
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2013

Improvement in Computational Fluid Dynamics Through Boundary Improvement in Computational Fluid Dynamics Through Boundary

Verification and Preconditioning Verification and Preconditioning

David Folkner

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Folkner, David, "Improvement in Computational Fluid Dynamics Through Boundary Verification and
Preconditioning" (2013). All Graduate Theses and Dissertations. 1738.
https://digitalcommons.usu.edu/etd/1738

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Theses and
Dissertations by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F1738&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=digitalcommons.usu.edu%2Fetd%2F1738&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/1738?utm_source=digitalcommons.usu.edu%2Fetd%2F1738&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

IMPROVEMENT IN COMPUTATIONAL FLUID DYNAMICS THROUGH

BOUNDARY VERIFICATION AND PRECONDITIONING

by

David E. Folkner

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Mechanical Engineering

Approved:

Dr. Aaron Katz Dr. Robert E. Spall
Major Professor Committee Member

Dr. Heng Ban Dr. Mark R. McLellan
Committee Member Vice President for Research and

Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2013

ii

Copyright c© David E. Folkner 2013

All Rights Reserved

iii

Abstract

Improvement in Computational Fluid Dynamics Through Boundary Verification and

Preconditioning

by

David E. Folkner, Master of Science

Utah State University, 2013

Major Professor: Dr. Aaron Katz
Department: Mechanical and Aerospace Engineering

This thesis provides improvements to computational fluid dynamics accuracy and ef-

ficiency through two main methods: a new boundary condition verification procedure and

preconditioning techniques.

First, a new verification approach that addresses boundary conditions was developed.

In order to apply the verification approach to a large range of arbitrary boundary condi-

tions, it was necessary to develop unifying mathematical formulation. A framework was

developed that allows for the application of Dirichlet, Neumann, and extrapolation bound-

ary condition, or in some cases the equations of motion directly. Verification of boundary

condition techniques was performed using exact solutions from canonical fluid dynamic test

cases.

Second, to reduce computation time and improve accuracy, preconditioning algorithms

were applied via artificial dissipation schemes. A new convective upwind and split pressure

(CUSP) scheme was devised and was shown to be more effective than traditional precon-

ditioning schemes in certain scenarios. The new scheme was compared with traditional

schemes for unsteady flows for which both convective and acoustic effects dominated.

iv

Both boundary conditions and preconditioning algorithms were implemented in the

context of a “strand grid” solver. While not the focus of this thesis, strand grids provide

automatic viscous quality meshing and are suitable for moving mesh overset problems.

(105 pages)

v

Public Abstract

Improvement in Computational Fluid Dynamics Through Boundary Verification and

Preconditioning

This thesis focuses on improvements to numerical simulation of fluid dynamic prob-
lems. A study of computation fluid dynamics is done to improve simulation accuracy and
efficiency. Accurate and fast results are the desire of simulation techniques. Two main
improvements to current CFD methods are implemented and tested: a new boundary con-
dition verification procedure and a new preconditioning technique.

First, mathematical code verification methods are extended to also include boundary
conditions that can often drive fluid dynamics problems. A new framework is created to
implement a variety of desirable boundaries. With this framework, a robust verification
procedure for these boundaries is presented. Testing of the new procedure is completed by
using exact analytic solutions.

Second, preconditioning of the numeric waves is used to increase computational effi-
ciency and solution accuracy. A new scheme is introduced and tested with old schemes and
is shown to have better accuracy characteristics for low speed unsteady flows.

Both boundary conditions and preconditioning algorithms were implemented in the
context of a “strand grid” solver. While not the focus of this thesis, strand grids provide
automatic viscous quality meshing and are suitable for moving mesh overset problems.

David E. Folkner, Master of Science

vi

Acknowledgments

Much of the research for this work was supported by the Army Research Office (ARO),

under the supervision of Dr. Frederick Ferguson. I would like to thank Dr. Ferguson for his

continuing support of this research. A portion of the material presented in this thesis is a

product of the CREATE-AV Element of the Computational Research and Engineering for

Acquisition Tools and Environments (CREATE) Program sponsored by the U.S. Depart-

ment of Defense HPC Modernization Program Office. Dr. Robert Meakin is the program

manager for CREATE-AV.

The research was largely supported by the aid of several selfless people who took the

time to instruct and advise the work. These people are Dr. Aaron Katz and Dr. Venke

Sankaran.

David Folkner

vii

Contents

Page

Abstract . iii

Public Abstract . v

Acknowledgments . vi

List of Tables . ix

List of Figures . x

Notation . xii

Acronyms . xvi

1 Introduction . 1
1.1 Challenges in CFD . 2

1.1.1 Automation . 2
1.1.2 Efficiency . 4
1.1.3 Accuracy . 5

1.2 Objectives . 7
1.3 Summary of previous work done in the literature 7

1.3.1 Strand Grids . 7
1.3.2 Verification . 8
1.3.3 Preconditioning . 9

1.4 Outline and scope of Thesis . 12

2 Strand Grid Discretization and Solution Methods 14
2.1 Basics of Strand Grids . 14
2.2 Cell-Centered Prismatic Spatial Discretization 16

2.2.1 Finite Volume Methods . 16
2.2.2 Reconstruction for Inviscid Terms 19
2.2.3 Boundary Conditions . 20

3 Verification Techniques . 23
3.1 Introduction . 23
3.2 Boundary Condition Implementation . 25

3.2.1 Node-Centered Boundaries . 27
3.2.2 Cell-Centered Boundaries . 35

3.3 Results . 38
3.3.1 Quasi-1D Euler Equations . 38
3.3.2 Manufactured Solution in Square Domain 41

viii

3.3.3 Ringleb Flow . 45
3.4 Conclusions . 51

4 Preconditioning . 53
4.1 Introduction . 53
4.2 Preconditioning Scheme . 55

4.2.1 Conversion to Primitive Variables 55
4.2.2 Preconditioning Terms . 57

4.3 Challenges with Dissipation Terms . 61
4.3.1 Roe . 62
4.3.2 CUSP Background . 63
4.3.3 Modified CUSP Scheme . 66

4.4 Results . 67
4.4.1 Verification and Validation . 68
4.4.2 Inviscid Propagating Vortex . 71
4.4.3 Oscillating Back Pressure . 75

4.5 Conclusions . 82

5 Conclusions . 83
5.1 Conclusions for Objective 1 - New Boundary Verification Technique 83
5.2 Conclusions for Objective 2 - New Generalized Boundary Implementation

Framework . 84
5.3 Conclusions for Objective 3 - New Preconditioning Scheme 84
5.4 Suggestions for Future Work . 85

References . 86

ix

List of Tables

Table Page

3.1 Notation for boundary condition methods tested. 27

3.2 MMS constants used for the quasi-1D Euler solution verification. 40

4.1 Description of how preconditioned effects convergence (O(1) is preferred)
using a Roe diffusion scheme [1]. 64

4.2 List of test scenarios for Fig .4.1 . 68

x

List of Figures

Figure Page

1.1 Sample rotorcraft meshes for various parts of a typical set up. 3

1.2 A sample 2D strand mesh around a NACA 0012 airfoil. 4

1.3 An example of order of accuracy plots with different slopes and starting points. 6

2.1 An example of strand grid creation in 3D [2]. 15

2.2 Sample strand meshes around a square cylinder to illustrate how smoothing
effects strands [2]. 16

2.3 Example of internal corner with smoothing and clipping [2]. 17

2.4 A sample 2D mesh with cells c1 and c2. k represents the face between the
cells. 18

2.5 A sample 1D cell centered boundary with extrapolated point and ghost node. 21

3.1 Location of boundary condition enforcement for node- and cell-centered schemes. 25

3.2 Converging-diverging nozzle used for the Quasi-1D Euler equations. 39

3.3 Grid refinement study for quasi-1D Euler equations using methods n-INF1,
n-INF2, n-OUT1, and n-OUT2 with exact and manufactured solutions. . . 41

3.4 Mesh and manufactured solution used for boundary condition verification. . 42

3.5 Grid refinement study for a variety of boundary formulations using MMS. . 43

3.6 Example of the violation of characteristic directions for MMS solutions. . . 44

3.7 Configuration for Ringleb flow test case. 46

3.8 Grid refinement study for various boundary formulations using Ringleb flow. 47

3.9 Grid refinement study for inviscid wall boundary formulations using Ringleb
flow using entropy as a measure of error. 48

3.10 Mach contours for two node-centered inviscid wall treatments of a NACA
0012 inviscid airfoil at M = 0.5, α = 3.0o. 49

xi

3.11 Constant entropy inviscid wall condition, showing second order convergence,
both in density and entropy. 50

4.1 Verification plots using steady state MMS for primitive variables p, u, v, and
T with a Mach number of 0.05. Symbols are defined by Table 4.2 69

4.2 Pressure contours of a 2D NACA 0012 airfoil with free stream Mach number
of 0.05 with no angle of attack. 70

4.3 Initial contour of vorticity on a 64 by 64 strand mesh. 71

4.4 Plots of propagating vortex with Roe diffusion on a square strand domain
with a CFLu = 1, Str = 20.4, Mach = 0.005, and 20 points across the vortex. 74

4.5 Plots of propagating vortex with Roe diffusion on a square strand domain
with a CFLc = 1, Str = 4076, Mach = 0.005, and 20 points across the vortex. 74

4.6 Plots of propagating vortex with CUSP diffusion on a square strand domain
with a CFLu = 1, Str = 20.4, Mach = 0.005, and 20 points across the vortex. 75

4.7 Plots of propagating vortex with CUSP diffusion on a square strand domain
with a CFLc = 1, Str = 4076, Mach = 0.005, and 20 points across the vortex. 76

4.8 Plots of oscillating back pressure with Roe diffusion using a 2D strand mesh
of 128 by 4 with a CFLc = 100, Str = 81.5, Mach = 0.005, Ω = 10. 78

