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ABSTRACT 

 

 

Utilizing Remote Sensing and Geospatial Techniques to Determine Detection 

Probabilities of Large Mammals 

 

by 

 

 

Patricia A. Terletzky-Gese, Doctor of Philosophy 

 

Utah State University, 2013 

 

 

Major Professor: R. Douglas Ramsey 

Department: Wildland Resources 

 

 

Whether a species is rare and requires protection or is overabundant and needs 

control, an accurate estimate of population size is essential for the development of 

conservation plans and management goals. Wildlife censuses in remote locations or over 

extensive areas are logistically difficult, frequently biased, and time consuming. My 

dissertation examined various techniques to determine the probability of detecting 

animals using remotely sensed imagery.  

 We investigated four procedures that integrated unsupervised classification, 

texture characteristics, spectral enhancements, and image differencing to identify and 

count animals in remotely sensed imagery. The semi-automated processes had relatively 

high errors of over-counting (i.e., greater than 60%) in contrast to low (i.e. less than 19%) 

under-counting errors. The single-day image differencing had over-counting errors of 

53% while the manual interpretation had over-counting errors of 19%.  
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The probability of detection indicates the ability of a process or analyst to detect 

animals in an image or during an aerial wildlife survey and can adjust total counts to 

estimate the size of a population. The probabilities of detecting an animal in remotely 

sensed imagery with semi-automated techniques, single-day image differencing, or 

manual interpretation were high (e.g. ≥ 80%). Single-day image differencing resulted in 

the highest probability of detection suggesting this method could provide a new technique 

for managers to estimate animal populations, especially in open, grassland habitats. 

Remotely sensed imagery can be successfully used to identify and count animals in 

isolated or remote areas and improve management decisions.    

Sightability models, used to estimate population abundances, are derived from 

count data and the probability of detecting an animal during a census. Global positioning 

systems (GPS) radio-collared bison in the Henry Mountains of south-central Utah 

provided a unique opportunity to examine remotely sensed physiographic and survey 

characteristics for known occurrences of double-counted and missed animals. Bison 

status (detected, missed, or double-counted) was determined by intersecting helicopter 

survey paths with bison travel paths during annual helicopter surveys. The probability of 

detecting GPS-collared bison during the survey ranged from 91% in 2011 to 88% in 

2012.  

 (179 pages) 
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PUBLIC ABSTRACT 

 

 

Utilizing Remote Sensing and Geospatial Techniques to Determine Detection 

Probabilities of Large Mammals 

 

Whether a species is rare and requires protection or is overabundant and needs 

control, an accurate estimate of population size is essential for the development of 

conservation plans and management goals. Wildlife science has traditionally relied on 

human observers in airplanes, helicopter, or ground vehicles to count the number of 

individuals seen during wildlife surveys. However, these traditional surveys of wildlife 

require significant resources, are difficult to conduct quickly and safely over remote 

and/or extensive locations, are disruptive to the studied species, and are prone to 

significant error due to unobserved or missed animals and multiple counts of single 

animals. One method to correct an observed count of animals is to physically “mark” a 

certain number of animals prior to an aerial or ground survey of wildlife and record the 

number of marked animals visually observed during the survey. The proportion of 

marked animals observed relative to the known number of marked animals in a survey 

area is the probability of detection, which is then applied to the count of animals from a 

survey to provide a corrected population size.  

My dissertation examined various techniques to improve the probability of 

detecting animals in remotely sensed aerial imagery. Counting animals in remotely 

sensed imagery, such as in photographs obtained from an airplane or images from 

satellites, are advantageous as the images can be acquired for large areas quickly and can 
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reveal spectral information not readily visible by humans (i.e., near infrared and thermal 

information). In addition, techniques employing computer evaluation have the potential 

to reduce analysis time, and increase accuracy and precision when estimating animal 

population sizes. 

 Patricia Terletzky-Gese 
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CHAPTER 1 

INTRODUCTION 

The enumeration of wildlife populations has developed from the simple counting 

of individuals in a given area (Leopold et al., 1947) to the development of models 

estimating bias (Caughley, 1974), to complex, statistically based estimators and their 

associated correction factors (Miller et al., 2011; Rivest et al., 1998; Thompson and 

Seber, 1994; White and Lublow, 2002). Conventional methods to estimate wildlife 

population abundances include counting marked or unmarked individuals via ground or 

aerial surveys. Although aerial transects can cover large areas in a relatively short time 

(Freddy et al., 2004; Potvin et al., 2004), the validity of population abundance estimates 

derived from aerial transect counts is questionable (Eberhardt, 1978). Problems 

associated with aerial and ground surveys have been well-documented (Brockett, 2002; 

Caughley, 1974; Jackmann, 2002; Samuel et al., 1987; Steinhorst and Samuel, 1989; 

White et al., 1989; Willaims et al., 2002) and can be broadly classified into 

environmental, biological, and survey biases (Hosack et al., 2012; Ransom, 2012; 

Steinhorst and Samuel, 1989). Environmental biases are uncontrollable factors such as 

weather or topography of the survey area. Biological biases are (Gasaway et al., 1985; 

Jackmann, 2002) due to characteristics of the species surveyed such as habitat preference 

and whether the species is solitary or in groups. Survey biases are influenced by observer 

experience, aircraft type, and speed, altitude of the aircraft, and survey design (Caughley, 

1974; Ransom, 2012). In addition to the three types of biases reported with ground and 

aerial wildlife surveys, there are misclassification errors (i.e., incorrect species 

identification) and missed individuals or groups (i.e., individuals present in the study area 
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but not detected) or double-counted (i.e., individuals present in the study area and 

counted twice, Hosack et al., 2012). Methodological techniques that attempt to address 

missed animals include using two independent observers (Duchamp et al., 2006; Potvin 

et al., 2004; White et al., 1989), distance sampling (Williams et al., 2002), concurrent or 

nearly concurrent ground and aerial counts (Jackmann, 2002; Samuel et al., 1987), mark-

recapture or mark-resight methods (White et al., 1982; Williams et al., 2002), and 

photographic interpretation (Koski et al., 2010; Lubow and Ransom, 2009). Statistical 

techniques that minimize errors in detection generally adjust abundance estimates by 

accounting for missed individuals or groups (Hosack et al., 2012; Walsh et al., 2009; 

Williams et al., 2002). Sightability models indicate how environmental, survey, and 

biological variables influence the probability of detecting an animal and can be used to 

adjust population abundance estimates (Samuel and Pollock, 1981; Steinhorst and 

Samuel, 1989). An additional concern with aerial surveys is the potential ungulate 

response to helicopters by flushing or moving away from the survey area (Anderson and 

Lindzey, 1996; Bernatas and Nelson, 2004; Brockett, 2002) which can increase the 

potential for in individuals to be missed or double-counted (Bartmann et al., 1987; 

DeYoung, 1985; Eberhardt, 1978). Although many modifications have been made to 

traditional wildlife ground and aerial surveys techniques (Bartmann et al., 1987; 

Caughley, 1974; Eberhardt, 1978; Rivest et al., 1998; Thompson and Seber, 1994; White 

and Lubow, 2002) there continues to be a need to improve the accuracy, precision, and 

repeatability of methods used to estimate wildlife population abundances. 

Aerial photography provides an alternative for counting animals over extensive 
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areas or remote areas (e.g., Fretwell et al., 2012) and has been used to estimate bird 

colony size (e.g., greater flamingos [Phoenicopterus roseus], Descamps et al., 2011; 

emperor penguins [Apenodytes foster], Fretwell et al., 2012), marine mammals (e.g., 

bowhead whales [Balaena mysticetus], Koski et al., 2010) and large ungulates (feral 

horse [Equus caballus], Lubow and Ransom, 2009). Counting animals in aerial 

photography is labor intensive, subjective and can result in inconsistent counts (Bajzak 

and Piatt, 1990; Gilmer et al., 1988; Sinclair, 1973). Erwin (1982) found that variation 

was high among photo-interpreters and neither experience nor training influenced counts 

of canvasback ducks (Aythya valisineria). Conversely, Couturier et al. (1994) indicated 

that two photo-interpreters achieved similar values when counting caribou (Rangifer 

tarandus). Bajzak and Piatt (1990) developed a computer-based technique to automate 

the identification and counting of snow geese (Chen caerulescens) in remotely sensed 

imagery. The uniformly colored snow geese and simple habitat features facilitated 

identification of individual birds. These studies suggest that obtaining accurate counts of 

animals from aerial imagery is best applied in areas with little vegetation structure and/or 

with larger bodied species that are readily differentiated from their background 

(Descamps, 2011). Aerial photography has been commonly used in coastal environments 

(Hiby et al., 1988) and for counting birds (Bajzak and Piatt, 1990; Erwin, 1982; Gilmer et 

al., 1988; Harris and Lloyd, 1977) but only a few studies have used it to estimate 

ungulate populations (Couturier et al., 1994; Lubow and Ransom, 2009; Russell et al., 

1994; Sinclair, 1973). 

Counting of individual ungulates from remotely sensed imagery has the potential 
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to reduce survey bias of conventional wildlife censuses while accurate counting, 

facilitated by automated or semi-automated image analysis, could reduce over- and 

under-counting errors. In addition, remotely sensed imagery is a permanent record of a 

surveyed area that can be repeatedly re-examined and allows a diversity of researchers to 

utilize a wide range of analysis techniques without influencing or modifying the original 

image. Furthermore, acquiring remotely sensed imagery of survey areas, whether from 

airplanes or satellites, will likely have fewer negative effects on animals than 

conventional aerial surveys (Bernatas and Nelson, 2004; DeYoung, 1985).  

One of the central assumptions of this project is that in remotely sensed imagery 

animals can be distinguished from the surrounding features (i.e., background soils or 

vegetation). Laliberte and Ripple (2003) found that cattle were discernible in 1 m 

IKONOS satellite imagery but the final count was higher compared to manual photo-

interpretation. Homogenous background influenced the identification of deer (Odocoileus 

spp.) in remotely sensed images obtained in winter where deer were discernible from the 

surrounding snow in the near infrared portion of the electromagnetic spectrum (EM) but 

not in the visible region (Wyatt et al., 1985). There was little distinction between deer 

and non-snow covered backgrounds (i.e., vegetation and soil) in the thermal region of the 

EM spectrum (Wyatt et al., 1985). Complex, non-homogenous backgrounds reduced the 

detection and identification of deer by 50% - 80% with higher detections achieved when 

near infrared (NIR) spectral information was included in the analysis but varied with the 

amount of non-photosynthetic material (i.e., desiccated vegetation, Trivedi et al. (1982). 

These studies suggest that detecting wildlife in remotely sensed imagery is best 



5 
 

accomplished with NIR spectral information and when animals are surrounded by 

homogenous, non-complex habitats. 

Although analysts can qualitatively identify animals in remotely sensed imagery, 

the objective of this research was to develop an automated or semi-automated analysis of 

remotely sensed imagery for the identification and counting of animals to reduce errors. 

Examination was limited to grassland systems due to the increased complexity of cover 

in shrub dominated habitats and forests.  

The probability of detecting an animal during ground or aerial surveys can be 

used to correct count data to obtain a more accurate population abundance estimate for 

wild animals (White, 2005). Although several methods have been developed that estimate 

the probability of detection (Williams et al., 2002), most assume a constant probability, 

which are incorrectly applied for large ungulates in rugged terrain or in habitats that 

obstruct vision (Fieberg and Giudice, 2008). Incorporating landscape variables and 

survey parameters into sightability models extends the ability of detection probabilities to 

correct population abundance estimates. Habitat, group size, and amount of vegetative 

cover have all been shown to influence sightability (Gasaway et al., 1985; Giudice et al., 

2012; Jackmann, 2002; Ransom, 2012; Rice et al., 2009; Samuel et al., 1987; Samuel and 

Pollock, 1981).  

Chapter 2 is published in GIScience & Remote Sensing, 2012, 49(4):597-608. 

Chapter 3-4 are formatted for publication in Photogrammetric Engineering & Remote 

Sensing (PE&RS), a theoretical and applied journal for geospatial information 
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technologies. Chapter 5 is formatted for publication in The Journal of Wildlife 

Management, a journal for wildlife science, management, and conservation.    
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CHAPTER 2 

SPECTRAL CHARACTERISTICS OF DOMESTIC AND WILD MAMMALS 

 

Abstract 

Few studies have recorded the spectral signatures of domesticated live animals 

and in particular few have examined wild species. Using in situ radiometry, we acquired 

visual and near infrared spectral signatures of wild elk (Cervus elaphus) and 

domesticated cattle (Bos taurus) and horses (Equus caballus). Signatures were 

significantly different among species across all bands with the exception of cattle and 

horses in the red band. Further research is needed to determine if the shallower slopes in 

the red-shift region of the animal signatures would allow for distinction from vegetation 

using various remote sensors. Application of in situ spectral signatures to remotely 

sensed imagery could provide an efficient method for counting wildlife. 

 

Introduction 

The regions of the electromagnetic (EM) spectrum measured by sensors 

encompass visible wavelengths, long and shortwave infrared wavelengths, and even 

thermal wavelengths. Remote sensing instruments obtain spectral information at a wide 

range of spatial scales from kilometers to meters and recently sub-meter (Jensen, 2005). 

In contrast, hand-held devices such as spectrometers, spectroradiometers, and radiometers 

measure radiance at spatial scales of centimeters to millimeters and can record a variety 

of wavelengths from short wave ultraviolet to long wave far-infrared (Clark, 1999). 

Hand-held devices obtain signatures under controlled conditions that allow for correction 
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of atmospheric attenuation and sensor anomalies, and can be considered fundamental 

information for features in remotely sensed imagery (Schill et al., 2009). As spatial 

resolution of remote sensing instruments increases, application of in situ spectral 

signatures could be applied to remotely sensed imagery for feature identification. 

Spectrometers and radiometers have been utilized to measure the spectral reflectance of 

agricultural crop health (Pethybridge et al., 2007), to quantify the amount of nitrates in 

liquids (Fernández-Ramos et al., 2008), to identify the effect of contaminants and 

snowflake size in snow reflectance (Singh et al., 2010), and to classify volcanic rock 

origins (Rukieh et al., 2007). Spectral libraries, consisting of standardized spectral 

signatures measured from hand-held devices, have successfully been utilized to classify 

soils, minerals, rocks, man-made materials, and even space bodies (Baldrigde et al., 

2009). Uses of spectral libraries include functioning as a standard for comparison with 

other data sources, identification of spectral outliers, and predicting spectral 

characteristics of features (Shepherd and Walsh, 2002). 

Spectral information on animals has previously focused on the interaction of skin 

and hair relative to heat conductance and transference (Hutchinson and Brown, 1969; 

Dawson and Brown, 1970; Gates, 1980; da Silva et al., 2003). Hutchinson and Brown 

(1969) found cattle with lighter hair had higher reflectance and reduced absorbance, 

which reduced the heat load. Dawson and Brown (1970) examined two desert kangaroo 

species (Megaleia rufa and Macropus robustus) and concluded the lighter colored species 

exhibited behavioral traits influenced by hair color. 
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Detection of live animals with hand-held, thermal sensors initially occurred in the 

late 1960s and early 1970s (Croon et al., 1968; McCullough et al., 1969; Graves et al., 

1972; Parker and Driscoll, 1972) and has continued more recently (Burn et al., 2006; 

Betke et al., 2008; Udevitz et al., 2008). Early studies suggest that although animal 

detection was possible, detection was not consistent and required very specific conditions 

(i.e., consistent background conditions). Improved thermal resolution has increased the 

reliability of detection and identification (Bernatas and Nelson, 2004) and may allow for 

counting of individuals and the eventual estimation of populations. Investigation of 

mammalian detection and identification in the visible portion of the spectrum is more 

limited. Trivedi et al. (1982) determined that far red (0.67 μm) and near infrared (NIR, 

0.79–0.98 μm) wavelengths best identified mule deer (Odocoileus hemionus) in winter. 

Errors of commission were highest when the image contained shrubs or dried vegetation 

and lowest with a consistent background such as snow (Trivedi et al., 1982, 1984). 

Trivedi et al. (1982) recognized that errors of omission occurred but considered them 

negligible and did not specifically address them. 

Conventional wildlife population estimates using aerial surveys are rife with 

inconsistencies and errors (Eberhardt, 1978; Bartmann et al., 1987; White et al., 1989; 

Jackmann, 2002; Freddy et al., 2004). Therefore, there is a need for a systematic, 

efficient, and accurate method of identifying and counting wildlife for population 

estimates. Traditionally, remotely sensed imagery was utilized to map static landscape 

features, but recent applications include wildlife populations surveys (Heide-Jørgensen, 

2004). Compared to conventional visual counts of wildlife from aircraft, remotely sensed 
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imagery as a source of wildlife population estimates provides a permanent record, 

allowing for repeated analysis by multiple investigators or application of different 

techniques. In addition, there is the potential for classification of large-bodied mammals 

in high spatial resolution (< 1 × 1 m) remotely sensed imagery. An initial challenge of an 

accurate supervised classification of animals in a remotely sensed image is the 

application of basic spectral information of animal species (Lubin et al., 2001; Balridge et 

al., 2009; Kokaly et al., 2009). Trivedi et al. (1982) and Wyatt et al. (1985) obtained 

spectral signatures for deer species (Odocoileus spp.), but no research has recorded 

spectral signatures of elk (Cervus elaphus), horses (Equus caballus), or cattle (Bos 

taurus). Obtaining basic spectral information on common domestic animals and a wild 

ungulate can facilitate understanding of animals in aerial or satellite remotely sensed 

imagery. 

The objective of this research was to compare visible and near-infrared spectrum 

reflectance values of domestic and wild ungulates. Specifically, we examined to what 

extent elk, cattle, and domestic horse spectral signatures were unique and distinguishable 

among themselves. 

 

Methods 

A portable, shortwave, four-band EXOTECH radiometer (blue band: 0.45–0.52 

μm; green band: 0.52–0.60 μm; red band: 0.63–0.69 μm; and NIR band: 0.76–0.90 μm) 

was used to obtain spectral measurements of cattle, elk, and horses in northern Utah 

under generally cloud free skies. Elk and horse readings were acquired at the Hardware 

Ranch Wildlife Management Area in late January 2009. The cattle readings were 
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acquired in a private pasture in Cache Valley in early February 2009. Attribute data 

included angle of readings (top or side of the animal). The radiometer was fitted with a 1° 

field-of-view lens and held 50–100 cm over individual animals resulting in a reading of 

0.76–3.05 cm
2
 area. We converted radiometer voltages to reflectance values (Jackson et 

al., 1987; Neale and Crowther, 1994; Schill et al., 2009) based on known bidirectional 

properties collected over a barium sulfate panel reflecting incoming solar radiation 

(Jackson et al., 1992; Neale et al., 2005). The barium sulfate panel was placed close to 

the study sites but far enough away so that airborne particles (i.e., dust) generated from 

the corrals or pasture would not obscure the incoming solar radiation nor settle onto the 

panel itself. The radiometer, held approximately 0.5 to 1 meter above the panel without 

shadowing, obtained panel values intermittently throughout the day. Calibration of the 

radiometer to zero radiance occurred at the beginning and end of each day by covering 

the radiometer lens to eliminate outside light and represented inherent radiometer noise. 

Removal of radiometric noise occurred during the voltage to reflectance conversion. 

Obtaining an optimal sample required correct animal positioning, adequate access 

for the radiometer, and a stationary animal. These conditions presented themselves 

infrequently and were available only for a few seconds. Thus, obtaining samples directly 

above animals was not always possible and sometimes required a radiometer reading of 

the animals’ side. Due to the quickness with which samples had to be acquired, some 

samples did not have the angle of acquisition recorded and thus were labeled as 

unknown. Each session consisted of five radiometer readings with the average of the five 

readings considered as the sample. Readings of elk took place while adults were in a 
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squeeze chute and usually stationary (Fig. 2.1). Because elk moved through the chute 

rapidly, only one sample occurred for each elk. Samples consisted of only the back or 

side of the elk, not the head or white rump. Imaging of cattle (Black Angus and Angus 

mix) occurred in an open pasture while they were eating and could move freely about, but 

only readings of stationary cattle were included in analysis. For horses (Belgian, 

Clydesdale, and Percheron breeds), data acquisition occurred within a corral and only for 

stationary horses. Sampling of cattle and horses occurred with replacement, so some 

individuals were sampled more than once. 

Optimally the instantaneous field of view (IFOV) consisted entirely of the animal 

without shadow or neighboring features but unpredicted animal movement sometimes 

incorporated unexpected features (i.e., the ground or shadow). To reduce the intrusive 

error, as defined by Schill et al., 2009), analysis consisted of signatures within ±2 STD of 

the mean for each spectral band. Because samples represented the average of five 

readings, we used the standard error to represent the variation across samples (Streiner, 

1996). A one-way analysis of variance (ANOVA, Zar, 1996) tested the null hypothesis 

that the mean reflectance values for each band were not significantly different among the 

three species. The Tukey Honest Significant Differences test (HSD) tested pair-wise 

differences. We conducted t-tests to determine if there were significant differences in 

mean reflectance values for the angle of acquisition (top vs. side) for all three species. 

