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ABSTRACT

Experimental Analysis of the Effects of Manipulations in Weighted Voting Games

by

Ramoni Olaoluwa Lasisi, Doctor of Philosophy

Utah State University, 2013

Major Professor: Dr. Vicki H. Allan
Department: Computer Science

Weighted voting games are classic cooperative games which provide compact represen-

tation for coalition formation models in human societies and multiagent systems. As useful

as weighted voting games are in modeling cooperation among players, they are, however,

not immune from the vulnerability of manipulations (i.e., dishonest behaviors) by strategic

players that may be present in the games. With the possibility of manipulations, it becomes

difficult to establish or maintain trust, and, more importantly, it becomes difficult to assure

fairness in such games. For these reasons, we conduct careful experimental investigations

and analyses of the effects of manipulations in weighted voting games, including those of

manipulation by splitting, merging, and annexation. These manipulations involve an agent

or some agents misrepresenting their identities in anticipation of gaining more power or

obtaining a higher portion of a coalition’s profits at the expense of other agents in a game.

We consider investigation of some criteria for the evaluation of game’s robustness to

manipulation. These criteria have been defined on the basis of theoretical and experimen-

tal analysis. For manipulation by splitting, we provide empirical evidence to show that the

three prominent indices for measuring agents’ power, Shapley-Shubik, Banzhaf, and Deegan-

Packel, are all susceptible to manipulation when an agent splits into several false identi-

ties. We extend a previous result on manipulation by splitting in exact unanimity weighted
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voting games to the Deegan-Packel index, and present new results for excess unanimity

weighted voting games. We partially resolve an important open problem concerning the

bounds on the extent of power that a manipulator may gain when it splits into several false

identities in non-unanimity weighted voting games. Specifically, we provide the first three

non-trivial bounds for this problem using the Shapley-Shubik and Banzhaf indices. One of

the bounds is also shown to be asymptotically tight.

Furthermore, experiments on non-unanimity weighted voting games show that the

three indices are highly susceptible to manipulation via annexation while they are less

susceptible to manipulation via merging. Given that the problems of calculating the Shapley-

Shubik and Banzhaf indices for weighted voting games are NP-complete, we show that, when

the manipulators’ coalitions sizes are restricted to a small constant, manipulators need to

do only a polynomial amount of work to find a much improved power gain for both merging

and annexation, and then present two enumeration-based pseudo-polynomial algorithms

that manipulators can use. Finally, we argue and provide empirical evidence to show that

despite finding the optimal beneficial merge is an NP-hard problem for both the Shapley-

Shubik and Banzhaf indices, finding beneficial merge is relatively easy in practice. Also,

while it appears that we may be powerless to stop manipulation by merging for a given

game, we suggest a measure, termed quota ratio, that the game designer may be able to

control. Thus, we deduce that a high quota ratio decreases the number of beneficial merges.

(128 pages)
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PUBLIC ABSTRACT

Ramoni Olaoluwa Lasisi

This dissertation investigates weighted voting games and three methods of manipulat-

ing those games, called splitting, merging, and annexation. The manipulations involve an

agent or some agents misrepresenting their identities in anticipation of gaining more power

over the outcomes of games. Indeed, in open anonymous environments, manipulation can

be easy and cheap to achieve. We provide clear and sufficient discussion on related work and

backgrounds to motivate this research topic, which certainly deserves attention. Weighted

voting games are among key cooperative games, and the manipulations considered in this

dissertation are natural, and have practical applications, that are likely to raise interests in

the game theory and artificial intelligence communities.

We provide interesting theoretical and simulation results for the two broad classes

of weighted voting games - unanimity and non-unanimity weighted voting games. In the

anaylses and experiments, the following prominent power indices are considered to mea-

sure the influence of players: Shapley-Shubik, Banzhaf, and Deegan-Packel. The results we

propose in this work fit under the models of deception and fraud, as well as models and

mechanisms for establishing identities. If an agent can increase its power, as evidenced

by a power index, it is more likely to employ any of these forms of manipulation, and it

becomes difficult to maintain trust. Thus, awareness of various levels of power indices sus-

ceptibility to manipulation allows users to informatively select a power index. This provides

some assurance of identity, which is crucial for establishing and maintaining trustworthy

interactions. This study also increases our indepth understanding of these manipulations in

weighted voting games and their effects, which may provide insights that are needed in the

development of methods to reduce the effects of the menace in the future.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Weighted voting games (WVGs) are important in multiagent systems because of their

usage in automated decisions making. One way of modeling cooperation among players

for making joint decisions that is frequently found in the real world is via the use of

WVGs [1]. WVGs are widely studied [2–4]. Prominent real-life situations where WVGs have

found applications include the United Nations Security Council, the Electoral College of the

United States, the International Monetary Fund [5, 6], the Council of Ministers, and the

European Community [2]. Other areas of application of WVGs include economics, political

science, neuroscience, threshold logic, reliability theory, distributed systems [7], and multi-

robot team formation for distributed coverage [8]. Also, Nordmann and Pham [9] have con-

sidered reliability and cost evaluation of weighted dynamic-threshold voting-systems. These

systems are used in target detection, pattern recognition, safety monitoring, and human

organization systems. The issue of WVGs design has also recently received the attention of

many reseachers in the field. See the work of [10–12] for some examples of WVGs design

issues.

WVGs represent mathematical abstractions of voting systems. In a WVG, a quota is

given and each voter has an associated weight. Voters express their opinions through their

votes by electing candidates to represent them or influence the passage of bills. A subset

of agents, called a coalition, whose total weight meets or exceeds the quota, is said to be

winning. However, in the more traditional homogeneous voting system [13], which is a special

case of voting in which all voters have unit weight, the winning coalition is determined by

the majority of the agents. A voter’s weight in a game is the number of votes controlled by

the voter, and this is the maximum number of votes she is permitted to cast. The weights
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of agents may correspond to resources or skills available to the agents, while the quota is

the amount of resources or skills required for a task to be accomplished. For example, in

search and rescue, robotic agents put their resources (i.e., weights) together in large natural

disaster environments to reach the necessary levels (i.e., quota) to save life and property.

It is natural to naively think that the numerical weight of an agent directly determines

the corresponding strength of the agent in a WVG. The measure of the strength of an agent

in a game is termed its power. This is the ability of an agent to influence the decision-making

process. Although a larger weight by an agent makes it more likely that an agent affects

the outcome of a WVG, the weight of an agent in a game is not typically proportional to

its power [14]. Consider, for example, a WVG of three voters, a1, a2, and a3 with respective

weights 6, 3, and 1. When the quota for the game is 10, then a coalition consisting of all

the three voters is needed to win the game. Thus, each of the voters is of equal importance

in achieving the winning coalition. Hence, they each have equal power irrespective of their

weight distribution, in that every voter is necessary for a win. The three prominent power

indices for computing agents’ power found in the literature are the Shapley-Shubik [15],

Banzhaf [16, 17], and Deegan-Packel [18] indices. These power indices are used in this

dissertation to analyze the effects of manipulations in WVGs. Other lesser known power

indices are the Holler-Packel [19] and Johnston [20] power indices.

The Shapley-Shubik, Banzhaf, and Deegan-Packel indices satisfy the axioms that char-

acterize a power index, have gained wide usage in political arena, and are the main power

indices found in the literature [3]. The indices have been defined on the framework of sub-

sets of winning coalitions in the game they seek to evaluate. A wide variation in the results

they provide can be observed. This is due to the different methods of computation of the

associated subsets of the winning coalitions.These indices measure the influence of voters

differently.

Computing the Shapley-Shubik, Banzhaf, and Deegan-Packel indices of players in

WVGs is NP-complete [4, 21], and admits pseudo-polynomial algorithms using dynamic

programming. Efficient exact algorithms using generating functions [22, 23] also exist for
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both the Shapley-Shubik and Banzhaf indices, where the weights of all agents in the WVGs

are restricted to integers. Deng and Papadimitriou [24] have shown that computing the

Shapley values of players in WVGs is #P-complete. We also note that efficient approxima-

tion algorithms exist for computing the Shapley-Shubik and Banzhaf indices. The work of

Bachrach et al. [25] and Fatima et al. [26] provide examples on approximating power indices

in WVGs.

The problem of insincere and manipulative behaviors in votings or elections among

agents is a fundamental problem that has received attention of many reseachers. Different

forms of insincere and manipulative behaviors have been considered. See the recent work of

[27–29]. According to Zuckerman et al. [30], these insincere behaviors include manipulation

(dishonest behavior by voters), control (dishonest behavior by the election authority), and

bribery (dishonest behavior by an outside party). We are concerned in this dissertation with

only the first form of insincere behavior from above, i.e., manipulations involving dishonest

behaviors by players in a game.

Manipulations have been considered in non-cooperative games such as auctions [31,32],

cooperative games [33], and in open anonymous environments [34], such as the internet. The

maiden study of this behavior in the context of weighted voting is the work of [35]. WVGs are

useful in modeling cooperation among players for making joint decisions, but they are not

immune from the vulnerability of manipulations by strategic players in the games. With

the possibility of manipulation, it becomes difficult to establish or maintain trust, and

it becomes difficult to assure fairness in such games. We provide a detailed study and

analysis of the effects of three forms of manipulation in WVGs, called splitting, merging,

and annexation [2, 35–37].

In manipulation by splitting, an agent, termed a manipulating agent, may alter a

WVG by splitting its identity into multiple names and distributing its weight across all

the associated names. This misrepresentation may allow the manipulating agent to gain

more power over the outcome of a game. The altered game consists of the non-manipulating

agents in the original game and the several identities, termed false agents, into which a
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manipulating agent splits. The power of the manipulating agent is thus the sum of the

power of all its associated false agents in the altered game. The manipulating agent hopes

that the value of its accumulated power (from the false agents) will be greater than its value

in the original game. Manipulation occurs when manipulating agents achieve an increase in

power with respect to the original WVGs they manipulate.

WVGs are also subject to another method of manipulation, called merging, which is

also known as alliance or collusion. This manipulation involves coordinated action among

some agents who come together to form a bloc by merging their weights into a single weight

in order to have more power over the outcomes of games [2, 37]. In a beneficial merge,

merged agents are compensated commensurate with their share of the power gained by the

bloc. The agents whose weights are merged into a bloc are referred to as assimilated agents

since they can no more vote as individual voters in the new game. Agents in the merged

bloc are assumed to be working cooperatively and have transferable utility. Thus, proceeds

from merging can easily be distributed among the manipulators without bickering.

Finally, in manipulation by annexation, an agent, termed an annexer, usurps the voting

weights of some other agents in a game [2,37]. We also refer to agents whose voting weights

were acquired as the assimilated agents. The new game consists of the previous agents in

the original game whose weights were not annexed and the bloc of agents made up of the

annexer and the assimilated agents. The annexer also incurs some compensation that is

made to the assimilated agents to forfeit their weights.

The major difference between manipulation by merging and annexation is that, in

merging, the assimilated agents must be compensated commensurate with their share of

the power gained by the bloc if the merging is beneficial, while in annexation, only the

annexer is compensated for the participation of the group. Annexed agents are assumed to

either voluntarily forfeit their weight or be compensated on a one-time basis that is not

related to power.
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1.2 Motivation

Manipulation in open anonymous environments, such as the internet, is hard to de-

tect. According to Yokoo et al. [34], the manipulation can come in several forms which

include collusion or false-name, where a single agent is acting as many agents i.e., split-

ting. Thus, the increased use of online systems (such as trading systems or peer-to-peer

networks where WVGs are also applicable) mean that manipulation remains an important

challenge that calls for attention. Bachrach and Elkind [35] have also interpreted identity

splitting in WVGs as agents trying to obtain a higher share of the grand coalition’s gain or

obtaining more political power by splitting a political party into several other parties with

similar political platforms. The authors then conjectured that false-name manipulation by

splitting is widespread in the real world and stands to pose serious issues in multiagent

environments. Furthermore, Felsenthal and Machover [2, 37] consider a real life example of

annexation where a shareholder buys the voting shares of some other shareholders in a firm

in order to use them for her own interest. Clearly, this action allows the annexer to possess

more shares and makes it easier for her to affect the outcomes of decisions in the firm.

WVGs can be viewed as a form of competition among agents to share the available

fixed power whose total value is always 1. Agents may thus resort to a form of manipulation

(splitting, merging, or annexation) to improve their influence in anticipation of gaining more

power. From the foregoing, it is not difficult to see that manipulation by splitting, merging,

and annexation in WVGs is undesirable. The power increase achieved by manipulating

agents is at the expense of other agents in a game who are being denied the utility that is

due to them.

This research is primarily motivated by the reasons stated above and the need to pro-

vide insights into understanding the details of the problem of insincere and manipulative

behaviors. Furthermore, previous work [14,36] has shown that the problem of finding benefi-

cial split, merge, or annexation is NP-hard for both the Shapley-Shubik and Banzhaf power

indices, and leave the impression that this is indeed so in practice. Although this worst

case complexity for manipulation is daunting enough to discourage would-be manipulators,
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nonetheless, it is possible that real life instances of WVGs are easy to manipulate. We note

that real WVGs are small enough that exponential amount of work may not deter manipu-

lators from participating in manipulations. According to [12], the number of players in most

real life examples of WVGs is between 10 and 50. Hence, there may be little deterrent to

manipulation in practice considering the NP-hardness results of the previous work.

1.3 Organization of the Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 presents prelim-

inaries to provide necessary backgrounds in WVGs, power indices, and formal problem

definition of manipulation by splitting, merging, and annexation in WVGs. Chapter 3 con-

siders susceptibility of power indices to manipulation by splitting. We present new bounds

on manipulation by splitting into several false identities in WVGs in Chapter 4. Chapters 5

and 6 respectively consider experimental investigation and analyses of the effects of manip-

ulation by merging and annexation in WVGs. We conclude in Chapter 7 and give directions

for future work.



7

CHAPTER 2

PRELIMINARIES

2.1 Definitions and Notation

We give the following definitions and notation that are used throughout the disserta-

tion. Let I = {1, . . . , n} be a set of n ∈ N agents. Let {w1, . . . , wn} be the corresponding

weights of these agents. The non-empty subsets, C ⊆ I, are called coalitions. The set I of

all agents is also referred to as the grand coalition.

Definition 1. Weighted Voting Game.

A WVG with quota q ∈ R involving agents I is represented as [w1, . . . , wn; q]. Denote by

w(C), the weight of a coalition, C, derived as the summation of the weights of agents in C,

i.e., w(C) =
∑

j∈C wj . A coalition, C, wins in a game if w(C) ≥ q, otherwise it loses. WVGs

belong to the class of simple voting games. In simple voting games, each coalition, C, has

an associated function v : C → {0, 1}. The value 1 implies a win for C and 0 implies a

loss. So, v(C) = 1 if w(C) ≥ q and 0 otherwise.

The weights of the agents are given in non-increasing order, i.e., w1 ≥ w2 ≥ . . . ≥

wn. Note that this assumption does not affect the definition of the game or the generality

of our results. See also the work of [4, 30] where this assumption has also been used.

Definition 2. Dummy and Critical Agents.

An agent i in a coalition C is dummy if its weight is not needed for C to be a winning

coalition, i.e., w(C\{i}) ≥ q. Otherwise, it is critical to C, i.e., w(C) ≥ q and w(C\{i}) < q.

Definition 3. Unanimity and Non-Unanimity Weighted Voting Games.

A game is a unanimity WVG if there is a single winning coalition in the game, and

every agent in the game is critical to the coalition, otherwise, it is termed a non-unanimity
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WVG. We use the terms exact unanimity, for unanimity WVGs having total weight of

agents, w(I), in the game equal to the quota i.e., w(I) = q, and excess unanimity, for

unanimity WVGs with total weight of agents greater than the quota i.e., w(I) > q.

Definition 4. Minimal Winning Coalition.

A winning coalition C is a minimal winning coalition if every proper subset of C is a

losing coalition, i.e. w(C) ≥ q and ∀T ⊂ C, w(T ) < q.

Definition 5. Power Vectors.

The power vector of a WVG of n agents is simply an n-dimensional vector v ∈ Rn

of the power of each of the agents in the game listed in order. The power of the agents is

computed using a power index.

Definition 6. Shapley-Shubik Power Index.