4.9 Plots of oscillating back pressure with CUSP diffusion using a 2D strand
mesh of 128 by 4 with a CFLc = 100, Str = 81.5, Mach = 0.005, Ω = 10. . 79

4.10 Plots of oscillating back pressure with Roe diffusion using a 2D strand mesh
of 128 by 4 with a CFLc = 1, Str = 8150, Mach = 0.005, Ω = 100. 80

4.11 Plots of oscillating back pressure with Roe diffusion using a 2D strand mesh
of 128 by 4 with a CFLc = 0.025, Str = 326000, Mach = 0.005, Ω = 4000. 81

4.12 Plots of oscillating back pressure with CUSP diffusion using a 2D strand mesh
of 128 by 4 with a CFLc = 0.025, Str = 326000, Mach = 0.005, Ω = 4000. 81

xii

Notation

General

ρ Density

u Particle velocity in X direction

v Particle velocity in Y direction

p Pressure

h Enthalpy

E Total or stagnation energy

h0 Total or stagnation enthalpy

T Temperature

s Entropy

t Physical Time

τ Pseudo Time

c Acoustic sound speed

A Face area

Ai Directed area (Ax,Ay)

ni Face normal vector (nx,ny)

V Volume

M Mach number

Q Conserved variable vector

Qv Primitive variable vector

F Inviscid flux vector (in X)

G Inviscid flux vector (in Y)

F v Viscous flux vector

xiii

Chapter 2

F Area wighted inviscid flux

F̂ Numeric inviscid flux

D Artificial dissipation

R Discretization residual

Rb Boundary discretization residual

s Limiter (0 to 1)

QL Left State

QR Right State

QE Extrapolated Boundary state

k Cell face

xiv

Chapter 3

un Normal velocity

ut Tangential velocity

B Boundary Equations

b Boundary specified values

N Lagrange specification matrix

Q̃ Some set of variables (entropy, primitive...)

S Manufactured source terms

Sb Manufactured boundary source terms

λ Lagrange multiplier

Ω Boundary equations or dimensionless frequency parameter

ΩD Dirichlet boundary equations

ΩN Neumann boundary equations

ΩE Extrapolation boundary equations

L Boundary selection matrix

R Rotation matrix

Mn Left Eigenvectors

M−1n Right Eigenvectors

Sp Quasi-1D Euler source terms

xv

Chapter 4

Γ Primitive variable Jacobian

Γp Primitive variable preconditioner

A Flux Jacobian

qa Area weighted velocity

ρp Derivative of variable with respect to pressure

ρ′p Substitute preconditioned value

Vp Preconditioned sound speed

V s
p Steady preconditioned sound speed

V u
p Unsteady preconditioned sound speed

Str Strouhal Number

X Left Eigenvectors

X−1 Right Eigenvectors

∆ Right - Left state or other parameter

α CUSP parameter

β CUSP parameter

Ma Area weighted Mach number

Me Effective Mach number

fp Pressure vector

CFL Dimensional time parameter

γ Modified CUSP term or Ideal gas constant

Ω Frequency control parameter

ω Vorticity or frequency

ε Magnitude of oscillations

Tw Time period

Lw Length period

xvi

Acronyms

AUSM Advection Upstream Splitting Method

CFD Computational Fluid Dynamics

CREATE Computational Research and Engineering Acquisition Tools and Environments

CUSP Convective Upwind and Split Pressure

DoD Department of Defense

LED Local Extremum Diminishing

LHS Left Hand Side

MMS Method of Manufactured Solutions

RHS Right Hand Side

1

Chapter 1

Introduction

As opposed to theoretical or experimental approaches, computational fluid dynamics

(CFD) seeks to numerically simulate and analyze fluid flow. CFD uses algorithms and it-

erative numerical methods to solve for flow behavior in a variety of applications. Research

in the other branches of fluid dynamics–theory and experimentation–provide further per-

spective for complex flows. All three perspectives provide tools for design and increased

understanding of flow physics.

CFD is the newest and fastest growing sub-discipline of fluid dynamics. Though CFD

is a relatively new field, it has revolutionized many areas of engineering. With the advent

of faster and cheaper computing power that is available to more engineers, CFD has grown

in its usefulness in the design process. Its ability to provide economic analysis has aided

its recent rise. For example, CFD is used extensively for aerodynamic analysis to predict

airloads for drag reduction and improved control. Biomedical engineers use CFD to model

fluid processes within the human body, leading to new devices and treatments. CFD is used

to analyze combustion flows in order to reduce expensive and difficult experimentation.

While CFD has already provided enormous impact in science and engineering, many

research issues remain to improve simulation capabilities for complex flows. The aim of

this thesis is to explore some of these issues - to improve computational efficiency, accuracy

of results, and automation of problem setup. Specifically, boundary condition formulation

and verification, as well as preconditioning techniques are examined at a fundamental level.

Algorithms are demonstrated using strand grids, which are designed to automate mesh gen-

eration and grid assembly for complex overset simulations. Strand grids are discussed in

detail in sections 1.1.1 and 2.1. The studies conducted here provide fundamental research

to support a fully three-dimensional strand grid solver used within the Department of De-

2

fense (DoD) Computational Research and Engineering Acquisition Tools and Environments

(CREATE) program. However, the methods are general, and can be extended to a variety

of other CFD applications.

The following sections outline a few current challenges in CFD and provide context for

the improvements made in this research.

1.1 Challenges in CFD

To motivate the research performed in this thesis, a discussion of three challenges in

CFD – automation, efficiency, and accuracy – is given below in the context of rotorcraft

simulation. High-fidelity CFD for rotorcraft is an emerging application that faces these

challenges and is a critical focus area of the DoD CREATE program. Obtaining detailed

flow fields of rotorcraft using CFD encounters many difficulties. First, the complex ge-

ometry of rotorcraft demands a high level of automation in grid generation and problem

configuration since manual setup, as is currently done, is very time consuming and expen-

sive. Second, widely varying length scales and complex vortex interactions intensify the

need for increased accuracy and efficiency. Third, the unsteady nature of rotorcraft flow

fields requires extremely efficient algorithms, especially for complex overset mesh systems

that move with time. These challenges are discussed below in greater detail in the context

of rotorcraft flows.

1.1.1 Automation

As computational power increases, a larger percentage of CFD solution time is being

spent by engineers configuring the problem. One of the major configuration tasks is mesh

generation. In CFD the mesh refers to the physical splitting of the domain into cells or

nodes. Discretized conservation laws derived from first principles are then applied to each

cell. To resolve the flow dynamics fully, the mesh must be able to capture the physical

geometry as well as the flow interactions at critical regions.

Sample meshes for rotorcraft are shown in Fig. 1.1. Traditionally, creating meshes of

high quality takes time and significant expertise. Fig. 1.1(a) shows a portion of an overset

3

(a) A sample of a Comanche rotorcraft body with
chimera mesh as provided by Meakin [3].

(b) Strand/Cartesian grid for TRAM rotor [4].

Fig. 1.1: Sample rotorcraft meshes for various parts of a typical set up.

mesh that was created using Chimera Grid Tools developed at NASA Ames Research Center

by William Chan et al. [3]. The process in which these overset meshes are created is robust,

but time intensive. Each block of the overset grid system must be manually input into the

global mesh description. Sufficient resolution and overlap between grid components must

be maintained. Experts using Chimera Grid Tools may spend several weeks generating

complex mesh systems for rotorcraft.

In light of this example, methods that simplify and speed up the mesh generation

process are a critical need in CFD. Along these lines, one goal of this thesis is to provide

fundamental research to support the development of a fully functional, three-dimensional

strand grid solver for complex, dynamic geometry. Unlike traditional approaches, strand

grids provide fully automated volume mesh generation. Fig. 1.1(b) shows an automatically

generated near-body strand mesh with an overset Cartesian off body mesh. Strand grids

are automatically generated projections of the surface mesh along normal directions of

the physical surface that extend outward a short distance. The strands have a uniform

structured 1D node distribution along the length of each strand. Strands are organized in

an unstructured manner parallel to the surface boundary. Fig. 1.2 shows a sample strand

grid around a 2D NACA 0012 airfoil. The strands protrude normal to the airfoil surface.

Each rectangle represents a prismatic cell created by the strand technique.

4

Fig. 1.2: A sample 2D strand mesh around a NACA 0012 airfoil.

Along with full automation of volume mesh generation, strand grids provide other

advantages. Strands have a benefit in computer storage. Traditional unstructured meshes

must store the locations and connectivity information for every node in the domain. For

problems with many nodes, such as a fully modeled rotorcraft, this storage can become a

bottleneck in the solution process. Due to strands having the same 1D node distribution,

the amount of storage is reduced dramatically. The benefits of smaller mesh storage can be

easily observed in parallel computing. Many parallel applications have large communication

overheads when sharing information from different mesh locations, whereas strand grids can

be stored so efficiently that each processor is capable of storing the entire domain. This

reduces the need for expensive inter-domain communication. A more thorough description

of strand grids is given in section 2.1.

1.1.2 Efficiency

Efficiency in CFD is used to describe the rate at which computations can be completed.

Despite the increasing availability of cheap computational resources, maintaining efficiency

5

is critically important for CFD analysis. Unsteady rotorcraft simulation requires that the

entire domain fully converge at each time step, otherwise errors accrue and grow. For simu-

lations that require a large number of time steps, it is essential to optimize the convergence

for each time step.

Rotorcraft have complex flow fields that include many different flow regions. It is

possible for a single rotorcraft simulation to have transonic regions, viscous boundary layers,

stagnation points, low Mach number flows, etc. Traditional time-marching CFD algorithms

are capable of efficiently capturing many of these different flow regions at mid range Mach

numbers, but struggles when Mach numbers are low. Low Mach numbers cause the numeric

error propagation to be stiff, drastically hindering the efficiency of the methods.