The t-tests determined if black cattle were significantly different from brown cattle and if 

brown horses were significantly different from grey horses. All t-tests assumed unequal 
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variances and used the Welch-Scatterthwaite equation to determine the degrees of 

freedom (Zar, 1996). 

 

Results 

Analysis consisted of 53 readings: 27 elk, 17 cattle, and 9 horses. Elk had the 

highest mean reflectance and highest within-species standard error (SE) for all spectral 

bands, except the blue (Table 2.1). Cattle had the lowest mean reflectance and lowest 

within-species standard error for all bands (Fig. 2.2 and Table 2.1). Mean reflectance 

values for horses were intermediate between cattle and elk in all bands, although the 

values were closer to cattle. 

One of the assumptions of an ANOVA is that the data are normally distributed 

and that variances are homoscedastic among the independent variables. Although the 

spectral values were normally distributed, they exhibited heteroscedasticty, so prior to 

conducting the ANOVA, we log-transformed the blue, green, and NIR spectral values. 

The red spectral values required a square root transformation to reduce heteroscedasticty 

without reducing normality. ANOVAs conducted on transformed data indicated there 

were significant differences between elk and cattle in all four bands (Table 2.2). Elk and 

horses were significantly different in the visible bands (blue, green, and red) at the 0.05 

significance level and in the NIR band at the 0.07 level of significance. The transformed 

reflectance values were significantly different between cattle and horses in the blue, 

green, and NIR band but not the red band (Table 2.2). 

The general spectral pattern of the signatures exhibited a decrease in reflectance 

values from blue to the green, an increase from the green to the red, with a steeper 
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increase from the red to the NIR (Fig. 2.2). Although spectral values of all three 

ungulates increased in the “red shift” region (change from the red band to the NIR band), 

similar to that of vegetation, there was a distinct difference in pattern among vegetation 

and the three ungulates in the shorter wavelengths. Spectral values for vegetation 

increased from the blue to green bands, while elk values increased and cattle and horses 

exhibited little change (Fig. 2.3). In addition, the slope of vegetation in the red shift 

region is generally steeper than that of the three animal species measured. 

There was no significant difference in the angle of acquisition (side or top) on 

mean reflectance values in any bands measured (p > 0.05) for elk or cow (Fig. 2.3). We 

did not examine statistical differences in angle of acquisition for horses due to low 

sample size. 

We examined reflectance values relative to coloration for cattle and horses but not 

on elk, because their coloration is similar among individuals. There was no significant 

difference (p > 0.05) in the mean reflectance values of brown and black cattle in the blue 

and green bands. Brown cattle exhibited significantly (p < 0.001) higher reflectance 

values in the red and NIR bands than black cattle (Fig. 2.4). The lack of significant 

differences in the mean reflectance values between brown and grey horses in all four 

bands is likely due to high variation with low sample size (Fig. 2.4). 

 

Discussion 

Accurate identification of landscape features in remotely sensed imagery requires 

unique and discernible spectral signatures. In situ measurements result in basic spectral 

information that if applied to remotely sensed imagery has the potential to increase the 
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accuracy and precision of feature identification. We examined spectral signatures for 

three ungulate species: domestic cattle, elk, and domestic horses. Our data suggested that 

cattle, elk, and horses spectral signatures are uniquely identifiable in the visible and NIR 

regions of the electromagnetic spectrum when collected with hand-held radiometers. 

While their signature patterns are similar, the spectral values are significantly different. 

Hair structure, type, and pigmentation determine the coloration of a species, which in turn 

influences the spectral reflectance and absorption for that species. Most terrestrial 

mammals have two hair types: guard hairs and underfur. Guard hairs are typically longer, 

thicker, and have a complex physical structure. Underfur is short, fine, and dense, with a 

simple physical structure and little variability in coloration (Adorjan and Kolenosky, 

1969; Moen and Severinghaus, 1984). Underfur provides insulation and is more prevalent 

during colder months (Toweill and Thomas, 2002) while guard hairs provide species-

specific coloration and are present throughout the year. Elk shed their winter coats in the 

spring and their summer coats in late summer to early fall, so the spectral reflectance of 

elk included both guard hair and underfur. Elk underfur is wavy, wooly, and lighter in 

color than guard hairs, whereas cattle underfur is long, straight, and similar to guard hair 

(Moen and Serveringhaus, 1984). The winter coat of horses is simply thicker and longer 

than their summer coat. Elk have three distinct regions of banding on individual body 

hair, while the rump and neck hair lack banding. Cattle and horses can vary from having 

banded hair to non-banded hair. The presence of the light-colored underfur in elk and an 

overall light tan color resulted in higher reflectance values. The higher variation in the elk 

reflectance values is due to the greater complexity of the elk pelage rather than variation 
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in coat coloration alone. The lower variation in reflectance values for cattle and horses is 

likely due to sampling with replacement, resulting in individuals being represented by 

multiple samples. The darker pelage of cattle (predominately black to brown) and horses 

(predominately brown) resulted in greater absorption and lower reflectance values for all 

spectral bands examined, although de Silva et al. (2003) found brown- and black-colored 

cattle skin had similar reflectance values in the visible wavelengths. The darker colors 

also contributed to the relatively small change in reflectance from the blue to green 

region for cattle. 

Because vegetation surrounds both domestic and wild ungulates, spectrally 

distinguishing vegetation from animals is paramount for accurate identification. While 

the overall spectral pattern of the animals studied is in opposition to that of vegetation 

(Fig. 2.3), the variance about those patterns precludes easy distinction with vegetation. 

Past research indicates that animal hide is discernible from vegetation in the 0.6 to 0.7 μm 

region of the electromagnetic spectrum (Wyatt et al., 1985; Bortolot and Prater, 2009) 

and that wild deer were most discernible with a consistent layer of snow and no shrubs 

present (Trivedi et al., 1982). The lower slopes of the ungulate spectral patterns in the red 

shift region, relative to vegetation, may aid in distinguishing cattle, elk, and horses in 

remotely sensed imagery. 

The spectral differences among cattle, elk, and horses create the possibility of 

discerning these species in high-spatial-resolution aerial or satellite remotely sensed 

imagery. Standardized signatures could aid in the segmentation of an image by removing 
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pixels or features that lie outside the range of the animals’ spectral signature. 

Enhancement of pixels lying within the signature would facilitate feature classification. 

While continued recording of the spectral signatures of domestic and wild species 

is needed, future research should focus on the application of standardized cattle, elk, and 

horse signatures to segment an image and identify these species in aerial or satellite 

imagery. Applying in situ spectral signatures to aerial or satellite imagery to identify and 

count animals across large areas has the potential to initiate surveys in areas that have 

previously been too extensive to sample with conventional survey techniques. Vast areas 

of interest, such as the Great Basin Desert of the western United States or the Mongolian 

Steppe, cannot reasonably be surveyed from the ground or air for endemic populations of 

wild ungulates. Attempting to survey such large areas would require many days during 

which animals would continuously move and potentially be counted multiple times or 

even missed being counted completely. Yet there is a need to survey these areas for 

contentious species such as the wild horse (Equus ferus) or critically endangered species 

such as the Mongolian Antelope (Saiga tatarica; IUCN, 2011). Using remotely sensed 

imagery, a large area could be completely imaged in a relatively short amount of time, 

thus avoiding drastic animal movements and increasing counting precision. Identification 

of domestic and wild species with standardized signatures creates an additional wildlife 

survey technique not currently possible. 

  



23 
 

Literature Cited 

Adorjan, A. S. and G. B. Kolenosky, 1969, A Manual for the Identification of Hairs of 

Selected Ontario Mammals, Toronto, Canada: Ontario Department of Lands and 

Forests, Research Report (Wildlife) No. 90, 64 p. 

Baldrigde, A. M., Hook, S. J., Grove, C. I., and G. Rivera, 2009, “The ASTER Spectral 

Library Version 2.0,” Remote Sensing of Environment, 113:711–715. 

Bartmann, R. M., White, G. C., Carpenter, L. H., and R. A. Garrot, 1987, “Aerial Mark-

Recapture Estimates of Confined Mule Deer in Pinyon-Juniper Woodlands,” 

Journal of Wildlife Management, 51(1):41–46. 

Betke, M., Hirsh, D. E., Makris, N. C., McCraken, G. F., Procopio, M., Hristov, N. I., 

Tang, S., Bagchi, A., Reichard, J. D., Horn, J. W., Crampton, S., Cleveland, C. J., 

and T. H. Kunz, 2008, “Thermal Imaging Reveals Significantly Smaller Brazilian 

Free-Tailed Colonies than Previously Estimated,” Journal of Mammalogy, 

89(1):18–24. 

Bernatas, S. and L. Nelson, 2004, “Sightability Model for California Bighorn Sheep in 

Canyonlands Using Forward-Looking Infrared (FLIR),” Wildlife Society Bulletin, 

32(3):638–647. 

Bortolot, Z. J. and P. E. Prater, 2009, “A First Assessment of the Use of High Spatial 

Resolution Hyperspectral Imagery in Discriminating among Animal Species, and 

Between Animals and Their Surroundings,” Biosystems Engineering, 102:379–

384. 



24 
 

Burn, D. M., Webber, M. A., and M. S. Udevitz, 2006, “Application of Airborne Thermal 

Imagery to Surveys of Pacific Walrus,” Wildlife Society Bulletin, 34(1):51–58. 

Clark, R. N., 1999, “Chapter 1: Spectroscopy of Rocks and Minerals, and Principles of 

Spectroscopy,” in Manual of Remote Sensing, Volume 3, Remote Sensing for the 

Earth Sciences, Rencz, A. N. (Ed.), New York, NY: John Wiley and Sons, 3–58. 

Croon, D. W., McCullough, D. R., Olsen, C. E., Jr., and L. M. Queal, 1968, “Infrared 

Scanning Technique for Big Game Censusing,” Journal of Wildlife Management, 

32(4):751–759. 

da Silva, R. G., La Scala, N., Jr., and H. Tonhati, 2003, “Radiative Properties of the Skin 

and Haircoat of Cattle and Other Animals,” Transactions of the American Society 

of Agricultural Engineers, 46(3):913–918. 

Dawson, T. J. and G. D. Brown, 1970, “A Comparison of the Insulative and Reflective 

Properties of the Fur of Desert Kangaroos,” Comparative Biochemistry and 

Physiology, 37(1):23–38. 

Eberhardt, L. L., 1978, “Transect Methods for Population Studies,” Journal of Wildlife 

Management, 42(1):1–31. 

Fernández-Ramos, M. D., Greluk, M., Palma, A. J., Arroyo-Guerrero, E., Gómez-

Sánchez, J. L., and F. Capitán-Vallvey, 2008, “The Use of One-Shot Sensors with 

a Dedicated Portable Electronic Radiometer for Nitrate Measurements in Aqueous 

Solutions,” Measurement Science and Technology, 19:1–7. 

Freddy, D. J., White, G. C., Kneeland, M. C., Kahn, R. H., Unsworth, J. W., deVergie, 

W. J., Graham, V. K., Ellenberger, J. H., and C. H. Wagner, 2004, “How Many 



25 
 

Mule Deer Are There? Challenges of Credibility in Colorado,” Wildlife Society 

Bulletin, 32(3):916–927. 

Gates, D. M., 1980, “Spectral Characteristics of Radiation and Matter,” in Biophysical 

Ecology, New York: Springer-Verlag, 248-266. 

Graves, H. B., Bellis, E. D., and W. N. Knuth, 1972, “Censusing White-Tailed Deer by 

Airborne Thermal Infrared Imagery,” Journal of Wildlife Management, 

36(3):875–884. 

Heide-Jørgensen, M. P., 2004, “Aerial Digital Photographic Surveys of Narwhals, 

Monodon monoceros, in northwest Greenland,” Marine Mammal Science, 

20(2):246–261. 

Hutchinson, J. C. D. and G. D. Brown, 1969, “Penetrance of Cattle Coats by Radiation,” 

Journal of Applied Physiology, 26(4):454–464. 

IUCN (International Union for Conservation of Nature), 2011, IUCN Red List of 

Threatened Species, Version 2011.2, Gland, Switzerland: IUCN. 

Jackmann, H., 2002, “Comparison of Aerial Counts with Ground Counts for Large 

African Herbivores,” Journal of Applied Ecology, 39:841–852. 

Jackson, R. D., Clarke, T. R., and M. S. Moran, 1992, “Bidirectional Calibration Results 

for 11 Spectralon and 16 BaSO4 Reference Reflectance Panels,” Remote Sensing 

of Environment, 40:231–239. 

Jackson, R. D., Moran, M. S., Slater, P. N., and S. F. Biggar, 1987, “Field Calibration of 

Reference Reflectance Panels,” Remote Sensing of Environment, 22:145–158. 



26 
 

Jensen, J. R., 2005, Introductory Digital Image Processing: A Remote Sensing 

Perspective, 3rd Edition, Upper Saddle River, NJ: Prentice Hall, 526 p. 

Kokaly, R. F., Asner, G. P., Ollinger, S. V., Martin, M. E., and C. A. Wessman, 2009, 

“Characterizing Canopy Biochemistry from Imagine Spectroscopy and its 

Application to Ecosystem Studies,” Remote Sensing of Environment, 113:S78–

S91. 

Lubin, D., Lei, W., Dustan, P., Mazel, C. H., and K. Stamnes, 2001, “Spectral Signatures 

of Coral Reefs: Features from Space,” Remote Sensing of Environment, 75:127–

137. 

McCullough, D. R., Olsen, C. E., Jr., and L. M. Queal, 1969, “Progress in Large Animal 

Census by Thermal Mapping,” in Remote Sensing in Ecology, Johnson, P. L. 

(Ed.), Athens, GA: University of Georgia Press, 138–147. 

Moen, A. N. and C. W. Severinghaus, 1984, “Hair Depths of the Winter Coat of White-

Tailed Deer,” Journal of Mammalogy, 65(3):497–499. 

Neale, C. M. U. and B. G. Crowther, 1994, “An Airborne Multispectral Video/ 

Radiometer Remote Sensing System: Development and Calibration,” Remote 

Sensing of Environment, 49:187–194. 

Neale, C. M. U., Jayanthi, H., and J. L. Wright, 2005, “Irrigation Water Management 

Using High Resolution Airborne Remote Sensing,” Irrigation and Drainage 

Systems, 19:321–336 

Parker, H. D., Jr. and R. S. Driscoll, 1972, “An Experiment in Deer Detection by Thermal 

Scanning,” Journal of Range Management, 25(6): 480–481. 



27 
 

Pethybridge, S. J., Hay, F., Esker, P., Wilson, C., and F. W. Nutter, Jr., 2007, “Use of 

Multispectral Radiometer for Noninvasive Assessments of Foliar Disease Caused 

by Ray Blight in Pyrethrum,” Plant Disease, 91(11):1397–1406. 

Rukieh, M., Al–Kafri, A. M., and A. W. Khalaf, 2007, “Spectral Properties and 

Reflectance Curves of the Revealed Volcanic Rocks in Syria Using Radiometric 

Measurements,” International Journal of Remote Sensing, 28(15):3235–3247. 

Schill, S., Rundquist, D., Filippi, A., Kvamme, K., Cothren, J., and J. Tullis, 2009, “In 

situ Sensors and Field Methods” in Manual of Remote Sensing: Earth Observing 

Platforms & Sensors, Jackson, M. W. (Ed.), 3rd Ed., Vol. 1.1, Silver Spring, MD: 

American Society of Photgrammetry and Remote Sensing, 321–386. 

Singh, S. K., Kulkarni, A. V., and B. S. Chaudhary, 2010, “Hyperspectral Analysis of 

Snow Reflectance to Understand the Effects of Contamination and Grain Size,” 

Annals of Glaciology, 51(54):83–88. 

Shepherd, K. D. and M. G. Walsh, 2002, “Development of Reflectance Spectral Libraries 

for Characterization of Soil Properties,” Soil Science Society of America Journal, 

66:988–998. 

Streiner, D. L., 1996, “Maintaining Standards: Differences Between the Standard 

Deviation and Standard Error, and When to Use Each,” Canadian Journal of 

Psychiatry, 41(8):498–502. 

Toweill, D. E. and J. W. Thomas, 2002, North American Elk: Ecology and Management, 

Washington, DC: Smithsonian Institution Press, 962 p. 



28 
 

Trivedi, M. M., Wyatt, C. L., and D. R. Anderson, 1982, “A Multispectral Approach to 

Remote Detection of Deer,” Photogrammetric Engineering & Remote Sensing, 

48(12):1879–1889. 

Trivedi, M. M., Wyatt, C. L., Anderson, D. R., and H. T. Voorheis, 1984, “Designing a 

Deer Detection System Using a Multistage Classification Approach,” 

Photogrammetric Engineering & Remote Sensing, 50(4):481–491. 

Udevitz, M. S., Burn, D. M., and M. A. Webber, 2008, “Estimation of Walrus 

Populations on Sea Ice with Infrared Imagery and Aerial Photography,” Marine 

Mammal Science, 24(1):57–70. 

White, G. C., Bartmann, R. M., Carpenter, L. H., and R. A. Garrott, 1989, “Evaluation of 

Aerial Line Transects for Estimating Mule Deer Densities,” Journal of Wildlife 

Management, 53(3): 625–635. 

Wyatt, C. L., Trivedi, M. M., Anderson, D. R., and M. C. Pate, 1985, “Measurement 

Techniques for Spectral Characterization for Remote Sensing,” Photogrammetric 

Engineering & Remote Sensing, 51(2):245–251. 

Zarr, J. H. 1996. Biostatistical Analysis, 3rd Edition, Upper Saddle River, NJ: Simon & 

Schuster, 662 p. 

 



29 
 

Table 2.1. Mean ± Standard Error (SE) of Untransformed Spectral Reflectance Measures 

of Four Radiometer Bands for Cattle, Elk, and Horses 

Species Blue Green Red NIR 

Cattle 0.029 ± 0.003 0.017 ± 0.002 0.036 ± 0.006 0.080 ± 0.016 

Elk 0.152 ± 0.017 0.126 ± 0.014 0.285 ± 0.030 0.376 ± 0.380 

Horses 0.076 ± 0.027 0.036 ± 0.008 0.090 ± 0.011 0.181 ± 0.021 
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Table 2.2. Results of Four, One-Way ANOVA and Tukey Honest Significant 

Differencing (Tukey HSD) Tests for Transformed Spectral Reflectance Differences 

among Cattle, Elk, and Horses 

     Tukey HSD  

 

Band 

 

df 

 

F value 

 

p value 

 

Elk-cattle 

 

Elk-horses 

 

Cattle-horse 

Blue 2,50 31.07 < 0.001 < 0.001 0.001 0.016 

Green 2,50 47.22 < 0.001 < 0.001 < 0.001 0.034 

Red 2,50 33.05 < 0.001 < 0.001 < 0.001 0.102 

NIR 2,50 26.54 < 0.001 < 0.001 0.072 0.004 
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Fig. 2.1. Radiometric readings of elk in a squeeze chute, northern Utah. 
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Fig. 2.2. Blue, green, red, and NIR untransformed spectral reflectance 95% confidence 

intervals (± 2 STD) for cattle (A), elk (B), and horses (C). 
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Fig. 2.3. Untransformed spectral reflectance graphs of cattle (A), elk (B), and horses (C) 

relative to angle of acquisition. Typical vegetation spectral signature (D) printed for 

signature comparison (from Jensen 2005). Samples of individuals without angle of 

acquisition were not included; t-tests indicated no significant differences among any 

species relative to angle of acquisition. 



34 
 

Fig. 2.4. Coloration effects on spectral signatures of (A) cattle and (B) horses. Samples of 

individuals without color recorded were not included; * denotes p ≤ 0.001. 
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CHAPTER 3 

COMPARISON OF TECHNIQUES TO IDENTIFY AND COUNT INDIVIDUAL  

ANIMALS IN REMOTELY SENSED IMAGERY 

 

Abstract 

 There is a need to improve the accuracy and precision of survey methods for 

censusing wildlife species. We compared the relative accuracy of manual photo 

interpretation, an unsupervised classification, and multi-image, multi-step technique to 

enumerate animals in remotely sensed imagery. Using images of pastures containing a 

known number of cattle, we compared the performance of the three techniques based on 

the probability of correctly detecting animals, the probability of under-counting animals 

(false positives), and the probability of over-counting animals (false negatives). Manual 

photo-interpretation was the most accurate and had the highest probability of detecting an 

animal if it was present and the lowest probability of under- or over-counting animals. An 

unsupervised, ISODATA classification with subtraction of a background image had the 

second highest probability of detecting an animal. The third technique integrated multiple 

images, such as texture and spectral reflectance, with multiple procedures, such as 

subtraction and principal components analysis, to isolate animal features in aerial 

imagery and had the lowest probability of detecting an animal. The 2 semi-automated 

techniques had high probabilities of over-counting animals but low probabilities of 

under-counting animals.    
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Introduction  

Monitoring and detecting changes or trends in population abundances requires 

accurate enumeration of animals and is essential for managing wildlife species and 

evaluating of conservation goals (Garton et al., 2005; Gregory et al., 2004; McComb et 

al., 2010; Williams et al., 2002). Current methods used to obtain counts of animals 

include aerial or ground surveys and manual photographic interpretation (Silvy, 2012). 