The Shapley-Shubik power index quantifies the marginal contribution of an agent to the

grand coalition. Each permutation of the agents is considered. We term an agent pivotal in

a permutation if the agents preceding it do not form a winning coalition, but by adding this

agent, a winning coalition is formed. The Shapley-Shubik index assigns power to each agent

based on the proportion of times (in all permutations) it is pivotal . We formally specify the

computation of the power index using notation of [35]. Denote by π a permutation of the

agents, so π : {1, . . . , n} → {1, . . . , n} and by Π the set of all possible permutations. Denote

by Sπ(i) the predecessors of agent i in π, i.e., Sπ(i) = {j : π(j) < π(i)}. The Shapley-Shubik

index, ϕi(G), for each agent i in a WVG G is given by

ϕi(G) =
1

n!

∑
π∈Π

[v(Sπ(i) ∪ {i})− v(Sπ(i))]. (2.1)

For example, consider a WVG G = [10, 7, 6, 4; 18] of four agents. We compute the

Shapley-Shubik power of the first agent (with weight 10) as follows. The agent is pivotal

in 12 of the 4! = 24 permutations in the game. See Figure 2.1 for the 24 permutations

in this game. So, the Shapley-Shubik index of the agent, ϕ1(G) = 12
24 = 0.50. Similarly,
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Figure 2.1. The 24 permutations in the game G = [10, 7, 6, 4; 18] with the quota indicated
as a line through all the permutations indicating the pivotal positions in the permutations.

the second (weight 7), third (weight 6), and fourth (weight 4) agents are pivotal in only

four permutations each. Thus, the power of each of these agents is 4
24 = 0.167. The agent

crossing the quota line is pivotal at that position. The power vector for this game using the

Shapley-Shubik power index is [0.500, 0.167, 0.167, 0.167].

Definition 7. Banzhaf Power Index.

The Banzhaf power index computation for an agent i is the proportion of times i is

critical compared to the total number of times any agent in the game is critical. The Banzhaf

index, βi(G), for each agent i in a WVG G is given by
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βi(G) =
ηi(G)∑
j∈I ηj(G)

(2.2)

where ηi(G) is the number of winning coalitions in which agent i is critical in game G.

Consider using the Banzhaf index to compute the power of the first agent in the WVG

G = [10, 7, 6, 4; 18]. There are four winning coalitions in the game: {{10, 7, 6}, {10, 6, 4},

{10, 7, 4},{10,7,6,4}}. The critical agents in each of the winning coalitions are underlined. The

first agent (weight 10) is critical four times. The second (weight 7), third (weight 6), and

fourth (weight 4) agents are critical in only two winning coalitions each. So, the Banzhaf

index of the first agent, β1(G) = 4
4+2+2+2 = 0.40. Similarly, the power of each of the sec-

ond, third, and fourth agent is 2
4+2+2+2 = 0.20. The power vector for this game using the

Banzhaf power index is [0.40, 0.20, 0.20, 0.20].

Definition 8. Deegan-Packel Power Index.

The Deegan-Packel power index limits consideration for the computation of agents’

power to the minimal winning coalitions in a game. Let MWC be the set of all minimal

winning coalitions in a WVG G and MWCi be the set of all the minimal winning coalitions

in game G that include agent i. The Deegan-Packel power index, γi(G), for each agent i in

game G is given by

γi(G) =
1

|MWC|
∑

C∈MWCi

1

|C|
. (2.3)

We compute the Deegan-Packel power of the first agent for WVG G = [10, 7, 6, 4; 18].

There are three minimal winning coalitions in this game: {{10, 7, 6}, {10, 6, 4}, {10, 7, 4}},

and the first agent (with weight 10) belongs to all of them. The Deegan-Packel index of the

agent, γ1(G) = 1
3

(
1
3 + 1

3 + 1
3

)
= 0.33. Similarly, the second (weight 7), third (weight 6),

and fourth (weight 4) agents belong to two of the minimal winning coalitions each. Thus,

the power of each of these agents is 1
3

(
1
3 + 1

3

)
= 0.22. The power vector for this game using

the Deegan-Packel power index is [0.33, 0.22, 0.22, 0.22].
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Observe that the power vectors computed by the three indices are different. The im-

portance of power indices as solution concepts for measuring voting power and in the dis-

tribution of payoffs make them natural targets for manipulators [30].

2.2 Formal Problem Definition

We provide formal definitions of manipulation by splitting, merging, and annexation in

WVGs. Let k ∈ N. Let φ be any of Shapley-Shubik, Banzhaf, or Deegan-Packel index. De-

note by (φ1(G), . . . , φn(G)) ∈ [0, 1]n the power of agents in a WVG G of n agents.

2.2.1 Manipulation by Splitting

When an agent engages in manipulation by splitting, the number of agents in the new

game increases by the number of false agents formed by splitting. The quota and weights

of other agents in the new game remain the same. The sum of the power of the false agents

becomes the power of the manipulator in the new game. The extent of power gained or lost

for a manipulator can be measured as a fraction of power of the manipulator in the new

game and its power in the original game.

Let agent i ∈ I with weight wi in game G be a manipulating agent. Suppose agent

i splits its weight among k ≥ 2 false agents, i1, . . . , ik, having corresponding weights,

wi1 , . . . , wik , such that wi =
∑k

j=1wij and wij > 0 for all j. We have a new set of agents

after splitting: I ′ = {1, . . . , i− 1, i1, . . . , ik, i+ 1, . . . , n}. The initial game G of n agents has

been altered by agent i to give a new WVG G′ of n+k−1 agents. Thus, for a manipulating

agent i with power φi(G) in G, the sum of the power of the k ≥ 2 false agents in G′ that the

manipulating agent splits is
∑k

j=1 φij (G
′). The ratio τ =

∑k
j=1 φij (G′)

φi(G) compares the sum of

the power of the false agents in the altered game G′ to the power of the manipulator (before

it splits) in the original game G. τ gives a factor of the power gained or lost by agent i

when it alters game G to give G′. We say that φ is susceptible to manipulation by splitting

if there exists a game G′ such that τ > 1; the split is termed advantageous or beneficial. If

τ < 1, then the split is disadvantageous or non-beneficial, while the split is neutral when

τ = 1.
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2.2.2 Manipulation by Merging

Manipulation by merging is the voluntary coordinated action of would-be manipulators

who come together to form a bloc. Agents in the bloc are assimilated voters since they can

no more vote as individual voters in the new game, rather as a bloc. The new game consists

of the agents in the original game that are not assimilated as well as the bloc formed by

the assimilated voters. The power of the bloc in the new game is compared to the sum of

the individual powers of all the members of the bloc in the original game.

Let 2 ≤ k ≤ n. Consider a manipulators’ coalition C of k agents which is a k-subset

of the n-set I. We assume that C contains k distinct elements chosen from I. Suppose the

manipulators in C voluntarily merge into a single bloc denoted by &C, i.e., agents i ∈ C

have been assimilated into the bloc &C, then, we have a new set of agents in the game after

merging. Thus, the initial game G of n agents has been altered by the manipulators to give

a new WVG G′ consisting of the bloc and other agents not in the bloc i.e., I\C. Thus, for

the manipulating agents i ∈ C with power φi(G) in game G, the sum of the power of the k

manipulators is
∑

i∈C φi(G), while that of the bloc formed by the manipulators in game G′ is

φ&C(G′). The ratio τ = φ&C(G′)∑
i∈C φi(G) compares the power index of the assimilated bloc formed

by merging in the altered game G′ to the sum of the original power indices of the agents

in the merged bloc. τ gives a factor of the power gained or lost by the manipulators when

they alter game G to give G′. The power index, φ, is said to be susceptible to manipulation

by merging in game G if there exists a game G′ such that τ > 1; the merging is termed

advantageous or beneficial. If τ < 1, then the merging is disadvantageous or non-beneficial,

while the merging is neutral when τ = 1.

2.2.3 Manipulation by Annexation

Let 1 ≤ k ≤ n. Consider a manipulators’ coalition C of k agents which is a k-subset

of the n-set I. We assume that C contains k distinct elements chosen from I. Suppose

agent i /∈ C alters game G by annexing coalition C i.e., i assimilates the agents in C to

form a bloc denoted by &(C ∪ {i}), then, we have a new set of agents in the game after

annexation. Thus, the initial game G of n agents has been altered by the annexer to give a
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new WVG G′ consisting of the bloc and other agents not in the bloc i.e., I\(C ∪ {i}). The

ratio τ =
φ&(C∪{i})(G

′)

φi(G) compares the power of the assimilated bloc formed by annexation

in the altered game G′ to the power of the annexer in the original game G. τ gives a

factor of the power gained or lost by annexer i when it alters game G to give G′. We say

that φ is susceptible to manipulation by annexation if there exists a game G′ such that

τ > 1; the annexation is termed advantageous or beneficial. If τ < 1, then the annexation

is disadvantageous or non-beneficial, while the annexation is neutral when τ = 1. For the

sake of simplicity in our discussion and analysis, we also refer to the factor of increment as

power gain or benefit.

2.3 Simulating Weighted Voting Games

In this section, we provide a description of the methods used in generating the WVGs

that are used for all our experiments, and the reasons why the methods have been em-

ployed. In view of the computational complexity of computing the power indices exactly

from their definitions, we consider only WVGs with weights of the players in such games

restricted to integers. We have thus implemented the efficient exact pseudo-polynomial

methods of computing the Shapley-Shubik and Banzhaf indices for integer weights using

generating functions [22, 23]. The Deegan-Packel power index is computed directly from

its definition by using an efficient algorithm to find the subsets of agents in a game. The

algorithm to compute the subsets defines a search known as a Hamiltonian walk that visits

each corner of an n-cube exactly once, where n is the number of elements in the set [38].

When creating a new game, the quota, q, of the game is randomly generated such that

1
2w(I) < q ≤ w(I), where w(I) is the sum of the weights of agents I in the game. Quota

has thus been defined as needing at least half of the total weight by a coalition to win in a

game. The number of agents, n, in each of the WVGs is chosen uniformly at random from the

set {10, 11, . . . , 20}. We have limited the number of agents to 20 for reasons of complexity

in the computation of the Deegan-Packel index for large games. Although, the efficient

exact pseudo-polynomial methods for computing the Shapley-Shubik and Banzhaf indices

described above are appropriate for computing the indices for large voting bodies [39], where
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the numbers of players in the games are greater than 20. However, this is not the case for the

method used in computing the Deegan-Packel index. This choice of the number of agents

in our experiments is consistent with the empirical evaluations of previous research, such

as [25] and [14], where the number of agents in their experiments are respectively 13 and

24.

2.4 Statistical Distributions to Generate Weights

The integer weights of agents in each of the WVGs are generated using uniform, normal,

and Poisson distributions. The following subsections give descriptions of how agents’ weights

are generated using the three distributions.

Weights Generation Using Uniform Distribution

The weights of agents in each game are chosen such that all weights are integers and

drawn from a uniform distribution, U(2,W ), where W ∈ {10, 20, . . . , 90}. U(a, b) defines a

uniform distribution over the interval (a, b), where both a and b are finite.

Weights Generation Using Normal Distribution

The weights of agents in each game are chosen such that all weights are integers and

drawn from a normal distribution, N(µ, σ2), where µ and σ2 are the mean and variance. We

use a mean of µ = 50 and values of standard deviation σ from the set {5, 10, . . . , 40}.

Weights Generation Using Poisson Distribution

The weights of agents in each game are chosen such that all weights are integers and

drawn from a Poisson distribution, Poisson(λ), where parameter λ is the mean of the dis-

tribution. We use a mean of λ = 50.

We note that the parameters in these distributions are sufficient to see patterns of

behaviors in our experiments and as well provide some generalization on the evaluation

of the effects of manipulations in the WVGs. Furthermore, these weights are reflective of
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realistic voting procedures as the weights of agents in real votings are not too large [35]. For

example, the highest weight of the members of the Electoral College of the United States

is 55 (held by the state of California) in the 2012 electoral votes.

2.5 Main Contributions

Until now, the experimental investigation and analysis of the effects of manipulation in

WVGs that we consider in this dissertation is yet to be researched. We provide a summary

of our major contributions for the three forms of manipulation in WVGs.

2.5.1 Results for Manipulation by Splitting

Previous work has considered manipulation by splitting in WVGs. Upper and lower

bounds on the extent of power that a manipulator may gain exist for the case when a

manipulator splits into exactly two false identities for both the Shapley-Shubik and Banzhaf

indices. The bounds on the case when an agent splits into more than two false identities has

remained open for the three power indices. Our main contributions for the manipulation

when an agent split into several false identities are highlighted below. The publications

associated with these results are [40,41].

• We extend a previous result of Aziz and Paterson [36] on exact unanimity WVGs to

the Deegan-Packel index. Specifically, we show that in an exact unanimity WVG, if

the Deegan-Packel index is used to compute agents’ power, it is advantageous for an

agent to split up into several false agents.

• We present new results for excess unanimity WVGs using the Shapley-Shubik and

Banzhaf indices. Specifically, we propose new bounds for situations when the original

games are excess unanimity WVGs and the resulting games after splitting are non-

unanimity WVGs.

• We provide empirical evidence to show that the three indices (i.e., Shapley-Shubik,

Banzhaf, and Deegan-Packel) are all susceptible to manipulation in non-unanimity
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WVGs when an agent splits into several false identities. However, that the Deegan-

Packel index is more susceptible than the Shapley-Shubik and Banzhaf indices.

• Finally, we provide the first three non-trivial bounds when a manipulator splits into

k > 2 false identities using the Shapley-Shubik and Banzhaf indices. One of the bounds

is also shown to be asymptotically tight (i.e., there exists at least a game in which an

agent achieves the proposed bounds by splitting into several false identites).

2.5.2 Results for Manipulations by Annexation and Merging

Little work exists on manipulation via annexation and merging in WVGs. Our main

contributions on the experimental analysis of the effects of annexation and merging in

WVGs are highlighted below. The publications associated with these results are [42–46].

• For unanimity WVGs of n agents:

a. Contrary to Aziz and Paterson [36] that for both the Shapley-Shubik and Banzhaf

indices it is advantageous for a player to annex, we show that this is not true in its

entirety. Apart from the fact that manipulation by annexation always increases

the power of other agents that are not annexed by the same factor of increment

as an annexer achieves, the annexer also incurs some compensation that is made

to the assimilated agents to forfeit their weights, thus, reducing the benefit the

annexer thought it gained.

b. The upper bound on the extent to which an annexer may gain while annexing

other agents in an altered game is at most n times the power of the agent in the

original game. This result holds for the Shapley-Shubik, Banzhaf, and Deegan-

Packel power indices.

• The Shapley-Shubik, Banzhaf, and Deegan-Packel indices are all highly susceptible

to manipulation via annexation in non-unanimity WVGs. On the other hand, the

three indices are all less susceptible to manipulation via merging in non-unanimity
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WVGs. The Shapley-Shubik index is the most susceptible of the three indices for both

manipulation via annexation and merging.

• We show that manipulators need to do only a polynomial amount of work to find

a much improved power gain over a simple random approach to manipulation and

present two enumeration-based pseudo-polynomial algorithms that manipulators can

use. Our enumeration-based methods are shown to achieve significant improvement in

benefits for manipulators in several numerical experiments. Thus, unlike the simple

random approach (where merging has little or no benefits for the manipulators using

the Shapley-Shubik and Banzhaf indices), results from our experiments suggest that

merging can be highly effective for both the Shapley-Shubik and Banzhaf indices.

• We propose simple heuristics for manipulation by annexation in WVGs, and as well

present careful analysis of the performance of the heuristics.

• Finally, despite finding the optimal beneficial merge is an NP-hard problem for both

the Shapley-Shubik and Banzhaf indices, results from our experiments show that find-

ing a beneficial merge is relatively easy in practice. While it appears impossible to stop

manipulation by merging for a given game, controlling a suggested measure, termed

quota ratio, is desirable. We deduce that a high quota ratio reduces the percentage of

beneficial merges, and then conclude that the Banzhaf index may be more desirable

to avoid merging, especially for high quota ratios.
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CHAPTER 3

SUSCEPTIBILITY OF POWER INDICES TO

MANIPULATION BY SPLITTING

3.1 Overview

Research in manipulation in WVGs has been active [14,35,36]. However, in this earlier

research, false-name manipulation by splitting has been restricted to the case of when a

manipulating agent splits into exactly two false identities, and using only the Shapley-

Shubik and Banzhaf indices to evaluate agents’ power. Many of the NP-hardness results

of Aziz et al. [14] for splitting into exactly two false identities (using the Shapley-Shubik

and Banzhaf indices) also hold for splitting into several false identities, however, results

quantifying the extent of power gained by a manipulating agent when it splits into several

false identities for the three power indices were unspecified, until our work.