The issue of numeric stiffness can extend from a difference in velocity scales through

the domain. These velocity scales represent the physical motion of the fluid as well as the

acoustic propagation that travel at the sound speed. At low Mach numbers, these scales

can vary by large orders of magnitude. By sufficiently resolving the faster waves, the slower

waves propagate inefficiently through the domain. This effect causes the convergence to

suffer. Ensuring the varying wave speeds are of the same magnitude can be accomplished

through a method called preconditioning. Preconditioners introduce new terms into the

numerics that effect the wave speeds while not changing the actual dynamics of the flow

field.

Implementing preconditioners for steady state problems is a straightforward process.

Time accuracy is not needed and the adjustments made to the wave speeds have little

to no effect on the accuracy of the problem. Unsteady rotorcraft simulations, however,

require time accuracy in the solution, which can be a struggle for traditional precondition-

ing schemes. For these unsteady cases, a more robust preconditioning algorithm must be

implemented to increase efficiency for stiff problems whilst maintaining the time accuracy.

1.1.3 Accuracy

Although very tightly coupled with efficiency and automation, accuracy is a current

focus in CFD research. Increasing the accuracy of CFD methods can reduce the number of

6

Fig. 1.3: An example of order of accuracy plots with different slopes and starting points.

grid points required to fully resolve the problem, increasing efficiency of both computation

and setup. Increased accuracy gives the user greater insight to the behavior of the fluid

dynamics. Higher-order methods are currently being researched heavily in literature. They

are able to accomplish reduction in error, but it is possible to reduce the error without

changing the order of a scheme. Fig. 1.3 shows several sample order of accuracy plots.

Although line C is third-order accurate and line D is only first-order, line D clearly has less

error. The preconditioning scheme discussed in the previous section is capable of increasing

the accuracy in this manner for a standard second-order finite volume scheme.

In simple scenarios, it is often possible to measure the exact error with an analytic

solution. Rotorcraft simulations have enough complexity that measuring the model’s accu-

racy becomes challenging. Inaccurate CFD results give no benefit to the user and can often

mislead the user to draw incorrect conclusions. There is a need to ensure accuracy of CFD

simulations. One such method is mathematical verification of the algorithms. Verification

is done by imposing known functions as the solution. With a known solution, the error

can be measured and the order of accuracy determined. This is known as the Method of

7

Manufactured Solutions (MMS).

With all of the research that exists for improved accuracy and verification on the

interior domain of a problem, there is a lack of work on the boundaries. Boundaries are

often the critical regions in many CFD applications. Several examples include viscous flow

regions around a rotor blade, heat transfer problems near surfaces, and many mass flux

problems. It is imperative to implement a robust generalized method to verify the proper

implementation and mathematical correctness of arbitrary boundary conditions. This work

proposes a new method of boundary verification as well as a general framework to unify the

many boundary implementation methods that exist.

1.2 Objectives

To address the issues presented in the previous section, this section outlines the overall

objectives of this thesis.

1. Determine a robust and general method for boundary condition verification.

2. Devise a general method to unify boundary implementation for arbitrary formulations

with arbitrary spacial discretization methods.

3. Formulate a preconditioning scheme with improved accuracy for acoustic and convec-

tive unsteady problems.

1.3 Summary of previous work done in the literature

The challenges in CFD are numerous and much work has been done in preparation for

the objectives outlined above. Summarizing the work others have accomplished sheds light

on the research topics covered in this thesis. This section focuses on this previously done

work to give background to the improvement proposed here.

1.3.1 Strand Grids

When approaching meshing with strand grids, the problem is typically divided into

two main parts: near-body domain and off-body domain. Strands grid technology is used

8

to automatically generate the near-body mesh where Cartesian grids are used in the off-

body domain. The different grid technologies interact through an over-set Chimera-like

system [5, 6]. The near-body strands are useful for resolving boundary layers as well as

providing an automated mesh generation [7]. A more detailed summary of strand grid

technology details can be found in section 2.1.

Despite the advantages in automation and near-body resolution, the novelty of strand

grids requires in depth validation of their capabilities. Wissink et al. [8,9] have run a number

of validation cases including Reynolds averaged and detached eddy simulation turbulence

with a focus on robust grid refinement. Katz et al. [2] and Work et al. [4] have focused

on allowing the strands to capture more complex geometries such as sharp corners through

strand clipping and smoothing. Recently, Work proposed a new solver specifically designed

to better handle these more complex features of strand grids. This new solver is the base

on which the strand solvers for this thesis were developed. Further detail on the numerics

and discretization of this chapter can be found in Chapter 2.

1.3.2 Verification

In CFD research, many new numerics routines and algorithms are constantly being

implemented. In order to ensure their accuracy and test the code’s integrity, verification

is required. Roache [10], Roy [11], and Veluri [12] showed how MMS can be used to verify

the desired order of accuracy of the scheme with the actual order of accuracy the code pro-

duces. They demonstrated that verification using MMS is capable of identifying malformed

algorithms and general coding “bugs.”

Many researchers have extended MMS to verify complex problems. Diskin et al. [13–15]

have employed MMS extensively to compare and test different second order schemes as well

as study the effect irregular grids have on accuracy. Many others have developed MMS

methodologies for the interior solution only [16–21].

Though verification is necessary for the interior domain, many problems are dominated

by the effect of the boundary conditions. In these simulations it is equally important to

verify boundary implementation. Addressing this issue of boundary verification, Choudhary

9

et al. [22] recently proposed a boundary verification procedure using MMS. Their approach

requires carefully constructed manufactured solutions that already satisfy the boundary

conditions. Thus a new manufactured solution needs to be constructed for each boundary

condition and geometry.

Despite the need for high accuracy near boundaries (or perhaps because of it), numerous

boundary procedures have been proposed in literature. For example, many treatments have

been proposed for simple inviscid wall boundaries [23–28]. Before introducing a generalized

verification procedure for boundary conditions, it is first necessary to create a framework

in which these widely varying boundary procedures can be implemented. Allmaras [28]

demonstrated a method for combining the equations of motion with boundary equations

for finite-element Dirichlet boundaries. This thesis extends Allmaras’s work to create a

more robust boundary implementation framework that works with node- and cell-centered

finite volume methods. Chapter 3 outlines this new framework as well as a new generalized

boundary verification technique.

1.3.3 Preconditioning

Nonlinearities in the governing equations of fluid dynamics make all CFD methods

require iterative solvers. Time-marching CFD solvers rely on the unsteady time term in

the governing equations. For steady-state, or time-independent solutions these converge by

marching through a false time often referred to as “pseudo-time,” τ . Errors are reduced

through convective waves and dampening. When convergence is reached, these pseudo-time

terms go to zero and the remaining solution represents the steady-state solution [29]. This

can be seen in the simplified case of the inviscid 1D Euler equation presented in equations 1.1

- 1.3.

∂Q

∂τ
+
∂F

∂x
= 0 (1.1)

∂Q

∂τ
+A

∂Q

∂x
= 0 (1.2)

10

A =
∂F

∂Q
, λ =


u

u+ c

u− c

 (1.3)

Here, A represents the Jacobian of flux and time terms, λ is a vector of the Eigenvalues

of A, u is the particle velocity, and c represents the sound of speed or acoustic velocity.

The waves that convect the errors out of the domain travel with velocities equal to the

Eigenvalues found in λ. Since time-marching CFD algorithms rely on these convective

waves to remove transient errors out of the domain, the wave behavior is important. If

these different wave speeds vary greatly in magnitude, time-marching algorithms converge

slowly.

In low speed flows (or low Mach number flows), particle waves can travel orders of mag-

nitude slower than the acoustic sound waves. While properly capturing the acoustic wave,

the particle-based waves travel at a much slower pace, reducing the algorithm’s efficiency.

Preconditioners add artificial terms to the pseudo-time derivatives. The goal of precondi-

tioners is to change acoustic speeds in the problem to be scaled on the order of the particle

wave speed. Many studies on these steady state preconditioners have been done [29–31].

Another situation that can interfere with time-marching methods efficiency is if the flow

becomes incompressible. In this limit, the sound speed becomes infinite and it is impossible

for a time-marching algorithm to converge. Chorin [32] introduced the idea of ”artificial

compressibility“ to allow acoustic waves to travel as a function of pressure alone. This

allows time-marching methods to converge in the incompressible regime.

More recently, Weiss et al. [33] and Merkle et al. [34] present preconditioning schemes

that are able to increase efficiency in low Mach numbers as well as reduce to Chorin’s

artificial compressibility for truly incompressible flows. These preconditioning schemes are

used as the basis for much of the work in this thesis. Chapter 4 goes into further detail on

these schemes.

Unlike the steady state solutions described by Eq. 1.1 , unsteady solutions such as

rotorcraft simulation, require time accuracy to be maintained. To add real time accuracy

11

to time-marching algorithms a dual time stepping process is used. Equation 1.1 becomes

equation 1.4, where t represents the physical time.

∂Q

∂t
+
∂Q

∂τ
+
∂F

∂x
= 0 (1.4)

To maintain accuracy, only the pseudo-time terms can be preconditioned. The steady-

state preconditioners previously mentioned struggle to resolve pressure fields accurately and

have reduced efficiency as flow speed becomes low and physical time steps become small.

Sankaran [35] presented the introduction of the Strouhal number (Str), a dimensionless

quantity that measures frequency and is inversely proportional to time step, to create an

unsteady preconditioning scheme. Unsteady preconditioners have increased convergence

rates and improved accuracy in pressure fields in low Mach and high Str number limit.

All time-marching schemes, regardless of preconditioning methods used, rely on “arti-

ficial dissipation” terms in the fluxes for stability. Details of why these terms are required

can be found in section 2.2.1. Hosangadi et al. [1] demonstrated that performance of the

unsteady preconditioning scheme, as far as efficiency and accuracy are concerned, is largely

dependent on the artificial dissipation terms used.

The different artificial dissipation schemes are outlined in full detail in section 4.3.

Only the effects they have on preconditioning are presented here. Hosangadi showed that

through the implementation of Roe dissipation, a common dissipation scheme, unsteady

preconditioners suffer to correctly resolve velocity fields. Advection Upstream Splitting

Method (AUSM) has been combined with preconditioners to solve this issue.