Regardless of the type of survey conducted, counts in remote, hard to access, locations or 

over extensive areas are logistically difficult to obtain, time consuming, and frequently 

biased (Bartmann et al., 1987; Brockett, 2002; Caughley, 1974; Jackman, 2002; Storm et 

al., 2011; White et al., 1989; Williams et al., 2002). Given the biases inherent to aerial 

and ground surveys and photographic interpretation, a method to identify and enumerate 

animals that is economical, repeatable, and accurate would provide wildlife managers 

another tool for estimating population abundances of wildlife species. 

Counts of animals from remotely sensed imagery or aerial photographs have been 

used to estimate population abundances of a diverse array of wildlife species, from birds 

(Erwin, 1982; Fretwell et al., 2012; Gilmer et al., 1988; Harris and Lloyd, 1977) to 

terrestrial species (Lubow and Ransom, 2009; Russell et al., 1994) to oceanic mammals 

(Hiby et al., 1988; Koski et al., 2010). Unfortunately, manual counts from aerial 

photographs are labor intensive, subject to human interpretation and error, and can result 

in inconsistent counts (Bajzak and Piatt, 1990; Erwin, 1982; Frederick et al., 2003; 

Gilmer et al., 1988; Sinclair, 1973).  For example, Erwin (1982) found manual counting 

of canvasbacks ducks (Aythya valisineria) in aerial photographs had high variation 
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among interpreters and neither experience or the amount of training influenced counts. 

Conversely, Couturier et al. (1994) reported two independent interpreters achieved 

similar results when counting caribou (Rangifer tarandus) from aerial photography. 

Although these studies found conflicting results, other researchers have found that lower 

errors are correlated to areas with little vegetation structure and/or with large bodied 

species (Trivedi et al. 1982; Wyatt et al., 1985). As with conventional wildlife aerial 

surveys (Jackman, 2002; Potvin et al., 2004), detection using aerial photographs requires 

high contrast between animals and their background (Descamps, 2011; Laliberte and 

Ripple, 2003; Storm et al., 2011). For example, Bajzak and Piatt (1990) found the 

uniformly white-colored bodies of snow geese (Chen caerulescens) facilitated separation 

of the birds from their background. Similarly, Fretwell et al. (2012) used an iterative 

process in which an analyst subjectively determined if features in satellite imagery were 

guano-stained snow or Emperor penguin (Aptenodytes fosteri) colonies based on 

differences in texture and color.  

Other applications of remotely sensed imagery for wildlife studies have focused 

on identification of individual animals rather than groups of animals or colonies of birds 

(Descamps et al., 2011; Fretwell et al., 2012). For example, Laliberte and Ripple (2003) 

used 1 m, pan-sharpened, multi-spectral IKONOS satellite imagery to identify domestic 

cattle in Oregon but found they overestimated the final count. As with aerial photography 

and conventional wildlife surveys, the importance of the homogeneity of the background 

that surround an animal was a factor in the detection of deer (Odocoileus spp.) in 

northern Utah during winter (Wyatt et al., 1985). Deer were discernible from snow in the 
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near-infrared (NIR, 0.7 to 1.4μm and 1.5 to 4.0μm) region of the electro-magnetic (EM) 

spectrum but not in the visible region due to confusion with vegetation and soil. There 

was little ability to differentiate between deer  and their background (vegetation and soil) 

using the thermal portion (3.0 to 5.0 μm and 7.5 to 10μm) of the EM spectrum (Wyatt et 

al., 1985).  Trivedi et al. (1982) found that complex, non-heterogeneous background and 

increased cover of dry bushy vegetation reduced the probability of detecting deer.  

As the amount of available satellite and aerial imagery increases, there is a 

concomitant need for automated or semi-automated image analysis to reduce analysis 

time, allow non-photogrammetric specialists to interact with imagery, facilitate faster 

searches, and identify quantitative information not readily recognizable with human 

interpretation (Aitkenhead and Aalders, 2011; Baraldi and Boschetti, 2012; Walter and 

Luo, 2011). An objective of this research was the development of an automated or semi-

automated technique to identify and count animals in remotely sensed aerial imagery. We 

developed a proof of concept using aerial imagery of fenced pastures containing known 

numbers of animals (i.e., domestic cattle [Bos Taurus] and horses [Equus caballus]). We 

examined one technique that relied solely on human interpretation (i.e., manual photo-

interpretation) and two techniques that had minimal input from analysts (i.e., an 

ISODATA classification (Jensen, 2005) with subtraction of a background image and a 

multiple image, multiple step technique). We compared the performance of each 

technique based on the probability of correctly detecting animals, the probability of 

under-counting animals (false negative), and the probability of over-counting animals 

(false positive). A correction factor integrating all detection probabilities adjusted the 
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final count estimate for each image. The study was limited to grassland ecosystems due 

to the reduced complexity of cover as compared to dense, tall shrublands, and forests. 

 

Study Areas 

We acquired aerial imagery across portions of Cache County (i.e., Cache Valley) 

and a portion of Box Elder County in northern Utah. Cache Valley (CV) is a north-south 

trending valley surrounded by the Wellsville Mountains to the west and the Bear River 

Mountain Range to the east. Cache Valley has an average annual precipitation of 45 cm 

(Moller and Gillies, 2008) with  an elevation of 1,355 m (U.S. Geological Survey, 1981) 

in the center of the valley. Sites in CV were located in the valley bottomlands dominated 

by grasslands. Brigham City (BC) is located in Box Elder County and sits on the western 

base of the north-trending Wellsville Mountains. The average precipitation of the BC 

sites was 47 cm (Moller and Gillies, 2008) with an elevation of 1,289 m (U.S. Geological 

Survey, 1981). BC study sites were dominated by sparse grasslands.  

 

Aerial Imagery 

On October 31, 2006, under mostly clear skies, we collected aerial imagery 

between 10:44 AM and 3:07 PM with three Kodak Megaplus 4.2i digital cameras 

(Kodak Company, Rochester, New York, New York) each recording a specific spectral 

region: green (0.54 – 0.56 µm), red (0.66 – 0.68 µm), and near-infrared (0.7 – 0.9 µm) 

with an approximate spatial resolution of 25 cm (Cai and Neale, 1999). An Exotech 

four-band radiometer included with the cameras allowed for the conversion of digital 

numbers to reflectance values (Neale and Crowther, 1994). We acquired two images for 
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each pasture, with at least 48 minutes between acquisitions of the first image (A) and the 

second image (B). Rectification of images to the Universal Transverse Mercator System 

(UTM), NAD83 datum occurred in ERDAS Imagine 9.1.0. (Leika Geosystems, 

Heerburg, Canton St. Gallen, Switzerland). Image acquisition likely did not affect 

animal movements since the aircraft flew at an average elevation of 549 m above ground 

level (Bernatas and Nelson, 2004; DeYoung, 1985).  

 

Animal Ground Counts 

Rather than compare one estimate to another estimate, we compared the number 

of animals identified by each technique to the known number of animals in each pasture. 

Ground enumeration of cattle and horses occurred concurrently with image acquisition. 

We determined the final count of the known number of animals per pasture from visual 

ground counts, available landowner counts, and a qualitative assessment of animal 

movement in the imagery (Figure 3.1). Pastures containing ≥ 50 animals were difficult to 

enumerate on the ground and resulted in unreliable counts, thus those pastures were not 

included in the analysis. Although no probability of detection was determined for the 

ground counts, by limiting analysis to those pastures with ≤ 50 animals, the detection 

probability was likely high but still less than 100%. We considered pastures independent 

samples since they were geographically separated across the study sites.  

 

Accuracy Measures 

The output from the manual photo-interpretation was an image containing circles 

around suspected animals (Figure 3.1). The two semi-automated techniques generated 
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individual polygons. We were able to evaluate when circled features (or polygons) were 

properly identified by comparing against known animal locations. We classified polygons 

(or circles in the photo-interpretation) into three categories: “mapped polygons” consisted 

of all polygons generated in a particular technique, “correctly mapped” polygons were 

those generated using one of the three techniques that accurately depicted animals, and 

“incorrectly mapped” polygons were those polygons that were not associated with an 

animal. We assumed that features that moved location from one image to another image 

were animals and thus were able to determine a specific location for each animal. 

Because we knew specific locations of animals in each pasture, we were able to identify 

when an animal was not linked with a polygon (missed). Any animal not associated with 

a polygon was considered a “missed animal”. 

The probability of detection (PD) is a proportion of correctly identified animals 

relative to a known number of animals (Williams et al., 2002). In this paper, the PD 

calculation was defined as the number of correctly mapped polygons (or a circle in the 

photo-interpretation) divided by the number of known animals in the pasture. The 

probability of under-counting animals (Punder) indicated the proportion of animals known 

to be in a pasture but not associated with a polygon (or a circle in the photo-

interpretation) identified and was calculated as the number of missed animals divided by 

the number of known animals in the pasture. The probability of over-counting (Pover) was 

calculated by dividing the number of polygons (or circles in the photo-interpretation) not 

associated with an animal by the number of mapped polygons (or circles in the photo-

interpretation) in the pasture. We incorporated the three error estimates into a single 
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correction factor (CF) that we multiplied by the number of mapped polygons to generate 

a population abundance estimate for each pasture. Abundance estimates, adjusted for 

false positives (over-counting animals) and false negatives (missed animals), have greater 

validity and are more robust than unadjusted estimates. The CF was calculated as (PD + 

Punder - Pover) / PD.  

 

Methods 

 

Manual Image Interpretation 

We evaluated the ability of lay-people (L), remote sensing analysts (R), and 

wildlife biologists (W) to count animals in aerial photographs of fenced pastures 

containing cattle. Each group was composed of five people, five lay people, five remote 

sensing analysts, and five wildlife biologists from the Utah Division of Wildlife 

Resources. None of the individuals in the L group had any experience in remote sensing 

analysis or participated in wildlife surveys, none of the individuals in the R group 

participated in wildlife surveys, but some of the individuals in the W group had limited 

remote sensing experience (i.e., had previously examined remotely sensed imagery). All 

participants examined the same seven images (i.e., fenced pastures). The number of 

animals in each pasture ranged from five to 32. The photos of each pasture were 

presented to the photo-interpreters in natural color on a single standard 8.5 x 11-inch 

piece of paper. There was unlimited time for evaluation and individuals circled each 

feature interpreted as an animal (Figure 3.1). Although participants received pastures in 

the same order, the evaluation sequence was at the individual’s discretion. Due to the data 
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being highly skewed across the three groups, (Figure 3.2) the use of an ANOVA (Zar, 

1996) was inappropriate. Log, squared, and square root transformations did not normalize 

these distributions. Additionally, a generalized linear model fit with a binomial 

distribution was not suitable since PD, Punder, and Pover were probabilities. Theefore, we 

used a Kruskal-Wallis test (Zar, 1996) to determine if there were significant differences 

in the probability of detection, the probability of under-counting, and the probability of 

over-counting animals. All statistical tests were conducted in the R statistical software (R 

Core Development Team, 2012). 

 

Semi-Automated, `Unsupervised Classification: ISODATA with image subtraction 

We used a semi-automated, multi-step technique to identify animals in remotely 

sensed imagery (Figure 3.3) that included ISODATA segmentation and the generation of 

a background image. Unsupervised classification, commonly used to segment and 

classify remotely sensed imagery, has the ability to identify unique features on the 

landscape and separates spectral information into distinct statistical clusters so that pixels 

with similar spectral characteristics are assigned to the same cluster (Jensen, 2005). One 

advantage of unsupervised classification is that it requires little analyst input beyond 

determination of the number of output clusters. The iterative self-organizing data analysis 

technique (ISODATA; ERDAS, 2003; Jensen, 2005) places a pixel into the cluster with 

the closest Euclidean spectral distance. ISODATA is iterative in that after the initial pixel 

assignment, cluster means are recalculated and used as the cluster centroid for the 

subsequent iterations. The process, therefore, attempts to optimize cluster distribution 

within the multi-dimensional feature space of the image. At each iteration, pixel-to-
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cluster assignments are re-assessed and if appropriate, pixels are placed into a different 

cluster. Analyst input determines the number of iterations to run and a convergence 

threshold, which specifies the percentage of pixels that remain assigned to a specific 

cluster between iterations. Once the ISODATA segmentation is complete, the analyst 

determines the class assignment for each cluster, for example, vegetation classes such as 

grassland, forest, or urban. The ISODATA segmentation generated 20 clusters from each 

3-band image that were then converted into polygons, with each polygon assigned the 

mean spectral value of the pixels that it encompassed. We determined that clusters with 

the three lowest spectral values represented potential animal polygons (PAPs) and 

focused our subsequent analysis on these polygons. We intersected the PAPs with the 

associated 3-band image to extract the original spectral response for each polygon to 

maintain as much spectral information as possible through the image differencing process 

(Figure 3.4).  

Image differencing is a change detection technique in which an image collected at 

time X is subtracted from a second, geographically identical image, collected at time Y. In 

a differenced image, pixels with small spectral values represent areas that have changed 

little, while pixels with large spectral differences represent areas of change (Jensen, 

2005). Generally, image differencing has been used to identify land-cover changes 

between images acquired on two different dates (Key et al., 2001; Lu et al., 2003; Lu et 

al., 2005). Rather than the subtraction of temporally different images, we tested the 

feasibility of subtracting a simulated background image from an image containing 

animals to highlight differences between animal features and their surrounding 
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background. As temporal image differencing detects changes over time, changes between 

a background image without animal features and an image of the same area with animal 

features should, in theory, isolate animal features.  

Since the ISODATA segmentation alone generated many false positives (i.e., 

over-counted animal features, Figure 3.4), we needed to further isolate animal features 

from the surrounding background. Based on a heuristic evaluation, we determined that 

low spectral values consistently represented animals. To generate a background image, 

we removed pixels with low spectral values (i.e., animal clusters) using a two-step 

process (Figure 3.3B). First, we applied a 7 x 7 maximum convolution kernel to the 

original image, which generated an image consisting of pixels with the highest spectral 

values in the kernel. Next, we applied a 9 x 9 low-pass filter to the maximum kernel 

image, which reduced spatial variation sufficiently to produce a smoothed background 

image (Figure 3.5). We then intersected the PAPs with the simulated background to 

generate pixel groupings that contained only background spectral values. We subtracted 

the PAP pixel groupings generated in the ISODATA step from the background pixel 

groups. Based on image differencing theory, pixels in the subtracted image with higher 

difference values should represent animal polygons (i.e., animal spectral values 

subtracted from the background spectral values) and lower difference values should 

represent non-animal features (i.e., background spectral values subtracted from 

background spectral values, Figure 3.6).  

To further isolate animal features, a 20-class ISODATA segmentation was 

conducted on the differenced pixel groups. As with the previous 20-class ISODATA 
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segmentation process, we heuristically identified pixels with the three lowest spectral 

values as representing animals (Figure 3.7). We eliminated pixel clusters with spectral 

values greater than the third lowest value and converted the remaining clusters to 

polygons. We heuristically identified spatial thresholds which described known animal 

shapes from the training images and removed polygons that were too large or too small to 

be animals. 

 

Multi-image, multi-step (MIMS) Technique  

 We examined a multi-image, multi-step (MIMS) technique to isolate animals in 

remotely sensed imagery (Figure 3.8) with eight training images containing 143 animals 

and seven test images containing 158 animals. The training images were chosen so the 

number of animals in the training images was approximately the same as in the testing 

images. The MIMS technique generated three output images from each original 3-band 

pasture image: a texture image, the first principal component image, and a background 

image (see ISODATA methods above).  

Texture represents spatial change in spectral values within a specified 

neighborhood and therefore characterizes spatial patterns across an image (Jensen, 2005). 

Since texture quantifies variation within a neighborhood, we theorized that a 

neighborhood, which encompassed both an animal and its surrounding background, 

would exhibit greater variance (texture) than a neighborhood composed entirely of 

animal or background pixels. The size of a single bull can range from 1.6 to 2.2 m
2
 while 

the size of a single cow can range from 1.4 to 1.5 m
2
 (B. Bowman, personal 

communication); thus, an area of 1.5 m
2 

would encompass a small bull or a large cow. To 
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generate a texture image, we used a neighborhood of 7 x 7 pixels (3.1 m
2
)   that would 

theoretically encompass two animals standing next to each other. A mean Euclidean 

distance texture function representing the mean spectral difference between the central 

pixel and all other pixels in the neighborhood was used (ERDAS, 2003). Neighborhoods 

with little spectral change resulted in low texture values while neighborhoods with many 

changes had higher texture values. The texture images represented animals as “doughnut” 

features due to a higher spectral variance at the edge of an animal compared to a lower 

spectral variance within an animal (Figure 3.9A). A 7 x 7 median kernel filled in the 

“doughnuts” without substantially affecting the outer edge (Figure 3.9B). We 

heuristically determined maximum texture threshold values for animal features at 50% of 

the texture image maximum (Figure 3.8A). To reduce heuristic determination of 

thresholding values and thus reduce potential for automation, we defined the minimum 

texture thresholding value based on the Rosin corner threshold technique (Figure 3.10; 

Rosin, 2001). We removed non-animal pixels that were above the maximum texture 

threshold and below the minimum texture threshold and converted pixel clusters into 

polygons (Figure 3.11).  

 Principal components analysis (PCA) is commonly used with remotely sensed 

imagery to reduce dimensionality by combining redundant information in highly 

correlated bands (Chavez and Kwarteng, 1989; Jensen, 2005). The output of a PCA is an 

image, which is composed of the same number of layers as the input image (3 bands in 

this case), in which the first layer contains the highest amount of correlated information 

between the spectral bands. The second PCA layer contains the second highest amount of 
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correlated information and so on (Jensen, 2005). We conducted a PCA on each 3-band 

training image and used the first principal component for subsequent analysis because it 

contained the highest amount of spectral variation (81% vs. 17% and 2%, 1
st
, 2

nd
, and 3

rd
 

components, respectfully). We subtracted the background image derived from our 

ISODATA methods (above) from the first principal component (Figure 3.8B) and applied 

the Rosin corner thresholding method (Rosin, 2001) to eliminate non-animal features 

(Figure 3.12). The resulting image was converted to polygon format to match the texture 

image. We spatially intersected the texture derived polygons (Figure 3.11) with polygons 

derived from the PCA-background subtraction technique (Figure 3.12) and considered 

the spatial locations where both polygons intersected as an animal. The final step 

eliminated polygons based on thresholding values for area, perimeter-area ratio (PA), and 

compactness ratio (CR). We examined the PA to assess the circularity of a feature 

relative to a perfect circle. The CR also assesses the circularity of a feature but without 

influence of feature size, unlike PA. We heuristically determined thresholds of shape 

characteristics that encompassed animal features from the training imagers. Individual 

shape characteristics alone were unable to successfully threshold animal features so we 

used a combination of all three characteristics to eliminate non-animal polygons (Figure 

3.8C). The final output resulted in polygons classified as animal features (Figure 3.13). 

 The coefficient of variation (CV) is a measure of variation that is normalized with 

respect to the mean of a data set (Zar, 1996) and is an appropriate statistic to compare the 

amount of variation from one technique to another especially when there is a wide range 

in the mean values examined. The CV for the probability of detection for the 
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ISDODATA technique is 12%, 30% for the manual photo-interpretation, and 52% for the 

MIMS technique indicating that the ISODATA has the lowest variance relative to the 

mean, followed by manual photo-interpretation, and the MIMS had the highest variance. 

An analysis of variance (ANOVA, Zarr, 1996) determined if there were significant 

differences among the three techniques examined (i.e. manual interpretation, ISODATA 

unsupervised classification with image subtraction, and the multi-image, multi-step 

process). 

 

Results  

 

Manual Image Interpretation 

There were no significant differences (p ≥ 0.20) among individuals within the L, 

W, or R groups for PD, Punder, or Pover, so we collapsed individuals within each group and 

examined differences among the groups. There were no significant differences among the 

three groups for PD, Punder, and Pover (p ≥ 0.10, Figure 3.14). Collapsing across groups, the 

overall mean PD was 83% (± 1%, Standard error), the mean Punder was 19% (± 1%), the 

mean Pover was 8% (± 3%), and the mean CF was 1.26 (± 0.07, Table 3.1).  

Unsupervised Classification: ISODATA with image subtraction 

The mean PD for the seven pastures examined was 82% (± 10%, SD) and ranged 

from 55% to 100%. There was a general trend for the number of animals not mapped 

(i.e., missed) to increase as the number of known animals in the pasture increased. The 

mean Punder for the seven pastures was 18% (± 18%) and ranged from 0% to 45%. The 

mean Pover for the seven images was 69% (± 27%) and ranged from 28% to 98%. As with 
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the PD, there was a general trend for the CF to increase as the number of known animals 

in a pasture increased. The mean CF for the seven images was 0.40 (± 0.37) and ranged 

from 0.04 to 0.91. The ISODATA unsupervised classification with a background 

subtraction successfully identified animals but greatly over-estimated animal numbers. 

While there appeared to be a positive relationship between increasing number of known 

animals in a pasture with increasing number of animals missed and increasing CF’s, there 

was no significant relationship (p > 0.05) between the actual number of animals in each 

pasture and any image feature characteristic (i.e., total number of polygons in an image, 

PD, Punder, Pover, or CF).    