In this chapter, we provide examples to illustrate manipulation by splitting into sev-

eral false identities. Second, we extend a previous result on exact unanimity WVGs to

the Deegan-Packel index, and present new results for excess unanimity WVGs. Specifi-

cally, we propose new bounds for the Shapley-Shubik and Banzhaf power indices on the

extent of gains a manipulator may achieve when the original game is an excess unanimity

WVG and the resulting game after splitting is a non-unanimity WVG. Third, we demon-

strate a simple approach to weight splitting into several false identities for manipulat-

ing agents : simple sampling procedure, which simplifies manipulation by splitting in non-

unanimity WVGs. Fourth, we consider experimental investigation and analysis of manipula-

tion by splitting in non-unanimity WVGs using the three power indices to compute agents’

power. Finally, we conduct normality tests on some real-world weighted voting systems to

provide some justifications on the use of the normal distribution to generate agents’ weights
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for experiments in the remaining chapters of the dissertation.

3.2 Examples of Manipulation by Splitting

For the sake of simplicity, we assume that only one of the agents is engaging in manip-

ulation by splitting.

Example 1. Advantageous split.

Let G = [6, 5, 4, 4,3; 12] be a WVG of five agents. Consider the fifth agent (with weight

3) shown in bold. The power of the agent in this game using the three indices are:

Shapley-Shubik index: ϕ5(G) = 0.167

Banzhaf index: β5(G) = 0.172

Deegan-Packel index: γ5(G) = 0.185

Suppose the agent is a manipulator that splits into three false identities with weights 1

each. We have a new game G′ = [6, 5, 4, 4,1,1,1; 12] with the false agents shown in bold. The

power of each of the false agents and the sum of the power of the false agents for each of

the power indices in G′ are:

Shapley-Shubik index: ϕ51(G′) = ϕ52(G′) = ϕ53(G′) = 0.057. The sum of the power

of the false agents,
∑3

j=1 ϕ5j (G
′) = 3× 0.057 = 0.171

Banzhaf index: β51(G′) = β52(G′) = β53(G′) = 0.059. The sum of the power of the

false agents,
∑3

j=1 β5j (G
′) = 3× 0.059 = 0.177

Deegan-Packel index: γ51(G′) = γ52(G′) = γ53(G′) = 0.116. The sum of the power of

the false agents,
∑3

j=1 γ5j (G
′) = 3× 0.116 = 0.348

The factor by which the manipulator gains using the three indices are as follows.

Shapley-Shubik index: 0.171
0.167 = 1.02

Banzhaf index: 0.177
0.172 = 1.03
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Deegan-Packel index: 0.348
0.185 = 1.88

Example 2. Disadvantageous split.

Let G = [9, 9,8, 2, 1; 20] be a WVG of five agents. Consider the third agent (with weight

8) shown in bold. The power of the agent in this game using the three power indices are as

follows.

Shapley-Shubik index: ϕ3(G) = 0.183

Banzhaf index: β3(G) = 0.182

Deegan-Packel index: γ3(G) = 0.208.

Suppose the agent splits into five false identities with weights 2, 2, 2, 1, 1. We have a new

game G′ = [9, 9,2,2,2, 2,1,1, 1; 20] with the false agents shown in bold. The power of each

of the false agents and the sum of the power of the false agents for each of the power indices

in game G′ are as follows.

Shapley-Shubik index: ϕ31(G′) = ϕ32(G′) = ϕ33(G′) = 0.038 and ϕ34(G′) = ϕ35(G′) =

0.032. The sum of the power of the false agents,
∑5

j=1 ϕ3j (G
′) = 0.177

Banzhaf index: β31(G′) = β32(G′) = β33(G′) = 0.021 and β34(G′) = β35(G′) =

0.014. The sum of the power of the false agents,
∑5

j=1 β3j (G
′) = 0.092

Deegan-Packel index: γ31(G′) = γ32(G′) = γ33(G′) = 0.065 and γ34(G′) = γ35(G′) =

0.083. The sum of the power of the false agents,
∑5

j=1 γ3j (G
′) = 0.361

The factor by which the manipulator loses (for the Shapley-Shubik and Banzhaf indices)

and gains (for the Deegan-Packel index) are as follows.

Shapley-Shubik index: 0.177
0.183 = 0.97

Banzhaf index: 0.092
0.182 = 0.50

Deegan-Packel index1: 0.361
0.208 = 1.74

1Note that this game is advantageous using the Deegan-Packel power index.
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We have shown that a manipulator may gain or lose power using the three power indices

when it engages in manipulation by splitting into several false identities. Similar examples

where a manipulator neither gains nor loses power exist for the three indices.

3.3 Unanimity Weighted Voting Games

We recall that a WVG in which there is a single winning coalition and such that every

agent is critical to the coalition is a unanimity WVG (see Section 2.1).

3.3.1 Exact Unanimity Weighted Voting Games

For exact unanimity WVGs, Aziz and Paterson [36] proved the following results:

Proposition 1. In a unanimity WVG with q = w(I), if Banzhaf indices are used as payoffs

of agents in a WVG, then it is beneficial for an agent to split up into several agents. The

same holds for Shapley-Shubik power index.

We extend these results for the Deegan-Packel power index as follows.

Theorem 1. In an exact unanimity WVG with q = w(I), if the Deegan-Packel index is

used to compute the power of agents, then, it is advantageous for an agent to split up into

several false identities.

Proof. Let G be an exact unanimity WVG of n agents with quota q = w(I). It is easy to see

that the Deegan-Packel power index of every agent i in game G, γi(G) = 1
n . Suppose agent

1 splits into m + 1 false agents, then we have a new exact unanimity game, G′, of n + m

agents. The Deegan-Packel power index of every agent i in G′, γi(G
′) = 1

n+m . Hence, the

new Deegan-Packel power index of agent 1 in game G′ is γ1(G′) = m+1
n+m > 1

n for n > 1.

The following theorem is immediate from Proposition 1 and Theorem 1:

Theorem 2. Let G be an exact unanimity WVG of n agents with quota q = w(I). Suppose

an agent i splits into several false agents in a new game G′. Using the Shapley-Shubik,

Banzhaf, and Deegan-Packel power indices, the power of the manipulating agent assigned

via each of the power indices increases as the number of splits increases.
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Corollary 1. Let G be an excess unanimity WVG with w(I) > q. Let an agent i split into

several false agents in a new game G′. Suppose the new game G′ is also a unanimity WVG,

then the splitting is advantageous for i if any of Shapley-Shubik, Banzhaf, and Deegan-Packel

power index is used to compute the agent’s power.

3.3.2 Excess Unanimity Weighted Voting Games

From the assumption of Corollary 1, the new game that results when an original excess

unanimity WVG is altered may not necessarily remains unanimity. Consider the following

examples.

Example 3. Advantageous Split for Excess Unanimity

Let G = [5, 3, 3; 10] be an excess unanimity WVG of three agents. The Shapley-Shubik

power of each agent in this game is 0.3333. Suppose the first agent alters G by splitting

its weight among four false agents with weights, 2, 1, 1, 1, such that the new game G′ =

[3, 3,2,1,1,1; 10]. Note that G′ is non-unanimity. The sum of the Shapley-Shubik power of

the false agents, ϕ11(G′)+
∑4

j=2 ϕ1j (G
′) = 0.2667+3×0.0667 = 0.4668 > ϕ1(G). The agent

benefits from the split action and increases its power index by a factor, τ = 0.4668
0.3333 = 1.40,

of the original index.

Example 4. Disadvantageous Split for Excess Unanimity

Let G = [5, 5, 5; 11] be an excess unanimity WVG of three agents. The Shapley-Shubik

power of each agent in this game is 0.3333. Suppose the third agent alters G by splitting

its weight among three false agents with weights, 2, 2, 1, such that the new game G′ =

[5, 5,2,2,1; 11]. Note that G′ is non-unanimity. The sum of the Shapley-Shubik power of

the false agents,
∑3

j=1 ϕ3j (G
′) = 3× 0.0333 = 0.0999 < ϕ3(G). The agent incurs a decrease

in power, and its power decreases by a factor of τ = 0.0999
0.3333 = 0.30.

It is interesting to observe that, unlike in exact unanimity WVGs where splitting into

several false identities is typically advantageous for a manipulator, the situation is not the

same for the case of excess unanimity WVGs. It is clear from the examples above that it
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may or may not be advantageous for a manipulator to split into several false identities if

the original game is an excess unanimity WVG. This, as seen, is a positive result for game

designers in that splitting into several identities in this type of game is not guaranteed to

always be advantageous for manipulators. We now provide bounds for the Shapley-Shubik

and Banzhaf indices on the extent of gains a manipulator may achieve when the original

game is an excess unanimity WVG and the resulting game after splitting is non-unanimity

WVG.

Theorem 3. Let G = [w1, . . . , wn; q] be an excess unanimity WVG of n agents. If an

agent i alters G by splitting into k ≥ 2 false agents in a new game G′, and such that G′

is not a unanimity WVG, then, the power index of the agent in the new game using the

Shapley-Shubik index is at most k(k−1)
n+k−1ϕi(G).

Proof. It is clear that the only winning coalition in game G consists of all the agents in

the game since G is unanimity. So, ϕx(G) = 1
n , for all agents x ∈ I in game G. Suppose

agent i splits into k ≥ 2 false identities, i1, . . . , ik, in game G′, and such that G′ is not

unanimity. There are now n+ k − 1 agents in game G′. Observe that since G is unanimity,

all the remaining agents in G (i.e., excluding agent i) cannot meet the quota of the game in

G′. Thus, the only possibility for a particular false agent ij to be pivotal in any permutation

of the agents in G′ is this:

All the non-manipulating agents and zero or more false agents precede agent ij , and

the remaining false agent(s) appear after ij . Note that at least one false agent must

appear after ij since G′ is non-unanimity.

Let ΠG′ be the set of all permutations of agents in game G′. Consider any permutation

π ∈ ΠG′ . Let the false agent ij be pivotal at location r in π. When there is no false agent

before location r, there are at most (n− 1)! ·C(k− 1, 0) · 1 · (k− 1)! possible permutations2

for agent ij to be pivotal, since there are n− 1 non-manipulating agents before r and k− 1

false agents after r. Similarly, when there is only one false agent before location r, there are

2C(n, r) = n!
r!(n−r)!

.
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at most n! ·C(k−1, 1) ·1 ·(k−2)! possible permutations for agent ij to be pivotal, since there

are now n agents (n − 1 non-manipulating agents and 1 false agent) before r, C(k − 1, 1)

ways of chosing the false agent that appear before r, and the remaining k − 2 false agents

appear after r. We continue this process until there are at most k − 2 false agents before r

(analogously, until there is only 1 false agent after r). So, in general, it easy to see that the

false agent ij will be pivotal in at most the following number of permutations:

k−2∑
p=0

(n+ p− 1)! · C(k − 1, p) · (k − p− 1)!

By the same argument, each of the k false agents is pivotal for the same number of

permutations. So, we have3

k

k−2∑
p=0

(n+ p− 1)! · C(k − 1, p) · (k − p− 1)!

= k
k−2∑
p=0

(n+ p− 1)! · (k − 1)!

p!

= k!

k−2∑
p=0

(n+ p− 1)!

p!
· (n− 1)!

(n− 1)!

= k! · (n− 1)!
k−2∑
p=0

C(n+ p− 1, p)

= k! · (n− 1)! · C(n+ k − 2, k − 2)

= k! · (n− 1)! · (n+ k − 2)!

(k − 2)! · n!

=
k · (k − 1) · (n+ k − 2)!

n
.

Hence, the sum of the Shapley-Shubik power of the false agents in G′,

3We use this combinatorial identity to simplify the summation:
∑k

p=0 C(n+ p, p) = C(k + n+ 1, k).
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k∑
j=1

ϕij (G
′) ≤ k · (k − 1) · (n+ k − 2)!

n · (n+ k − 1)!

=
k · (k − 1)

n · (n+ k − 1)

=
k · (k − 1)

n · (n+ k − 1)
· n · 1

n

=
k(k − 1)

n+ k − 1
ϕi(G).

Theorem 4. Let G = [w1, . . . , wn; q] be an excess unanimity WVG of n agents. If an agent

i alters G by splitting into k ≥ 2 false agents in a new game G′, and such that G′ is not

a unanimity WVG, then, the power index of the agent in the new game using the Banzhaf

index is at most nk
n+k−1βi(G).

Proof. Recall that ηx(G) is the number of winning coalitions for which an agent x is critical

in a WVG G. It is clear that the only winning coalition in game G consists of all the agents

in the game since G is unanimity. So, ηx(G) = 1 and βx(G) = 1
n , for all agents x ∈ I in

game G. Suppose agent i splits into k ≥ 2 false identities, i1, . . . , ik, in an altered game G′,

and such that G′ is not unanimity. The sum of the Banzhaf power of the false agents in the

altered game G′, is given as

k∑
j=1

βij(G
′) =

∑k
j=1 ηij(G

′)∑k
j=1 ηij(G

′) +
∑

x∈I\{i} ηx(G′)
(3.1)

We first bound the number of coalitions in the non-unanimity WVG G′ for which each

of the non-manipulating agents is critical. Since G is unanimity, any winning coalition in G′

must include all of the n− 1 non-manipulators and one or more of the false agents. There

are 2k−1 ways of selecting one or more of the false agents and adding them to the coalition

consisting of only the n− 1 non-manipulating agents. Thus, each of the non-manipulating
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agents can be in at most 2k − 1 coalitions consisting of the false agents. However, since not

all of these possible coalitions will be winning, we let the number of winning coalitions in

G′ be m ≤ 2k − 1. Hence,
∑

x∈I\{i} ηx(G′) ≤ m(n− 1) ≤ (2k − 1)(n− 1).

We now bound the number of coalitions for which the false agents are critical. We

partition the false agents into two groups: critical splinters and excess splinters. Critical

splinters are a minimal set of false agents that when added to a set of non-manipulators cre-

ate a winning coalition. Excess splinters are false agents that are not critical (or make some

critical splinters not to be critical) when added to a winning coalition of non-manipulators

and critical splinters. Since we are not interested in non-winning coalitions, we only need

to consider the cases where there are enough critical splinters to make the coalitions win-

ning. Let c be the average number of critical splinters in each of the winning coalitions. Note

that c is bounded by k, so, all the false agents can be critical in at most km coalitions, i.e.,∑k
j=1 ηij(G

′) = cm ≤ km.

Thus, Equation 3.1, becomes

k∑
j=1

βij(G
′) =

cm

cm+m(n− 1)

≤ km

km+m(n− 1)

=
k

n+ k − 1

=
k

n+ k − 1
· n · 1

n

=
nk

n+ k − 1
· βi(G).

3.4 Non-Unanimity Weighted Voting Games

Manipulation by splitting in non-unanimity WVGs is more interesting as it provides

complex and realistic scenarios that are not well-understood. As the structure of the WVGs

changes due to splitting by a manipulating agent, the number of winning coalitions as well
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as the minimal winning coalitions in the games change. Consider a WVG with quota q,

involving agents I. If any agent i ∈ I has weight wi ≥ q, then the agent will always win

without forming coalitions with other agents. The more interesting games we consider are

those for which wi < q for all i, and such that q satisfies the inequality q ≤ w(I)−m, where

m is the weight of the smallest agent in the game. When the grand coalition emerges, it

will always contain at least one agent that is not critical in the coalition. It is easy to see

that the resultant games are non-unanimity WVGs.

3.4.1 Weight Splitting into Several False Identities

It is important to observe that for a certain manipulating agent, i, with weight, w,

there are different possible ways the agent can split w among k > 2 false agents. Since it is

not clear which of the possible weights combinations of the false agents gives an improved

power, a straightforward approach will be to simply enumerate all such possible splits of

agent i into k false agents and check the factors of power gained for a split that gives the

highest improved power. All such possible splits correspond to the population of splits of

the manipulating agent’s weight (i.e., all possible altered WVGs) that the agent needs to

consider. Unfortunately, enumerating all such possible splits of agent i into k false agents

is non-trivial even if the weights are restricted to integers. This is actually the well-known

problem of partitioning of integer w into k parts or less [38]. Thus, it is impractical to

examine all the splits of the false agents in the population even for small values of w and k.