An alternate to using the AUSM dissipation scheme is Convective Upwind and Split

Pressure (CUSP) originally proposed by Jameson [36]. Chen and Zha [37, 38] proposed a

modifications to CUSP to enable preconditioning. Though their results are promising, their

formulation departs from the traditional form of CUSP, resulting in a AUSM like scheme.

In this work, a preconditioned CUSP method is presented that maintains the traditional

form of CUSP. This allows researchers more familiar with CUSP dissipation to implement

preconditioning.

12

1.4 Outline and scope of Thesis

In this chapter, motivation and previous work have been presented to give background

for the research performed in this thesis. In this section, the scope and a general outline

for the rest of the thesis are stated.

In order to accomplish the objectives, the scope is limited to one- and two-dimensional

finite volume problems for unstructured and strand meshes. The equations are limited to

the inviscid Euler equations. The cases run are simplified and designed to highlight the

areas of CFD in question. Although these scenarios may seem simple, they have a direct

application in fully functional three-dimensional solvers.

In Chapter 2, more background is provided to support the remainder of the thesis.

First, a strand grids are explained in further detail. Secondly, finite-volume discretization

methods are explained and presented for strand grids. A focus is placed on face recon-

structions for second order accuracy. Third, boundaries are discussed in preparation for the

new techniques proposed by Chapter 3. Finally, the line-implicit Gauss-Seidel scheme is

discussed as well as the dual time stepping unsteady procedure. The background provided

here is an important base for understanding the rest of the work.

Chapter 3 focuses on objectives 1 and 2. This chapter outlines the methodologies used

to create a unified framework and how interior MMS methods are extended to be effective

for boundary conditions. Numerous different boundary conditions are tested and verified.

Exact solutions in the cases of quasi-1D and Ringleb flow are used to validate the verification

procedures. This is explored for both node- and cell- centered schemes. Traditional airfoils

are also tested and validated for derived quantity boundaries.

Next, Chapter 4 discusses the studies on dissipation schemes and preconditioning for

objective 3. An overview of the preconditioning schemes tested is given first. Then, a

discussion of the different artificial dissipation models is presented. A newly developed

preconditioned CUSP is introduced to improve accuracy for convective problems. The new

method is compared to the old. A propagating inviscid vortex is used to isolate convective

terms and a 1D oscillating back-pressure is used to highlight acoustic problems. The new

13

scheme is shown to be effective at properly capturing the flow dynamics of these cases in

an efficient way.

Finally, general conclusions are found in Chapter 5. A discussion of how the research

applies to and accomplishes the objectives is given. General results are discussed. Areas of

future work are presented.

14

Chapter 2

Strand Grid Discretization and Solution Methods

Although discretization methods are not the main focus or research topic in question,

they are fundamentally important to the numerical methods in this thesis. Despite the

current research in higher-order algorithms, this work focuses on second-order finite volume

for both node- and cell-centered schemes. The derivations in this section are applicable

to generalized unstructured meshes as well as strand grids. Both mesh types are used

extensively throughout this thesis.

This chapter presents the summarized strand grid techniques and how numerical meth-

ods are used to solve the governing equations for the physical domain, boundary conditions,

and time-dependent terms. Strand grids are first introduced with a basic formulation. Then,

a method for cell-centered spacial discretization using finite volume is summarized for the

inviscid Euler equations. A focus is placed on stability and maintaining second order accu-

racy. Boundaries are briefly explore in preparation for the boundary verification research

done in Chapter 3. Finally, line-implicit Gauss-Seidel schemes are explored.

2.1 Basics of Strand Grids

Strand grids are created from a surface geometry with n-sided polygon discretization.

Tessellated geometries can be formed from any n-sided polygon, including triangles and

quadrilaterals in 3D. A strand is created for each vertex of the discretized surface geometry.

A unit normal vector is approximated at each surface vertex by averaging the normals of

neighboring polygons. Each strand is placed so its origin, or root, coincides with the vertex

and initially points in the direction of the corresponding surface normal. Every strand in the

mesh share a length and user-defined 1D nodal distribution along the strand. Each strand

has a clipping index to “shorten” the strand if the need arises. This is to say that nodes

15

wall spacing

{

clipping index

pointing vector

surface mesh

1D node dist.

Fig. 2.1: An example of strand grid creation in 3D [2].

that lay beyond the clipping index are not valid physical nodes [2,7]. Fig. 2.1 demonstrates

this procedure on a simplified surface triangle.

Defining strand grids in this fashion allows for a structured cells to be produced over the

length of a strand. Cell-centered finite-volumes are created between neighboring strands.

Inter-strand connectivity does not depend on the surface mesh, but is capable of re-clustering

in an unstructured manner. The ability of strand grids to adapt to many different kinds of

surface tessellations is a key factor in its use.

Sharp corners, both internal and external, present challenges for strand grids. At

internal corners, strands tend to intersect and penetrate the surface geometry. Strands

typically fail to have sufficient resolution at external corners. Strand smoothing can help

to mitigate the issues presented by corners. Strands smoothing refers to a simple method

of adjusting the surface normals to properly cover all regions of the domain. Fig. 2.2(a)

shows a completely un-smoothed strand mesh around a square cylinder where Fig. 2.2(b)

illustrates this same mesh after being smoothed. Work et al. [4] shows that smoothing is

effective for resolving external corners.

Strand smoothing is typically insufficient for sharp internal corners. Even with smooth-

ing, strands often intersect creating a negative volume element. Strand clipping is used to

ensure that strand cells do not intersect or penetrate the surface geometry. An example of

16

(a) No Smoothing (b) Significant Smoothing

Fig. 2.2: Sample strand meshes around a square cylinder to illustrate how smoothing effects
strands [2].

a smooth and clipped internal corner is in Fig. 2.3.

Strands grids typically only resolve the near-body and transitional mesh domains,

where Cartesian meshes are used off the body. The current work focuses on fundamen-

tal numerics and only uses strands as a stand-alone meshing technique.

2.2 Cell-Centered Prismatic Spatial Discretization

This section focuses on the spacial discretization of the Navier-Stokes and Euler equa-

tions. The intent is not to fully derive the discrete equations, but to provide sufficient

background for the reader to explore the further chapters.

2.2.1 Finite Volume Methods

The Navier-Stokes equations can be written as:

∂Q

∂t
+
∂Fj
∂xj

=
∂F vj
∂xj

(2.1)

17

Fig. 2.3: Example of internal corner with smoothing and clipping [2].

where

Q =


ρ

ρui

ρE

 , Fj =


ρuj

ρuiuj + δijp

ρujh

 , F vj =


0

σij

σijui − qj

 (2.2)

Here, Fj is the inviscid flux vector, F vj is the viscous flux vector, and subscripts i and j

are used in index notation to capture the dimensionality of the problem (i and j vary from

1 to n, where n is the dimension of the problem).

In order to discretize Eq. 2.1 using the finite volume method, it is necessary to integrate

over the volume of the problem.

∫
V

(
∂Q

∂t
+
∂Fj
∂xj

=
∂F vj
∂xj

)
dV (2.3)

This integral can be simplified using the divergence theorem (often referred to as

Gauss’s theorem) [39]. This theorem states that the flux through the boundary is equal to

the sources or sinks of flux in the closed domain. This yields:

∫
V

∂Q

∂t
dV +

∫
A
FjnjdA =

∫
A
F vj njdA (2.4)

It is important to maintain that integrals with respect to A are taken at the boundaries

18

C1 C2

k

Q
L
Q
R

Fig. 2.4: A sample 2D mesh with cells c1 and c2. k represents the face between the cells.

of the control volume. Leibniz’s theorem states that for a fixed control volume, the volume

is not a function of time and the time integral can be rewritten [40].

d

dt

∫
V
QdV +

∫
A
FjnjdA =

∫
A
F vj njdA (2.5)

To simplify the derivation, viscous terms are assumed to be negligible and the discussion

is limited to the inviscid Euler equations. This yields the following equation:

d

dt

∫
V
QdV +

∫
A
FjnjdA = 0 (2.6)

The derivation thus far has made no discrete assumptions and has been entirely con-

tinuous. To discretize the above equation, the domain is split into cell-centered control

volumes and Q is assumed to be linear in each cell. Q over the entire domain is piecewise

linear, which creates a second order accurate scheme.

Discretely defining Q as linear has direct effects on the fluxes on the boundary. The

fluxes can be exactly computed on the boundaries using only one quadrature point. A

sample of this configuration is found in Fig. 2.4. c1 and c2 are located at the center of the

cells and k represents the quadrature point on the boundary. The inviscid fluxes can be

written in the form below:

19

∫
A
FjnjdA =

∑
k

∫
Ak

FjnjdAk ≈
∑
k

F̂k = R(Q) (2.7)

F̂k represents the numeric flux at the quadrature points at the cell interface and R

represents the “residual.” F̂k is defined by the following:

F̂k =
1

2
(F(QL) + F(QR))−Dk(QR, QL) (2.8)

where Dk(QR, QL) is the artificial dissipation, QL and QR represent the reconstructed terms

presented in the next section, and F is the area weighted flux given below:

F = FjnjA (2.9)

The stability of Eq. 4.22 is dependent on the choice of the artificial dissipation term.

Without dissipation, the numerical flux becomes immediately unstable. Adding a proper

dissipation model makes Eq. 4.22 local extremum diminishing (LED). LED schemes require

that local maxima decrease and local minima increase. LED schemes ensure that the

local extrema are bounded and prevent them from diverging. The details of how artificial

dissipation schemes make the numerical flux LED are left to Chapter 4, where different

Dk’s are presented and tested with preconditioners.

Finally, the time term is discretized assuming that the conservered variables are linear

over the domain. The full discretized model for a cell (c1 in this case) is shown below.

V
d

dt
Q̄c1 +

∑
k

F̂k = 0 (2.10)

Q̄ represents the average Q over the cell domain. The bar will be omitted in further

references to this equation for notational simplicity.