 

MIMS Technique  

Similar to the ISODATA-background subtraction technique, there was a general 

trend for the number of missed animals to increase as the number of known animals in a 

pasture increased. The mean PD across the testing pastures was 50% (± 26%) and ranged 

from 0% to 74%. The mean Punder for the testing pastures was 50% (± 26%) and ranged 

from 26% to 100%. The mean Pover was 72% (± 26%) and ranged from 23% to 100%. 

The mean CF was 0.54 (± 32) and ranged from 0.24 to 1.09 (Table 3.3). 

 

Discussion   

Manual interpreters were better able to discriminate between animal and non-

animal features and identified fewer over-counting errors (i.e., false positives) than either 

the ISODATA or the MIMS techniques (Table 3.4). Most individuals had a CF of 1.00 

for at least a single image indicating no correction was needed to the count. 
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Distinguishing between animal and non-animal features was likely due to the ability of 

interpreters to integrate qualitative information (Russ, 1999) on spectral and shape. 

Human vision evaluates features in a qualitative and comparative manner and integrates 

multiple dimensions of information to discern features (Baraldi and Boschetti, 2012; 

Russ, 1999). The objective of this research was to use existing image processing 

techniques to develop an automated or semi-automated approach that emulated human 

interpretation of imagery. The multi-step techniques incorporated into both the 

ISODATA and MIMS procedures attempted to isolate and refine new information at each 

step. For example, the texture image generated in the MIMS technique was an attempt to 

isolate and categorize the differences within a neighborhood similar to how human vision 

might qualify spectral differences in an area of interest. The fact that the MIMS had the 

lowest PD coupled with the highest Punder and Pover suggests that increased complexity 

does not equate to increased accuracy nor does it represent how humans evaluate 

imagery.  

The PD is generally calculated as the ratio of the number of marked animals 

observed during a wildlife survey to the known number of marked animals on the survey 

area. The PD serves as a correction and is applied to the total count of animals observed 

to estimate population abundance for the surveyed area. Reported values of PD for 

conventional ground and aerial surveys range from 52% in caribou (Rangifer spp., Rivest 

et al., 1998), 34 – 82% for mule deer (Odocoileus hemionus, Freddy et al., 2004), and 53 

-71% for feral ungulate species (Bayliss and Yeomans, 1989). The mean PD of 50% for 

the MIMS procedure is within reported levels of the PD for wildlife surveys but indicates 
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that the technique would detect only 50% of the animals present in an image. The mean 

PD of the manual interpretation and the ISODATA procedures, 81% and 80%, 

respectively, are above reported levels for ground and aerial surveys. The higher PD 

variability of the manual interpretation compared to the semi-automated, ISODATA 

technique (Table 3.4) is similar to reported photo-interpretation values (Erwin, 1982; 

Frederick et al., 2003) and supports the contention that manual counts are inconsistent 

and thus estimates derived from them should consider those inconsistencies.  

The MIMS technique identified too few polygons as animals in pastures 29B, 

21A, and 3B, which resulted in a low PD. The MIMS technique generated multiple 

polygons, some of which were correctly associated with animal features but at later steps, 

these polygons were erroneously eliminated. The MIMS removed polygons at three steps: 

1) via the Rosin corner thresholding method on spectral values, 2) due to thresholding of 

the texture image, and 3) due to thresholding of shape and size characteristics. Incorrect 

removal of polygons at each stage was not consistent across all pastures. The Rosin 

thresholding method incorrectly removed polygons that represented animals in pasture 

29B but not in other pastures. Incorrect removal of polygons that represented animals in 

pastures 21A and 3B occurred because they were outside the shape thresholding values. 

Incorrect polygon removal of polygons representing animal features occurred in pasture 

3B because some animal features (i.e., polygons) included shadow pixels, which 

increased the area of the polygon beyond the size threshold.  

Consideration of the PD alone indicated the population abundance estimates 

derived from the manual interpretation and ISODATA techniques would identify animals 
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if they were present in an image, with the ISODATA technique being more consistent. 

Because we have a known number of animals, we can calculate additional measures of 

error with the over-counted, under-counted, and missed animals. The high Pover for the 

ISODATA and MIMS techniques indicate the population size estimates would be 

overestimated with semi-automated techniques but less so with the manual photo-

interpretation. Thus, the ISODATA technique will identify 80% of the animals in 

remotely sensed imagery, but it will overestimate the population size due to consistent 

over-counting. Population estimates, left unadjusted for over and under-counting errors 

could have serious management implications. Over estimates of population size could 

lead to a larger than appropriate harvest quota which could result in a population decline. 

Conversely, under estimating the size of a population could lead to inappropriate 

management objectives and result in a larger population size than desired. Regardless of 

biases in counting, incorrect population abundance estimates could lead to improper 

management of a population. If biases or errors are known and quantified, they can be 

incorporated into population abundances and result in potentially more precise and 

accurate estimates, which in turn can better inform management decisions.  

There are several advantages to automated or semi-automated techniques to 

analyze aerial imagery with the objective of identifying individual animals. One of the 

principal benefits of automation is non-subjective analysis of imagery which has the 

potential to increase repeatability and consistency within techniques and across analysts. 

A second benefit, previously unavailable in wildlife surveys, is the permanent, 

unchanging record of animal locations for an instant in time i.e. ‘a survey’, thus allowing 
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for repeated assessments using the same or different techniques. Remotely sensed 

imagery can be assessed by different personnel to determine the validity of a technique 

without degradation to the image regardless of the number of times it is analyzed. 

Although aerial and ground transects can be repeated they cannot be replicated. 

Additionally, acquisition of remote sensing imagery has the potential to reduce or even 

eliminate negative responses of animals to low flying aircraft during wildlife surveys 

(DeYoung, 1985; Anderson and Lindzey, 1996; Brockett, 2002; Bernatas and Nelson, 

2004). Aerial wildlife surveys frequently require multiple days to complete thus allowing 

animals to move throughout the study area and increase the probability of double-

counting or missing individuals. It is possible to completely cover large areas, such as the 

Mongolian steppe or Utah’s west desert, with one acquisition of remotely sensed imagery 

in a shorter time than an aerial survey. Aerial wildlife surveys across large study areas are 

prohibitively expensive due to aircraft cost and personnel time so remotely sensed 

imagery could provide population abundance estimates for previously inaccessible areas. 

Although automated or semi-automated image segmentation and classification is 

desirable, it may come at the expense of severe bias (Baraldi and Boschetti, 2012) or may 

require various amounts of human input and guidance (Evans et al., 2012; Skelsey et al., 

2004). To facilitate automation or semi-automation, we based each technique on image 

characteristics, such as the mean and variance of spectral reflectance values for each 

band, rather than animal feature characteristics. One drawback of the semi-automated 

ISODATA and MIMS techniques is the assumption that animal features are represented 

by pixels with low spectral values, thus similar features were always present that were 
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identified as animals. An additional disadvantage of the techniques we examined is that 

they are limited to grasslands or low-density shrublands that facilitate the visibility of 

animals. Tall shrubs and trees would obstruct the view of animals that are under the 

canopy.  
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Table 3.1. The mean and standard deviation (STD) of the probability of detection (PD), 

the probability of under-counting animals (Punder), the probability of over-counting (Pover), 

and the correction factor (CF) resulting from a manual count of animals in remotely 

sensed imagery by three groups of people: laymen, remote sensing analysts, and wildlife 

biologists. The across group mean and standard error (SE) are presented to evaluate the 

variance across groups.  

Group PD
1
 Punder

2
 Pover

3
 CF

4
 

Laymen 0.80 ± 0.24 0.20 ± 0.24 0.13 ± 0.24 1.14 ± 0.29 

Remote Sensing 

Analysts 

0.83 ± 0.24 0.17 ± 0.24 0.04 ± 0.08 1.25 ± 0.55 

Wildlife Biologists 0.81 ± 0.23 0.19 ± 0.23 0.07 ± 0.12 1.40 ± 1.00 

Mean (± SE) 0.81 ± 0.01 0.19 ± 0.01 0.08 ± 0.03 1.26 ± 0.07 
1. (Correctly mapped polygons / Known number of animals in pasture)  
2. (Missed Animals / Known number of animals in pasture)  
3. (Incorrectly mapped polygons/ Number of mapped polygons)  
4. (PD + Punder – Pover) / PD 
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Table 3.2. The probability of detection (PD), the probability of under-counting animals 

(Punder), the probability of over-counting (Pover), and the correction factor (CF) for the 

population abundance estimate resulting from an ISODATA unsupervised classification 

and subtraction technique. 

 

 

 

 

Pasture 
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number 

animals 

in 

pasture 

 

 

 

Mapped 

polygons 

 

 

Correctly 

mapped 

polygons 

 

 

 

Missed 

animals 

 

 

Incorrectly 

mapped 

polygons 

 

 

 

 

PD
1
 

 

 

 

 

Punder
2
 

 

 

 

 

Pover
3
 

 

 

 

 

CF
4
 

22B 5 125 3 2 122 0.60 0.40 0.98 0.04 

22A 3 63 3 0 60 1.00 0.00 0.95 0.05 

21B 13 98 12 1 86 0.92 0.08 0.88 0.13 

29A 29 117 28 1 89 0.97 0.03 0.76 0.25 

32A 38 62 32 6 30 0.84 0.16 0.48 0.61 

15B 37 46 33 4 13 0.89 0.11 0.28 0.80 

4A 20 22 11 9 11 0.55 0.45 0.50 0.91 

Mean 21 76 17 3 59 0.82 0.18 0.69 0.40 

STD 14 38 13 3 43 0.10 0.18 0.27 0.37 
1. (Correctly mapped polygons / Known number of animals in pasture)  
2. (Missed Animals / Known number of animals in pasture)  
3. (Incorrectly mapped polygons/ Number of mapped polygons)  
4. (PD + Punder – Pover) / PD 

 

 



 
 

Table 3.3. The probability of detection (PD), the probability of under-counting animals (Punder), the probability of over-

counting (Pover), and the correction factor (CF) for the population abundance estimate resulting from a multi-image, multi-step 

(MIMS)  technique to identify and count animals in remotely sensed imagery across seven test pastures in north central Utah. 
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Correctly 
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representing 2 

animals 
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animals 

Incorrectly 

mapped 

polygons 

 

 

PD
1
 

 

 

Punder
2
 

 

 

Pover
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CF
4
 

28B 15 62 10 0 5 52 0.67 0.33 0.84 0.24 

29B 29 96 12 0 17 84 0.41 0.59 0.88 0.30 

32B 38 89 27 1 10 62 0.74 0.26 0.70 0.41 

21A 13 28 5 0 8 23 0.38 0.62 0.82 0.46 

4A 20 25 11 1 8 14 0.60 0.40 0.56 0.73 

15A 38 35 27 0 11 8 0.71 0.29 0.23 1.09 

3B 5 10 0 0 5 10 0.00 1.00 1.00 - 

Mean 23 49 13 0 6 36 0.50 0.50 0.72 0.54 

STD 13 33 10 0 4 30 0.26 0.26 0.26 0.32 
1. (Correctly mapped polygons / Known number of animals in pasture)  
2. (Missed Animals / Known number of animals in pasture)  
3. (Incorrectly mapped polygons/ Number of mapped polygons)  
4. (PD + Punder – Pover) / PD 
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Table 3.4. The mean and standard deviation of the probability of detection (PD), the  

probability of under-counting animals (Punder), the probability of over-counting (Pover), 

and the correction factor (CF) for the count estimate of three techniques to identify 

animals in remotely sensed aerial imagery. 

Group PD
1
 Punder

2
 Pover

3
 CF

4
 

Manual Interpretation 0.81 ± 0.24 0.19 ± 0.24 0.08 ± 0.16 1.26 ± 0.68 

ISODATA 0.82 ± 0.10 0.18 ± 0.18 0.69 ± 0.27 0.40 ± 0.37 

Multi-image, multi-

step 

0.50 ± 0.26 0.50 ± 0.26 0.72 ± 0.26 0.54 ± 0.32 

1. (Correctly mapped polygons / Known number of animals in pasture)  
2. (Missed Animals / Known number of animals in pasture)  
3. (Incorrectly mapped polygons/ Number of mapped polygons)  
4. (PD + Punder – Pover) / PD 

  



 
 

Figure 3.1. Images of the first (A) and second (B) acquisitions of pasture 15 indicating animal movement. Circles in B represent how a 

photo-interpreter would indicate which features were animals.  
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Figure 3.2. Distributions of A) probability of detection, B) probability of under-counting, 

C) probability of over-counting, and  D) a correction factor from the  manual 

identification of domestic animals in seven fenced pastures by 5 laymen, 5 wildlife 

biologist, and 5 remote sensing analysts. 

 

 



 
 

Figure 3.3. Outline of the steps taken in an ISODATA and background subtraction technique to identify animals in aerial 

imagery. A) outlines generation of potential animal polygons (PAPs) from an unsupervised ISODATA process, B) outlines the 

background image generation , and C) outlines the subtraction of the ISODATA segmented image from the background image. 
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Figure 3.4. Generation of potential animal polygons (PAPs) containing spectral values from the original image. A) is the 

original 3-band imagery, B) shows the PAPs after removal of all polygons except those with the three lowest spectral vlaues, 

and C) indicates the PAPs after subsetting with the original 3-band imagery. 
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Figure 3.5. Generation of potential animal polygons (PAPs) containing spectral values from the smoothed background image. 

A) is the resulting background image, B) are the PAPs and C) is the intersection of PAPs containing background spectral 

values. 
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Figure 3.6. Generation of potential animal polygons (PAPs) with original spectral values subtracted from background spectral 

values. A) PAPs with 3-band spectral values, B) PAPs containing background spectral values, and C) PAPs with subtracted 

spectral values. Differences should be larger for pixels with animals compared to pixels of background. 
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Figure 3.7. Final steps in identifying animals by eliminating polygons based on size and polygon value. A) PAPs of all sizes 

and B) final sized PAPs. 
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Figure 3.8. Outline of the steps taken in a multi-image, multi-step technique to identify 

animals in aerial imagery. A) outlines generation of a texture image, B) outlines the  

principal components analysis (PCA) and background subtraction  and C) outlines the 

subtraction of the texture and PCA images. 
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Figure 3.9. Images displaying  A) a 1
st
 order Euclidean texture analysis displaying animal 

“doughnuts” and B) the “filling in” of the doughnuts after application of a median kernel.  
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Figure 3.10. Graphical depiction of the Rosin corner method of determining a 

thresholding value for a histogram of texture values from an image containing animals. 

The peak of the histogram is the starting point of a straight line that ends at the first 

instance of an X-axis value of zero. The dashed line perpendicular to the straight line 

with the longest distance to the histogram curve is the threshold value.  
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Figure 3.11. Texture image after removal of pixels less than a minimum threshold and 

greater than a maximum threshold. 
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Figure 3.12. Image resulting from the subtraction of the first principal component and a 

simulated background image, followed by the Rosin corner thresholding method.  
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Figure 3.13. Output of the multi-image, multi-step (MIMS) technique. Circled polygons 

are correctly mapped animal features. 
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Figure 3.14. Graphs indicating no significant difference (p ≥ 0.05) among laymen (L), 

remote sensing analysts (R), and wildlife biologists (W) for the A) probability of 

detecting an animal, B) probability of under-counting animals, C) probability of over-

counting animals, and D) correction factor in aerial imagery of fenced pastures 

containing animals.  
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CHAPTER 4 

SINGLE DAY IMAGE DIFFERENCING TO ESTIMATE ANIMAL COUNTS 

 

Abstract  

We assessed the ability to detect large ungulates by differencing two aerial images 

acquired on the same day at different times. Although the ultimate application of this 

technique is to estimate wildlife population sizes, we examined domestic cattle (Bos 

taurus) and horses (Equus caballus) as a proof of concept since they were confined to 

fenced areas and their numbers could be readily counted from the ground. The probability 

of detecting an animal with image differencing (82%) was higher than those reported 

from conventional aerial and ground surveys of wildlife species. The average per pasture 

probability of detecting animals in aerial imagery was 82%, the probability of under-

counting animals was 18%, while the average per pasture probability of over-counting 

was 53%. Image differencing identified many false positives (i.e., features that were not 

animals) likely due to misalignments during image registration and possible grouping 

behavior of animals. The high detection probability suggests single day image 

differencing could provide a new technique to identifying, counting, and estimating the 

population abundances of wildlife species, especially in isolated or difficult to access 

areas. To our knowledge, this is the first attempt to use standard change detection 

techniques to identify and enumerate large ungulates.   
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Introduction 

 Although counts of wildlife individuals obtained from surveys are commonly 

used by state and federal wildlife agencies to estimate wildlife population abundances, 

these methods are often fraught with inaccuracies and have wide margins of error 

(Freddy et al., 2004). Not only are the survey  methods themselves questioned 

(Eberhardt, 1978) but the resulting population abundance estimates, if not corrected for 

known errors, may have significant over-counting (Bartmann et al., 1987; White et al., 

1989) or undercounting biases (Jackmann, 2002; Williams et al., 2002). In Pilanesberg 

National Park, South Africa, Brockett (2002) noted that black rhinoceros (Diceros 

bicornis) counts from helicopters resulted in abundance estimates being overestimated by 

approximately 5% to 15% for 2 of the 19 years surveyed while the remaining years 

resulted in underestimates of approximately 5% to 60%. Given the uncertainty associated 

with conventional wildlife surveys, measures of bias and errors frequently accompany 

population abundance estimates. The probability of detection (PD) is the proportion of 

marked or known animals counted relative to the known number of marked animals in a 

survey area. The PD is used to adjust the observed count to obtain a more accurate 

estimate of population size of a specific species in a specific area (Thompson et al., 1998; 

Williams et al., 2002). Given the inconsistent results of conventional wildlife surveys, a 

method that is economically feasible, more accurate and consistent, as well as repeatable 

would result in population abundance estimates with greater credibility.    

 Remotely sensed aerial photographs have been used to count and estimate 

population abundances of a diverse array of wildlife species, from birds (Erwin, 1982; 
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Fretwell et al., 2012; Gilmer et al., 1988; Harris and Lloyd, 1977) to terrestrial species   

(Russell et al., 1994) to oceanic mammals (Hiby et al., 1988). Unfortunately, manual 

counts from aerial photographs are labor intensive, subject to human interpretation and 

error, and can result in inconsistent counts (Bajzak and Piatt, 1990; Frederick et al., 2003; 

Gilmer et al., 1988; Sinclair, 1973).  Erwin (1982) found manual counting of 

canvasbacks ducks (Aythya valisineria) in aerial photographs had high variation among 

surveyors and neither experience or the amount of training influenced counts. 

Conversely, Couturier et al. (1994) reported two independent surveyors achieved similar 

results when counting caribou (Rangifer tarandus) from aerial photography, suggesting 

lower errors may be correlated to areas with little vegetation structure and/or with large 

bodied species. To facilitate greater precision and accuracy in counts from aerial 

photographs, Bajzak and Piatt (1990) developed an automated, computer based system to 

classify image pixels into either snow geese  (Chen caerulescens) or non-snow geese 

(i.e., background). The uniform white color of the snow geese facilitated separation of the 

birds from their background. Fretwell et al. (2012) used a supervised classification 

technique to segment satellite imagery into emperor penguin (Aptenodytes fosteri) 

colonies, snow cover, guano patches, and shadows. They used an iterative process where 

an analyst determined which areas were penguin colonies and which were guano stained 

snow. These studies suggest that bird species, and possibly other wildlife, can be counted 

in colonies or large groups when they are easily differentiated from the surrounding 

background.  

 The importance of background homogeneity was also influential in the detection 
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of an ungulate (Wyatt et al., 1984) in which complex, non-homogenous backgrounds 

reduced detection and identification of deer (Odocoileus spp.). Deer were discernible 

from snow in the near infrared (NIR, 0.7 to 1.4 μm; 1.5 to 4.0 μm) portion of the 

electromagnetic spectrum (EM) but not in the visible portion due to confusion with 

vegetation and soil. In addition, there was little distinction between deer and vegetation 

or soil in the thermal region of the EM spectrum (3.0 to 5.0 and 7.5 to 10 μm, Wyatt et 

al., 1985). Trivedi et al. (1982) found deer had a detection of 50% - 80% with a 

combination of red (0.6 to 0.7 μm) and NIR bands ratios, although accuracy was affected 

by the amount of dried brush in the background.  

 Temporal change detection from remotely sensed imagery has been regularly used 

to quantify changes of landscapes including land cover and habitat types, forests species 

composition, monitoring landscape health (i.e., flooding, landslides, drought), and 

mapping urban growth (Lu et al., 2003; Lu et al., 2005). The temporal scales used to 

detect change has ranged from seasonal to decadal (Agarwal et al., 2002; Easson et al., 

2010; Laube et al., 2005; Martínez and Gilabert, 2009) and frequently focused on the 

detection or differentiation of change versus no-change. More complex change detection 

methods quantify the magnitude, direction, and/or rate of change and require advanced 

techniques such as calculating spectral band ratios, image differencing, or principal 

component analysis and image construction (Coppin et al., 2004; Lu et al., 2005). 

