfile = open('GOs UpDown Reg Gene Counts Masked.csv','wb') 

    outwriter = csv.writer(outfile) 

    outwriter.writerows(output) 

    outfile.close() 

     

    print "Output saved as GOs UpDown Reg Gene Counts.csv" 

 

#!/usr/bin/env python 

#genes_2_enrich_GOs.py 

'''Counts the number of genes used to enrich GOs.''' 

 

import os 

 

def genes_2_enrich_counter(filename, gene_set): 

    temp_list = gene_list_getter(filename) 

    #print len(temp_list) 

    for generow in temp_list: 

        while (len(generow)>0): 

            #print generow 

            current_gene = generow.pop().strip() 

            #print current_gene 

            gene_set[current_gene] = 1 

             

    return gene_set 

         

def gene_list_getter(filename): 

    temp_list = [] 

    datafile = open(filename,'r') 

    header = 0 

    for row in datafile: 

        if header == 0: 
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            header = 1 

        else: 

            temp_list.append(row.strip().split("\t")[8].strip().split("//")) 

         

    return temp_list 

 

 

if __name__ == '__main__': 

 

    filenamefile = open('FileNames.txt','r')  

     

    for filename in filenamefile: 

        current_file_name = filename.strip().split('\n')[0] 

        #print current_file_name 

        empty_gene_set = {} 

        gene_set = genes_2_enrich_counter(current_file_name, empty_gene_set) 

         

        print "For " + current_file_name + ": " +str(len(gene_set)) 

 

Sorghum analyses code 

#!/usr/bin/env python 

#TAIR_gene_searcher.py 

'''Uses the gene search tool at the top of the TAIR website to query a list of 

genes, and then returns the top hit for the search for each gene''' 

 

import sys, os, time, urllib, optparse 

import cStringIO, xml 

 

import common, drv_fasta 

 

def query(gene): 

    #"seq -> htmlStr" 

    cgiArgs = {} 

    site = 

"http://www.arabidopsis.org/servlets/Search?type=general&search_action=detail&method=1&show_obsol

ete=F&name="+gene+"&sub_type=gene" 

    params = urllib.urlencode(cgiArgs) 

    while True: 

        try: 

            f = urllib.urlopen(site, params) 

        except IOError, a: 

            print "network error: %s" % str(a) 

            print "retry..." 

            continue 

        else: 

            break 

 

    return f.read() 
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datafile = open("/Users/Lamarck/Documents/2009-2011 Utah 

State/Dissertation/Code/BioPython/genes_2_search.txt", 'r') 

 

for g in datafile: 

    g_gene = g.strip() 

    htmlStr = query(g_gene) 

    open('/Users/Lamarck/Documents/2009-2011 Utah 

State/Dissertation/Code/BioPython/genesearch/'+g_gene+'.txt','w').write(htmlStr) 

    print "finished: "+g_gene 

 

 

#!/usr/bin/env python 

#TAIRblasterParser.py 

'''Module by Jonathan Cardwell that takes list of sequences and directory of  

TAIR BLAST results to a CSV file with all BLASTed sequences alongside 

the best TAIR blast locus result and e-value.  Creates 3 files: 1) TAIR BLAST 

results; 2) text file with all TAIR loci to be used as the background file; 

and 3) text file with loci of genes found to be significant.''' 

 

if __name__ == '__main__': 

    print "Does not run on its own.  Run TAIR_Blaster.py." 

 

import csv 

 

def tairBP(seqs, output, siggene_file): 

    '''function for consolidating txt results files, parsing, and then  

    creating the final results, CSV file, and the two files needed for  

    AMIGO enrichemnts''' 

    temp = [] 

    temp2 = temp[:] 

    background_loci = [] 

    siggenes_loci = [] 

    siggenes = [] 

    for siggene in siggene_file: 

        siggenes.append(siggene.strip()) 

    for x in seqs: 

        current_seq_file = x+'-seq.txt' 

        datafile = open(current_seq_file,'r') 

        datareader = csv.reader(datafile) 

        for row in datafile: 

            temp.append(row.strip().split('.')) 

            temp2.append(row.strip().split(' ')) 

        background_loci.append([temp[21][0]]) 

        if x in siggenes:  

            siggenes_loci.append([temp[21][0]]) 

        if temp2[21][-1][0]=='e': #special case if eval has scientific notation 

            output.append([x,temp[21][0],str('1'+temp2[21][-1])]) 

        else: 

            output.append([x,temp[21][0],temp2[21][-1]]) 
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        temp = [] 

        temp2 = [] 

        datafile.close() 

         

    make_files(output,siggenes_loci,background_loci) 