We propose a simple sampling procedure, to address this problem. The procedure pro-

vides a huge simplification in computational effort and significant benefits for manipulating

agents to engage in manipulation by splitting in non-unanimity WVGs.

Simple Sampling Procedure

A simple approach we employ here is to consider samples of WVGs from the population

of altered WVGs created by the splits of the manipulating agent’s weight. The information

contained within the samples is then used to investigate properties of the population from

which the samples are drawn [47].
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We consider a WVG G of n agents having a distinct manipulating agent i with integer

weight w. For agent i to split its weight w among k false agents, we generate the population

of the splits for weight w as the set P (w, k), containing all j-way splits, s = (w1, . . . , wj),

of false agents such that 3 ≤ j ≤ k. A random sample, S ⊂ P (w, k), of splits of a particular

size (determined as described below) is then taken from the population. For each split

s ∈ S, the procedure first removes w from WVG G, adds the split s = (w1, . . . , wj) to

create an altered WVG G′, and then computes the factor of the power gained or lost by the

agent. We then conduct an exhaustive search of S for the split having the highest factor

of increment and return the split as the way the agent should split its weight in game

G. We provide a simple justification for using this approach. Using the definition of P (w, k)

above, we note that |P (10, 10)| = 36, whereas, |P (50, 10)| = 55, 461. So, for the trivial cases

when w ≤ 10, examining every element of P (w, k) in the partition to determine the split

with the highest factor of increment seems reasonable, and can be done exactly by simple

enumeration. However, this is not the case as w increases. A crucial factor that determines

the performance of this method is the sample size |S| taken from the population. For our

experiments, we have used sample sizes determined as 10% of the population size.

3.4.2 Simulation Settings

In order to evaluate the behavior of the power indices for the non-unanimity WVGs,

we conduct experiments to analyze the effects of manipulation by splitting using each of the

three indices when a strategic agent splits its weight in the games. The values of the power

indices of the several false agents into which the agent splits are added and compared with

the power index of the agent in the original game. We have used a total of 100 original WVGs

for each experiment, allow a manipulating agent to split its weight in each of the games

using the Simple Sampling procedure, and finally compute the factor of increment over the

entire set of games for the three indices. For each game, the number, k, of false agents into

which a manipulating agent, i, splits is randomly drawn from a uniform distribution over

the range [3, 7], while ensuring that k ≤ w, where w is the weight of the agent.
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Figure 3.1. Estimation of the extent of susceptibility of the power indices to manipulation
by splitting into several false identities using the Simple Sampling procedure. WVGs are
generated by normal distribution.

3.4.3 Empirical Results and Discussion

Results from the experiments show the existence of beneficial splits when agents engage

in splitting into several false identities for the three power indices. However, the extent to

which agents gain varies with the indices. We use box plots in the presentation of our

results. Box plots are graphical representations used to illustrate the center and spread

of group of data, such as the lower and upper limits, quartiles (lower, median, and upper

quartiles), and mean. We show in Figures 3.1, 3.2, and 3.3, box plots summarizing the results

of the extent of susceptibility of the three power indices to manipulation by splitting into

several false identities using the Simple Sampling Procedure for 100 WVGs. This is achieved

by comparing the population of the factor of increment attained by agents in different games

for each indices. The results are respectively for WVGs generated by normal (Figure 3.1),

uniform (Figure 3.2), and Poisson (Figure 3.3) distributions. The x-axes show the three

power indices while the y-axes are the factors of increment over the samples of WVGs

achieved by manipulating agents.
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Figure 3.2. Estimation of the extent of susceptibility of the power indices to manipulation
by splitting into several false identities using the Simple Sampling procedure. WVGs are
generated by uniform distribution.

Figure 3.3. Estimation of the extent of susceptibility of the power indices to manipulation
by splitting into several false identities using the Simple Sampling procedure. WVGs are
generated by Poisson distribution.
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The high susceptibility of the Deegan-Packel index to manipulation by splitting can be

observed from the figures. The maximum gain attained by manipulating agents while using

the Deegan-Packel index is about 6.1 (normal), 6.0 (uniform), and 5.3 (Poisson) times of

their original values. On the other hand, the maximum gain attained while using any of the

Shapley-Shubik or Banzhaf index is less than a factor of 3.5 of their original values for the

three distributions. Furthermore, while the average4 factor of increment for manipulation is

high for the Deegan-Packel index (∼ 3.0) for the three distributions, those of the Shapley-

Shubik (∼ 1.1 (normal), ∼ 1.0 (uniform), ∼ 1.2 (Poisson)) and Banzhaf (∼ 1.1 (normal

& uniform), ∼ 1.2 (Poisson)) are a little bit low. On average, splitting does not appear

to improve power using the Shapley-Shubik and Banzhaf indices, especially for both the

normal and uniform distributions. We also show (in Table 3.1), the standard deviations of

the factor of power gained by manipulators from the data of Figures 3.1, 3.2, and 3.3 for the

normal, uniform, and Poisson distributions. These results suggest that the Deegan-Packel

index is more susceptible to manipulation by splitting into several false identities than the

Shapley-Shubik and Banzhaf indices in non-unanimity WVGs. They are also indicative of

the ease by which each of the power indices is manipulable.

Table 3.1. The standard deviations of the factor of increment from the data of Figures 3.1,
3.2, and 3.3 for the three distributions.

Shapley-Shubik index Banzhaf index Deegan-Packel index

Normal Distribution 0.23 0.29 0.94

Uniform Distribution 0.21 0.26 0.79

Poisson Distribution 0.33 0.23 0.87

Finally, the number of games that are advantageous and disadvantageous for the three

power indices are analyzed. Figures 3.4, 3.5, and 3.6, show the number of advantageous

and disadvatageous games from the samples considered for our experiments for the nor-

mal, uniform, and Poisson distributions respectively. All the games are advantageous for

the Deegan-Packel index across the three distributions. There are 64 and 90 games that

are advantageous respectively for the Shapley-Shubik and Banzhaf indices for the Poisson

4The diamond symbols in the box plots indicate the mean values of the datasets.
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Figure 3.4. The number of advantageous and disadvantageous games among the three
indices for manipulation by splitting into several false identities using the Simple Sampling
procedure in 100 non-unanimity WVGs. WVGs are generated by normal distribution.

distribution. See Figure 3.6. However, for both the normal and uniform distributions only

43 and 36 are advatageous for the Shapley-Shubik index. Lastly, there are 78 and 73 games

that are advantageous, respectively, for the normal and uniform distributions using the

Banzhaf index. See Figures 3.4 and 3.5. Clearly, the Deegan-Packel index is more suscep-

tible to manipulation by splitting into several false identities than the Shapley-Shubik and

Banzhaf indices.

These results are important for the following reasons. First, since beneficial weight

splitting into many identities can easily be achieved with the Simple Sampling procedure,

this may provide some motivation for agents to engage in manipulation especially using the

Deegan-Packel index. Second, no previous work has considered the evaluation of the extent

of the effects of splitting into several identities in non-unanimity WVGs. Lastly, we see that

there are no significant differences in all the results for the WVGs (generated by the normal,

uniform, and Poisson distributions) that were used in the experiments.
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Figure 3.5. The number of advantageous and disadvantageous games among the three
indices for manipulation by splitting into several false identities using the Simple Sampling
procedure in 100 non-unanimity WVGs. WVGs are generated by uniform distribution.

Figure 3.6. The number of advantageous and disadvantageous games among the three
indices for manipulation by splitting into several false identities using the Simple Sampling
procedure in 100 non-unanimity WVGs. WVGs are generated by Poisson distribution.
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3.5 Normal Distribution and Normality Tests on Real-world Voting Systems

Since we found no significant difference in the results we obtained for the three distri-

butions (i.e., normal, uniform, and Poisson) as demonstrated in the previous sections, we

use the normal distribution in the remaining part of the dissertation to generate agents’

weights in our experiments. Our use of the normal distribution is further motivated by some

normality tests we carried out on three real-world weighted voting systems. We conducted

normality checks (using graphical checks and numerical tests from statistics [48]) on these

voting systems and found that the weights of the games are normally distributed. We il-

lustrate some of the results of our normality checks on recent datasets (i.e., as at 2012)

from the European Union (EU), the Electoral College (EC) of the United States, and the

International Monetary Funds (IMF). We provide evidence of appropriateness of relevant

assumptions by using the graphical checks for normality and our conclusions are as follows:

Histograms with Normal Curves : The histograms with normal curves for the three

datasets (i.e, the EU, EC, and IMF) are normal or almost normal (in some cases), sug-

gesting that the weights are normally distributed. See Figure 3.7 for the histogram with

normal curve for the 2012 Electoral College’s Weights of the United States. The weights are

included in Appendix A for completeness.

Normal Probability Plots : Normal probability plots compare observed values to ex-

pected (normal) values. The plots are approximately linear for the three datasets, so we

conclude that the weights of the players in the voting systems are normally distributed for

each of the datasets. See Figure 3.8 for the normal probability plot for the 2012 Electoral

College’s weights of the United States. Also see the appendices for similar curves and plots

for the European Union (Appendix B), and International Monetary Funds (Appendix C)

datasets.

Numerical Test for Normality : We went further to confirm the results of the graphical
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Figure 3.7. The histogram with normal curve for the 2012 Electoral College’s weights of
the United States.

Figure 3.8. The probability plot for the 2012 Electoral College’s weights of the United
States.
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checks above by performing numerical tests for normality for the three datasets. The notable

Kolmogorov-Smirnov test provides p-values of > 0.150 (for EC), > 0.150 (for EU), and 0.136

(for IMF) which are all greater than the significance level, α = 0.05. Thus, we fail to reject

the null hypothesis that the data values, i.e., the weights of the players in the games are

normally distributed.
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CHAPTER 4

NEW BOUNDS ON SPLITTING INTO SEVERAL FALSE

IDENTITIES

4.1 Overview

We continue the investigation of manipulation by splitting into several false identities

in this chapter. Since our experimental results of the previous chapter have suggested ideas

on the extent to which the indices are susceptible to manipulation by splitting in the general

case of non-unanimity WVGs, we complement those results with new theoretical bounds,

thereby generalizing earlier results on this problem.

Bachrach and Elkind [35] consider the computational aspects of manipulation by split-

ting in WVGs. They use the Shapley-Shubik power index to evaluate agents’ power and

consider the case when an agent splits into exactly k = 2 false identities. The extent to

which agents may increase or decrease their Shapley-Shubik power is also bounded. The

authors show that for any WVG of n players, a manipulator cannot gain more than a factor

of 2n
n+1 < 2, while the agent cannot lose more than a factor of n+1

2 of its original power

by splitting into two false agents. Similar results were obtained by [36] using the Banzhaf

power index. They show that the maximum gain a manipulating agent can achieve is at

most twice its value in the original game. Recently, Aziz et al. [14] provide a lower bound

on manipulation by splitting using the Banzhaf index. Their bound shows that for any split

of a manipulator into two false agents, the agent can hope to get at least 1
n of its original

power in a new game.

The two papers [35,36], left as an open problem, the bounds on the case when an agent

splits into k > 2 false identities for both the Shapley-Shubik and Banzhaf indices. This

problem, until now, also remains open in the recent work of [14]. In this chapter, we partially
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resolve this open problem by providing the first three non-trivial bounds on the effect

of manipulation by splitting into several false identities for both the Shapley-Shubik and

Banzhaf indices. One of the bounds is also shown to be asymptotically tight (i.e., there

exists at least a game in which an agent can achieve the proposed factors of increment by

splitting into several false identites).

4.2 Shapley-Shubik Power Index Bounds

We propose new bounds for manipulation by splitting into several identities using the

Shapley-Shubik power index.

Theorem 5. (Upper Bound). Let G = [w1, . . . , wn; q] be a WVG of n agents. If an agent i

alters G by splitting into k ≥ 2 false agents in a new game G′, then, the power index of the

agent in the new game using the Shapley-Shubik index is at most nk
n+k−1ϕi(G). Moreover,

this bound is asymptotically tight.

Proof. Let an agent i be a distinguished manipulator that splits into k false agents, i1, . . . , ik.

Let ΠG−i be the set of all permutations of the remaining n− 1 agents in game G (i.e., not

including agent i). We define the term, i-pivotal-basis, to be a permutation π ∈ ΠG−i such

that it is possible to insert agent i into π to make i pivotal in game G. We refer to the

resulting permutation as being i-pivotal. See Figures 4.1 (a) and (c) for visual illustrations

of these definitions. Define also π′ to be a morphed permutation in game G′ as one formed

from inserting the false agents, i1, . . . , ik, into permutation π in any order. Suppose there are

Pi i-pivotal permutations that can be formed from the set ΠG−i, then, the Shapley-Shubik

index of agent i in game G, ϕi(G) = Pi
n! .

Our hope is that for every case where the insertion of agent i into a permutation π

makes i pivotal in game G we can create X ∈ N permutations in which a false agent is

pivotal in the corresponding morphed permutation π′ of game G′. There are two ways we

can get permutations in game G′ in which one of the false agents is pivotal:

A. Insert the false agents, i1, . . . , ik, into a permutation in game G for which agent i is

not pivotal, but a false agent is now pivotal in the altered game G′.
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B. Insert the false agents, i1, . . . , ik, into an i-pivotal-basis permutation π. Those seem

like good candidates, because the resulting permutation after inserting i into π is

i-pivotal, so a false agent may be pivotal in the morphed permutation π′ of game G′.

Case A: We show that there are no permutations in this case. Suppose there exists a

morphed permutation of game G′ in which a false agent ij is pivotal, but the permutation

π∗ ∈ ΠG−i in game G from which it is formed is not i-pivotal-basis. This permutation in G′

has the following form:

C ij D

where, C and D, are respectively the left and right sides of the morphed permutation from

the pivotal false agent ij . Taking this permutation, create a new permutation by sliding

all the false agents from C right towards ij . Also, slide all the false agents from D left

towards ij . Now, all the false agents occur together with ij still pivotal in this new permu-

tation. This shows that the insertion of agent i into the permutation π∗ makes i pivotal in

game G. Thus, π∗ is i-pivotal-basis. Since this is a contradiction to our assumption, there

are no permutations in this case.

Case B: Consider a certain i-pivotal-basis permutation π ∈ ΠG−i for which the insertion

of agent i makes i pivotal in game G. We need to insert the false agents, i1, . . . , ik, into this

permutation. This is done by the following steps:

1. Decide on which of the k false agents should be pivotal in the newly created permu-

tation. There are C(k, 1) = k ways1 of doing this.

2. Order the remaining false agents, and call this ordering, ρ. There are (k− 1)! ways of

doing this.

3. Now, merge ρ with π without changing the order of elements in ρ or π to create a

new permutation π′. To understand how to count the ways of doing this, realize that

1C(n, r) = n!
r!(n−r)!

.
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there are n− 1 items in π and k − 1 items in ρ. To get a complete ordering, we form

a new permutation by taking the next element of π or ρ. This is simply permutations

with repetition2, which gives, (n−1+k−1)!
(n−1)!(k−1)! .

4. To complete the new permutation, we place the agent selected in step 1 at the ap-

propriate spot in the permutation. There is at most one possibility. Either we find a

place to insert the agent to make it pivotal, or we cannot.

Now, from steps 1 to 4 above, we see that there are at most k·(k−1)!·1·(n−1+k−1)!
(n−1)!(k−1)! =

k·(n+k−2)!
(n−1)! possible ways of finding a new permutation in which a false agent is pivotal in

π′. We repeat the process for each of the Pi i-pivotal-basis permutations π ∈ ΠG−i. Hence,

the sum of the Shapley-Shubik power of the false agents in game G′,

k∑
j=1

ϕij (G
′) ≤ Pi · k · (n+ k − 2)!

(n− 1)!(n+ k − 1)!

=
Pi · k

(n− 1)!(n+ k − 1)

=
k

(n− 1)!(n+ k − 1)
· n! · Pi

n!

=
nk

(n+ k − 1)
ϕi(G).

We now prove that this bound is asymptotically tight. Let G = [k, k, . . . , k;nk] be a

WVG of n agents. It is clear that the only winning coalition consists of all the agents. So,

ϕi(G) = 1
n for all agents i ∈ I in the game. Suppose the last agent splits into k false

identities each with weight 1, we have a new game G′ = [k, k, . . . , k, 1, 1, . . . , 1︸ ︷︷ ︸
k times

;nk] of

n + k − 1 agents. Then, ϕi(G
′) = 1

n+k−1 for each agent i in the altered game G′. Hence,∑k
j=1 ϕnj (G

′) = k
n+k−1 = nk

n+k−1ϕn(G).