Regardless of the object of interest, change detection with remotely sensed imagery 

requires precise spatial registration, and correction/normalization of atmospheric 

interference (Lu et al., 2003).   
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We assessed the potential of differencing two high-resolution, aerial images 

collected within a single day to detect animals and potentially determine a correction 

factor for population abundance estimates derived from remotely sensed aerial imagery. 

We compared our population abundance estimate to a known number of animals 

(domesticated cattle (Bos taurus)  and horses (Equus caballus). Fenced pastures provided 

a convenient test case where the number of animals in a pasture did not change over the 

course of image acquisition, animals did not move outside an identifiable boundary (the 

fenced pasture), definitive numbers of individuals in a pasture could be determined from 

ground counts or verbal confirmation obtained from ranchers, and multiple pastures were 

available across the study area. 

 

Data and Methods 

 

Study areas  

On October 31, 2006, we acquired aerial imagery under mostly clear skies across 

portions of Cache Valley (CV) and a portion of Box Elder County west of Brigham City 

(BC) in northern Utah. Cache Valley is a north-south trending valley with an average 

annual precipitation of 45 cm (Moller and Gillies, 2008) and an elevation of 1,355 m 

(U.S. Geological Survey, 1981) at the center of the valley. CV sites were located in the 

valley bottomlands dominated by a mixture of dense and sparse grasslands. Brigham City 

(BC) is located in the Basin and Range physiographic province and sits on the western 

base of the north-trending Wellsville Mountains. The average precipitation of the BC 
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sites was 47 cm (Moller and Gillies, 2008) with an elevation of 1,289 m (U. S Geological 

Survey, 1981). BC study sites were dominated by sparse grasslands.  

 

Animal ground counts 

Rather than compare one estimate to another estimate, we were able to compare 

the number of animals identified by image differencing to the known number of animals 

in each pasture. Ground enumeration of domestic cattle and horses occurred concurrently 

with image acquisition. When possible, we contacted landowners to corroborate the 

ground count of animals. We determined the final count of the known number of animals 

per pasture from visual ground counts, available landowner counts, and a qualitative 

assessment of animal movement in the imagery. Pastures containing ≥ 50 animals were 

difficult to enumerate and resulted in unreliable counts, thus those pastures were not 

included in the analysis. Although no PD was determined for the ground counts, by 

limiting analysis to those pastures with ≤ 50 animals, the PD was likely high. We 

considered pastures independent samples since they were geographically separated across 

the study sites. 

 

Aerial Imagery 

Aerial imagery was collected between 10:44 AM and 3:07 PM using an airborne 

remote sensing system consisting of three Kodak Megaplus 4.2i digital cameras, each 

recording a specific spectral region: green (0.54 – 0.56 µm), red (0.66 – 0.68 µm), and 

near-infrared (0.7 – 0.9 µm) with an approximate spatial resolution of 25 cm (Cai and 

Neale, 1999). Each pasture was imaged twice, with at least 48 minutes between the first 
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image (T1) and the second image (T2). Image acquisition likely did not affect animal 

movements since the aircraft flew at an average elevation of 549 m above ground level 

(Bernatas and Nelson, 2004; DeYoung, 1985).  

 

Image Analysis 

An Exotech four-band radiometer nested with the camera system allowed for the 

conversion of digital numbers to reflectance values for each image (Neale and Crowther, 

1994). Rectification of images to the Universal Transverse Mercator System (UTM), 

NAD83 datum occurred in ERDAS Imagine 9.1.0. We used a feature based registration 

process to register the T1 image to the T2 image for each pasture by linking features 

common to both images. A second-order polynomial transformation and nearest neighbor 

re-sampling method was used to achieve a maximum root mean square error (RMSE) ≤ 1 

(Jensen, 2005). No active farm equipment was present in any of the pastures during 

image acquisition thus animals were the only features that moved between image 

acquisitions.  

A common use of principal component analysis (PCA) is the reduction of 

dimensionality for multi- and hyper-spectral imagery by combining redundant 

information in highly correlated bands (Chavez and Kwarteng, 1989; Jensen, 2005). The 

output of a PCA is an image, which is composed of the same number of layers as the 

input image (3 bands in this case), in which the first layer contains the highest amount of 

correlated information between the spectral bands. The second PCA layer contains the 

second highest amount of correlated information and so on (Jensen, 2005). We conducted 

a PCA on each image to reduce the 3-band image to a single component (1
st
 component) 
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containing the majority of the variance across all three bands. A differenced image was 

obtained by subtracting the first principal component of the T1 image from the T2 image 

(Figure 4.1). To reduce differences in edge effects, we clipped the differenced images to 

the minimum extent of T1 and T2. The analyst heuristically determined, from the 

differenced image,  the maximum and minimum thresholding values that best described 

animal features and reduced over-counting (false positives) and under-counting (false 

negatives) errors. Polygons exceeding a heuristically determined area size (> 10 m
2
) or 

too small (< 0.99 m
2
) to be animals were removed with the resulting polygons considered 

potential animals.  

Distinguishing animal features in remotely sensed imagery is best accomplished 

when homogenous, non-complex backgrounds (i.e. the neighboring vegetation; Trivedi et 

al., 1982; Wyatt et al., 1985) surround animals. For each pasture, we calculated the 

normalized difference vegetation index (NDVI) to quantify plant productivity and 

biomass (Jensen, 2005) and to assess the similarity of vegetation across pastures. We 

conducted linear regressions (Zar, 1996) between NDVI and the four error measurements 

in R (R Core Development Team, 2012) to determine if pasture productivity influenced 

error rates.  

 

Accuracy Assessment 

The output of the differencing technique generated individual polygons that 

represented animal features. We identified when a polygon was properly placed by 

comparing polygon locations with known animal locations. We classified polygons into 

three categories: “mapped polygons” consisted of all polygons generated in a particular 



89 
 

 

technique, “correctly mapped” polygons were those generated using one of the three 

techniques that accurately depicted animals, and “incorrectly mapped” polygons were 

those polygons that were not associated with an animal. In addition, because we had two 

images and could isolate moved features, we were able to identify specific locations of 

animals in each pasture. Knowing the specific location of each animal in both images, we 

were able to identify when an animal was not linked with a polygon (missed). Any 

animal not associated with a polygon was considered a “missed animal”. 

 The probability of detection (PD) was calculated as the number of correctly 

mapped polygons divided by number of known animals in the pasture. The probability of 

under-counting (Punder) indicated missed animals, and was calculated as the number of 

missed animals divided by the number of known animals in the pasture. The probability 

of over-counting (Pover) indicated incorrectly mapped polygons and was calculated by 

dividing the number of incorrectly polygons by the number of mapped polygons in the 

pasture. We incorporated the three error estimates into a single correction factor (CF) that 

we multiplied by the number of mapped polygons to generate a population abundance 

estimate for each pasture. Abundance estimates, adjusted for over-counting animals (false 

positives) and missed animals (false negatives), have greater validity and are more robust 

than unadjusted estimates. The CF was calculated as (PD + Punder - Pover) / PD.  

 

Results 

 The number of known animals present in the eight pastures ranged from three to 

38 individuals and the number of mapped polygons ranged from 10 to 136 (Table 4.1). 

The differencing process resulted in few polygons representing multiple individuals 
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(adjacent animals). One pasture had a single polygon representing two animals, one 

pasture had two polygons representing two individuals, and one pasture had three 

polygons representing two individuals (Table 4.1). We found no significant relationship 

(p > 0.50) between any of our error measurements and NDVI, suggesting that plant 

productivity did not influence separation between animals and their surrounding 

background. 

 The mean PD across the eight pastures was 82% (± 17 (STD), Table 4.1). The 

mean Punder was 18% (± 17%) and ranged from 0% to 50%. The PD and Punder are in 

direct opposition of each other due to the equation to calculate them, thus as PD 

increases, Punder decreases (Table 4.1). The mean Pover was 53% (± 36%) and ranged from 

0% to 95%. The mean CF was 0.64 (± 0.51) and ranged from 0.05 to 1.29. The 

relationship between CF and known number of animals was significantly linear (p = 0.02, 

R
2
 = 0.62) with higher number of known animals associated with higher CFs (Table 4.1). 

Although low CF values were associated with fewer known animals in a pasture, low 

sample size prevented application of a specific CF for pastures with low animal densities, 

another CF for pastures with intermediate animal densities, and a third  CF for pastures 

with high animal densities.  

To determine if the correction factor would allow us to effectively estimate 

population, we averaged the CFs of four randomly selected pastures and applied that 

mean to the remaining four pastures to assess the validity of our population abundance 

estimates (Table 4.2). Examining the difference between known numbers of animals in 

the pastures to the adjusted population abundance estimate indicates that image 
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differencing will in general overestimate the population size when there are fewer 

animals present and underestimate the population when there are more animals present.  

 

Discussion 

 The PD is an important adjustment variable for population abundance estimates 

obtained from ground or aerial wildlife surveys. Reported values of PD for conventional 

wildlife surveys range from 62% in bats (Order Chiroptera, Duchamp et al., 2006), 52% 

in caribou (Rangifer spp., Rivest et al., 1998), 53 -71% for feral ungulate species (Bayliss 

and Yeomans, 1989), and 34 – 82% for mule deer (Odocoileus hemionus) depending on 

group size and habitat type (Freddy et al., 2004). Reported detection probabilities of 

bison (Bison bison bison) are higher (> 92%) than other wildlife species regardless of 

habitat or season (Wolfe and Kimball, 1989; Hess, 2002). Our mean PD of 82% is above 

reported levels for wildlife surveys and suggests single day image differencing could 

provide an alternative method for estimation of ungulate population abundances. 

Population estimates, left unadjusted for over and under-counting errors could have 

serious management implications. Over estimates of population size could lead to a larger 

than appropriate harvest quota which could result in a population decline. Conversely, 

under estimating the size of a population could lead to inappropriate management 

objectives and result in a larger population size than desired. Regardless of biases in 

counting, incorrect population abundance estimates could lead to improper management 

of a population. If biases or errors are known and quantified, they can be incorporated 

into population abundances and result in potentially more precise and accurate estimates, 

which in turn can better inform management decisions.  
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 The increase in the CF as the known number of animals in a pasture increased is 

likely due to the removal of large (> 10 m
2
) polygons that could represent multiple 

animals. Cattle and horses are herding species that frequently stand next to each other and 

individuals that were in close proximity during image acquisition could be represented as 

a single large polygon. Animals in pastures with more individuals (29 and 38) were more 

likely to be grouped together resulting in polygons that represented more than one 

animal. Pastures with fewer animals were less likely to be in groups and had no polygons 

that represented multiple animals (Table 4.1). Pasture 29 had 29 known animals present 

but the 22 correctly mapped animals were relatively isolated individuals (Figure 4.2), 

while two of the missed individuals were represented by large polygons that were 

removed due to size. Thus, when animals were in groups, image differencing tended to 

remove clustered animals resulting in an underestimate the number of individuals in an 

image.  

 Thresholding is an exploratory process that frequently requires human interpretation 

(Coudray et al., 2010; Medina-Carnicer et al., 2010; Rosin and Hervás, 2005; Russ, 

1999). A limitation of heuristic thresholding is the dependency on a human analyst, 

which is subjective, cannot be replicated, and is often inconsistent. Bajzak and Piatt 

(1990) recognized the need for automation to count “large aggregations of birds” and 

developed a technique to enumerate bird clusters in remotely sensed imagery. We 

attempted to identify automatic thresholding criteria to automate animal identification in 

remotely sensed imagery but without success (see Chapter 2). Automation of this type is 

notoriously difficult and inconsistent (Endsley, 1996; Skelsey et al., 2004; Walter and 
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Luo, 2011). We believe, given the current capabilities for automation, human 

determination of thresholds for defining animals provides the most appropriate method 

available. 

Image registration is the process of spatially transforming one or more images to 

accurately overlay each other with the result that identical features in registered images 

should have the same geographic coordinates (Jensen, 2005). Image differencing for 

change detection requires precise and accurate registration between images to avoid false 

detections of change (Coppin et al., 2004; Jensen, 2005). Although the root mean square 

error (RMSE) for all image registrations was ≤ 1, small misalignments occurred because 

linking features were irregular or non-distinct. Another source of error can be attributed 

to the non-linear spatial nature of imagery collected through a camera lens at lower 

elevations (barrel distortion). While non-linear errors were accounted for using lens 

models, residual non-linear errors could still exist. Stow et al. (2002) indicated that image 

registration with fine scale imagery is notoriously difficult with small mis-registration 

errors resulting in large local variation.  We calculated the coordinate difference for five 

features in each pasture between the T1 and T2 images to assess mis-registration. Total 

mis-registration error was calculated by summing the errors in the X and Y direction. 

Mis-registration errors occurred in six of the eight pastures examined with errors of more 

than two meters in two pastures, and three pastures with errors greater than one meter but 

less than two meters (Table 4.3). The mean total mis-registration error of 1.31 m could 

effectively encompass the width of a small adult cow (B. Bowmen, personnel 

communication), thus a RMSE ≤ 1 is not sufficient for aerial imagery to prevent 



94 
 

 

misalignments from being interpreted as animals and added to the high over-counting 

(Pover) error.  

  Because animal movement was the basic premise behind the ability to detect 

animals in the differenced images, the time interval between image acquisitions was 

important. Since we had specific locations of each individual, we were able to identify 

individuals that did not move between the acquisition of T1 and T2. Pasture 32 had the 

lowest time difference (48 minutes) between image acquisitions and had the second 

highest Punder indicating the reduced time interval between the T1 and T2 images was not 

sufficient to allow for significant movement of individuals. The time interval between 

acquisitions should therefore be long enough to ensure animal movement. Images 

collected on successive days should be acquired as close to the same time of day and if 

possible when the sun is directly over-head to reduce shadow effects (Jensen, 2005). The 

number of days separating T1 and T2 image acquisitions should not be more than a week 

to avoid changes in sun angle. Additionally, 1-2 days, with 7 days maximum, separating 

image acquisitions should ensure both spatial and temporal population closure so that 

differences in the number of animals are minimal and only due to births and deaths and 

not movement of individuals into (i.e. immigration) or out of (i.e. emigration) the 

population (Williams et al., 2002). Additions of newborn animals to the population 

should be minimal for most species except in spring. Unless imagery acquisition occurs 

during hunting season or during a catastrophic die-off, deaths should be minimal between 

1-2 days.  
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 Although image differencing will detect 82% of the animals present in an image, 

certain precautions should be addressed prior to applying this technique for estimating 

animal population sizes. First, although Punder was relatively low, Pover was high and 

resulted in an over estimate of the animal population for all pastures. This was similar to 

counts in remotely sensed imagery for Canada geese, snow geese, and caribou (Laliberte 

and Ripple, 2003) that were over-estimated due to inclusion of erroneously classified 

background areas. Second, identification of spectral thresholds that represent animals is a 

heuristic process that relies on human interpretation and thus may not be without bias. 

Third, image differencing requires precise image registration to avoid spurious areas of 

change that can result in large numbers of incorrectly mapped polygons. Fourth, enough 

time must pass for animal movement to occur between image acquisitions. Fifth, the non-

animal portions of the image (i.e., the background) should be as homogenous as possible 

to enhance differentiation between animals and their background.  

 The advantages of airborne or satellite imagery to count animals include reduced 

survey time, a permanent record of the survey, and potentially less expensive than 

conventional wildlife surveys. Conventional aerial wildlife surveys frequently require 

multiple days to complete thus allowing animals to move throughout the study area and 

increase the probability of double-counting or missing individuals. Acquisition of 

remotely sensed imagery is readily obtained over isolated or difficult to reach areas 

whereas conventional aerial surveys require complex advanced planning (i.e. multiple 

people conducting surveys over multiple days). In large, remote areas, such as the 

Mongolian steppe and some parts of the South African continent, aerial transects are 
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often not feasible due to limited access to airplanes or the high cost of airplane rental or 

purchase (Rabe et al., 2002). Because of this isolation, surveys are not conducted or are 

less rigorously conducted which could lead to flawed management decisions. While it 

would require a significant number of days to acquire remotely sensed imagery of large 

areas, such as the Mongolian steppe or the western desert of Utah, conventional wildlife 

aerial surveys are prohibitively expensive due to aircraft cost and personnel time. The 

reduction in time required to acquire remotely sensed imagery of a large study area could 

facilitate counting of animals in areas previously too large or too isolated to survey. 

Additionally, acquisition of remote sensing imagery has the potential to reduce or even 

eliminate negative responses of animal to low flying aircraft during aerial wildlife 

surveys (DeYoung, 1985; Anderson and Lindzey, 1996; Brockett, 2002; Bernatas and 

Nelson, 2004). Automated image analysis has an additional advantage of reduced 

subjectivity within a technique and across analysts. The permanent, unchanging record of 

animal locations for an instant in time i.e. ‘a survey’, allows for repeated assessments 

using the same or different techniques. Remotely sensed imagery can be assessed by 

different personnel to measure the validity of a technique without degradation to the 

image regardless of the number of times it is analyzed. Although aerial and ground 

transects can be repeated animals are not in the same locations from one survey to the 

next, thus a specific survey cannot be replicated whereas data contained within remotely 

sensed imagery can.  

  



97 
 

 

LITERATURE CITED 

Agarwal, C., G. M. Green, J. M. Grove, T. P. Evans, and C. M. Schweik, 2002. A review 

and assessment of land-use change models: dynamics of space, time, and human 

choice. (USDA Forest Service, General Technical Report NE-297, Northeastern 

Research Station, Newtown Square, Pennsylvania), pp. 61. 

Anderson, C. R. Jr., and F. G. Lindzey, 1996. Moose sightability model developed from 

helicopter surveys. Wildlife Society Bulletin, 24:247-259. 

Bajzak, D., and J. F. Piatt, 1990. Computer-aided procedure for counting waterfowl on 

aerial photographs, Wildlife Society Bulletin, 18:125-129. 

Bartmann, R. M., G. C. White, L. H. Carpenter, and R. A. Garrott, 1987. Aerial mark-

recapture estimates of confined mule deer in pinyon-juniper woodland, Journal of 

Wildlife Management, 51(1): 41-46. 

Bayliss, P., and K. M. Yeomans, 1989. Correcting bias in aerial survey population 

estimates of feral livestock in northern Australia using the double-count 

technique, The Journal of Applied Ecology, 26(3):925-933. 

Bernatas, S., and L. Nelson, 2004. Sightability model for California bighorn sheep in 

canyonlands using forward-looking infrared (FLIR), Wildlife Society Bulletin, 

32(3):638-647. 

Brockett, B. H., 2002. Accuracy, bias and precision of helicopter-based counts of black 

rhinoceros in Pilanesberg National Park, South Africa, South African Journal of 

Wildlife Research, 32:121-136. 



98 
 

 

Cai, B., and C. M. U. Neale, 1999. A method for constructing 3-dimensional models from 

airborne imagery, Proceedings of the 17
th

 Biennial Workshop: Color Photography 

and Videography for Resource Assessment, Bethesda, Maryland (American 

Society for Photogrammetry and Remote Sensing), pp. 231-246. 

Chavez, P. S., Jr., and A. Y. Kwarteng, 1989. Extracting spectral contrast in Landsat 

Thematic Mapper image data using selection principal components analysis, 

Photogrammetric Engineering & Remote Sensing, 55(3):339-348. 

Coppin, P., I. Jonckheere, K. Nackaerts, B. Muys, and E. Lambin, 2004. Digital change 

detection methods in ecosystem monitoring: a review, International Journal of 

Remote Sensing, 25(9):156-1596. 

Coudray, N., J.-L. Buessler, and J.-P. Urban, 2010. Robust threshold estimation for 

images with unimodel histograms, Patter Recognition Letters, 31(9):1010-1019. 

Couturier, S., R. Courtois, H. Crépeau, L.-P. Rivest, and S. Luttich, 1994. Calving 

photocensus of the Rivière George Caribou Herd and comparison with an 

independent census, The Sixth North American Caribou Workshop, Prince 

George, British Columbia, Canada, pp. 283-296. 

DeYoung, C. A., 1985. Accuracy of helicopter surveys of deer in south Texas, Wildlife 

Society Bulletin, 13(2):146-149. 

Duchamp, J. E., M. Yates, R.-M. Muzika, and R. K. Swihart, 2006. Estimating 

probabilities of detection for bat echolocation calls: an application of the double-

observer method, Wildlife Society Bulletin, 34(2):408-412. 



99 
 

 

Easson, G., S. DeLozier, and H. G. Momm, 2010. Estimating speed and direction of 

small dynamic target through optical satellite imaging, Remote Sensing, 2:1331-

1347. 

Eberhardt, L. L., 1978. Transect methods for population studies, Journal of Wildlife 

Management, 42:1-31. 

Endsley, M. R., 1996. Automation and situation awareness, Automation and Human 

Performance: Theory and Applications (R. Parasuraman and M. Mouloua, 

editors) CRC Press, Boca Raton, Florida, pp. 536. 

Erwin, R. M., 1982. Observer variability in estimating numbers: An experiment, Journal 

of Field Ornithology, 53:159-167. 

Freddy, D. J., G. C. White, M. C. Kneeland, R. H. Kahn, J. W. Unsworth, W. J. deVergie, 

V. K. Graham, J. H. Ellenberger, and C. H. Wagner, 2004. How many mule deer 

are there? Challenges of credibility in Colorado, Wildlife Society Bulletin, 32:916-

927. 