2.2.2 Reconstruction for Inviscid Terms

Equation 4.22 is a function of the reconstructed right and left states at the quadrature

20

points. These reconstructions use the piecewise definition of Q to extrapolate the values

from both cell-centers to the quadrature point. Fig. 2.4 shows the locations of QR and

QL. Properly constructing these terms allows the finite-volume method to be second order

accurate. The following equation shows how these states are reconstructed:

QL = Qc1 + s
[
(xk − xc1) dQ

dx

∣∣∣
c1

+ (yk − yc1) dQ
dy

∣∣∣
c1

]

QR = Qc2 + s
[
(xk − xc2) dQ

dx

∣∣∣
c2

+ (yk − yc2) dQ
dy

∣∣∣
c2

] (2.11)

The gradients at each cell center are computed using a least squares fit with the sur-

rounding cells. s is a limiter term. When s = 0, Eq. 2.11 reduces to a first order re-

construction where the Q’s are assumed to be constant over the cell. The second order

reconstruction violates LED stability at local extrema. The limiter is designed to give sec-

ond order reconstruction in smooth regions, but reduce the reconstructions to first order

at local maxima and minima. This allows increased accuracy without violating important

stability requirements of LED schemes. The mathematical definition of the limiter is given

below:

s = 1−
∣∣∣∣ a− b|a| − |b|

∣∣∣∣q , a = Qi+2 −Qi+1, b = Qi −Qi−1 (2.12)

where q is a positive integer (chosen to be 3 in this work), i + 1 and i + 2 are the cells to

the right of the face, and i and i− 1 are the cells to the left of the face. When a and b have

the same sign, the limiter is near unity. At a local extrema, a and b will have opposite signs

and the limiter becomes 0.

2.2.3 Boundary Conditions

Boundary condition implementation is a focus of Chapter 3. Only the basic concepts

are introduced in this section. Boundaries for strand grids are very similar to the internal

discretization, however, unlike internal discretization the flux on the wall is now the actual

problem boundary instead of a neighboring cell. Strands use only a cell-centered structure,

21

ii-1 e b

Fig. 2.5: A sample 1D cell centered boundary with extrapolated point and ghost node.

but node-centered boundaries are also introduced.

Cell-Centered

Since known values in cell-centered paradigms are only known at the centroid of the cell,

implementing equations at the boundaries is difficult. To apply equations at the boundary,

a “ghost-node” is placed at the quadrature point of the boundary cell (b). The values from

the interior of the domain are extrapolated in a similar fashion to the interior reconstruction

to the boundary (e). Fig. 2.5 shows a simple one dimensional example of this.

Qe = Qi + (xe − xi)
∂Q

∂x

∣∣∣∣
i

(2.13)

Like with the interior fluxes, the boundary fluxes can be presented in the form of a

boundary residual, Rb(Qe, Qb) = 0. An example of an outflow that specifies a pressure is:

Rb =


pb − p∞

ub − ue

Tb − Te

 = 0 (2.14)

where the subscript ∞ signifies some user-specified value.

Node-Centered

Node-centered schemes have interior nodes that lie on the boundary. The boundary

22

conditions can be applied directly to these nodes. No extrapolation or ghost nodes are

required. Application of the boundary equations at these nodes is much more intuitive. A

similar boundary residual is defined Rb(Qb) = 0. Chapter 3 shows how the residual can be

defined as a combination of the boundary equations and interior governing equations.

23

Chapter 3

Verification Techniques

3.1 Introduction

Computational Fluid Dynamics (CFD) is increasingly being applied to applications

involving greater complexity than ever before. Common to most of these applications is the

requirement for high levels of accuracy at or near domain boundaries. Examples include

calculation of aerodynamic lift and drag, computation of boundary layer characteristics,

estimation of surface heating, and mass flux computation. For these and other cases, the

regions near boundaries are the primary focus of the CFD simulation and require the great-

est resolution and numerical accuracy.

Despite the need for high accuracy near boundaries (or perhaps because of it), numerous

boundary procedures have been proposed in the literature. For example, many treatments

have been proposed for inviscid walls. The method by Rizzi [23] involves the use of the mo-

mentum equation to obtain the pressure. Jameson proposed direct modification of the flux

at an inviscid wall to produce zero convective flux contribution [24]. Dadone and Grossman

advocate a curvature corrected symmetry condition for an inviscid wall [25]. Balakrishnan

and Fernandez recommend a variety of other methods involving additional quantities such

as entropy and enthalpy [26]. Numerous other strategies exist for inviscid walls as well as

for other boundary conditions, such as inflow, outflow, and no-slip walls. The difficulty is

that many of these methods have not been rigorously verified and may or may not be con-

sistent with the interior discretization schemes. Addressing this issue, Choudhary et al. [22]

recently proposed a boundary verification procedure using the method of manufactured so-

lutions (MMS). Their approach requires carefully constructed manufactured solutions that

already satisfy the boundary conditions, which means that a new manufactured solution

24

needs to be constructed for each boundary condition and geometry. Nonetheless, their work

represents an important step towards comprehensive code verification since most previous

verification strategies have neglected boundary effects [17–21].

This work provides an alternate method of boundary verification by focusing on three

main goals. First, a general framework for implementing boundary conditions for both

node- and cell-centered schemes is provided. The framework applies to arbitrary boundary

conditions for any physical system. Second, a rigorous and general approach is provided for

the verification of these boundary conditions based on MMS wherein arbitrary manufactured

solutions are used in concert with the appropriate formulation of the boundary condition

equations. Third, the importance of choosing physically correct boundary conditions for

specific physical configurations is demonstrated. It is found that often the choice of well-

posed and stable boundary conditions is not unique. However, certain boundary conditions

can lead to erroneous results, often in subtle ways.

In order to accomplish these goals, the formulation of a variety of boundary types,

including inviscid walls, inflow, and outflow, for both node- and cell-centered finite volume

schemes are explored. For each of these boundary types, a variety of conditions that use

a combination of Dirichlet, Neumann, and extrapolation conditions are explored. Impor-

tantly, the fact that node-centered schemes easily allow the direct use of the governing

equations of motion (mass, momentum, and energy) at the boundaries, while cell-centered

schemes do not, instead relying on extrapolation or other conditions is highlighted. Other

boundary condition types and implementations beyond those discussed in this work are

certainly possible. Here, the principal objective is to provide a framework for the imple-

mentation and verification of any boundary condition.

The chapter is organized as follows: First, boundary condition formulations are ex-

plored for node- and cell-centered finite volume schemes. A common discretization frame-

work is presented to test a variety of governing boundary equations. A demonstration of

how to verify these boundary conditions using MMS is provided. Then grid refinement

and other qualitative studies are presented. First, a quasi-1D nozzle is tested with both

25

boundary nodes (node−centered)

(a) Boundary degrees of freedom for node-centered
methods.

ghost nodes (cell−centered)

(b) Boundary ghost nodes for cell-centered methods.

Fig. 3.1: Location of boundary condition enforcement for node- and cell-centered schemes.

MMS and exact solutions. Next, the use of MMS is extended to two dimensions with wall

boundary conditions. Finally, error convergence results for Ringleb flow and a NACA 0012

subsonic airfoil are presented. Then some conclusions derived from these studies are offered.

3.2 Boundary Condition Implementation

In this work a variety of boundary condition implementations and assess the resulting

impact on accuracy through rigorous verification studies are tested. In the interior of the

domain, the steady Euler equations are solved,

∂Q

∂τ
+ ∇ · F = 0, (3.1)

where Q = (ρ, ρu, ρv, ρe)T is the vector of conserved variables, and F is the inviscid flux

vector. Here, ρ is density, u and v are the Cartesian velocity components, and e is the total

energy per unit mass. The interest lies in solving the steady equations to which the pseudo-

time (τ) derivative for convenience in marching to steady state is added. Both node- and

cell-centered finite volume spatial discretizations are tested, which result in a semi-discrete

set of non-linear equations of the form

∂Q

∂τ
+R(Q) = 0, (3.2)

where R(Q) is the steady residual at either an interior node or an interior cell location

26

depending on the discretization procedure. Both cell- and node-centered methods use linear

least squares gradient procedures to reconstruct left and right states with CUSP artificial

dissipation [36, 41]. Limiters are not employed in this work because all test cases make

use of smooth solutions in order to verify order of accuracy. Explicit Runge-Kutta time

stepping is used to reach steady state for both node- and cell-centered codes.

In addition to the interior discretization scheme, this work must incorporate boundary

conditions to close the system of equations on a finite domain. Here we focus on inviscid

wall, inflow, and outflow conditions in order to explore fundamental issues of stability, well-

posedness, and numerical accuracy. The methodology developed here is quite general and

directly applies to other boundary condition types as well. For node-centered discretiza-

tions, boundary conditions are enforced directly at the boundary nodes coincident with

the physical boundary, shown in Figure 3.1(a). For cell-centered discretizations, additional

unknowns in the form of ghost nodes located at the flux quadrature points of the boundary

faces are introduced, shown in Figure 3.1(b). The ghost nodes are then used in an upwind

flux formula to determine the numerical flux through the boundary face. In this manner,

the cell-centered boundary formulation remains water-tight. The node-centered configura-

tion, however, is not strictly water-tight since the fluxes surrounding the boundary nodes

do not always cancel with nearby interior nodes.

For both node- and cell-centered formulations, a “boundary residual,” Rb(Q), is defined

which is driven to zero at steady state along with the interior residuals, R(Q):

Rb(Q) = 0. (3.3)

In a node-centered discretization, Rb replaces R at the boundary nodes. In cell-centered

discretizations, Rb provides the governing equations for the ghost nodes. In all, this work

tests fifteen different boundary implementations, which are listed with a common notational

convention in Table 3.1 for clarity. The methods involve a certain number of Dirichlet-

specified quantities, with the state specification completed by additional methods, such as

Neumann conditions, extrapolation, or in some cases, the equations of motion themselves.