2Consider a director who decides whether to take from π or ρ. He says “original” to take from π or
“splinter” to take from ρ. He must say “original” n− 1 times and “splinter” k − 1 times.
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Figure 4.1. Illustration of definitions of terms for proofs of Theorems 2 and 3: (a) An i-
pivotal-basis permutation with agent i removed. (b) Four false agents i1, i2, i3, and i4 that
manipulating agent i splits. (c) An i-pivotal permutation with manipulating agent i pivotal
starting from location r. (d) All the false agents are adjacent at location r of the i-pivotal-
basis permutation with one of them pivotal. (e) The false agents are not all adjacent from
location r and one of them is pivotal. (f) The false agents are not all adjacent from location
r and none of them is pivotal.

Theorem 6. (Lower Bound). Let G = [w1, . . . , wn; q] be a WVG of n agents. If an agent i

alters G by splitting into k ≥ 2 false agents in a new game G′, then, the power index of the

agent in the new game using the Shapley-Shubik index is at least k
C(n+k−1,k−1)ϕi(G).

Proof. Let agent i be a manipulator that splits into k false agents, i1, . . . , ik, in an altered
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game G′. Consider any i-pivotal-basis permutation π ∈ ΠG−i of agents in game G. Define

r such that when agent i is inserted into π at location r, i is pivotal (see Figures 4.1 (a)

and (c)). Now, consider a morphed permutation π′ in game G′ formed from inserting the

false agents into π, in which a false agent is pivotal. While there are many permutations π′

that can be morphed from π in which a false agent is pivotal, at the very least, we know

that if all false agents are adjacent (in any order) and are inserted at location r in π, one

of the false agents must be pivotal (see Figure 4.1 (d)). Thus, for each π, there are k! such

permutations that can be morphed from π. Notice, that we have ignored all other cases

where the false agents are not adjacent in the permutation and one of the false agents is

also pivotal (see Figure 4.1 (e)).

Suppose there are Pi i-pivotal permutations that can be formed from the set ΠG−i in

game G, then, the sum of the Shapley-Shubik power of the false agents in game G′,

k∑
j=1

ϕij (G
′) ≥ k! · Pi

(n+ k − 1)!

=
k!

(n+ k − 1)!
· n! · Pi

n!

=
k!n!

(n+ k − 1)!
ϕi(G)

= k · (k − 1)!n!

(n+ k − 1)!
ϕi(G)

=
k

C(n+ k − 1, k − 1)
ϕi(G).

It is important to note that when the number of false agents is k = 2, our bounds (for

the Shapley-Shubik power index) that we propose above agree with those found in [14].

4.3 Banzhaf Power Index Bound

We propose new bound for manipulation by splitting into several identities using the

Banzhaf power index.
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Theorem 7. (Upper Bound). Let G = [w1, . . . , wn; q] be a WVG. If an agent i alters G by

splitting into k ≥ 2 false agents in a new game G′, then, the Banzhaf power index of the

agent in the new game can be as much as k · βi(G).

Proof. Let i be a manipulator that splits into k false agents, i1, . . . , ik, with corresponding

weights, wi1 , . . . , wik , in a new game G′. We assume without loss of generality that wi1 ≤

· · · ≤ wik . Define a base coalition, SG−i, to be a set of agents from a winning coalition in a

WVG G for which agent i is removed. Note that there are three possibilities for any agent

to be critical in a winning coalition in game G:

1. Winning coalitions which do not contain agent i.

2. Winning coalitions which contain agent i, but in which i is not critical.

3. Winning coalitions in which agent i is critical.

Now, we need to transform each winning coalition in G to coalitions in the game G′,

and then count the number of critical agents in each transformed coalition.

Case 1: Let X1 be the total number of winning coalitions in game G which do not contain

agent i. Let X2 be the average number of the critical agents in each of these winning coali-

tions. Since agent i is not present in any of these winning coalitions, the winning coalitions

are not changed by transformation. Thus, the total number of critical agents from this case

in the new game, G′, is X1 ·X2.

Case 2: Let Y1 be the total number of winning coalitions which contain agent i, but in

which i is not critical. Let Y2 be the average number of critical agents in each of these

coalitions. To create coalitions in G′, we add 1 or more of the false agents to the base

coalition SG−i to create a new winning coalition S′G′−i. There are 2k − 1 ways of selecting 1

or more of the false agents. No false agent will be critical, since agent i was not critical in

SG−i, but every critical agent in SG−i will still be critical in S′G′−i. Thus, we have a total

of Y1 · Y2 · (2k − 1) critical agents.
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However, as we remove some of the false agents from the coalition, we could create

new critical agents. For example, in the game [5,5,5;10], coalition, {5, 5, 5}, has no critical

agents, but coalition {5, 5, 4} has two critical agents where none were critical before. Let Y3

be the average number of new critical agents created in each transformed coalition. Thus,

the number of critical agents in this case can be counted as Y1 ·Y2 ·(2k−1)+Y1 ·Y3 ·(2k−2).

Case 3: Let Z1 be the total number of winning coalitions in which agent i is critical. Let

Z2 be the number of critical agents in each of these winning coalitions (not counting agent

i). Note that we do not expect Z2 to be the same for each winning coalition, but for

simplicity, we assume Z2 is the average number. To create a coalition in G′, we add 1

or more of the false agents to the base coalition, SG−i, to create a new winning coalition

S′G′−i. There are 2k−1 ways of selecting 1 or more of the false agents. Since i was critical in

the original coalition, we must add enough false agents to SG−i to make S′G′−i winning. For

example, if the sum of the weights of agents in SG−i is w, and the quota of game G is q,

the false agents which are added must be of a cumulative weight of at least w − q. We call

this needed weight from the false agents, the i-need :

a. If the sum of the weights of false agents added is less than i-need, the coalition is

losing and no critical agents will be contributed from this case.

b. If the sum of the weights of the false agents is as close to i-need without having

excess false agents, the transformed coalition will be winning and every false agent

will be critical. The critical agents of SG−i will also be critical in S′G′−i. For simplicity

of analysis, we assume that the false agents are all of the same weight. Let p be the

minimal number of false agents that are required to meet the i-need. There are C(k, p)

ways of selecting which false agents are present in the transformed coalition. The

number of winning coalitions in which the false agents are critical is Z1 · p · C(k, p),

since there are Z1 base coalitions, C(k, p) ways of deciding which of the p false agents to

include, and all the p false agents will be critical. However, in each of these transformed
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coalitions, the agents which were critical in the base coalition are still critical. Thus,

the total number of critical agents is: Z1 · p · C(k, p) + Z1 · Z2 · C(k, p).

c. If the added false agents exceed i-need, the transformed coalition will be winning but

it is possible that none of the false agents is critical. The critical agents of SG−i will

also be critical in S′G′−i. We must count how many false agents are critical and how

many total agents are critical from this case. For simplicity, we assume that all false

agents are of the same weight, so that by adding an extra false agent, none of the

false agents is critical. There are C(k, p+ 1) + . . .+C(k, k) =
∑k

j=p+1C(k, j) ways of

selecting p + 1 or more of the false agents. Thus, the total number of critical agents

are Z1 · Z2 ·
∑k

j=p+1C(k, j).

Putting it altogether, the total number of critical agents (including the k false agents):

X1 ·X2 + Y1 · Y2 · (2k − 1) + Y1 · Y3 · (2k − 2) + Z1 · p · C(k, p) + Z1 · Z2 · C(k, p)

+ Z1 · Z2 ·
k∑

j=p+1

C(k, j)

= X1 ·X2 + Y1 · Y2 · (2k − 1) + Y1 · Y3 · (2k − 2) + Z1 · p · C(k, p) + Z1 · Z2 ·
k∑
j=p

C(k, j).

Now, the original Banzhaf power of agent i in game G is

βi(G) =
Z1

Z1 +X1 ·X2 + Y1 · Y2 + Z1 · Z2

.

Similarly, the new power of agent i in game G′ (which is the sum of the power of the false

agents) is

k∑
j=1

βij (G
′) =

Z1 · p · C(k, p)

X1 ·X2 + Y1 · Y2 · (2k − 1) + Y1 · Y3 · (2k − 2) + Z1 · p · C(k, p) + Z1 · Z2 ·
∑k

j=pC(k, j)
.
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The ratio, τ =

∑k
j=1 βij (G′)

βi(G) , gives,

p · C(k, p)(Z1 +X1 ·X2 + Y1 · Y2 + Z1 · Z2)

X1 ·X2 + Y1 · Y2 · (2k − 1) + Y1 · Y3 · (2k − 2) + Z1 · p · C(k, p) + Z1 · Z2 ·
∑k

j=pC(k, j)
.

Since we want to find the highest possible ratio, we need to determine cases which

maximize the ratio. Note that the ratio of increase of poweri of agent i is bounded by, 1
poweri

,

since the new power of the agent can be at most 1. We note that if p is small,
∑k

j=pC(k, j)

approaches 2k. Since a large denominator makes for a small ratio, terms in the denominator

which are multiplied by 2k without terms in the numerator being multiplied by a large

number drive down the ratio. Consider the case in which Y1 · Y2 = 0 and Y1 · Y3 = 0. Let

p = k. Now our ratio becomes: k(X1·X2+Z1+Z1·Z2)
X1·X2+k·Z1+Z1·Z2

which is bounded by k. Thus, there are

cases where splitting into several false identities improves the power of a manipulator by a

factor of as much as k.

We next show the existence of such a case. Let G = [w1, w2, . . . , wn; q] be a unanimity

WVG of n agents such that q =
∑n

i=1wi. It is clear that the only winning coalition consists

of all the agents. So, βi(G) = 1
n for all agents i ∈ I in the game. Suppose the last agent splits

into k false identities, we have a new game G′ = [w1, w2, . . . , wn−1, wn1 , wn2 , . . . , wnk
; q] of

n+k−1 agents. Then, βi(G
′) = 1

n+k−1 for each agent i in the altered game G′. The ratio of

the new power to the original power of the manipulator is nk
n+k−1 . So, as n goes to infinity,

the denominator approaches n. Thus, the ratio goes to k.

Similarly, as k →∞, the denominator approaches k, and the ratio goes to n. Thus, we

see that if the original power is 1
n , then, we cannot improve by more than a factor of n.

We conclude this chapter with a summary of the updated results on the bounds for

manipulation by splitting into k ≥ 2 false identities in WVGs in Table 4.1.
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Table 4.1. Summary of the bounds for the Shapley-Shubik and Banzhaf indices when an
agent i in a WVG G of n agents splits into k ≥ 2 false agents, i1, . . . , ik, in an altered WVG
G′ of n+ k − 1 agents.

Bounds Shapley-Shubik index Banzhaf index

Upper (k = 2) ϕi1(G′) + ϕi2(G′) ≤ 2n
n+1ϕi(G) [35] βi1(G′) + βi2(G′) ≤ 2βi(G) [36]

Lower (k = 2) ϕi1(G′) + ϕi2(G′) ≥ 2
n+1ϕi(G) [35] βi1(G′) + βi2(G′) ≥ 1

nβi(G) [14]

Upper (k > 2)
∑k

j=1 ϕij (G
′) ≤ nk

n+k−1ϕi(G)
∑k

j=1 βij (G
′) ≤ kβi(G)

Lower (k > 2)
∑k

j=1 ϕij (G
′) ≥ k

C(n+k−1,k−1)ϕi(G) ?
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CHAPTER 5

MANIPULATION BY MERGING IN WEIGHTED

VOTING GAMES

5.1 Overview

Felsenthal and Machover [37] characterize situations when it is advantageous or dis-

advantageous for agents to merge into a bloc, and show that using the Shapley-Shubik

index, merging can be advantageous or disadvantageous. Aziz and Paterson [36] focus on

the complexity of finding advantageous merging. They show that for unanimity WVGs,

it is disadvantageous for a coalition to merge using the Shapley-Shubik index to compute

payoff. Also, finding an optimal beneficial merge is NP-hard for both the Shapley-Shubik

and Banzhaf indices [14]. It is important to note that none of these papers deal with the

experimental evaluation and analysis of the type of beneficial merging that we consider

here.

In this chapter, we provide examples to illustrate manipulation by merging in WVGs.

Second, we consider the difficulty of predicting beneficial merges in WVGs. Third, we pro-

vide experimental investigation and analysis of manipulation by merging in WVGs using

the three indices. Fourth, given that the problem of computing the Shapley-Shubik and

Banzhaf power indices of agents is NP-complete [4, 21], we present an enumeration-based

pseudo-polynomial time algorithm for merging that manipulators may use to find a much

improved power gain. Finally, we consider evaluation of the opportunities for beneficial

merging in WVGs. Here, we argue and provide empirical evidence to show that despite

finding the optimal beneficial merge is an NP-hard problem for both the Shapley-Shubik

and Banzhaf power indices, finding beneficial merge is relatively easy in practice.
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5.2 Examples of Manipulation by Merging

We have used the Deegan-Packel index as a reference for these examples. The effects of this

manipulation are summarized in a table for each example using the three power indices. The

manipulating agents are all shown in bold.

Example 5. Advantageous Merging for Deegan-Packel index.

Let G = [8,7, 4,4,2, 1, 1; 28] be a WVG of seven agents. Let the manipulators’ coalition

C consists of the three agents in bold i.e., with weights 7, 4, and 2. The cumulative power of

these manipulators,
∑

i∈C γi(G) = 0.452. Suppose these manipulators merge their weights

to form a single bloc &C and alter G to give a new game G′ = [13, 8, 4, 1, 1; 28]. The

power of the bloc is γ&C(G′) = γ1(G′) = 0.500 > 0.452. The factor of power gained by the

manipulators is τ = 0.500
0.452 = 1.11.

Note that we have implicitly assumed that agents in the blocs formed are working

cooperatively and have transferable utility. Thus, proceeds from merging can easily be

distributed among the manipulators. For instance, in this example, each manipulator may

first be assign a payoff equal to what it would get in the original game G, then, the gain

(i.e., 0.500−0.452 = 0.048) derived from the altered game G′ can then be distributed among

the members of C using different solution concepts for revenue distribution from coalitional

game theory.

Table 5.1. Advantageous merging showing the cumulative power of the assimilated agents
in the original game G = [8,7, 4,4,2, 1, 1; 28], the power of the bloc in the altered game
G′ = [13, 8, 4, 1, 1; 28], and the factor of increment for the three power indices.

Power Index Original game G Altered game G’ Factor (Increment)

Shapley-Shubik 0.488 0.667 1.37
Banzhaf 0.485 0.600 1.24

Deegan-Packel 0.452 0.500 1.11

Not all manipulation by merging is beneficial. Example 6 illustrates a non-beneficial

merge for manipulators.
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Example 6. Disadvantageous Merging for Deegan-Packel index.

Let G = [9,8, 5,5, 4, 3, 1; 30] be a WVG of seven agents. Let the manipulators’ coalition

C = {1, 2, 4}. The cumulative power of these manipulators,
∑

i∈C γi(G) = 0.508. Suppose

these manipulators merge their weights to form a single bloc &C and alter G to give a

new game G′ = [22, 5, 4, 3, 1; 30]. The power of the bloc is γ&C(G′) = γ1(G′) = 0.306 <

0.508. The factor of power lost by the manipulators is τ = 0.306
0.508 = 0.60.

Table 5.2. Disadvantageous merging showing the cumulative power of the assimilated agents
in the original game G = [9,8, 5,5, 4, 3, 1; 30], the power of the bloc in the altered game
G′ = [22, 5, 4, 3, 1; 30], and the factor of decrement for the three power indices.

Power Index Original game G Altered game G’ Factor (Decrement)

Shapley-Shubik 0.676 0.467 0.69
Banzhaf 0.579 0.368 0.64

Deegan-Packel 0.508 0.306 0.60

We have shown that manipulators may gain or lose power using the three power indices

when they engage in manipulation by merging. Similar examples where manipulators neither

gain nor lose power exist for the three indices.

5.3 Difficulty of Predicting Beneficial Merge and Power Vectors

We provide visual description of manipulation by merging in WVGs to explain the

intricases of what goes on during manipulation, and examines the effects of small changes

in the weights of agents on their corresponding power in WVGs using power vectors [49].