Frederick, P. C., B. Hylton, J. A. Heath, and M. Ruane, 2003. Accuracy and variation in 

estimates of large numbers of birds in individual observers using an aerial survey 

simulator, Journal of Field Ornithology, 74:281-287. 

Fretwell, P. T., M. A. LaRue, P. Morin, G. L. Kooyman, B. Wienecke, N. Ratcliffe, A. J. 

Fox, A. H. Fleming, C. Porter, and P. N. Trathan, 2012. An emperor penguin 

population estimate: the first global, synoptic survey of a species from space, 

PLoS ONE, 7(4):e33751 



100 
 

 

Gilmer, D. S., J. A. Brass, L. L. Strong, and D. H. Card, 1988. Goose counts from aerial 

photographs using an optical digitizer, Wildlife Society Bulletin, 16:204-206. 

Harris, M. P., and C. S. Lloyd, 1977. Variations in counts of seabirds from photographs, 

British Birds, 70:200-205. 

Hess, S., 2002. Aerial survey methodology for bison population estimation in Yellowstone 

National Park. Ph.D. dissertation, Montana State University, Bozeman, Montana, 

135 p. 

Hiby, A. R., D. Thompson, and A. J. Ward, 1988. Census of grey seals by aerial 

photography, Photogrammetric Record, 12:589-594. 

Jackmann, H., 2002. Comparison of aerial counts with ground counts for large African 

herbivores, Journal of Applied Ecology, 39:841-852. 

Jensen, J. R., 2005. Introductory digital image processing, 3
rd

 edition. Prentice Hall, 

Upper Saddle River, New Jersey, 526 p. 

Laliberte, A. S., and W. J. Ripple, 2003. Automated wildlife counts from remotely sensed 

imagery, Wildlife Society Bulletin, 31(2):362-371. 

Laube, P., S. Imfeld, and R. Weibel, 2005. Discovering relative motion patterns in groups 

of moving point objects, International Journal of Geographical Information 

Science, 19(6):639-668. 

Lu, D., P. Mausel, M. Batistella, and E. Moran, 2005. Land-cover binary change 

detection methods for use in the moist tropical region of the Amazon: A 

comparative study, International Journal of Remote Sensing, 26:101-114. 



101 
 

 

Lu, D., P. Mausel, E. Brondízio, and E. Moran, 2003. Change detection techniques, 

International Journal of Remote Sensing, 25:2365-2407. 

Martínez, B., and M. A. Gilabert, 2009. Vegetation dynamics from NDVI time series 

analysis using the wavelet transform, Remote Sensing of Environment, 113:1823-

1842. 

Medina-Carnicer, R., F. J. Madrid-Cuevas, R. Muñoz-Salinas, and A. Carmona-Poyato, 

2010. Solving the process of hysteresis without determining the optimal 

thresholds, Pattern Recognition, 43: 1224-1232. 

Moller, A. L., and R. R. Gillies, 2008. Utah Climate, 2
nd

 edition, Utah Climate Center, 

Utah State University Research Foundation, Logan, Utah, 109 p. 

Neale, C., M., and B. Crowther, 1994. An airborne multispectral video/radiometer remote 

sensing system: development and calibration, Remote Sensing of Environment, 

49:187-194. 

R Core Development Team. 2012. R: A Language and Environment for Statistical 

Computing, R Foundation for statistical computing, Vienna, Austria, 409 p. 

Rabe, M. J., S. S. Rosenstock, and J. C. deVos, Jr., 2002. Review of big-game survey 

methods used by wildlife agencies of the western United States. Wildlife Society 

Bulletin, 30(1):46-52. 

Rivest, L.-P., S. Couturier, and H. Crépeau, 1998. Statistical methods for estimating 

caribou abundance using postcalving aggregations detected by radio telemetry, 

Biometrics, 54:865-876. 



102 
 

 

Rosin, R. L., and J. Hervás, 2005. Remote sensing image thresholding methods for 

determining landslide activity, International Journal of Remote Sensing, 

25(6):1075-1092. 

Russ, J. C., 1999. The image processing handbook, 3
rd

 edition, CRC Press, Boca Raton, 

Florida, 771 p. 

Russell, J., S. Couturier, L. G. Sopuck, and K. Ovaska, 1994. Post-calving photo-census 

of the Rivière George caribou herd in July 1993, The Sixth North American 

Caribou Workshop, Prince George, British Columbia, Canada, pp. 319-330. 

Sinclair, A. R. E., 1973. Population increases of buffalo and wildebeest in the Serengeti, 

East African Wildlife Journal, 11:93-107. 

Skelsey, C., A. N. R. Law, M. Winter, and J. R. Lishman, 2004. Automating the analysis 

of remotely sensed data, Photogrammetric Engineering & Remote Sensing, 

70(3):341-350. 

Stow, D., D. Chen, and L. Coulter, 2002. "Detection of pixel-level land-cover changes 

with multi-temporal imagery: theory and examples with imagery of 1 meter and 1 

kilometer spatial resolutions", in Analysis of multi-temporal remote sensing 

images, Volume 2, L. Bruzzone and P. Smits (Eds), New Jersey, USA, World 

Scientific, 59-66. 

Thompson, W. L., G. C. White, and C. Gowan, 1998. Monitoring Vertebrate 

Populations. Academic Press, New York, 365 p. 



103 
 

 

Trivedi, M. M., C. L. Wyatt, and D. R. Anderson, 1982. A multispectral approach to 

remote detection of deer, Photogrammetric Engineering & Remote Sensing, 

48:1879-1889. 

Unsworth, J. W., L. Kuck, and E. O. Garton, 1990. Elk sightability model validation at 

the National Bison Range, Montana, Wildlife Society Bulletin, 18(2):113-115. 

U.S. Geological Survey, 1981. Geographic names Information System (GNIS), URL; 

http:// http://geonames.usgs.gov/pls/gnispublic, U.S. Geological Survey, Reston, 

Virginia (last date accessed: 17 February 2013). 

Walter, V., and F. Luo, 2011. Automatic interpretation of digital maps, Journal of 

Photogrammetry & Remote Sensing, 66:519-528. 

White, G. C., R. M. Bartmann, L. H. Carpenter, and R. A. Garrott, 1989. Evaluation of 

aerial line transects for estimating mule deer densities, Journal of Wildlife 

Management, 53:625-635. 

Williams, B., K., J. D. Nichols, and M. Conroy, J., 2002. Analysis and Management of 

Animal Populations, Academic Press, San Diego, California, 817 p. 

Wolfe, M., and J. F. Kimball, 1989. Comparison of bison population estimates with a 

total count, The Journal of Wildlife Management, 53:593-596. 

Wyatt, C. L., D. R. Anderson, R. Harshbarger, and M. M. Trivedi, 1984. Deer census 

using a multispectral linear array instrument, Proceedings of the 18th 

International Symposium on Remote Sensing of Environment, Paris, France, pp. 

1475-1487. 



104 
 

 

Wyatt, C. L., M. M. Trivedi, D. R. Anderson, and M. C. Pate, 1985. Measurement 

techniques for spectral characterization for remote sensing, Photogrammetric 

Engineering & Remote Sensing, 51:245-251. 

Zar, J. H., 1996. Biostatistical Analysis, 3
rd

 edition, Simon & Schuster, Upper Saddle 

River, New Jersey, 121 pp. 



 
 

 

Table 4.1. The probability of detection (PD), the probability of under-counting (Punder), the probability of over-counting (Pover), 

and the correction factor (CF) for the population abundance estimates resulting from a differencing process between two 

images acquired on a single day.  

 

 

Pasture 

Known number 

of animals in 

pasture 

 

Mapped 

polygons 

Correctly 

mapped 

polygons 

Polygons 

representing 

2 animals 

 

Missed 

animals 

Incorrectly 

mapped 

polygons 

 

 

PD
1
 

 

 

Punder
2
 

 

 

Pover
3
 

 

 

CF
4
 

4 18 15 9 0 9 6 0.50 0.50 0.40 1.20 

32 38 26 22 3 13 4 0.66 0.34 0.15 1.29 

27 4 10 3 0 1 7 0.75 0.25 0.70 0.40 

29 29 33 22 1 6 11 0.79 0.21 0.33 0.84 

21 13 71 12 0 1 59 0.92 0.08 0.83 0.18 

28 15 136 14 0 1 122 0.93 0.07 0.90 0.11 

15 38 35 35 2 1 0 0.97 0.03 0.00 1.03 

22 3 59 3 0 0 56 1.00 0.00 0.95 0.05 

Sum 158 385 120 6 32 265 - - - - 

Mean 20 48 15 1 4 33 0.82 0.18 0.53 0.64 

STD 14 41 11 1 5 43 0.17 0.17 0.36 0.51 
1. (Correctly mapped polygons a / Known number of animals in pasture)  

2. (Missed Animals / Known number of animals in pasture)  

3. (Incorrectly mapped polygons/ Number of mapped polygons)  

4. (PD + Punder – Pover) / PD 

  

1
0
5
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Table 4.2. Application of the mean correction factor (CF, 0.64) from four randomly 

selected pastures to determine the adjusted animal population abundance estimates for 

four pastures in north central Utah. 

 

 

Pasture 

Known number 

of animals in 

pasture 

 

Mapped 

polygons 

Adjusted 

population 

abundance 

Difference between 

known and adjusted 

abundances 

29 29 33 21   -8 

4 18 15 10   -8 

21 13 71 45 32 

22   3 59 38 35 
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Table 4.3. Mean mis-registration errors (STD, standard deviation and SE, standard 

error) across 5 points from registering image T1 to T2 in the X and Y directions for 

eight pastures. Errors are mean differences of five samples, measured as distance, of 

five locations. Total error is the sum of the X and Y errors. 

 

Pasture Mean X STD X Mean Y STD Y Total 

4 0.00 0.12 0.00 0.69 0.00 

21 0.00 0.00 0.00 0.00 0.00 

28 0.14 0.15 0.82 0.06 0.95 

15 0.29 1.41 0.74 1.91 1.03 

27 0.27 0.14 0.97 0.82 1.23 

29 0.70 0.40 0.63 0.33 1.33 

22 0.60 0.74 1.90 4.67 2.50 

32 1.01 0.21 2.38 0.61 3.39 

Mean 0.37  0.93  1.31 

SE 0.13  0.30  0.41 



 
 

 

Figure 4.1. Section of pasture 29 depicting 22 known animals. Figure A is the 1
st
 principal component of the first image 

acquired (T1), figure B is the 1
st
 principal component of the second image acquired (T2), and figure C is the differenced image 

resulting from subtracting T1 from T2. 
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Figure 4.2. Thirty-three mapped polygons resulting from an image differencing process 

for pasture 29. Twenty-two grey outlined polygons indicate correctly mapped animals, 

the 11 solid black polygons indicate polygons incorrectly mapped as animals, and the six 

black triangles indicate animals not associated with a polygon i.e., missed animals. 
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CHAPTER 5 

BISON SIGHTABILITY IN THE SATELLITE AGE 

 

Abstract 

The probability of detection is essential for accurately estimating animal 

population abundance. With the advent of programmable GPS radio-collars, biologists 

have access to data at resolutions previously unavailable, allowing for the identification 

of double-counted and missed animals during aerial surveys. We equipped 44 bison 

(Bison bison bison) with GPS-collars and documented the spatial and temporal 

relationship between bison travel paths and annual helicopter survey paths. Using GPS-

collar locations, we examined aerial survey results at multiple resolutions and determined 

the probabilities of detection (i.e., sightability) for bison in south-central Utah. Four data 

resolutions separated double-counts and missed animals based on temporal and spatial 

designations. The coarsest resolution (Level 1) did not identify double-counted or missed 

bison and represented the “crudest” detection probability, similar to conventional aerial 

surveys. Sightability models were developed for Levels 2 - 4 with physiographic 

variables (aspect, majority habitat type, surface roughness) and survey variables (distance 

between the helicopter and a group, movement at initial detection, habitat visibility, and 

group size). The surface roughness index and distance between the helicopter and a group 

significantly affected sightability (P ≤ 0.10) at most levels of data resolution. Horvitz-

Thompson population abundance estimates for each data resolution were higher when 

double-counts were included than when double-counts were not included. Incorporating 



111 
 

 

known double-counted and missed bison into aerial survey counts will result in a more 

accurate population abundance estimate. 

Ground and aerial surveys are common methods used to estimate population 

abundance and density of free-ranging animals (Silvy 2012). Raw counts without a 

correction factor often yield biased population abundance estimates due to imperfect 

detection caused by animal movements or clustering, visual obstructions (e.g., dense 

habitat), or observer error (Caughley 1974, Eberhardt 1978, Samuel et al. 1987, White et 

al. 1989, Jackmann 2002). Variation in the raw counts can thus be incorrectly interpreted 

as variation in population size. Estimating the probability of detecting an individual 

animal (or group of animals) can be used to correct count data and attain more robust 

estimates of population abundance (White 2005). A number of methods have been 

developed to estimate the probability of detection, such as the double-observer method 

(White et al. 1989, Potvin et al. 2004, Duchamp et al. 2006), concurrent or nearly 

concurrent ground and aerial counts (Samuel et al. 1987, Jackmann 2002), photographic 

interpretation (Koski et al. 2011, Lubow and Ransom 2009), distance sampling 

(Buckland et al. 1993), and capture-mark-recapture (White et al. 1982). However, these 

methods either suffer from the assumption of a constant probability of detection, or are 

difficult to implement for large ungulates in rugged terrain and dense habitats that 

obscure visibility (Fieberg and Giudice 2008). In such cases, sightability models are often 

used to estimate how detection probabilities change with variable landscape attributes, 

animal behavior, and survey parameters (Samuel and Pollock 1981, Steinhorst and 

Samuel 1989). 
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Habitat type, group size, and the amount of vegetative cover have all been shown 

to influence detection of ungulates and have been included in sightability models 

(Gasaway et al. 1985, Samuel et al. 1987, Rice et al. 2009, Giudice et al. 2012, Ransom 

2012). In addition to environmental and survey covariates, spatially explicit variables 

such as physiographic characteristics in the vicinity of animal locations (e.g., aspect, 

elevation, slope) could affect sightability. These variables have rarely been considered, 

possibly due to the coarse-scale information that is obtained when using high frequency 

(VHF) collars to determine the probability of detection for a species during a survey.  

The current generation of global positioning system (GPS) radio-collars for 

wildlife can be reprogrammed after deployment to modify the frequency and timing at 

which locations are acquired. Thus, location acquisition rates can be adapted to take 

advantage of unforeseen management or research opportunities. A post-deployment 

increase in acquisition rates for specific times of the year, such as during annual surveys, 

can provide nearly continuous information on animal movements and locations. Hence, 

locations of GPS-collared individuals can be assessed almost instantaneously relative to a 

(helicopter) survey path. The nearly continuous locations can inform biologists which 

GPS-collared individuals are within a surveyed area, and if they were successfully 

detected or missed by survey observers. In addition, monitoring fine-scale movements of 

GPS-collared animals allows for greater insight into double- or multi-counts on a per 

individual basis, and the physiographic, behavioral, and survey variables influencing 

probability of detection during a survey. 
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Our primary objective was to estimate sightability of GPS-collared bison (Bison 

bison bison) during annual helicopter surveys flown by the Utah Division of Wildlife 

Resources (UDWR) in south-central Utah. We did not attempt to evaluate or improve the 

existing survey design. Rather, we used the GPS-collared bison and remotely sensed 

imagery to develop a spatially-explicit sightability model for UDWR’s existing survey 

design. Combining landscape features and known locations of GPS-collared bison during 

surveys will allow managers to evaluate the sightability on an individual (or group) basis 

and calculate a more robust estimate of population abundance for guiding harvest and 

translocation management decisions.  

 

Study Area 

The study area included the Henry Mountains and surrounding rangelands in 

Wayne and Garfield counties, in south-central Utah. The study area was extremely 

rugged with elevations ranging from 1,127 m at the lower benches and desert areas to 

3,512 m at Mount Ellen (U.S. Geological Survey 1981). The low elevation desert areas 

were a combination of high, steep-walled mesas interspersed with semi-arid, sagebrush 

steppe habitats. The upper elevations and mountainous areas were characterized by deep, 

V-shaped valleys with alpine patches on the ridges (Nelson 1965). Average annual 

precipitation changed dramatically between the lower elevation slopes and desert areas 

(15 cm) and the upper elevation, forested slopes (50 cm; Van Vuren and Bray 1986). 

Precipitation was highly variable over time and influenced reproductive success of the 

bison (Koons et al. 2012). Vegetation changed with elevation, such that lower elevations 

and desert areas were dominated by saltbush (Atriplex spp.), greasewood (Sarcobatus 
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spp.), sagebrush (Artemisia spp.), and grasses (Aristida spp., Bouteloua spp.). The 

highest elevations were dominated by spruce (Picea spp.), Douglas fir (Pseudotsuga 

menziesii), oak (Quercus gambelii), and small patches of aspen (Populous tremuloides). 

Intermediate elevations were a mixture of shrublands and pinyon pine (Pinus edulis) - 

juniper (Juniperus spp.) woodlands; Van Vuren and Bray 1986).  

 

Methods 

We captured 59 bison using a net-gun fired from a helicopter (Barrett et al. 1982) 

between January 30 and February 3, 2011. We equipped 44 bison with 2 collars: a radio-

collar furnished with GPS unit (Lotek Wireless, Ontario, Canada) and a VHF radio-collar 

(Telonics, Mesa, Arizona, USA, and Advanced Telemetry Solutions, Isanti, Minnesota, 

USA) with white belting. An additional 15 bison were fit with a single black-colored 

VHF radio-collar (for the purposes of monitoring survival). Between January 2012 and 

January 2013, we captured and attached a VHF collar on 27 bison and replaced 35 non-

functioning GPS collars with functioning GPS collars (i.e., recaptures). Capture and 

handling protocols were in compliance with the UDWR (permit 6BAND8393) and the 

Utah State University - Institutional Animal Care and Use Committee (IACUC #1452). 

The GPS collars obtained locations every 4 hours, except during helicopter surveys when 

locations were obtained every 2 minutes. Location data was uploaded via satellite and we 

received emails containing bison locations approximately every 3 days. The VHF collars 

were equipped with a mortality sensor and had a life expectancy of ≥5 years while the 

GPS collars had a life expectancy of 3 years.  
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 Helicopter Surveys.—The UDWR counted bison across the study area in August 

2011 and 2012 using a Eurocopter A Star 350 B2 ECUREIIL (Grand Prairie, Texas, 

USA) helicopter. The helicopter and observation crew consisted of the same individuals 

for all years with the exception of a new pilot in 2012. For all surveys, the primary 

observer sat next to the pilot with the secondary observer in the back seat, behind the 

primary observer. A dedicated recorder, in the middle back seat, logged all observations 

while a third observer sat behind the pilot. Both the primary and secondary observers had 

over 5 years of wildlife survey experience. None of the observers knew the locations of 

GPS-collared bison prior to conducting the survey. Rugged topography prevented 

adherence to strict transect lines so flight paths were dictated by and followed the terrain. 

The primary observer determined the flight path direction and extent of the survey area 

for all years. We divided the study area into 4 “strata” (Fig. 5.1) outlined by common 

flight paths across all years and based on physiographic regions such as drainages and 

ridge tops. Strata were flown in a different order each year. Surveys took no more than 

two consecutive days and occurred on rain-free days with moderate to low cloud cover. 

We recorded helicopter flight paths with a GPS unit collecting locations every 2-3 

seconds. At first detection of an individual or a group of bison, the primary observer 

estimated the distance between the helicopter and the initial sighting of the group or 

individual to the nearest 0.40 km (0.25 mile). The helicopter then flew towards the group 

or individual and circled until the observers had determined group size, number of adults 

and calves, and counted the number of GPS-collared bison. Upon completion of group 

enumeration, the helicopter then returned to the original flight path. 
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In addition to recording the distance between the helicopter and individual or 

group of bison, the primary observer classified vegetation density at the initial detection 

point into 3 visibility classes: low visibility (dense tree cover), moderate visibility (a 

mixture of trees, shrubs, and grasses), and high visibility (open grasslands and low-

density shrub-lands). The primary observer also indicated whether the individual or group 

was moving at the time of initial detection.  

 Physiographic and Habitat Variables.—Post survey, we determined 

physiographic variables (aspect, elevation, majority habitat type, slope, surface roughness 

index) in a 300-m radius (282, 618-m
2
 area) around all bison locations. We derived the 

aspect, elevation, and slope from a 10-m resolution National Elevation Dataset (NED; 

Gesch et al. 2007) of the study area. We converted aspect into a categorical variable 

representing the four cardinal and four inter-cardinal directions (8 directions). A surface 

roughness index (hereafter termed roughness index) represented topographical extremes 

measured within a 10 × 10-m neighborhood (Russ 1999). A single roughness value for 

each neighborhood represented the mean elevation difference between the center pixel 

and all other pixels in the neighborhood. We normalized the surface roughness values so 

the minimum was zero and the maximum was 100 to allow for comparison across the 

study site.  