27

This work will refer to this table as various forms for Rb are developed in the following

sections.

Table 3.1: Notation for boundary condition methods tested.
Short Name Boundary Type Dirichlet Other conditions

n-INV1 Node-centered Inviscid wall un Lagrange multipliers

n-INV2 Node-centered Inviscid wall un ut Neumann, mass and energy eqs.

n-INV3 Node-centered Inviscid wall un ρ, ut, ρe Neumann

n-INV4 Node-centered Inviscid wall – zero convective flux

n-INF1 Node-centered Inflow s, h0, ut Lagrange multipliers

n-INF2 Node-centered Inflow s, h0, ut outgoing characteristic eq.

n-OUT1 Node-centered Outflow p Lagrange multipliers

n-OUT2 Node-centered Outflow p outgoing characteristic eqs.

c-INV1 Cell-centered Inviscid wall un ρ, ut, ρe extrapolated

c-INV2 Cell-centered Inviscid wall – Pressure extrapolated

c-INV3 Cell-centered Inviscid wall un ρ, ut, ρe Neumann

c-INF1 Cell-centered Inflow s, h0, ut un extrapolated

c-INF2 Cell-centered Inflow R−, ut, s R+ extrapolated

c-OUT1 Cell-centered Outflow p ρ, u, v extrapolated

c-OUT2 Cell-centered Outflow R− R+, ut, s extrapolated

3.2.1 Node-Centered Boundaries

All boundary conditions involve the specification of a certain number of Dirichlet (or

Neumann) conditions augmented by additional information derived from the interior field.

With node-centered schemes it is straightforward to select some combination of the govern-

ing equations of motion (mass, momentum, and energy) to enforce at boundary nodes. This

is because the boundary nodes lie within control volumes for which flux balances can easily

implemented. In contrast, cell-centered boundary conditions require the use of ghost nodes

for which there is no natural control volume or flux balance. Thus, it becomes difficult

to apply the equations of motion directly at the ghost nodes. Instead, other methods are

chosen to define the ghost node state such as solution extrapolation.

Enforcement of boundary conditions in a node-centered scheme involves the specifica-

tion of the boundary residual, Rb, directly at the boundary nodes shown in Figure 3.1(a).

In this section, two procedures to obtain the boundary residual are outlined. The first

28

involves the use of Lagrange multipliers as discussed by Allmaras [28]. The second involves

the multiplication of the governing equations of mass, momentum, and energy by a selec-

tion matrix to complete the boundary conditions. In addition, discussion a third method

involving a commonly used weak boundary condition for an inviscid wall is presented.

Lagrange Multipliers

A method of boundary condition enforcement that has enjoyed widespread use in the

finite element community for several decades is the Lagrange multiplier method introduced

by Babuska [42]. The extension of this method to the Navier-Stokes equations was discussed

by Allmaras [28]. The method involves a modification of the variational statement to include

extra conditions along Dirichlet boundaries, leading to an extended system of the form

 B(Q)− b
∂Q
∂τ +R(Q) +

(
∂B
∂Q̃

)T
λ

 = 0. (3.4)

Here, B(Q) − b represents a vector of m Dirichlet conditions that must be satisfied at

boundary nodes. For example, at a fixed inviscid wall, m = 1, B(Q) = u ·n, and b = 0. The

additional conditions are incorporated via a vector of m Lagrange multipliers, λ. The choice

of variables for Q̃ in Equation 3.4 is non-unique and can lead to different sets of boundary

equations. While Allmaras chooses entropy variables, Q̃ = ρ
p(pρ

γ+1−s
γ−1 − e, u, v,−1)T , other

variables, such as the primitive variables, Q̃ = (P, u, v, T)T , are possible, leading to different

boundary equations. This work employs entropy variables for Q̃, following Allmaras.

While the extended system in Equation 3.4 can be solved directly to include the La-

grange multipliers, these may be eliminated from the problem altogether, resulting in a

boundary residual form

Rb(Q) =

 B(Q)− b

N
(
∂Q
∂τ +R(Q)

)
 . (3.5)

29

Here, N is a (n − m) × n matrix containing a basis for the nullspace of the boundary

condition matrix, such that

N

(
∂B

∂Q̃

)T
= 0. (3.6)

In this work, both forms of the Lagrange multiplier method in Equations 3.4 and 3.5 are

tested and verified to give identical results in the steady solution and negligible differences

in convergence behavior.

A novel aspect of this work is a new method for the verification of boundary conditions

through grid refinement studies. This is done for exact solutions which are available for

certain simple configurations. However, a more general method that is applicable to a wide

variety of boundary conditions, geometries, and governing equations that do not possess

exact solutions is desired. To accomplish this, an extension of previous work using the

method of manufactured solutions (MMS) [43] is performed to include boundary conditions.

This enables the use of a single arbitrary manufactured solution to simultaneously verify the

accuracy of both the interior scheme and the boundary conditions. Such a procedure can be

accomplished by adding an MMS source term to both the Euler and boundary equations:

∂Q

∂τ
+ ∇ · F = S(x)

B(Q)− b = Sb(x) (3.7)

For the Lagrange multiplier method this results in a modified boundary residual of the form

Rb(Q) =

 B(Q)− b− Sb(x)

N
(
∂Q
∂τ +R(Q)− S(x)

)
 . (3.8)

Note that the proposed method of boundary verification does not require that the manufac-

tured solution satisfy the boundary conditions as required by other approaches [22]. This

greatly simplifies the verification procedure, and allows a single manufactured solution to

be used to verify a variety of boundary condition types.

30

Three boundary conditions are tested that make use of the Lagrange multiplier method-

ology. These are denoted n-INV1, nINF1, and n-OUT1 in Table 3.1. Method n-INV1 for

a node-centered inviscid wall sets the normal velocity to zero and retains a combination of

the mass, momentum, and energy equations:

B(Q) = un, b = 0, N =


1 0 0 0

0 ny −nx 0

0 −u −v 1

 . (3.9)

Here, n = (nx, ny)
T is the outward pointing unit normal vector at the surface node, and

un = nxu+ nyv is the velocity in the normal direction.

The subsonic inflow condition n-INF1 specifies entropy, s, total enthalpy, h0, and tan-

gential velocity, ut = −nyu+ nxv:

B(Q) =


h0

s

ut

 , b =


h0,spec

sspec

ut,spec

 , N =

(
unh0 utv − nx(h0 + 1

2q
2) −utu− ny(h0 + 1

2q
2) un

)

(3.10)

Here, the subscript spec denotes a specified value and q is the velocity magnitude.

The final method using Lagrange multipliers is n-OUT1 for subsonic outflow. This

method fixes the static pressure,

B(Q) = p, b = pspec, N =


−u 1 0 0

−v 0 1 0

−h0 0 0 1

 . (3.11)

Again, this work emphasizes that the method of Lagrange multipliers provides a way

to determine a complete set of boundary equations. Once B(Q) is determined and a set

of variables Q̃, the remaining equations are fixed through the nullspace, N . However, the

actual form of N is dependent on the choice of Q̃, which is arbitrary. Further work is

needed to determine which set of Q̃ and the resulting N is best suited for various boundary

31

conditions.

Selection Matrix Method

An alternate method of obtaining a boundary residual is through a selection matrix

that picks desired combinations of the equations of motion. Using a selection matrix, L,

the boundary residual is defined as

Rb(Q) = Ω(Q) + L

(
∂Q

∂τ
+R(Q)

)
. (3.12)

Here, L selects certain combinations of the equations of motion which augment other bound-

ary conditions, Ω(Q). These conditions may be Dirichlet (D), Neumann (N), or extrapo-

lated (E):

Ω(Q) = ΩD(Q) + ΩN (Q) + ΩE(Q). (3.13)

Whereas the Lagrange multiplier approach only accommodates Dirichlet conditions, this

framework allows for general specification of virtually any type of boundary condition. The

Lagrange multiplier method may therefore be thought of as a subset of this more general

approach, where ΩD(Q) = B(Q)− b, and L = N augmented with rows of zeros.

This more general form is also easily modified for verification via MMS by introducing

source terms for Ω(Q) and the equations of motion themselves:

Rb(Q) = Ω(Q)− Sb(x) + L

(
∂Q

∂τ
+R(Q)− S(x)

)
. (3.14)

Here, Sb(x) acts on the Ω(Q) terms, and S(x) acts on the governing equations of motion.

Four node-centered are tested boundary conditions that make use of the selection ma-

trix method. These are denoted n-INV2, n-INV3, n-INF2, and n-OUT2 in Table 3.1. For

n-INV2, a Neumann condition is set only for the tangential velocity terms, while the mass

32

and energy equations are used directly:

ΩD(Q) =



0

0

un

0


, ΩN (Q) =



0

∂ut/∂n

0

0


, ΩE(Q) = 0, L =



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


(3.15)

In this manner, velocity is treated with a symmetry condition while mass and energy are

conserved. These types of symmetry conditions enforced with Neumann conditions have

been advocated by many other researchers for slip walls in inviscid flows [44–46].

Method n-INV3 uses Neumann conditions for all equations, completely omitting any

contribution from the Euler equations:

ΩD(Q) =



0

0

un

0


, ΩN (Q) =



∂ρ/∂n

∂ut/∂n

0

∂(ρe)/∂n


, ΩE(Q) = 0, L =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


(3.16)

This condition is strictly a symmetry condition, but is often used at inviscid walls in practice.

For subsonic inflow method n-INF2, the selection matrix extracts the outgoing char-

acteristic equation at the inflow boundary, while three other conditions (total enthalpy,

entropy, and tangential velocity) are prescribed. Here, it is desirable to select the equation

associated with the outgoing un − c wave. To accomplish this, the Euler equations are

first rotated to a coordinate system with components normal (n) and tangential (t) to the

boundary,

R

(
∂Q

∂τ
+
∂Fx
∂x

+
∂Fy
∂y

)
=
∂Q′

∂τ
+
∂Fn
∂n

+
∂Ft
∂t

= 0. (3.17)

33

Here, the definitions of the rotation matrix, rotated solution, and flux vectors are

R =



1 0 0 0

0 nx ny 0

0 −ny nx 0

0 0 0 1


, Q′ = RQ =



ρ

ρun

ρut

ρe


, Fn =



ρun

ρu2n + p

ρunut

ρunh0


, Ft =



ρut

ρutun

ρu2t + p

ρuth0


.