5.3.1 Difficulty of Beneficial Merge Prediction in Weighted Voting Games

A visual description clarifies manipulation by merging in WVGs (see Figure 5.1). We use

the Shapley-Shubik power index for illustration. Consider a WVG of three agents denoted

by the following patterns: Agent 1 ( ), Agent 2 ( ), and Agent 3 ( ). The weight of each

agent in the game is indicated by the associated length of the pattern. A box in the pattern

corresponds to a unit weight. Each row represents a permutation. Suppose all permutations

of the three agents are given as shown in Figure 5.1. We can use the same figure to consider

a range of quotas from 1 to 6 for the game. The Shapley-Shubik indices of the three agents



51

Figure 5.1. Six permutations of 3 agents and the power indices of the agents for values of
quota from q = 1 to q = 6.

Figure 5.2. Manipulation by merging between Agent 1 and Agent 3 (from Figure 5.1) to
form a new Agent X. The indices of Agent X and Agent 2 computed by Shapley-Shubik
index after merging for various values of quota are also shown.
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are computed from the figure and shown in the associated table of the figure. These power

indices for the agents in the game correspond to using various values of the quota for the

same weights of the agents.

Consider a manipulation where Agent 1 and Agent 3 merge their weights to form a new

agent, Agent X. Here, Agent 1 and Agent 3 cease to exist since they have been assimilated by

Agent X. Thus, we have only two agents (Agent X and Agent 2) in the altered WVG. Figure

5.2 shows the results of the merging between Agent 1 and Agent 3. Notice that the number

of rows has been reduced to two, as there are now only two possible orderings. Consider the

cases when the quota of the game is 1 or 6, the power of the assimilated agents for Agent

X from Figure 5.1 shows that Agent 1 and Agent 3 each has a power of 1
3 for a total power

of 2
3 . The power of Agent X which assimilates these two agents in the two cases is each

1
2 <

2
3 . Also, the power of the manipulators stays the same for the cases where the quota

is either 2 or 5. Specifically, the sum of the powers of Agent 1 and Agent 3 is 1
2 for these

cases. This is also true of Agent X for these cases. Finally, for the cases where the quota

of the game is 3 or 4, the power of Agent X is 1 which is greater than 5
6 , the sum of the

powers of Agent 1 and Agent 3 in the original game.

Note the difficulty of predicting what will happen when manipulators engage in merg-

ing. This illustration also shows that the choice of the quota of a game is crucial in determin-

ing the distribution of power of agents in a WVG. An apparent question that concerns the

manipulators from the illustration above is the following : Can effective merging heuristics

be found even though predicting beneficial merging is difficult?

5.3.2 Using Power Vectors

Recall the definition of power vector (from Section 2) of a WVG of n agents as an

n-dimensional vector v ∈ Rn of the power of each of the agents in the game listed in

order. Using power vectors, we investigate the effects of small changes in the weights of

agents on their corresponding powers in WVGs. The Shapley-Shubik index is used in this

illustration. The small changes in the weights of agents are related to weights changes

when two or more agents merge their weights to form a bloc, thus providing some insights
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Figure 5.3. Using power vectors to illustrate the effects of small changes in the weights of
agents on their corresponding Shapley-Shubik powers in WVGs.

into merging. A crucial observation is that we can have many games having the same power

vector. For example, the following WVGs: [11, 9, 4; 12], [11, 8, 5; 12], [11, 7, 6; 12], [10, 9, 5; 12],

[10, 8, 6; 12], and [10, 7, 7; 12] all have the same power vector [0.33, 0.33, 0.33], even though

the weights’ distribution of agents in the games differ.

In Figure 5.3, we consider all WVGs of 3 agents such that the total weights of the agents
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in each game is 24. Figures 5.3(a), 5.3(b), and 5.3(c) are for the cases when the quotas q

of the games are 12, 16, and 18, respectively. The y-axes indicate the possible weights of

the first agent while the x-axes indicate the possible weights of the second agents in the

games. Note that since agents weights are given in non-increasing order, the possible weights

for the second agent are dependent on the weights of the first agent. The possible weights

of the third agents are not shown since they can implicitly be derived from the weights of

the first two agents. Only 4 power vectors are attainable in the WVGs of 3 players using

the Banzhaf index [49], there are also 4 different power vectors for these games when the

number of agents is 3 and using the Shapley-Shubik index. These power vectors are coded

as 1, 2, 3, and 4 below:

1 : [0.33, 0.33, 0.33]

2 : [0.50, 0.50, 0.00]

3 : [0.67, 0.17, 0.17]

4 : [1.00, 0.00, 0.00]

with the games of each power vector representing appropriate regions shaded in Figure

5.3. The following facts from the figures have impact on weight changes as it relates to

merging in the games:

• The number of different power vectors is a function of the number of agents, n, in the

games.

• The size of the region (associated with a particular power vector) changes with the

quota.

• Some power vectors are volatile to changes with respect to small changes in weight

(such as [11, 7, 6; 18]) while others are not (such as [12, 11, 1; 18]).
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5.4 Susceptibility of Power Indices to Manipulation by Merging

Previous work [36], has shown that for unanimity WVGs, and for both the Shapley-

Shubik and Banzhaf indices: it is disadvantageous for a coalition to merge. In view of this

positive result (as game designers are interested in discouraging agents’ participation in ma-

nipulation), and the fact that strategic agents are interested in only mergings that improve

their power, we consider manipulation by merging for only the non-unanimity WVGs. In

order to evaluate the behavior of the three power indices for merging in non-unanimity

WVGs, we conduct experiments to analyze the effects of merging when two or more agents

merge into a bloc. We first provide a description of the simulation settings and then present

the empirical evidence gathered from the experiment.

5.4.1 Simulation Settings

The WVGs were generated as described in Section 2.3. For each game, we determine

the three power indices of the agents in the game. Since manipulation by merging requires

coordinated action of the manipulators, strategic agents are selected among the agents in

the WVGs to form the blocs of manipulators. The assimilated blocs of the manipulators

are formed by k ∈ N agents in each game; we refer to k as the bloc size or the number of

assimilated agents. The blocs sizes and the members of the blocs are chosen uniformly at

random1 from the set {2, 3, . . . , 10}, while also ensuring that k ≤ n, where n is the number

of agents in a game. We compute the new power index of the bloc in the altered games

next. Then, we determine the factor of increment by which the bloc gains or loses in the

manipulation for the corresponding bloc sizes. The power of the bloc is compared to the

sum of the original powers of the assimilated agents in the bloc.

For our study, we generated 2, 000 original WVGs of various bloc sizes, allow manip-

ulation by the bloc of manipulators, and compute the factors of increment over all the

games. The factors of increment provides the extent of susceptibility to manipulation by

1We note that randomly generating members of the blocs fails to consider the benefits of a more strategic
approach to manipulation. We address this issue in the next section.
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each of the three indices. We estimate this relationship among the three indices by compar-

ing their factors of increment simultaneously in similar games.

5.4.2 Empirical Results and Discussion

Experiments confirm the existence of advantageous merging for the non-unanimity

WVGs. However, the extent to which agents gain varies among the indices. We provide

a comparison of susceptibility to manipulation by merging among the three indices by

comparing the population of factors of increment attained by strategic agents in different

games for each of the indices. A summary of susceptibility to manipulation by merging

among the three indices is shown in the box plot of Figure 5.4. The x-axis indicates the

power indices while the y-axis is the factor of increment achieved by agents in the 2, 000

WVGs.

Figure 5.4. Susceptibility to manipulation by merging among the Shapley-Shubik, Banzhaf,
and Deegan-Packel indices for non-unanimity weighted voting games.

From the figure, the highest gain attained by manipulation blocs for the three indices
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are ∼ 1.9 for Shapley-Shubik, ∼ 2.1 for Banzhaf, and ∼ 2.0 for the Deegan-Packel in-

dex. Since the highest factors of increment are extreme values, they are not indicative of

the true behavior to compare merging in the three power indices. Let us consider the mean

value of the data (which serves as a central measure) from this experiment. We note that, on

average, only the Shapley-Shubik index appears to be susceptible to manipulation by merg-

ing for this type of game. The average factor of increment for the three power indices are

∼ 1.12 for Shapley-Shubik, ∼ 0.90 for Banzhaf, and ∼ 0.60 for the Deegan-Packel index. An

important positive result that is observable from Figure 5.4 is that the highest average

factor of increment for the three indices is less than a factor of 1.2, and the corresponding

absolute highest value is less than a factor of 2.2. We shall see (in the next chapter) the

reason for the importance of these values when we compare with the factor of increments for

annexation, where similar measures are typically very high. To further see the relationship

among the three indices on their susceptibility to manipulation by merging, we compare

the percentages of advantageous, disadvantageous, and neutral games in the 2, 000 WVGs.

Figure 5.5. Percentage of advantageous, disadvantageous, and neutral games among the
power indices for manipulation by merging in 2, 000 non-unanimity weighted voting games.

Figure 5.5 shows the percentage of advantageous, disadvantageous, and neutral games
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for manipulation by merging among the three indices. Examination of the 2, 000 WVGs

reveals that more than 71% of the games are advantageous for Shapley-Shubik index, about

42% for the Banzhaf index, and less than 14% of the games for the Deegan-Packel in-

dex. Even for the cases where the games are advantageous for the three indices, the factor

of increment achieved by the blocs of manipulators are not very high, and in most cases

are less than a factor of 2. This analysis suggests that the Shapley-Shubik index is more

susceptible to manipulation by merging than the Banzhaf and Deegan-Packel power indices

for non-unanimity WVGs, even though the factor of increment is not high. Now, since

only the Shapley-Shubik index is more susceptible to manipulation by merging, and also,

since the factor by which the bloc of manipulators gains is very low, this may provide less

motivation for strategic agents to generally engage in manipulation by merging for non-

unanimity WVGs when they are being evaluated using any of the three power indices, and

in particular, when the Deegan-Packel index is employed.

We have some comments regarding these results. First, we found that our results of

manipulation by merging for the non-unanimity WVGs are consistent with those of manip-

ulation by splitting into several false identities of the previous chapter. A scenario where

splitting by a strategic agent is disadvantageous corresponds to a scenario where it is advan-

tageous for several strategic agents to merge. Second, we have assumed that the assimilated

agents in the blocs can easily distribute the gains from their collusion among themselves

in a fair and stable way. Thus, making them agree to engage in the manipulation if it is

profitable. This assumption is strong. Even at that, we see that the three power indices are

less vulnerable to manipulation by merging.

5.5 Algorithm for Merging in Weighted Voting Games

We note that randomly selecting the agents to be assimilated for merging as proposed

in the previous experiment fails to consider the benefits of a more strategic approach to

manipulation. We propose an enumeration-based approach for merging. In considering our

enumeration-based approach to merging, we have implemented a pseudo-polynomial ma-

nipulation algorithm. Given that computing the Shapley-Shubik and Banzhaf indices is
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NP-complete, and only pseudo-polynomial or approximation algorithms are available to

compute agents’ power, it is reasonable that the manipulation algorithm we propose is

also pseudo-polynomial, since we necessarily need to use these power indices in comput-

ing agents’ benefits during manipulation. Aziz et al. [14] have also shown that determining

if there exists a beneficial merge is NP-hard using either the Shapley-Shubik or Banzhaf

indices.

5.5.1 Manipulation Algorithm for Merging

A straightforward approach to determine a coalition that yields the most improved

benefit in merging in a WVG is to simply enumerate all the possible coalitions of agents

in the game and then compute the benefit for each of these coalitions. We can then output

the coalition with the highest value. Unfortunately, enumerating all the possible coalitions

is exponential in the number of agents. Also, computing the power indices naively from

their definitions means that we have two exponential time problems to solve. We provide

an alternative approach.

Let procedure PowerIndex(G, i) be a pseudo-polynomial algorithm for computing the

power index of an agent i in a WVG G of n agents for Shapley-Shubik or Banzhaf index ac-

cording to any of [4,22,23]. We first use PowerIndex (G, i) as a subroutine in the construction

of a procedure, GetMergeBenefit(G,S). Procedure GetMergeBenefit(G,S) accepts a WVGG

and a would-be manipulators’ coalition, S. It first computes the sum of the individual power

index of the assimilated agents in S using PowerIndex(G, i). Then, it alters G by replacing

the sum of the weights of the assimilated agents in G with a single weight in a new game G′

before computing the power of the bloc &S in G′. Finally, GetMergeBenefit(G,S) returns

the factor of increment of the merged bloc &S. Let A(G) be the pseudopolynomial running

time of PowerIndex (G, i). Now, since |S| ≤ |I| = n, procedure GetMergeBenefit(G,S) takes

at most O(n ·A(G)) time which is pseudopolynomial.

We now use GetMergeBenefit(G,S) to construct an algorithm that manipulators can

use to determine a coalition that yields a good benefit in merging. We first argue that

manipulators tend to prefer coalitions which are small in size because they are easier to
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form and less likely to be detected. Also, intra-coalition coordination, communication, and

other overheads increase with coalition size. Thus, we suggest a limit on the size of the

manipulators’ coalitions since it is unrealistic and impractical that all agents in a WVG

will belong to the manipulators’ coalition. This reasoning is consistent with the assumptions

of the previous work on merging [14] as well as coalition formation [50]. We note, however,

that limiting the manipulators coalitions’ size does not change the complexity class of the

problem as finding the coalition that yields the most improved benefit remains NP-hard.

Consider a WVG of n agents. Suppose the manipulators’ coalitions, S, have a limit,

k < n, on the size of the coalitions, i.e., S, are bounded as 2 ≤ |S| ≤ k. In this case,

the number of coalitions that the manipulators need to examine is at most O(nk) which is

polynomial in n. Specifically, the total number of these coalitions is:

 n
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Running GetMergeBenefit(G,S) while updating the most2 improved benefit found so

far from each of these coalitions requires a total running time of O(nk · A(G)) which is

2We refer to the most improved benefit among the O(nk) polynomial coalitions and not from the original
2n coalitions since we have restricted each manipulators’ coalition size to a constant k < n.
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pseudopolynomial, and thus becomes reasonable to compute for small k.

5.5.2 Evaluation of the Manipulation Algorithm for Merging

It is impractical that strategic agents would employ the random simulation approach

of the previous section (i.e., Subsection 5.4.1) to engage in manipulation by merging. This

is because simply guessing a particular coalition from among all the exponential possible

coalitions does not provide a good chance for strategic agents to benefit significantly in the

manipulation. We note also that this chance of success by the manipulators decreases as

the number of agents in a game becomes large. Now, since it is impractical to exhaustively

consider all the exponential possible coalitions, we have presented a pseudo-polynomial

manipulation algorithm where we have restricted the sizes of coalitions to be considered

by the manipulators to a constant k which is less than the number n of the agents in

the game. Our idea is for the manipulators to sacrifice optimality for good merging. By

doing so, the manipulation algorithm potentially bypass a lot of search. Although, this

manipulation algorithm is incomplete, nonetheless, it considers more search space than the

random approach, and hence, is guaranteed to find a much improved factor of increment

than the random simulation method.

We perform experiments to confirm the above hypothesis. First, we make a simple modi-

fication to the random simulation approach which provides manipulators with higher average

factor of increment. The modification involves the selection of the best factor of increment

from three random choices (which we refer to as the best-of-three method). We compare

results of our enumeration-based method with those of the best-of-three method. Unlike

the random simulation approach where merging has little or no benefits for manipulators

using both the Shapley-Shubik and Banzhaf indices, results from our experiments suggest

that manipulation via merging can be highly effective.

The WVGs for this experiment were generated as described in Section 2.3 while the

simulation setting is similar to those of Section 5.4.1. We have used a total of 2, 000 original

WVGs for this experiment and compute the average factor of increments over the entire

set of games for both the Shapley-Shubik and Banzhaf power indices. The evaluation is
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carried out for the proportion of agents in manipulators’ blocs in the WVGs. We compare

the results of the enumeration-based method with those of the best-of-three method.

Figure 5.6. The average factor of increment for merging for the enumeration-based and
best-of-three methods using various values of size of bloc divided by the number of agents
in the games (Shapley-Shubik).

Figure 5.7. The average factor of increment for merging for the enumeration-based and
best-of-three methods using various values of size of bloc divided by the number of agents
in the games (Banzhaf).