We also classified seven habitats from a 1-m resolution, 4-band (blue, green, red, 

and near infrared) National Agricultural Imagery Program (NAIP) aerial image of the 

study area. The classes consisted of alpine (ALP), desert/grassland/barren (DGB), low-

density juniper (LDJ), moderate-density juniper (MDJ), shrubland (SHB), and high-
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density pinyon-juniper woodlands (WDLD), and unknown (UNK). We calculated the 

normalized difference vegetation index (NDVI; Jensen 2005), a measure of the amount of 

healthy vegetation biomass, from the NAIP imagery to separate DGB habitat from SHB, 

and LDJ from SHB. We separated MDJ from dense WDLD with a supervised 

classification (Jensen 2005) of the NAIP imagery. Elevation separated ALP from DGB, 

with ALP habitats limited to higher elevations than DGB and above the WDLD habitat. 

Based on field-accessed locations, the overall accuracy for the habitat classification was 

52% indicating that over half of the reference points were correctly classified. The overall 

accuracy does not indicate errors of omission or commission and thus does not 

completely represent the ability of a classification scheme to identify specific classes. 

The KHAT statistic is a measure of the agreement between a classification scheme and 

the associated reference data that ranges from -1 to 1 with 1 representing perfect 

agreement (Congalton and Green 2009). The KHAT for our classification scheme was 

0.39, suggesting fair agreement (Landis and Koch 1977) between the mapped classes and 

ground reference data. The habitat with the highest percent cover in a 300-m radius circle 

around each GPS-radio collared bison location was the WDLD habitat class which had a 

19% omission error and only a 4% commission error (Table 5.1). Bison were also 

frequently located in the MDJ habitat, which had a 75% omission error and a 65% 

commission error.  

 Bison Observation Status.—Temporal and spatial overlap between a travel path of 

a GPS-collared bison and the helicopter flight path were used to determine which bison 

were successfully detected (bison present in the survey area and detected), which were 
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duplicate counts (bison present in the survey area and detected more than once), and 

which were missed (bison present in the survey area but not detected). We considered a 

bison successfully detected if the following three criteria were met: 1) GPS locations 

were within the distance and direction noted in the survey when a group was first 

detected, 2) a GPS location was temporally and spatially congruent with the helicopter 

flight path, and 3) white-colored collars (2011) or double-collared bison (2012) were 

observed in the target group (Fig. 5.2). A more direct determination of individually-based 

detection was not possible because alpha-numeric markings on the white-colored collars 

were not uniquely identifiable from the air, nor could they be read from video taken 

during the surveys. We received locations from the GPS collars with an associated time 

stamp 3-5 days post survey. We connected bison locations in ArcGIS 10 (ESRI, 

Redlands, California, USA) to form a bison travel path during survey days.  

For each missed GPS-collared bison (Fig. 5.3), we determined distance to the 

helicopter flight path, group size, whether the bison was moving or not, and visibility 

class post survey. We used ArcMap 10 (ESRI, Redlands, CA) to obtain distances and 

visualize intersections of the helicopter flight path and the bison travel path. We 

calculated distance between the helicopter and the missed GPS-collared bison by 

assuming a 90˚ angle between the missed bison and the helicopter flight path (Fig. 5.3). 

Based on a regression with high explanatory strength (R
2
 = 0.70, P < 0.05) between group 

size and the number of GPS-collared bison in observed groups and habitat density (i.e. 

visibility class) of observed groups, we used the regression parameters to interpolate an 

associated group size for each missed bison based on their known covariate values (Fig. 
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5.4). We considered a missed bison as ‘moving’ if the distance traveled in two minutes 

was more than 200 m. We determined the visibility class (low, moderate, or high) for 

each missed bison from visual inspection of NAIP imagery relative to that of observed 

bison.  

 Analysis Levels.—Sightability is usually based on the comparison of two survey 

methods: a fixed-wing flight that determines the presence of each collared animal in a 

survey strata using VHF radio-telemetry, followed by a ‘blind’ helicopter survey crew 

that attempts to visually observe radio-collared individuals and count all individuals 

(Unsworth et al. 1990, Giudice et al. 2012, Ransom 2012). The resulting data indicate the 

number of detected and missed animals but determination of multiple counts of the same 

animal is more problematic with VHF collars. Numerous flights are required to enhance 

the sample size of detected and missed animals, which increases the total cost and can 

cause potential problems with lack of independence among surveys. Additionally, 

increased flights can negatively affect animal behavior and result in potentially biased 

behavior towards airplanes or helicopters during each successive survey (Anderson and 

Lindzey 1996, Brockett 2002, Bernatas and Nelson 2004).  

The GPS-collar data allowed us to alleviate many of these problems, and examine 

four levels of data resolution to estimate sightability. The lowest resolution (Level 1) 

represented the manner in which conventional wildlife surveys would record animal 

detections. That is, Level 1 data resolution represented the number of white-collared 

bison detected throughout the surveyed area relative to the number of white-collared 

bison present in the study area in 2011. In 2012, 18 of the bison outfitted with white VHF 
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collars had either lost their white belting, or the status of the white belting was unknown. 

The primary observer felt that double-collared bison (all GPS-collared animals had a 

VHF collar) could be effectively identified from the helicopter (W. Paskett, UDWR, 

personal communication). Thus, for 2012, Level 1 data represented the number of 

double-collared bison observed during the entire survey relative to the number of double-

collared bison present in the study area.  

Collar failure and premature drop-off occurred throughout the study such that in 

2011 and 2012, 13 and 10 collars, respectively, were not transmitting locations. Levels 2, 

3, and 4 data resolution included only bison with functioning GPS-collars at the time of 

the survey. Level 2 data resolution was temporally restricted such that each functioning 

GPS-collared bison was assigned a single observation status across the entirety of each 

annual survey. Thus, double-counts could not be ascertained at this level or at the Level 1 

resolution. However, at the Level 2 resolution, ‘missed animals’ were defined as those 

bison present in the study area (a geographically closed system) but never observed 

during an annual survey. For Level 2 and Level 3 data resolutions, detection superseded a 

miss, so if a bison was both detected and missed in the respective survey area for a given 

resolution, the bison was recorded as detected. Level 3 data resolution was spatially 

restricted and consisted of stratum-specific observations. Consistent with most other 

sightability studies (Steinhorst and Samuel 1989, Jenkins et al. 2012), we recorded a 

single observation for each GPS-collared bison counted per stratum as it was flown. 

Thus, at the Level 3 data resolution a bison could be classified as detected, missed, or 

double-counted across strata but not within a stratum. The Level 4 resolution of data, 
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which was not spatially or temporally limited, allowed for multiple observations within 

and across strata. The observations were temporally and spatially separated enough to be 

considered unique sampling observations. For example, bison 30401 was missed in 2011 

at 8:05 am but detected later in the same stratum at 1:14 pm (Figs. 5.2 and 5.3). Thus, at 

the Level 3 data resolution 30401 was recorded as detected but not missed. At the Level 4 

data resolution, spatial and behavioral data for bison 30401 was recorded at both its 8:05 

am miss and its 1:14 pm detection. Level 3 and Level 4 data resolutions provide greater 

sample size of double-counted and missed bison for the development of sightability 

models (described below). The Level 4 resolution is akin to the multiple flights that are 

often flown in VHF-based sightability studies, in that animals can contribute multiple 

observations to the dataset, but without the repetitive flights that can affect animal 

behavior.  

 Sightability Models.—We used generalized linear models (GLM) with a binomial 

distribution and logit link function to examine the influence of bison behavior, 

physiographic variables, and survey parameters on the probability of successfully 

detecting marked bison (i.e., ‘sightability’). For each level of data resolution that included 

GPS-based locations (i.e., Levels 2, 3, and 4), we developed GLMs that examined 

univariate and additive effects of aspect, roughness index, and majority habitat type on 

the probability of detection. Separately, we developed GLMs for each data resolution 

(i.e., Level 2, 3, and 4) to examine the univariate and interactive effects of distance 

between the helicopter and a group, group size, movement at initial detection, and 

visibility class on the probability of detection. We excluded slope and elevation because 
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the roughness index incorporated these variables and was positively correlated with them 

(ρ > 0.25, P < 0.05). In addition, other multicolinear variables were not allowed to enter 

the same statistical model as additive effects. 

 We ranked all GLMs and the null model within each category of the predictor 

variables (physiographic and survey) using the Bayesian Information Criteria (BIC, 

Schwarz 1978). We then created a set of GLMs with combinations of predictor variables 

that were significant (P ≤ 0.10) and supported by BIC in the physiographic and survey 

tiers of model comparison, and again used BIC to compare models. The sightability 

models took the form: 
))exp(1(

)exp(






y where y is a binary response variable of detected 

(y = 1) or missed (y = 0) and u is the logit of the best-fit sightability model with 

covariates.  

 We investigated mixed models with either a random group effect or a random 

‘individual nested within group’ effect to account for lack of independence among 

marked bison that were within the same group (Bolker et al. 2008). However, these 

models did not converge, perhaps due to small sample size. As the study progresses, we 

will further investigate mixed models to address any lack of independence among bison 

within a group. 

 Horvitz-Thompson Estimator.—The Horvitz-Thompson (HT) abundance 

estimator (Steinhorst and Samuel 1989, Williams et al. 2002) utilizes individually-based 

detection probabilities from a sightability model to adjust raw survey counts in the form 

of: 
1

1ˆ
C

i
i

N
p

    where i pertains to each counted individual up to the total number 
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counted C, and p is the estimated probability of detection for each individual based on the 

selected sightability model and the attributes of the animal’s location relative to those 

included in the selected model (i.e. it’s covariate values). To increase the accuracy and 

precision of population abundance estimates, we estimated sightability models based on 

multiple covariates (see above) rather than assuming a constant detection probability 

across the survey (Steinhorst and Samuel 1989). We applied a HT estimator to our top-

ranked sightability models and generated unbiased 95% confidence intervals using 1,000 

boot-strapped abundance estimates (Efron and Tibshirani 1993, Heide-Jørgensen et al. 

1993, Jackson et al. 2006). At data resolution Levels 2, 3, and 4, we calculated the HT 

abundance estimates with and without known double-counted individuals in the total C. 

 

Results 

Observers detected 11 groups and counted 372 bison (303 adults, 69 calves) in 

2011 and 12 groups and 505 bison (439 adults, 66 calves) in 2012. At the Level 4 data 

resolution, there were 3 GPS-collared bison that were double-counted in both 2011 and 

2012. In 2011, the double-counted bison were in a single group of 23 individuals. In 

2012, two groups were double-counted, one consisting of a GPS-collared bison in a 

group of 5 individuals and the other group consisting of two GPS-collared bison in a 

group of 21 individuals. The mean group size across both years was 38 (± 35, standard 

deviation, SD). Observed group sizes were similar in both years with a range of 1 to 108 

bison in 2011 and 5 to 103 bison in 2012.  

The mean distance between the helicopter and each initial sighting of each group 

was almost three times higher in 2012 than in 2011. To determine the area surveyed on 
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each flight path for each year, we selected the mean or the median distance to a group 

based on the smallest value and buffered the flight line accordingly. Across both years, 

observers detected 11 groups in the high visibility class (grasslands and low-density 

shrublands), 9 in the moderate visibility class, and 3 in the low visibility classes (dense 

juniper woodlands). Of the 23 groups detected across both years, 20 groups were moving 

when first sighted and 3 groups were not moving. Most bison groups were located in 

strata A and B (Fig. 5.1). 

Regardless of data resolution, observers consistently detected groups further away 

from the helicopter and in larger mean group sizes than missed groups. No missed groups 

were considered moving at data resolution Levels 2 and 3 but a single missed group was 

considered as moving at data resolution Level 4. Detected groups were located in all 

three visibility classes, while we determined post survey that missed groups were either 

in low (dense tree cover) or moderate (mixed juniper shrublands) visibility classes but 

never in the high visibility class. Although locations from GPS-collared bison were on 

eastern, southeastern, southern, southwestern, and western aspects, most missed groups 

were on southwestern and western aspects while detected bison groups were primarily on 

southwestern aspects. Missed groups were located in areas with higher roughness indices 

than detected groups. Regardless of data resolution, most missed groups consisted of one 

or two GPS-collared bison except in 2011 a group of 9 GPS-collared bison were missed 

at the Level 4 data resolution. 

Sightability Models. —At all data resolutions 2 - 4, the top-ranked physiographic 

sightability models based on individual GPS-collared bison consisted of a single variable, 
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the roughness index. The top-ranked survey model for Level 2 was a univariate model 

consisting of group size, while the top-ranked survey model for Level 3 included distance 

between the helicopter and a group, and group size. The variables included in the top-

ranked survey model for Level 4 included an interaction between distance between the 

helicopter and a group, and movement (Table 5.2). No top-ranked models included 

majority habitat classified from the NAIP imagery.  

When considering combinations of physiographic and survey variables, we found 

that the roughness index significantly affected sightability. At the Level 2 and 4 data 

resolutions, roughness index reduced sightability (Table 5.2; βRoughness Index L2 = -10.75, 

95% CI: -20.28 to -1.23, P = 0.03; βRoughness Index L4= -40.59, 95% CI: -68.85 to -12.32, P = 

0.005). Distance to a group significantly influenced sightability only at the Level 3 data 

resolution (Table 5.2; βDistance = 0.01, 95% CI: 0.00 to 0.02, P = 0.01). Group size was 

included in the top-ranked combined models for resolution Level 3 but it was not 

significant (Table 5.2; βGroup Size L3 = 0.16, 95% CI: -0.50 to -0.18, P = 0.35). Although the 

top ranked model for Level 3 data resolution was an additive model of distance to a 

group, plus group size, neither the distance to a group or group size variables were 

significant (Appendix A). As such, the next ranked univariate model of distance to a 

group was considered the most supported combined model based on the principle of 

statistical plurality (Scheiner 2004).  

The top-ranked sightability models based on ‘bison group observations’ with at 

least one functioning GPS-collared bison in them were generally less complex and 

included fewer covariates (Table 5.3) than sightability models based on individuals as the 
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sampling unit (Table 5.2). At all data resolution levels, the top-ranked physiographic 

models consisted of a single variable, the roughness index or the null model. The top-

ranked survey model for Level 2 consisted of the null model and for Level 3 consisted of 

a single variable, distance between the helicopter and a group (Table 5.3). The top-ranked 

survey model for Level 4 data resolution was a multivariate model consisting of distance 

between the helicopter and a group, plus movement of the group at the initial sighting.  

The null model was the top-ranked combined model for the Level 2 data 

resolution. Distance between the helicopter and a group was a significant variable in the 

combined models for data resolution Levels 3 and 4 with longer distances between the 

helicopter and a group being correlated with higher sightability (βDistance L3 = 0.01, 95% 

CI: 0.00 to 0.03, P = 0.06; βDistance L4 = 0.02, 95% CI: 0.00 to 0.04, P = 0.09). As we found 

with the individually-based sightability models, none of the group-based sightability 

models included majority habitat as a significant variable. The top-ranked model at Level 

4 data resolution was an additive model of distance to a group plus movement (Appendix 

B).  

Abundance Estimates. — At the Level 1 data resolution, the probability of 

detecting a GPS-collared bison was 91% in 2011 and 88% in 2012. The corresponding 

estimated population size was 410 (± 79) bison in 2011 and 571 (± 124) bison in 2012 

(Table 5.4). The abundance estimates derived from the sightability models and the 

Horvitz-Thompson estimator for data resolutions 2 – 4 varied by 18 bison when double-

counts were included and 39 bison when double-counts were not included in 2011 (Table 

5.4). We found similar variation in the estimates in 2012 with a difference of 15 bison 



127 
 

 

among Levels 2 – 4 data resolutions when double-counts where included, and a 

difference of 33 bison without double-counts included.  

 

Discussion  

One of the objectives for this research was to determine the probability of 

detection for the current UDWR bison survey in the Henry Mountains and develop an 

approach for attaining more accurate estimates of population abundance while providing 

statistical measures of uncertainty. With only 2 years of data, we feel that our results are 

preliminary but they suggest that the current UDWR survey technique for the Henry 

Mountain herd has a high probability of detection with few missed bison. 

Aerial sightability surveys of ungulates are targeted at addressing imperfect 

detection but few have formally identified double-counted marked individuals. While 

conducting bison composition counts, Wolfe and Kimball (1989) noted when potential 

double-counts occurred but never indicated if that information was integrated into their 

detection probability. Van Vuren and Bray (1986) required  4-6 days to completely 

census the Henry Mountain bison herd because they would end a count and initiate a new 

one if they suspected duplicate counts of individuals had occurred. Double counts of elk 

were removed from the survey count in Montana when multiple ground surveyors 

detected the same group (Unsworth et al. 1990). Although the assumption is that double-

counting individuals occurs infrequently (Walsh et al. 2011), even small numbers of 

duplicate counts could greatly influence a population density estimate (Steinhorst and 

Samuel 1989, Unsworth et al. 1990, McClintock et al. 2010). Levels 2 – 4 data 

resolutions allowed us to examine the influence of small differences in double-counted 
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and missed bison on population abundance estimates. As additional data is recorded on 

double-counted individuals, we will be able to explicitly incorporate the double-counting 

error process into abundance estimation models, and like sightability, model the error in 

relation to temporal and spatial covariates such as the time between double-counts and 

the distance between double-counted animals.  

The mean probability of detection (90 ± 2%) for the Level 1 data resolution across 

both years of the study was comparable to detection probabilities of other ungulates in 

open habitats (86% for bighorn sheep [Ovis canadensis)] Brodie et al. 1995; 83% for deer 

[Odocoileus spp.] Habib et al. 2012), and identical to the probability previously assumed 

by UDWR (90%). Reported detection probabilities of bison are high regardless of habitat 

or season. Individual bison in Yellowstone National Park (YNP) had a 92% detection 

probability in winter and a 97% detection probability in summer (Hess 2002). The 

probability of detecting bison using aerial surveys of the Antelope Island arid grasslands 

(Great Salt Lake, Utah) was also high (94%, Wolf and Kimball 1989).  

Group size has been shown to influence sightability in other species (Samuel et al. 

1987, Unsworth et al. 1990, Jenkins 2012, Ransom 2012), and Hess (2002) found that 

bison in large groups (≥27) had higher detection probabilities (100%) than solitary bison 

(89%). However, we did not find a statistically significant relationship between group 

size and sightability during our two-year study. Bison generally congregate in herds but it 

is not uncommon to observe small groups or even solitary individuals. Our mean 

observed group size (38 ± 35) was less than reported for bison in meadow areas (46 ± 36, 

SD; (Fortin et al. 2009), but the range of group sizes we observed (1 to 108) was similar 
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to that reported in central Canada (3 to 150, Fortin et al. 2009). If most of the bison are 

grouped into a few large herds, errors of over-estimation due to large group size could 

increase bias in population abundance estimates (Walsh et al. 2009). Conversely, small 

groups have reduced detection probabilities (Rice et al. 2009, Ransom 2012), which can 

result in a higher proportion of small groups missed and increase errors in abundance 

estimates if not accounted for (Hess 2002). Over the 2 years of study, we observed seven 

groups greater than the mean group size and seven groups composed of less than 10 

individuals, suggesting the bison in the Henry Mountains congregate equally in large and 

small groups that may have balanced out any influence of group size on sightability. 

Alternatively, we simply lack the statistical power to detect an existing relationship 

between group size and sightability although the estimated relationships were, as 

expected, positive. 

While the visibility class was not a statistically significant covariate in the 

models, in both survey years the missed groups were determined to be in dense juniper 

woodlands (low visibility) and shrublands (moderate visibility). The combination of 

small group size in moderate to dense vegetation cover may have decreased sightability, 

thereby causing bison to be missed even when they were closer to the helicopter. The 

interaction between small group size (solitary individuals) and dense cover was 

demonstrated in moose (Alces alces) in Minnesota where detection probabilities were 

lower than other ungulates (0.48 ± 0.08, SD, range 0.37 to 0.56; Guidice et al. 2012). As 

additional data is recorded on groups in the low visibility class, we will be able to 
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evaluate if the interaction of group size and the amount of vegetation influences 

sightability and thus population abundance estimates. 

According to distance sampling theory, detection should decrease as distance 

between observers and groups increases (Buckland et al. 1993). In some aerial surveys, 

however, increased distances also allows more time for observers to detect animals in the 

field of view which can increase detection probabilities (Williams et al. 2002). In our 

study, missed individuals and groups were, on average, closer to the helicopter than 

observed groups and sightiability increased with distance. We believe that our measure of 

distance between the helicopter and a group might be effectively integrating information 

about ‘group size’ and ‘habitat visibility’ in a single parameter. Large groups in open 

habitats (i.e. grasslands and shrublands) were first detected at longer distances than small 

groups in closed habitats (i.e. dense woodlands). With addition surveys and larger sample 

sizes we expect to separate the effects of distance and visibility on sightability and further 

investigate issues of multicolinearity among distance from the helicopter to a bison 

group, group size, roughness index, or visibility class. 