 

def make_files(output, siggenes_loci, background_loci): 

    output_file = open('TAIR_BLAST_Results.csv','wb') 

    datawriter = csv.writer(output_file) 

    datawriter.writerows(output) 

    output_file.close() 

     

    siggenes_loci_file = open('siggenes_loci.txt','wb') 

    datawriter = csv.writer(siggenes_loci_file) 

    datawriter.writerows(siggenes_loci) 

    siggenes_loci_file.close() 

     

    background_loci_file = open('background_loci.txt','wb') 

    datawriter = csv.writer(background_loci_file) 

    datawriter.writerows(background_loci) 

    background_loci_file.close() 

     

    print "Created \'TAIR_BLAST_Results.csv\', \'siggenes_loci.txt\', and \'background_loci.txt\'" 

 

‘’’Except from modified “tair_fasta.py” script written by KBI: Kashiwa Bioimaging.  Downloaded from 

http://hasezawa.ib.k.u-tokyo.ac.jp/zp/Kbi/AtBlasts.  Script was modified to run my 

TAIRblasterParser.py script. 

    output = [["SeqID","TAIR_locus","evalue"]] 

    siggene_file = open(siggeneFile,'r') 

    TAIRblasterParser.tairBP(seqs,output,siggene_file) 

    print "Sequences blasted: " + str(len(seqs)) 

    print "Begin at %s, End at %s" % (startTime, common.getIsoTime()) 

    print "Elapsed time: " + str(round(time.time() - newStartTime,2)) + " secs" 

    return 0 

 

Excerpt of “Xspecies” modification in Perl: 

 # Replace old list with new list 

 $probes->{$probename}->probe_pairs($newprobepairs); 

 

 # If a probeset has no probes left, we have to remove the entire probeset 

 

 $evenP = (scalar @{$probes->{$probename}->probe_pairs()}); 

 $evenP2 = $evenP/2; 

 

 if (($evenP2==5)||($evenP2==4)||($evenP2==3)){ 

  $random_number = int(rand($evenP)); 

  splice(@{$probes->{$probename}->probe_pairs()},$random_number,1); 

  $num_probes_removed++; 

  $num_probes_kept--; 
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 } 

 

 if ($evenP<5) { 

     $num_probesets_removed++; 

     delete $probes->{$probename}; 

 } else { 

     $num_probesets_kept++; 

  } 
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Appendix figure 1 Plots used in determination of optimal intensity thresholds for masking by 
species (in bold). Optimization was considered the highest amount of probe set and probe pair 
retention. Combined CDF masking file was created from the joint usage of each species’ optimal 
threshold.  As no gDNA arrays were available for B. stricta, it is subsequently not represented 
here.  The combined file of lignifora, microphylla, and formosa was used for all masking analyses.  
For instructions on creating a masked CDF, refer to NASCArrays:Xspecies, 2010. 
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Appendix Table 1 Tabular version of the determination of optimal probe masking CDF threshold.  
Rows in bold were the selected thresholds utilized for masking. 
Lignifora         

Threshold Probe Pairs Retained Probe Sets Retained % Sets Kept % Pairs Kept 
50 178871 22717 99.87% 71.52% 
75 113820 22521 99.01% 45.51% 

100 79973 21741 95.58% 31.98% 
150 40366 18096 79.56% 16.14% 
200 23428 13426 59.03% 9.37% 
250 14672 9382 41.25% 5.87% 
300 9841 6546 28.78% 3.93% 
350 7011 4636 20.38% 2.80% 
400 5243 3354 14.75% 2.10% 
450 4117 2479 10.90% 1.65% 

Microphylla         
50 216432 22739 99.97% 86.54% 
75 166427 22703 99.81% 66.54% 

100 129170 22602 99.37% 51.65% 
125 102607 22381 98.40% 41.03% 
150 83238 21947 96.49% 33.28% 
200 57440 20517 90.20% 22.97% 
250 41540 18293 80.42% 16.61% 
300 31089 15821 69.56% 12.43% 
350 23992 13575 59.68% 9.59% 
400 18833 11449 50.33% 7.53% 
450 15024 9570 42.07% 6.01% 
500 12236 8053 35.40% 4.89% 

Formosa         
50 223630 22739 99.97% 89.42% 

100 131253 22631 99.49% 52.48% 
150 81490 21953 96.51% 32.58% 
200 54587 20305 89.27% 21.83% 
250 38794 17799 78.25% 15.51% 
300 28507 15194 66.80% 11.40% 
350 21685 12774 56.16% 8.67% 
400 16961 10678 46.94% 6.78% 
450 13561 8914 39.19% 5.42% 
500 10971 7409 32.57% 4.39% 
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