(3.18)

Equation 3.17 is then multiplied by the modal matrix, M−1n , containing the right eigenvec-

tors of the normal flux Jacobian, An = ∂Fn/∂Q
′. Using the fact that M−1n AnMn = Λn =

diag(un, un, un + c, un − c), leads to

∂Q̂′

∂τ
+ Λn

∂Q̂′

∂n
+M−1n AtMn

∂Q̂′

∂t
= 0, (3.19)

where Q̂′ = M−1n RQ. It is clear from this form that the fourth equation represents the

characteristic wave equation leaving the boundary. This can be accomplished by defining

the selection matrix as

L =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


M−1n R, (3.20)

where

M−1n R =



1− (γ−1)q2
2c2

(γ − 1) u
c2

(γ − 1) v
c2

−γ−1
c2

ut ny −nx 0

1
2c2

(γ−12 q2 − cun) 1
2c2

(nxc− (γ − 1)u) 1
2c2

(nyc− (γ − 1)v) γ−1
2c2

1
2c2

(γ−12 q2 + cun) − 1
2c2

(nxc+ (γ − 1)u) − 1
2c2

(nyc+ (γ − 1)v) γ−1
2c2


(3.21)

34

The n-INF2 condition is completed by specifying total enthalpy, entropy, and tangential

velocity:

ΩD(Q) =



h0 − h0,spec

s− sspec

ut − ut,spec

0


, ΩN (Q) = 0, ΩE(Q) = 0. (3.22)

The outflow case n-OUT2 is based on a similar approach as n-INF2, but selects the

remaining three characteristics at the outflow, while fixing the static pressure:

ΩD(Q) =



0

0

0

p− pspec


, ΩN (Q) = 0, ΩE(Q) = 0, L =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0


M−1n R (3.23)

Weak Form Flux Implementation

A final method of boundary implementation suitable for node-centered schemes is

through a modification of the flux. Traditionally, this has been used at an inviscid wall

by setting the convective portion to zero and retaining only the pressure terms [24]:

Fn =



0

pnx

pny

0


. (3.24)

Here, Fn is the directional flux at a boundary face with normal n = (nx, ny)
T . This method

is denoted n-INV4 in Table 3.1.

It is interesting to note that this method does not explicitly involve a boundary residual,

and thus cannot be verified using MMS and source terms as the other methods allow.

Nonetheless, the results show that this method performs very well as shown through grid

refinement studies using exact solutions. It is also interesting to note that this method does

35

provide a water-tight formulation for node-centered schemes using inviscid walls.

3.2.2 Cell-Centered Boundaries

Unlike node-centered schemes, cell-centered schemes do not contain unknowns that lie

directly on the boundary. Instead, ghost nodes are introduced as shown in Figure 3.1(b). It

is at these ghost node locations that the boundary residual must be satisfied at steady-state.

The ghost nodes do not lie within control volumes and do not contain flux balances from

the governing equations. For this reason, it is difficult to apply the discretized equations

of motion (e.g. mass, momentum, or energy) at boundary locations. For this reason,

the boundary condition choices are limited to a combination of Dirichlet, Neumann, or

extrapolation conditions:

Rb(Q) = Ω(Q) = ΩD(Q) + ΩN (Q) + ΩE(Q). (3.25)

These conditions may also be verified using MMS by adding a source term to the boundary

residual:

Rb(Q) = Ω(Q)− Sb(x). (3.26)

An important point is that for extrapolation conditions, the source term should be set to

zero. This is because in the limit of grid refinement, the extrapolated value will equal the

manufactured solution exactly.

Six cell-centered are tested boundary conditions that make use of the ghost node

method. These are denoted c-INV1, c-INV3, c-INF1, c-INF2, c-OUT1, and c-OUT2 in

Table 3.1. Method c-INV1 for an inviscid wall sets the normal velocity to zero, while

extrapolating density, tangential velocity, and total energy:

ΩD(Q) =



0

0

un

0


, ΩN (Q) = 0, ΩE(Q) =



ρ− ρE

ut − utE

0

ρe− (ρe)E


. (3.27)

36

Here, the subscript E refers to the state (linearly) extrapolated from the interior of the

domain.

Method c-INV3 for an inviscid wall sets the normal velocity to zero, but uses Neumann

conditions for density, tangential velocity, and total energy:

ΩD(Q) =



0

0

un

0


, ΩN (Q) =



∂ρ/∂n

∂ut/∂n

0

∂(ρe)/∂n


, ΩE(Q) = 0. (3.28)

The Neumann conditions may be more appropriate for a symmetry condition, but this

is often used for an inviscid wall in practice. The suitability of symmetry conditions for

inviscid walls is analyzed in detail in the results section.

Method c-INF1 for subsonic inflow fixes the thermodynamic stagnation state and in-

coming tangential velocity, while extrapolating the velocity normal to the boundary:

ΩD(Q) =



h0 − h0,spec

s− sspec

ut − ut,spec

0


, ΩN (Q) = 0, ΩE(Q) =



0

0

0

un − unE


. (3.29)

Method c-INF2 for subsonic inflow uses Riemann invariants normal to the boundary,

entropy, and tangential velocity. The Riemann invariants have the usual definition for an

ideal gas,

R+ = un +
2c

γ − 1
, R− = un −

2c

γ − 1
, (3.30)

37

where c is the speed of sound. The boundary condition then becomes,

ΩD(Q) =



0

R− −R−spec

ut − ut,spec

s− sspec


, ΩN (Q) = 0, ΩE(Q) =



R+ −R+
E

0

0

0


(3.31)

The subsonic outflow condition c-OUT1 specifies the static pressure, and extrapolates

density and velocity:

ΩD(Q) =



0

0

0

p− pspec


, ΩN (Q) = 0, ΩE(Q) =



ρ− ρE

u− uE

v − vE

0


. (3.32)

The subsonic outflow condition c-OUT2 is similar to c-INF2, but extrapolates tangen-

tial velocity and entropy to be consistent with the number of characteristics leaving the

domain:

ΩD(Q) =



0

R− −R−spec

0

0


, ΩN (Q) = 0, ΩE(Q) =



R+ −R+
E

0

ut − utE

s− sE


. (3.33)

The final condition listed in Table 3.1 is c-INV2. This condition is similar to n-INV4,

which weakly modifies the flux at the boundary to only contain the pressure terms, as in

Equation 3.24. Thus only pressure needs to be extrapolated. As in n-INV4, it is not clear

what the boundary residual is for this method. Thus, it is difficult to verify the method

directly using MMS and source terms as is done in the case of the other methods.

38

3.3 Results

In this section, results of the various boundary condition implementations in one and

two dimensions for node- and cell-centered schemes are presented. First quasi-1D nozzle

flow are examined. This section then extends these methods to two dimensions using a

manufactured Euler solution in a square domain. Finally, the procedures for Ringleb flow

and subsonic flow over a NACA 0012 airfoil are tested. For all cases, grid refinement studies

are performed with the boundary condition options listed in Table 3.1.

3.3.1 Quasi-1D Euler Equations

The quasi-1D Euler equations are a 1D formulation with added cross sectional area,

a(x), useful for nozzle flows. The quasi-1D Euler equations are defined as

∂Q

∂t
+
∂F

∂x
= Sp (3.34)

Q = a


ρ

ρu

ρe

 , F = a


ρu

ρu2 + p

ρuh0

 , Sp =


0

∂a
∂xp

0

 (3.35)

In addition this work makes use of the ideal gas equation of state and assume constant

specific heat. For the area, the following is used,

a(x) = a0

(
1 +

1

2
cos(2πx)

)
, (3.36)

where a0 = 2/3 to make the inlet and outlet area unity, with domain extents x ∈ [0, 1]. A

view of the nozzle is shown in Figure 3.2.

The governing equations are solved using a node-centered approach to test inflow and

outflow conditions n-INF1, n-INF2, n-OUT1, and n-OUT2. In order to verify the accuracy

of the boundary methods, the exact solutio, which for fully subsonic flow, may be found

simply from preserving constant entropy, enthalpy, and mass flux is considered. For all

39

Fig. 3.2: Converging-diverging nozzle used for the Quasi-1D Euler equations.

tests, M = 0.15 was selected at the inflow to ensure subsonic flow at the throat, which is

suitable for a grid refinement accuracy study.

While the quasi-1D Euler equations possess exact solutions, formulation of a manufac-

tured solution is done to demonstrate the new MMS verification procedure for the boundary

conditions. The manufactured solution is chosen as

ρMMS(x) = c1 + cx1sin(ax1x)

uMMS(x) = c2 + cx2cos(ax2x)

pMMS(x) = c3 + cx3sin(ax3x)

(3.37)

These constants are selected such that the manufactured solution remains physically mean-

ingful (e.g. positive density). The period of the sinusoidal oscillation is set to approximately

20 times the length scale of the problem to provide a very smooth solution in the asymptotic

range of convergence. Values for the constants are shown in table 3.2.

Next, it is necessary to determine the accompanying source terms, S(x) and Sb(x), in

Equation 3.14. The interior source terms are defined in the usual manner by setting the

source terms equal to the residual quantity remaining after the manufactured solution is

substituted into the governing equations. The boundary source terms are computed in a

40

Table 3.2: MMS constants used for the quasi-1D Euler solution verification.
Constant Value

c1 1.0

cx1 0.15

ax1 0.075π

c2 70.0

cx2 7.0

ax2 0.15π

c3 1.0× 10−5

cx3 2.0× 10−4

ax3 0.1π

similar fashion, but considering only the boundary equations, such that

Sb = Ω(QMMS), (3.38)

where QMMS is the chosen manufactured solution. For example, the n-OUT2 condition,

which specifies the exit pressure requires a boundary source term computed with

Sb = Ω(QMMS) =


0

0

pMMS − pspec

 . (3.39)

With these definitions of S and Sb, it is possible to verify the interior scheme and boundary

conditions simultaneously using MMS.