In addition, most missed groups of bison were small (≤ 10) and were in areas with 

high roughness indices. Terrain characteristics influenced predicted detection 

probabilities such that GPS-collared bison in areas with high roughness indices (i.e., 

steep or variable slopes) had detection probabilities between 30-70% while in areas with 

few topographical differences (i.e., open grassland or the tops of mesas) detection 

probabilities were generally 100%. Terrain characteristics similarly influenced bighorn 

sheep detection probabilities which were reduced on steep slopes and talus areas (65% 



131 
 

 

probability of detection) compared to flat areas (86%, Brodie et al. 1995). Additionally, 

rock outcrops, which would be represented by high roughness indices in our study, could 

directly restrict observer’s view of bison during surveys. Our roughness index could be 

loosely compared to the “terrain obstruction” variable that reduced sightability of 

mountain goats (Oreamnos americanus; Rice et al. 2009) in Washington. Distinguishing 

animals from their background is essential to detecting animals during aerial surveys 

(Trivedi et al. 1982, Hess 2002, Laliberte and Ripple 2003) but bison on steep slopes 

were not as distinct from their background as on flat surfaces, thus reducing the detection 

probability in areas with high roughness indices. 

The Horvitz-Thompson population abundance estimates derived from individual- 

and group-based sightability models were consistently higher for data resolutions 3-4 

when double-counted bison were considered than when double-counted animals were 

removed from the survey count C (Table 5.4). Although the numbers of double-counted 

animals in a survey may be small relative to the number of counted individuals, 

incorporating the information will be essential for obtaining more precise abundance 

estimates. Additional surveys with potentially more locations in low visibility classes and 

rugged terrain could result in more precise and accurate sightability estimates, which 

would reduce the high variability in population abundance estimates derived from the 

current sightability models based on different resolutions of the data.   

 

Management Implications 

Programmable GPS collars can potentially increase the accuracy and precision of 

population abundance estimates by incorporating knowledge of the proportion of double-
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counted and missed animals across heterogeneous landscapes and individual behavior 

characteristics during aerial surveys. The locations from GPS-collared animals can be 

evaluated to reveal subtle differences, such as considering double-counts across an entire 

survey or within strata, in successfully determining the number of detected, double-

counted, and missed animals. Modeling these subtleties can then assist in determining the 

sightability for each observation type and predict which locations across the landscape, in 

conjunction with group size or distance to a group, may have higher probabilities for 

double-counted and missed animals of the target species. Although we did not 

incorporate observer covariates (e.g., years of surveyor experience, etc.), in 2012 the 

primary observer suspected two groups of bison to be double-counted, but no groups 

were suspected of being double-counted in 2011. By integrating qualitative information 

on group detections from the observer, as well as spatial and temporal information 

between each group, abundance estimators could incorporate both sightability and 

double-counting processes; thereby increasing the accuracy and precision of population 

abundance estimates. Additional surveys are needed to increase confidence in the 

proportion of missed and double-counted bison and thus generate a more robust 

population abundance estimate for bison in the Henry Mountains of south-central Utah in 

order to guide harvest and translocation management.  
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Table 5.1. Habitat classification scheme error matrix for the Henry Mountains study area 

derived from the National Agricultural Imagery Program (NAIP) imagery. 

 

Habitat  

User’s Accuracy and 

Commission error (%) 

Producer’s Accuracy 

and Omission error (%) 

Alpine   100,   0 40, 60 

Desert/grassland/barren      4, 59 77, 23 

Low density juniper     22, 78 17, 83 

Moderate density juniper     35, 65 25, 75 

Shrubland    30, 70 34, 66 

Woodlands    96,   4 81, 19 
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Table 5.2. The top ranking generalized linear models (GLMs) for sightability with a 

ΔBIC ≤ 2 for individual GPS-collared bison in the Henry Mountains as a function of a) 

physiographic variables (aspect, majority habitat, and roughness index), b) survey 

variables (distance between helicopter and a group (Distance), group size, movement at 

initial sighting (Y or N), and visibility class), and c) combined models for three levels of 

data resolution.  

Resolution Model Type Model K ΔBIC 

Level 2 Physiographic Roughness Index 2 0.0 

 Survey Group Size 2 0.0 

 Combined Roughness Index 2 0.0 

Level 3 Physiographic Roughness Index  2 0.0 

 Survey Distance +  Group Size 3 0.0 

  Distance 2 0.2 

  Distance +  Visibility Class 3 1.8 

 Combined Distance +  Group Size 3 0.0 

  Distance 2 0.2 

  Distance +  Roughness Index 3 0.8 

Level 4 Physiographic Roughness Index  2 0.0 

 Survey Distance +  Movement 3 0.0 

 Combined Distance *  Roughness Index  4 0.0 

  Distance +  Roughness Index 3 0.8 

  Distance +  Movement 3 1.6 
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Table 5.3. The top ranking generalized linear models (GLMs) for sightability with a 

ΔBIC of ≤ 2 for groups of bison in the Henry Mountains as the sample unit (i.e., the 

groups containing 1 or more individuals with a functioning GPS collar). Sightability was 

modeled as a function of a) physiographic variables (aspect, majority habitat, and 

roughness index), b) survey variables (distance between a helicopter and a group 

(Distance), group size, movement at initial sighting (Y or N), and visibility class), and c) 

combinations of physiographic and survey variables for three levels of data resolution.  

Resolution Model Type Model K ΔBIC 

Level 2 Physiographic Null 1 0.0 

  Roughness Index 2 0.7 

 Survey Null  1 0.0 

  Group Size  2 1.5 

 Combined Null 1 0.0 

  Roughness Index 2 0.7 

  Group Size  2 1.5 

Level 3 Physiographic Null 1 0.0 

  Roughness Index 2 0.5 

 Survey Distance  2 0.0 

 Combined Distance 2 0.0 

Level 4 Physiographic Roughness Index 2 0.0 

  Null 1 0.4 

 Survey Movement + Distance  3 0.0 

 Combined Movement + Distance 3 0.0 

  Movement + Distance + Roughness Index 4 0.4 
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Table 5.4. Horvitz-Thompson (HT) population abundance estimates of bison based on 

individual sightability models in the Henry Mountains for four levels of data resolution 

(see Table 5.3) in 2011 and 2012 with double-counts considered and without double-

counts considered (lower and upper  95% confidence limits provided). Level 1 estimates 

in 2011 are based on the number of white-belted collars counted relative to the number of 

white-belted collared bison in the study area and in 2012 are based on the number of 

double-collared bison counted relative to the number of double-collared bison in the 

study area, not on a sightability model as for Levels 2-4. 

 

 

Year 

 

Bison survey 

count 

 

Data 

Resolution 

HT density estimate 

with  double-counts 

included 

HT density estimate 

without  double-

counts included 

2011 372 Level 1 410 (371, 449) 385 (348, 422) 

  Level 2 377 (371, 378) 373 (371, 379) 

  Level 3 395 (392, 400)       391 (392, 400) 

  Level 4 381 (380, 387) 352 (351, 352) 

2012 505 Level 1 571 (509, 633) 548 (488, 607) 

  Level 2 530 (514, 553) 529 (515, 553) 

  Level 3 515 (511, 520) 512 (510, 521) 

  Level 4 526 (519, 532) 496 (492, 505) 
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Figure 5.1. The Henry Mountain helicopter survey strata designations for 2011 and 2012. 

The square in the center of the image represents the helicopter landing zone and refueling 

area. 
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Figure 5.2. Temporal and spatial intersection of a helicopter flight path (solid line) with 

bison 30401 travel path (stippled line). The circular path of the helicopter indicates the 

observation crew was counting bison at this location. 
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Figure 5.3. Temporal and spatial intersection of bison 30401 travel path (heavy stippled 

line) and a helicopter flight path (solid line) indicating a miss (non-detection) at 8:05. The 

light stippled line measured the distance between the interpolated bison location at 8:05 

and the helicopter flight line at a 90˚ angle. 
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Figure 5.4. Linear regression (R
2
 = 0.70, P < 0.05) of group size against number of 

observed GPS collared bison with consideration of visibility class of the utilized habitat 

(low visibility: dense tree cover; moderate visibility: a mixture of trees, shrubs, and 

grasses; and high visibility: open grasslands and low-density shrub-lands).  
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Appendix A. Statistics for generalized linear models (GLMs) for sightability with a ΔBIC ≤ 2 for individual GPS-collared 

bison in the Henry Mountains as a function of a) physiographic variables (aspect, majority habitat, and roughness index), b) 

survey variables (distance between helicopter and a group (Distance), group size, movement at initial sighting (Y or N), and 

visibility class), and c) combined models for three levels of data resolution.  

Resolution Model Type Model ΔBIC K Intercept SE P Variable Beta SE P 

Level 2 Physiographic Roughness Index 0.0 2 6.26 2.09 0.00 Roughness Index -10.75 4.86 0.03 

 

Survey Group Size 0.0 2 0.14 1.09 0.90 Group Size 0.07 0.04 0.06 

 

Combined Roughness Index 0.0 2 6.26 2.09 0.00 Roughness Index -10.75 4.86 0.03 

Level 3 Physiographic Roughness Index 0.0 2 5.28 1.46 0.00 Roughness Index -9.56 3.68 0.01 

 

Survey Distance + Group Size  0.0 3 -6.98 6.06 0.25 Distance 0.02 0.01 0.16 

        

Group Size 0.16 0.17 0.35 

  

Distance 0.2 2 -2.80 1.62 0.08 Distance 0.01 0.01 0.01 

  

Distance + Visibility Class 1.8 3 -5.34 2.70 0.05 Distance 0.02 0.01 0.02 

        

Visibility Class 2.32 1.58 0.14 

 

Combined Distance + Group Size  0.0 3 -6.98 6.06 0.25 Distance 0.02 0.01 0.16 

        

Group Size 0.16 0.17 0.35 

  

Distance 0.2 2 -2.80 1.62 0.08 Distance 0.01 0.01 0.01 

  

Distance + Roughness Index 0.8 3 -0.16 2.23 0.94 Distance 0.01 0.01 0.02 

        

Roughness Index -8.09 4.62 0.08 

Level 4 Physiographic Roughness Index 0.0 2 6.56 1.75 0.00 Roughness Index -14.82 4.11 0.00 

 

Survey Distance + Movement 0.0 3 -11.79 3.70 0.00 Distance 0.03 0.01 0.00 

        

Movement 4.90 2.12 0.02 

 

Combined Distance  * Roughness Index 0.0 4 7.07 2.52 0.01 Distance 0.00 0.00 0.16 

        

Roughness Index -40.59 14.42 0.00 

        

Distance * Roughness Index 0.08 0.03 0.01 

  

Distance + Roughness Index 0.8 3 -0.89 2.25 0.69 Distance 0.02 0.01 0.00 

        

Roughness Index -12.53 4.96 0.01 

  

Distance + Movement 1.6 3 -11.79 3.70 0.00 Distance 0.03 0.01 
0.00 

                Movement 4.90 2.12 0.02 



 
 

 

Appendix B. Statistics for generalized linear models (GLMs) for sightability with a ΔBIC ≤ 2 for groups containing at least 

one GPS-collared bison in the Henry Mountains as a function of a) physiographic variables (aspect, majority habitat, and 

roughness index), b) survey variables (distance between helicopter and a group (Distance), group size, movement at initial 

sighting (Y or N), and visibility class), and c) combined models for three levels of data resolution.  

Resolution Model Type Model ΔBIC K Intercept SE P Variable Beta SE P 

Level 2 Physiographic Null 0.0 1 2.08 0.75 0.01     

  Roughness Index 0.7 2 4.37 2.24 0.05 Roughness Index -6.60 5.05 0.19 

 

Survey Null 0.0 1 2.08 0.75 0.01         

  

Group Size 1.5 2 0.98 1.13 0.39 Group Size 0.03 0.04 0.35 

 

Combined Null 0.0 1 2.08 0.75 0.01         

  

Roughness Index 0.7 2 4.37 2.24 0.05 Roughness Index -6.60 5.05 0.19 

  

Group Size 1.5 2 0.98 1.13 0.39 Group Size 0.03 0.04 0.35 

Level 3 Physiographic Null 0.0 1 1.50 0.55 0.01         

  

Roughness Index 0.5 2 3.28 1.49 0.03 Roughness Index -5.49 3.73 0.14 

 

Survey Distance 0.0 2 -3.79 2.60 0.15 Distance 0.01 0.01 0.06 

 

Combined Distance 0.0 2 -3.79 2.60 0.15 Distance 0.01 0.01 0.06 

Level 4 Physiographic Roughness Index 0.0 2 3.45 1.53 0.02 Roughness Index -6.26 3.76 0.10 

  

Null 0.4 1 1.34 0.50 0.01 

    

 

Survey Movement + Distance 0.0 3 -7.87 4.52 0.08 Movement 3.75 1.96 0.06 

 

              Distance 0.02 0.01 0.09 

 

Combined Movement +Distance 0.0 3 -7.87 4.52 0.08 Movement 3.75 1.96 0.06 

        
Distance 0.02 0.01 0.09 

  

Movement + Distance +Roughness 

Index 0.4 4 -16.10 19.31 0.40 Distance 0.06 0.08 0.41 

        

Movement 9.84 11.40 0.39 

                Roughness Index 

-

26.70 34.58 0.44 
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9
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CHAPTER 6 

SUMMARY 

 

This dissertation examined multiple methods of processing pixel based, remotely sensed 

imagery to identify and count large mammals and determine the corresponding 

probability of detection. Chapters 2-4 evaluated methodological techniques to automate 

the identification and enumeration of animals in remotely sensed imagery. The fifth 

chapter examined the probability of detecting bison in the Henry Mountains of south-

central Utah while considering known occurrences of double-counted and missed 

animals. 

 Chapter 2 determined that there were empirical differences in spectral values 

between cattle (Bos Taurus), elk (Cervus elephus), and horses (Equus caballus). 

Although signature patterns from in-situ spectral measurement were similar, cattle, elk, 

and horses are uniquely identifiable in the visible and NIR regions of the electromagnetic 

spectrum. An important issue in discerning animals in remotely sensed imagery is 

distinguishing between the spectral signatures of animals and that of the surrounding 

vegetation. The spectral patterns of cattle, elk, and horses can be separated from 

vegetation most effectively in the “red shift” region of the electromagnetic spectrum that 

is used specifically for estimating vegetation biomass (Mutanga and Skidmore, 2007). 

Reflectance values of animals in the three spectral bands we studied showed that animals 

are generally much darker (lower reflectance values) than the surrounding environment. 

This distinct reflectance allowed us to separate individual animals from the surrounding 

environment with the exception of other features with similar spectral responses. 
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Therefore, errors of omission tended to be low (few animals missed), but errors of 

commission (classifying a feature as animals when it was not) were very large. 

Chapter 3 explored multiple techniques to identify animals in remotely sensed 

imagery. Manual counting of animals in aerial photographs has been commonly used as a 

wildlife census technique (Erwin, 1982; Fretwell et al., 2012; Gilmer et al., 1988; Harris 

and Lloyd, 1977; Hiby et al., 1988; Koski et al., 2010; Lubow and Ransom, 2009; 

Russell et al., 1994). We tested this technique utilizing three categories of photo-

interpreters. There were few errors of under-counting (not counting animals when they 

were known to be present) or over-counting (features incorrectly identified as animals) 

and all three groups of interpreters were able to discriminate between non-animal and 

animal features. Manual interpreters were able to integrate qualitative information 

derived from spectral and shape characteristics in a comparative process to distinguish 

non-animal from animal features (Baraldi and Boschetti, 2012; Russ, 1999). In an attempt 

to emulate the human ability to integrate multiple dimensions of contextual information, 

we explored techniques that integrated spatial and spectral information to isolate animal 

features in remotely sensed imagery. 

Employing conventional remote sensing techniques, an unsupervised ISODATA 

classified image (Jensen, 2005) subtracted from a simulated background image was used 

to highlight differences in areas containing animals compared to differences in areas 

without animals. Although the mean probability of detection was high (82% ± SD, 10%) 

the probability of under-counting animals was relatively low (18% ± 18%) and the 

probability of over-counting was high (69% ± 27%). If animals were present in an image, 
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the ISODATA classification image, subtracted from a background image, correctly 

identified the animals but greatly over-estimated numbers. 

Additional information was needed to reduce over-counting errors while 

maintaining low under-counting errors. A multi-dimensional technique attempted to 

reduce over-counting errors by integrating texture images, principal components analysis, 

heuristic thresholding, and image subtraction. The first principal component provided the 

highest amount of spectral information (i.e., the most variation) and was the basis for a 

multi-image, multi-step (MIMS) technique. Contrary to the ISODATA–background 

image subtraction technique, the MIMS errors of under-counting were high (50% ± 26%) 

but like the ISODATA technique, errors of over-counting also were high (72% ± 26%).  

Chapter 4 employed same-day image differencing to identify animals in remotely 

sensed imagery. This technique assumed that images collected a few hours apart would 

capture animal movement which could be used to separate animals from their non-

moving background through image differencing. This technique resulted in an 82% 

probability of detecting an animal. As with the ISODATA and background image 

subtraction technique, under-counting errors were low (18%) and over-counting errors 

were moderate (53%). Although thresholding the differenced image eliminated some 

non-animal features, over-counting animals was a result of slight misregistration errors. 

Image differencing at high spatial resolution requires precise image registration with 

minimal misalignments that were interpreted as animal features.  

Although image differencing can be used as a new method to estimate population 

abundances of wildlife species, certain precautions should be addressed prior to applying 
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this technique for estimating animal population sizes. First, the method over-estimated 

population sizes. Second, heuristically identifying spectral thresholds may not be without 

bias. Third, image differencing requires precise image registration to avoid spurious areas 

of change that can result in large numbers of incorrectly mapped polygons. Fourth, 

enough time must pass for animal movement to occur between image acquisitions. Fifth, 

the non-animal portions of the image (i.e., the background) should be as homogenous as 

possible to enhance differentiation between animals and their background.  

The advantages of airborne or satellite imagery to count animals include reduced 

survey time, a permanent record of the survey, and potentially less expensive than 

conventional wildlife surveys. Conventional aerial wildlife surveys frequently require 

multiple days to complete thus allowing animals to move throughout the study area and 

increase the probability of double-counting or missing individuals. While it would require 

a significant number of days to acquire remotely sensed imagery of large areas, such as 

the Mongolian steppe or the western desert of Utah, conventional wildlife aerial surveys 

are prohibitively expensive due to aircraft cost and personnel time. The reduction in time 

required to acquire remotely sensed imagery of a large study area could facilitate 

counting of animals in areas previously too large or too isolated to survey. Automated 

image analysis has an additional advantage of reduced subjectivity within a technique and 

across analysts. The permanent, unchanging record of animal locations for an instant in 

time i.e. ‘a survey’, allows for repeated assessments using the same or different 

techniques. Although automated analysis techniques are desirable and feasible in some 

instances (Davies et al., 2010), it may come at the expense of accuracy (Baraldi and 
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Boschetti, 2012) or may require various amounts of human input and guidance (Evans et 

al., 2012; Skelsey et al., 2004).  

Semi-automated counts of wildlife and the subsequent estimates of population 

size using remotely sensed imagery could revolutionize how ungulate counts are 

conducted and be a beneficial tool in management decisions.  This method not only has 

the potential to improve accuracy and precision of counts and thus estimates of 

population size, it could aid in tracking grazing patterns of wild and domestic animals 

across large natural systems. 

Chapter 5 extended the analysis of remotely sensed imagery to wildlife 

enumeration and examined the probability of detection for GPS-collared bison with 

sightability models that included variables derived from remotely sensed imagery. The 

Utah Division of Wildlife Resources conducts annual bison surveys to estimate bison 

abundance in the Henry Mountains of south-central Utah. Incorporating physiographic 

features such as surface roughness into sightability models has the potential to improve 

detection probabilities of animals and thus generate more robust population abundance 

estimates. Variables that were examined included group size, vegetation cover and type, 

and terrain characteristics (Giudice et al., 2012; Ransom, 2012; Rice et al., 2009; Samuel 

and Pollock, 1981; Samuel et al., 1987). Group size and visibility were assessed during 

the annual survey while vegetation type was determined from a supervised classification 

of remotely sensed imagery and terrain characteristics derived from a digital elevation 

model. Although counts of missed animals are possible to detect (Duchamp et al., 2006; 

Jackmann, 2002; Potvin et al., 2004; Samuel et al., 1987; White et al., 1989), very little 
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information is available on double-counting animals during wildlife censuses. Detected, 

missed, and double-counted bison were identified by intersecting helicopter paths with 

GPS-collared bison travel paths during the surveys. This is the first instance of 

incorporating confirmed double-counted and missed bison errors into the probability of 

detection and subsequent sightability models. The 90% average probability of detecting 

GPS-collared bison between 2011 and 2012 was comparable to other reported detection 

probabilities of bison (Wolfe and Kimball, 1989; Hess, 2002). When double-counted and 

missed bison were included, the probability of detection ranged from 88% to 109% 

depending on how the double–counted and missed bison were tallied. Sightability models 

that best fit the data included two survey variables (group size and distance between the 

helicopter and a detected bison group) and one physiographic variable (roughness). 

Sightability decreased for bison in smaller groups, in dense vegetative cover, and in areas 

with high topographical variability (i.e., a high roughness index). Missed groups were 

closer to the helicopter, in smaller groups and with low to moderately visibility, and in 

areas with a higher roughness index than detected groups. 

As additional data is acquired from future surveys, sightability models will be 

developed specifically for double-counted bison that incorporate current physiographic 

and survey variables in addition to temporal and spatial covariates such as time and 

distance between the first and second counts. 
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