Figures 5.6 and 5.7 show the benefits from merging for both the best-of-three and
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enumeration-based methods using the Shapley-Shubik and Banzhaf indices. The x-axes in-

dicates the proportion of agents in the manipulators’ bloc (i.e. |S|
|I| = k

n) whose factor of

increment were reported while the y-axes are the average factor of increment achieved by ma-

nipulating agents in those coalitions. For the Shapley-Shubik power index, Figure 5.6 shows

that manipulating agents achieved improved power using the enumeration-based approach

than using the best-of-three method. There are cases where the manipulators achieved more

than 2.4 times as much as the original power for the enumeration-based method, and in

general the average factor of increment is between 1.5 and 2.7 times the original power of the

manipulators. Whereas, the best-of-three method has only minor effects for the manipula-

tors as the average factors of increment in these tests are below 1.3. Similar trends between

the enumeration-based and best-of-three methods are observed for the case of Banzhaf in-

dex too (see Figure 5.7). However, the average factor of increment is lower for the two

methods using the Banzhaf index. On average, merging does not appear to significantly

improve power using the best-of-three method for either the Shapley-Shubik or Banzhaf

index, and in most cases is harmful for the agents. Thus, finding a good manipulation is

non-trivial. We conclude that since improvement in power over the best-of-three method

can be achieved with only a polynomial amount of work by considering small coalition size,

then, manipulators are more likely to seek a much improved power gain in merging using

the enumeration-based approach.

5.6 Evaluation of Opportunities for Beneficial Merging

We conduct further experimental investigations to provide understanding and analysis

of the opportunities for beneficial merging available for strategic agents in WVGs. Previous

work [14] has shown that finding a beneficial merge is NP-hard for both the Shapley-Shubik

and Banzhaf power indices, and leaves the impression that this is indeed so in practice. Al-

though this worst case complexity for manipulation by merging is daunting, it is possible

that real instances of WVGs are easy to manipulate. We note that real WVGs are small

enough that exponential amount of work may not deter manipulators from participating in

manipulation by merging. Hence, manipulations may, in some cases, be achieved in practice.
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Also, even though real life WVGs may consist of small number of agents, to date, a

careful investigation of effective heuristics for manipulating such games by merging are yet

to be researched [36]. This, we argue, may be primarily due to the inherent difficulty of the

problem. This is because the ability to find beneficial merging depends on the characteristics

of the game. Some games have little opportunity for merging while others could have many

beneficial merges. So, in contrast to the work of [14], we study experimental evaluation of

the effects of merging using parameters of the games to analyze opportunities for beneficial

merging for the manipulators. This, we believe, will provide insight into understanding of

the problem and also guide the decisions of game designers.

5.6.1 Simulation Settings

The WVGs for the experiments here were generated as described in Section 2.3. How-

ever, for clarity of presentation, the number of agents, n, in each of the original WVGs is

10. We have also restricted the number of assimilated agents, k, in each game to 2. This is

consistent with the assumptions of previous work on merging [14, 45] and coalition forma-

tion [50], as manipulators’ blocs of small sizes are easier to form, and more importantly to

the manipulators, they are less likely to be detected by other agents in the games. Apart

from this, we also believe that an indepth understanding of this case (i.e., k = 2), will

provide necessary background in understanding of the general case of when k > 2.

We have used a total of 2, 000 distinct WVGs for our experiments. For each game, we

vary the quota of the game from 1
2w(I) + 1 to w(I) in steps of 10, where w(I) is the sum

of the weights of all agents in the game. We then compute the factor of increment for each

assimilated bloc of size 2 in a game using the Shapley-Shubik and Banzhaf indices. The

evaluation is carried out for the proportion of beneficial merges in a game and the quota

ratio, q
w(I) = quota

total weight . The quota ratios for the experiments range from 0.5 to 1.0, and

indicate the fraction of the total weight needed for the quotas. A quota ratio of 1.0 suggests

the existence of a unanimity WVGs, where all agents in a game are needed to form a winning

coalition. Thus, a winning coalition always exists in the games. In other words, the quota

ratio is a measure of the percentage of weight needed to form a winning coalition.
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We consider all possible manipulators’ blocs of size 2. The percentage of beneficial

merge for a quota ratio is the fraction of cases whose factors of increment is greater than

a specified value of τ , i.e., a factor of power gain in a game. We tweak τ using different

values to see how the percentage of beneficial merges varies and provide discussions of the

effects noticed below. The pseudocode to compute the percentage of beneficial merges for

each quota ratio is given in Figure 5.8.

percentBeneficialMerge(Agents I, WVG G, τ) {

for quota q of G from 1
2w(I)+1 to w(I) step 10

successCount = 0;

totalCount = 0;

for each manipulators’ bloc b of size 2

compute factor of increment f for b

if f > τ then

successCount++;

totalCount++;

end for

quotaRatio = q / w(I);

percentBenefit = successCount / totalCount;

end for

}

Figure 5.8. Pseudocode to compute the percentage of beneficial merges for each quota ratio.

5.6.2 Empirical Results and Discussion

We present the results of our experiments. Figures 5.9 and 5.10 are indications of the

opportunities for beneficial merging available for the manipulators. The x-axes are the quota

ratios and the y-axes are the percentage of beneficial merging available to the manipulators

when a beneficial merge is defined as τ = 1, i.e., a factor of power gain greater than 1.
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Figure 5.9. Percentage of beneficial merging for various values of quota ratio when a bene-
ficial merge is defined to have a factor of power gain greater than 1.0 (Shapley-Shubik).

Figure 5.10. Percentage of beneficial merging for various values of quota ratio when a
beneficial merge is defined to have a factor of power gain greater than 1.0 (Banzhaf index).
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Figures 5.9 and 5.10 show that finding a beneficial merge is relatively easy in practice,

at least for the WVGs we considered, and restricting each manipulators’ blocs to size 2. In

reality, finding the best merging may not even be desirable, as it assumes every agent will

be willing to merge. Manipulators cannot petition every agent to see if they are willing

to merge, as the manipulators would have announced their intent to cheat. However, a

dishonest agent may first discover opportunities for beneficial merging before suggesting

such merge to other would-be manipulators.

The figures show that beneficial mergings are easy to find and almost impossible to

stop. While it appears from the figures that we may be powerless to stop merging for a given

game, the game designer may be able to control the quota. Thus, a high quota ratio reduces

the opportunities for dishonesty as the percentage of beneficial merges goes down. Using

both the Shapley-Shubik and Banzhaf indices to compute agents’ power, we can deduce

from the figures that the Banzhaf index is more desirable to avoid cheating especially for

high quota ratios. This is because the percentages of beneficial mergings for high values of

the quota ratio using the Banzhaf index are smaller compare to those of the Shapley- Shubik

index. Table 5.3 shows the means and standard deviations of the factor of power gained

by manipulators from Figures 5.9 and 5.10. This shows that, on average, manipulation

by merging is easier using the Shapley-Shubik index than using the Banzhaf index. This

also indicates that the Banzhaf index may be more desirable to avoid manipulation in this

situation.

Table 5.3. The means and standard deviations of the factor of power gained for Figures 5.9
and 5.10 using the Shapley-Shubik and Banzhaf indices.

Power Indices Shapley-Shubik Index Banzhaf Index

Mean 1.142 1.062
Standard deviation 0.182 0.057

For the second set of experiments, we consider a more realistic scenario for the manip-

ulators. Even though we have defined a beneficial merge as a merge in which manipulators

have a power gain with τ > 1, manipulators may only be interested in beneficial merge with

appreciable gains as the risks of being detected by the mechanism may exceed the
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Figure 5.11. Percentage of beneficial merging for various values of quota ratio when a
beneficial merge is defined to have a factor of power gain greater than 1.15 (Shapley-Shubik).

Figure 5.12. Percentage of beneficial merging for various values of quota ratio when a
beneficial merge is defined to have a factor of power gain greater than 1.15 (Banzhaf index).
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anticipated benefits. Now, we restrict the minimal beneficial rate to τ = 1.05 or 1.10, and

do not notice appreciable change in the percentage of beneficial merging compared with

those of Figures 5.9 and 5.10. Thus, we do not report them here.

However, for value of τ = 1.15, which represents at least a 15% anticipated increment

from the original power of the manipulators, we noticed a sharp contrast from earlier re-

sults. This is an interesting and positive result for the designer of a game as it shows that

the percentage of beneficial merges drops for both the Shapley-Shubik and Banzhaf power

indices. See Figures 5.11 and 5.12. The opportunities for beneficial merge for the manip-

ulators using the Shapley-Shubik index may still be high, even when the factor of power

gained has been increased to τ = 1.15. However, for the case of the Banzhaf index (see

Figure 5.12), the maximum percentage of beneficial merge available for the manipulators is

considerably less. We argue that it is not unlikely that low percentage of beneficial merge

may discourage manipulators in engaging in manipulation by merging if these conditions

that we describe prevail and also using the Banzhaf power index to compute agents’ power.
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CHAPTER 6

MANIPULATION BY ANNEXATION IN WEIGHTED

VOTING GAMES

6.1 Overview

We recall the definition of annexation in Section 2, the power of the assimilated bloc in

an altered WVG is compared to the power of the annexer in the original game. By this def-

inition, intuition suggests that annexation should always be advantageous. This intuition is

indeed true using the Shapley-Shubik index. However, there exists situations where annex-

ation is disadvantageous using the Banzhaf index. This is true of the Deegan-Packel index

too. See [14, 36, 37] for different examples of WVGs where annexation is disadvantageous

using the Banzhaf index. Example 7 below provides an illustration of where annexation is

disadvantageous for the Deegan-Packel index. This situation where annexation results in

power decrease for the annexer is referred to as the bloc paradox [37].

Felsenthal and Machover [2,37] originally studied annexation in WVGs. They consider

when the blocs formed by annexation are advantageous or disadvantageous. Also, Aziz et

al. [14] consider the computational aspects of the problem of annexation in WVGs. They

show that finding optimal beneficial annexation in a WVG is NP-hard using the Banzhaf

index. Our work differs from those of these authors as we consider the extent to which the

agents involved in annexation may gain using the three power indices.

In this chapter, we provide examples to illustrate manipulation by annexation. Second,

we investigate the susceptibility of the three indices to annexation. Third, we present an

enumeration-based pseudo-polynomial algorithm for annexation that manipulators may use

to find a much improved power gain. Finally, we propose and evaluate annexation heuris-

tics. These heuristics require little computational efforts and provide good information for
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annexers to make decisions on how to annex in WVGs.

6.2 Examples of Manipulation by Annexation

We have used the Deegan-Packel index as a reference for these examples. The effects

of this manipulation are summarized in a table for each example using the three power

indices. The annexer as well as other manipulating agents are shown in bold.

Example 7. Advantageous Annexation for Deegan-Packel index.

Let G = [8,5,4, 4, 3, 3, 2; 18] be a WVG of seven agents. Let agent 2 (with weight

5) be an annexer. The power of this agent, γ2(G) = 0.172. Suppose the agent annexes

agent 3 with weight 4. An assimilated bloc of weight 9 is formed in the new game G′ =

[9, 8, 4, 3, 3, 2; 18]. The power index of the bloc formed by the annexer, γ1(G′) = 0.260 >

γ2(G). The agent gains from the annexation and increases its power index by a factor,

τ = 0.260
0.172 = 1.51, of the original index.

Table 6.1. Advantageous annexation showing the annexer’s power in the original game G =
[8,5,4, 4, 3, 3, 2; 18], the altered game G′ = [9, 8, 4, 3, 3, 2; 18], and the factor of increment
for the three power indices.

Power Index Original game G Altered game G’ Factor (Increment)

Shapley-Shubik 0.171 0.350 2.04
Banzhaf 0.171 0.340 1.99

Deegan-Packel 0.172 0.260 1.51

Example 8. Disadvantageous Annexation1 for Deegan-Packel index.

Let G = [9, 9, 9,8, 7, 5,3; 29] be a WVG of seven agents. Let agent 4 (with weight

8) be an annexer. The power of this agent, γ4(G) = 0.171. Suppose the agent annexes

agent 7 with weight 3. An assimilated bloc of weight 11 is formed in the new game G′ =

[11, 9, 9, 9, 7, 5; 29]. The power index of the bloc formed by the annexer, γ1(G′) = 0.159 <

γ4(G). Even though the weight of the annexer increases (from 8 to 11), the annexer loses

from the annexation and decreases its power index by a factor, τ = 0.159
0.171 = 0.93, of the

original index.

1This is an example of the bloc paradox for the Deegan-Packel power index.
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Table 6.2. Disdvantageous annexation showing the annexer’s power in the original game
G = [9, 9, 9,8, 7, 5,3; 29], the altered game G′ = [11, 9, 9, 9, 7, 5; 29], and the factor of incre-
ment/decrement for the three power indices.

Power Index Original game G Altered game G’ Factor (Increment/Decrement)

Shapley-Shubik 0.179 0.217 1.21
Banzhaf 0.177 0.217 1.22

Deegan-Packel 0.171 0.159 0.93

6.3 Susceptibility of Power Indices to Manipulation by Annexation

We assume that only one of the agents is engaging in the annexation.

6.3.1 Unanimity Weighted Voting Games

Aziz and Paterson [36] have shown that for unanimity WVGs in both the Shapley-

Shubik and Banzhaf indices: it is advantageous for a player to annex other players. We

observe that this result naturally extends to the Deegan-Packel index too. This is because

for unanimity WVGs, the definitions of the Shapley-Shubik, Banzhaf, and the Deegan-

Packel indices using Formulas 2.1, 2.2, and 2.3, respectively, are equivalent. In fact, the

power of all agents in any unanimity WVGs is the same for the three indices.

Note that Aziz and Paterson have not considered the bounds on the extent to which

strategic agents may gain with respect to games they manipulate. This is important as it

provides motivation for strategic agents to engage in manipulation when derivable gains are

appreciable. The gains (i.e., the factor of increments) show the extent of susceptibility to

manipulation among the power indices. The magnitude of this gain for unanimity WVGs,

as we shall see shortly, depends on the number of agents in the original game, the number

of agents the annexer is able to annex, as well as some compensation that is made to the

assimilated agents to forfeit their weights. Example 9 illustrates a unanimity WVG where

an annexer achieves three times its original power annexing some other agents in a game.

Example 9. Advantageous Annexation for Unanimity Weighted Voting Games

Consider G = [9,9, 8,8,7, 6,6,5, 4,3,2,2,2,1,1; 73], a unanimity WVG of 15 agents

I = {1, 2, . . . , 15} in order. The Deegan-Packel index of any agent in the game is 1
15 = 0.0667.
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Suppose the second agent with weight 9, annexes the 10-subset, C = {4, 5, 7, 8, 10, 11, 12, 13,

14, 15}, of agents in the game (i.e., the agents in bold). The new gameG′ = [46, 9, 8, 6, 4, ; 73].

The annexer has improve its weight to 46. The Deegan-Packel index of the annexer in G′ is

γ1(G′) = 1
5 = 0.2000. The agent benefits from the annexation and increases its power by a

factor of 3.

Table 6.3. Annexation in unanimity WVGs showing the annexer’s power in the original
game G = [9,9, 8,8,7, 6,6,5, 4,3,2,2,2,1,1; 73], the altered game G′ = [46, 9, 8, 6, 4, ; 73],
and the factor of increment for the three power indices.

Power Index Original game G Altered game G’ Factor (Increment)

Shapley-Shubik 0.067 0.200 3.00
Banzhaf 0.067 0.200 3.00

Deegan-Packel 0.067 0.200 3.00

It appears that the annexer has achieved a gain of three times its original power while

annexing some other agents, but this is not true in its entirety. We provide the following

arguments. Since the original and the altered games are unanimity, the power of all agents

in each game is the same. While the annexer has improved its weight, and consequently its

power by three times its original power, other agents that were not assimilated have also

had their power increased by the same factor, even though their weights in the original and

altered games remain the same. Clearly, these agents do not incur any compensation that

is made to the assimilated agents to forfeit their weights like the annexer, whose improved

weight and power must have been achieved at some compensation. The compensation made

by the annexer reduces the benefits the agent thought it gained, making the annexer’s

benefit worse than the benefits of other agents not engaging in annexation. This weakens

Aziz and Paterson’s [36] result that for unanimity WVG and for both the Shapley-Shubik

and Banzhaf indices it is advantageous for a player to annex.

Now, suppose we assume that the annexer still accrues some gains even after the appli-

cation of some compensation, then these gains are the same for the three indices. We see that

the extent of susceptibility to manipulation among the three indices are the same. Hence,

for any unanimity WVGs, the manipulability of any one index does not dominate the ma-

nipulability of other indices.
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Finally, the generalization of the upper bound on the extent to which a strategic agent

may gain with respect to games it manipulate in any unanimity WVGs follows from [36]. For

any unanimity WVG of n agents, the power of each agent is 1
n . If a strategic agent annexes

k − 1 other agents, the power of the strategic agent as well as that of the other agents in

the new game is 1
n−k+1 . Hence, the factor of increment for each agent is n

n−k+1 . This factor

of increment is the same for the three indices. When k = 1, (i.e., the strategic agent is not

annexing any other agent), then the factor of increment is 1. Whereas, when k = n, the

strategic agent is able to annex the remaining n − 1 agents in the original game, then the

factor of increment is n times the power of the agent in the original game. This is the upper

bound on the extent to which a strategic agent may achieve while annexing other agents in

any unanimity WVG. This bound holds for the three power indices.

6.3.2 Empirical Results for Non-Unanimity Weighted Voting Games

We conduct experiments to evaluate the effects of manipulation when an agent annexes

some other agents in non-unanimity WVGs. The simulation settings for the experiments

in this section are similar to the previous settings described in Section 5.4. We consider

annexation of at least one agent in the game by the annexer, while the weights of other

agents not annexed remain the same in the altered games. For a particular game, the annexer

may annex 1 ≤ k ≤ 10 other agents, k is the bloc size or the number of assimilated agents.

We present the results of our simulations. Experiments confirm the existence of advan-

tageous annexation for non-unanimity WVGs when agents engage in manipulation using

the three indices. We provide a comparison of susceptibility to manipulation by annexa-

tion among the three indices by comparing the population of factors of increment attained

by strategic agents in different games for each of the indices. A summary of susceptibility

to manipulation by annexation among the three power indices for 2, 000 WVGs is shown

in Figure 6.1. The x-axis indicates the bloc sizes while the y-axis is the average factor of

increment achieved by agents in the 2, 000 WVGs for corresponding bloc sizes.

The effect of manipulation by annexation is pronounced for the three power indices,

as all the indices are highly susceptible to manipulation. However, the higher susceptibility
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Figure 6.1. Susceptibility to manipulation by annexation among the Shapley-Shubik,
Banzhaf, and Deegan-Packel indices for non-unanimity weighted voting games.

of the Shapley-Shubik and Banzhaf indices than the Deegan-Packel index can be observed

from Figure 6.1. While the average factor of increment for manipulation rapidly grows with

the bloc sizes for the Shapley-Shubik and Banzhaf indices, that of the Deegan-Packel index

grows more slowly. Furthermore, there appears to be a positive correlation between the

average factor of increment and the bloc sizes for the three indices. The figure shows that

the average factor of increment increases with the bloc sizes.

This analysis suggests that the Shapley-Shubik and Banzhaf power indices are more

susceptible to manipulation via annexation than the Deegan-Packel power index. Since all

the three power indices are susceptible to manipulation via annexation, this may provide

some motivation for strategic agents to generally engage in such manipulation for non-

unanimity WVGs when they are being evaluated using any of the three power indices, and

in particular, when the Shapley-Shubik index is employed.
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6.4 Algorithm and Heuristics for Annexation in Weighted Voting Games

We present manipulation algorithm and heuristics that annexers may use to engage in

annexation in WVGs.

6.4.1 Manipulation Algorithm for Annexation

Our pseudo-polynomial manipulation algorithm for annexation provides a modification

of the manipulation algorithm for merging of Section 5.5. Recall that G is a WVG of n agents

and S is a would-be manipulators’ coalition. As before, let A(G) be the pseudo-polynomial

running time of PowerIndex (G, i), which computes the power index of an agent i in a WVG

G of n agents for Shapley-Shubik or Banzhaf index according to any of [4,22,23]. We first re-

place GetMergeBenefit(G,S) with another procedure called, GetAnnexationBenefit(G, i, S).

GetAnnexationBenefit(G, i, S) accepts a WVG G, an annexer, i, and a coalition S to be

assimilated by i. The procedure then returns the factor of increment of the assimilated bloc

&(S ∪ {i}).

We use GetAnnexationBenefit(G, i, S) to construct an algorithm that the annexer can

use to determine the coalition that yields the most improved benefit in annexation. The

method of construction of the algorithm is the same as that of the manipulation algorithm

for merging with the exception that we add the weight of an annexer i to the weight of

each coalition S and compare the power index Φ&(S∪{i})(G
′) of the assimilated bloc in a

new game G′ to the power index Φi(G) of the annexer in the original game G. The annexer

examines a polynomial number of coalitions of the agents assuming a limit k < n on the

size of each coalition. Since the annexer belongs to a coalition it annexes, the total number

of coalitions examined by the annexer is:

 n− 1

1

+ · · ·+

 n− 1

k − 1

 =

k−1∑
j=1

 n− 1

j

 . (6.1)

Bounding this equation using similar approach as in Equation 5.1 shows that Equation

6.1 is O(nk). Thus, as before, the manipulation algorithm for annexation also runs in pseudo-

polynomial time, with a total running time of O(nk ·A(G)).
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6.4.2 Manipulation Heuristics for Annexation

Unlike the manipulation algorithm for annexation above where we have n and k as the

number of agents and the number of assimilated agents in a WVG, manipulating agents may

not be interested in achieving the most improved power gain among the O(nk) polynomial

coalitions described before. This is because the number of these coalitions may be large

even for small values of n and k. Thus, we propose heuristics that agents may use for

annexation in WVGs. Considering the basic requirements for a good heuristic as its ease of

computation and to be as informative as possible [51], the heuristics we propose are designed

to first avoid the enumeration-based approach of the manipulation algorithm above. Second,

we avoid the simple random approach of Section 6.3.2 to ensure that our heuristics provide

good information for manipulating agents to make decisions on how to annex in WVGs.

Recall from Equation 6.1 that an annexer needs to examine a polynomial number of

assimilated coalitions of size at most k − 1 to find the most improved power gain among

these coalitions whose sizes we have restricted to k. We note also that the assimilated

coalitions with maximal weights among these coalitions are those of sizes k − 1. Thus, it

is enough for a particular annexer to check only the assimilated coalitions of size exactly

k − 1 in order for the annexer to find the coalition with the most improved benefit using

the two power indices. This indeed is the case for the Shapley-Shubik index. For the case

of Banzhaf index, we conduct a test to check the highest factor of increment among all

the coalitions of 2, 000 different WVGs. We found that the coalitions with maximal weights

(i.e., those having sizes of k−1) yield the highest possible factor of increment in over 82% of

the games. The remaining highest factor of increment are archieved by manipulators’ blocs

with lower number of agents in them. In none of these two situations do we experience the

bloc paradox.

Now, there are only

 n− 1

k − 1

 such assimilated coalitions to be considered by this

annexer. As seen, the amount of work carried out by the annexer is still polynomial, however,

this heuristic requires smaller computational effort compared to that of the enumeration-

based method and thus makes it more useful in practice. We can even do better using the
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idea in the following heuristic:

MaximalWeights heuristic:

Given: A WVG of n agents with a distinguished annexer i.

Procedure: Since agents’ weights are given in non-increasing order, let agent i annex

the first k − 1 agents from the remaining n− 1 agents in the game.

Again, let A(G) be the pseudopolynomial running time of Shapley-Shubik or Banzhaf

power index of an agent according to [22, 23]. The running time of the MaximalWeights

heuristic is O(n + A(G)). Here is a brief analysis. We just need to sum the weights of the

next k − 1 agents from the remaining n − 1 agents to that of the annexer at a cost of

O(k). In the worst case, it takes O(n) to sum the weights when k = n, i.e., the annexer

is able to annex all the remaining n − 1 agents. Computing the power of the annexer in

each of the original and altered games takes O(A(G)). Therefore, the total running time of

the heuristic is O(n + A(G)). Now, apart from the fact that this heuristic appears to find

the most improved gain, its running time is by far less than the O(nk ·A(G)) running time

of the manipulation algorithm for annexation of Subsection 6.4.1 and the above heuristic

especially when k is large. Thus, the MaximalWeights heuristic is more useful in practice for

the annexer. The benefits achievable by manipulating agents using these heuristics compare

with those of the enumeration-based method which serves as upper bound.
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CHAPTER 7

CONCLUSIONS

7.1 Summary

We investigate the effects of the following forms of manipulation - splitting, merging, and

annexation, in weighted voting games. We consider three prominent power indices, Shapley-

Shubik, Banzhaf, and Deegan-Packel indices, that are used in evaluating agents’ power in

such games. Our focus is on the characterization of the extent to which strategic agents

may gain engaging in such manipulations, and showing how susceptibility to manipulation

among the three indices compares for unanimity and non-unanimity weighted voting games.

We started with manipulation when an agent splits into several false identities. We

extend a previous result on exact unanimity weighted voting games to the Deegan-Packel

index and present new results for excess unanimity WVGs. Specifically, we propose new

bounds for the Shapley-Shubik and Banzhaf power indices on the extent of gains a manip-

ulator may achieve when the original game is an excess unanimity weighted voting game

and the resulting game after splitting is a non-unanimity weighted voting game. We il-

lustrate the susceptibility of the three power indices to manipulation by splitting through

simulations of a large number of weighted voting games with a manipulating agent in each

of the games. Results from our experiments show that the three indices are susceptible to

manipulation when an agent splits into several false identities. However, the Deegan-Packel

index is more susceptible than the Shapley-Shubik and Banzhaf indices, with the Shapley-

Shubik being the least susceptible. Hence, using Shapley-Shubik index to evaluate weighted

voting games reduces agents’ motivation towards manipulation by splitting. Second, since

our experimental results have suggested ideas on the extent to which each of the indices

are susceptible to manipulation by splitting, we went further to partially resolve an open
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problem concerning the bounds on the extent of power that a manipulator may gain when it

splits into k > 2 false identities. We provide the first three non-trivial bounds for this prob-

lem using the Shapley-Shubik and Banzhaf indices. One of the bounds is also shown to be

asymptotically tight. The analyses of these novel results not only increase our understand-

ing on the extent of power that manipulators may gain while they engage in manipulation

by splitting in WVGs, they also provide further insights into the problem which we believe

may reveal methods on how to reduce the effects of the menace in the future.

Furthermore, we consider the effects of manipulation by merging and annexation. We

provide visual illustrations of merging in weighted voting games to give some insights into

why it is difficult to predict how to merge. Given that the problems of calculating the

Shapley-Shubik and Banzhaf indices for weighted voting games are NP-complete, we show

that, when the manipulators’ coalitions sizes are restricted to a small constant, manipulators

need to do only a polynomial amount of work to find a much improved power gain for

both merging and annexation, and then present two enumeration-based pseudo-polynomial

algorithms that manipulators can use. Finally, we examine the effects of small changes

in the weights of agents on their corresponding powers in weighted voting games. This is

illustrated by showing that power vectors are often unchanged. Then, we argue and provide

empirical evidence to show that despite finding the optimal beneficial merge is an NP-hard

problem for both the Shapley-Shubik and Banzhaf power indices, finding beneficial merge is

relatively easy in practice. Hence, there may be little deterrent to manipulation by merging

in practice using the NP-hardness results. Also, while it appears that we may be powerless to

stop manipulation by merging for a given game, we suggest a measure, termed quota ratio,

that the game designer may be able to control. Thus, we deduce that a high quota ratio

decreases the number of beneficial merges. Using the Shapley-Shubik and Banzhaf indices

to compute agents’ power, we conclude that the Banzhaf index may be more desirable to

avoid manipulation by merging, especially for high values of quota ratios.
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7.2 Future Work

There are several areas of ongoing research on these problems. Here are some directions

for future work. It will be interesting to provide a generalized upper bound for Theorem

5 on manipulation by splitting into several false identities. Also, the lower bound when a

manipulator splits into k > 2 false agents using the Banzhaf power index is still open. Fur-

thermore, since our experimental results have suggested ideas on the extent of susceptibility

for manipulation by annexation and merging, other future work we plan to consider are the

bounds on manipulation by annexation and merging in weighted voting games. We also

seek to expand our experimental evaluations on the opportunities for beneficial merging to

understand the general case of manipulators’ blocs of size greater than 2. Again, we seek to

provide careful investigations of effective heuristics for manipulation by merging in weighted

voting games. Finally, there are still several other interesting open problems on false-name

manipulation in weighted voting games from [14].
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Appendix A

ELECTORAL COLLEGE’S WEIGHTS OF THE UNITED

STATES
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Table A.1. 2012 Electoral College’s Weights of the United States.

s/n States Weights

1 California 55
2 Texas 38
3 Florida 29
4 New York 29
5 Illinois 20
6 Pennsylvania 20
7 Ohio 18
8 Georgia 16
9 Michigan 16
10 North Carolina 15
11 New Jersey 14
12 Virginia 13
13 Washington 12
14 Arizona 11
15 Indiana 11
16 Massachusetts 11
17 Tennessee 11
18 Maryland 10
19 Minnesota 10
20 Missouri 10
21 Wisconsin 10
22 Alabama 9
23 Colorado 9
24 South Carolina 9
25 Kentucky 8
26 Louisiana 8
27 Connecticut 7
28 Oklahoma 7
29 Oregon 7
30 Arkansas 6
31 Iowa 6
32 Kansas 6
33 Mississippi 6
34 Nevada 6
35 Utah 6
36 Nebraska 5
37 New Mexico 5
38 West Virginia 5
39 Hawaii 4
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Table A.2. 2012 Electoral College’s Weights of the United States.

s/n States Weights

40 Idaho 4
41 Maine 4
42 New Hampshire 4
43 Rhode Island 4
44 Alaska 3
45 Delaware 3
46 D.C. 3
47 Montana 3
48 North Dakota 3
49 South Dakota 3
50 Vermont 3
51 Wyoming 3
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Appendix B

RESULTS OF NORMALITY CHECK ON THE 2012

INTERNATIONAL MONETARY FUNDS DATA

The Executive Board of the IMF at present has 24 executive directors, and is chaired

by a Managing Director in a non-voting capacity. The member countries and thier voting

power are listed in pages 93− 99. The ∗ in front of a country name indicates the chair for

a multi-country constituencies. The actual weight of each country or group is computed

using the country voting power as a percentage of the total voting power of all the countries

or groups. For example, the voting weight of Saudi Arabia is 70,592
2,515,703 × 100 = 2.8061 and

that of the United States is 421,961
2,515,703 × 100 = 16.7731. Similarly, the voting weight of the

group consisting of Denmark*, Estonia, Finland, Iceland, Latvia, Lithuania, Norway, and

Sweden is 85,615
2,515,703 × 100 = 3.4032. A complete list of the countries and their computed

corresponding voting weights used in this dissertation is shown in Table B.1.
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Table B.1. Weights of the International Monetary Fund members

Countries Weights

1 Saudi Arabia 2.8061
2 Denmark 3.4032
3 Togo 1.5530
4 Singapore 3.9362
5 France 4.2979
6 Chile 1.8411
7 United Kingdom 4.2979
8 Canada 3.6042
9 United States 16.7731
10 India 2.8101
11 Iran, Islamic Republic of 2.2686
12 Japan 6.2417
13 Italy 4.2296
14 Russia 2.3926
15 Brazil 2.6167
16 Austria 2.9208
17 Venezuela, Republica Boliviriana de 4.9079
18 Gambia, The 3.2988
19 Egypt 3.1825
20 Netherlands 6.5785
21 Germany 5.8191
22 Switzerland 2.7753
23 Korea, Republic of 3.6293
24 China 3.8159
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Figure B.1. The histogram with normal curve for the International Monetary Funds weights.

Figure B.2. The probability plot for the International Monetary Funds weights.



102

Appendix C

RESULTS OF NORMALITY CHECK ON THE

EUROPEAN UNION DATA

Table C.1. Voting weights of the European Union members

Countries Weights

1 Germany 29
2 Italy 29
3 United Kingdom 29
4 France 29
5 Spain 27
6 Poland 27
7 Romania 14
8 Netherlands 13
9 Portugal 12
10 Hungary 12
11 Czech Rep 12
12 Belgium 12
13 Greece 12
14 Bulgaria 10
15 Sweden 10
16 Austria 10
17 Slovakia 7
18 Denmark 7
19 Finland 7
20 Ireland 7
21 Lithuania 7
22 Cyprus 4
23 Latvia 4
24 Slovenia 4
25 Estonia 4
26 Luxembourg 4
27 Malta 3

Total 345
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Figure C.1. The histogram with normal curve for the European Union Members’ weights.

Figure C.2. The probability plot for the European Union Members’ weights.
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All permissions relating to the inclusion of published articles in this dissertation are
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