The results of the grid refinement study using the exact and manufactured solutions

for the quasi-1D nozzle are shown in Figure 3.3. All methods produce second order accu-

rate results. These results highlight two important points. First, the choice of boundary

conditions that lead to consistent formulations is not unique. In this case the Lagrange mul-

tiplier method and the characteristic matrix selection method produce different equations.

However, both lead to second-order accuracy. While the choice of equations is not unique,

it is by no means arbitrary. Later this work shows examples of boundary conditions that

are wrong and therefore degrade the accuracy.

41

100 1000
1/h

10-7

10-6

10-5

10-4

10-3

10-2

RM
S

D
en

si
ty

 E
rr

or

n-INF1,
n-OUT1

n-INF2,
n-OUT2

1
2

(a) Error obtained from exact solution

100 1000
1/h

10-7

10-6

10-5

10-4

10-3

10-2

RM
S

D
en

si
ty

 E
rr

or

n-INF1,
n-OUT1

n-INF2,
n-OUT2

1
2

(b) Error obtained from manufactured solution

Fig. 3.3: Grid refinement study for quasi-1D Euler equations using methods n-INF1, n-
INF2, n-OUT1, and n-OUT2 with exact and manufactured solutions.

A second important point is that the MMS procedure provides reliable information

regarding the accuracy of the boundary formulation. In this case, an exact solution is

available. However, in the vast majority of cases that use more complex equations and

boundary conditions, exact solutions are not available. In these cases, this section has

shown that the MMS procedure can provide a straightforward way to quantify the accuracy

of boundary conditions. By determining the proper forms of S(x) and Sb(x), it is possible

to use an arbitrary manufactured solution to verify boundary conditions along with the

interior scheme.

3.3.2 Manufactured Solution in Square Domain

Next, the one-dimensional formulation above is extended to two-dimensional flows and

further explore the verification of boundary conditions via manufactured solutions on a sim-

ple square domain. Consider the unit square domain shown in Figure 3.4. The domain is

discretized with perturbed triangular cells, shown in Figure 3.4(a), to avoid any fortunate

cancellation of solution error due to grid regularity. Velocity vectors for the chosen manu-

factured solution is shown in Figure 3.4(b). The manufactured solution follows a sinusoidal

42

(a) 32 × 32 perturbed triangular mesh (b) Manufactured solution velocity vectors.

Fig. 3.4: Mesh and manufactured solution used for boundary condition verification.

form similar to the solution used for the quasi-1D nozzle flow. An example for density is

ρ(x, y) = c1 + cx1sin(ax1x) + cy1sin(ay1y) + cxy1cos(axy1xy). (3.40)

Here the constants are chosen to be physically meaningful (e.g. positive density). The

other flow variables (u, v, p) use similar forms. For the computation of source terms in

multiple dimensions it is helpful to use a symbolic math tool such as the one contained in

Matlab.

The boundary conditions in Table 3.1 are systematically tested the accuracy of in

isolation to ensure that the results are independent of one another. To isolate a given

boundary type, pure Dirichlet conditions are enforced on all the other boundaries of the

domain except the one in question. The inviscid wall cases (INV) are applied on the top of

the domain, inflow (INF) on the left side, and outflow (OUT) on the right side. For some

of the methods (n-INV4 and c-INV2), it is not possible to apply the MMS procedure since

it is unclear what the exact governing equations are for these weak forms.

Figure 3.5 shows the results of the tests performed for all the available MMS boundary

types for node- and cell-centered methods. Figures 3.5(a) and 3.5(c) show the results for

43

10 20 30 40 50 60 7080
1/h

10-7

10-6

10-5

10-4

10-3

RM
S

D
en

si
ty

 E
rr

or

n-INV1

n-INV2

n-INV3
1

 2

(a) inviscid wall - node-centered

10 20 30 40 50 60 7080
1/h

10-7

10-6

10-5

10-4

10-3

RM
S

D
en

si
ty

 E
rr

or

n-INF1,
n-OUT1

n-INF2,
n-OUT2

1

 2

(b) inflow/outflow - node-centered

20 40 60 80 100
1/h

10-7

10-6

10-5

10-4

10-3

RM
S

D
en

si
ty

 E
rr

or

c-INV1

c-INV3
1

 2

(c) inviscid wall - cell-centered

20 40 60 80 100
1/h

10-7

10-6

10-5

10-4

10-3

RM
S

D
en

si
ty

 E
rr

or

c-INF1

c-OUT1

c-INF2
c-OUT2

1

 2

(d) inflow/outflow - cell-centered

Fig. 3.5: Grid refinement study for a variety of boundary formulations using MMS.

44

20 40 60 80 100
1/h

10-7

10-6

10-5

10-4

10-3

10-2

RM
S

D
en

si
ty

 E
rr

or

c-INV3,
Bottom

c-INV3,
Top

1
 1

1

2

Fig. 3.6: Example of the violation of characteristic directions for MMS solutions.

the isolated inviscid wall for both discretization schemes. The inflow and outflow results are

combined into Figures 3.5(b) and 3.5(d) for node- and cell-centered methods respectively.

The grid refinement study shows that Dirichlet, Neumann, extrapolation, and the equa-

tions of motion themselves are all reliable second-order accurate boundary conditions. The

MMS procedure proves successful at verifying the proper implementation of the interior

and boundary governing equations. A subtle but important point is that this procedure

assumes the boundary normal vectors are exact at the nodes for the node-centered scheme.

This assumption will be investigated further.

Two important considerations for using MMS verification for boundary conditions are

well-posedness and stability. Specifically, it is critical to ensure compatibility of the charac-

teristic directions of the manufactured solution with the boundary conditions being tested.

This is illustrated by considering inviscid wall conditions. Figure 3.4(b) illustrates that the

flow constants have been chosen such that flow is directed diagonally towards the upper-

right of the domain. Because an inviscid wall specifies one piece of information (un = 0),

this limits the location at which MMS verification can be implemented for an inviscid wall

to the top of the domain. (Recall that all other boundaries are set to Dirichlet to isolate the

45

effect of the top wall.) This was the procedure for all the results obtained above. Placing the

inviscid wall condition at the bottom of the square domain violates the wave propagation

characteristics of the manufactured solution because it would require three specified pieces

of information, not one. The effect of this ill-posed condition is shown in Figure 3.6, which

shows the comparison of density error for an inviscid wall (c-INV3) at the top and bottom

of the domain. It is noteworthy to mention that other inviscid wall boundary formulations

(n-INV1-3) would not converge when enforced at the bottom of the domain due to stability

issues. It is therefore critical that the manufactured solution and boundaries are chosen

such that the characteristic directions are not violated.

3.3.3 Ringleb Flow

In the previous section it was shown that all boundary condition methods tested are

second order accurate using the method of manufactured solutions. Methods n-INV4 and

c-INV2 could not be tested because the form of the underlying boundary residual, Rb, is

unknown. Here, examination of the same methods , including n-INV4 and c-INV2, using

Ringleb flow [47], is done, which is an exact solution of the Euler equations. The results of

this test case highlight the importance of selecting physically correct conditions for a given

problem. Just because a particular boundary condition is implemented in a mathematically

consistent way (passes an MMS verification test for example), does not mean that it is an

appropriate physical boundary condition. Additionally, this work highlights the difficulties

of using derived quantities, such as entropy, as measures of the solution error. Finally,

this case also reveals the importance of computing boundary normals correctly for certain

node-centered methods.

Ringleb flow describes inviscid compressible flow turning 180o and involves subsonic,

transonic, and supersonic regimes. Here, the focus is on a subsonic portion of the flow.

The exact solution is obtained via a hodograph method in the form of (x, y) coordinates

parameterized by velocity magnitude, q, and streamline constant, k, which is the inverse of

the stream function, ψ = 1
q sin θ. Here, θ is the flow angle. The solution may be expressed

46

(a) 16 x 32 triangular mesh. (b) Field plot of Ringleb flow density field.

Fig. 3.7: Configuration for Ringleb flow test case.

as

x(q, k) =
1

2ρ

(
1

q2
− 2

k2

)
+
J

2
(3.41)

y(q, k) = ± 1

kqρ

√
1− q2

k2
, (3.42)

where

J =
1

c
+

1

3c3
+

1

5c5
− 1

2
log

(
1 + c

1− c

)
c =

√
1− γ − 1

2
q2

ρ = c
2

γ−1 .

Given a location (x, y), it is possible to solve for the corresponding (q, k) pair with a few

Newton iterations. The flow solution is dimensionalized with desired stagnation quantities.

A series of increasingly refined meshes is used to verify the accuracy of boundary

conditions. The mesh and exact solution for Ringleb flow are shown in Figure 3.7. The

domain consists of two streamlines, which are treated as inviscid walls, as well as an inflow

and outflow at the bottom and top portions of the domain, as shown in Figure 3.7(a). Each

47

1/h

R
M

S
 D

e
n

s
it

y
 E

rr
o

r

10
1

10
2

10
3

10
­6

10
­5

10
­4

10
­3

10
­2

2

1

n­INV2

n­INV3

n­INV1,
Exact

n­INV1

n­INV4

(a) Inviscid Wall - node-centered

50 100 150 200 250
1/h

10-6

10-5

10-4

10-3

RM
S

D
en

si
ty

 E
rr

or

n-INF1,
n-OUT1

n-INF2,
n-OUT2

1

 2

(b) Inflow/Outflow - node-centered

1/h

R
M

S
 D

e
n

s
it

y
 E

rr
o

r

10
1

10
2

10
­6

10
­5

10
­4

10
­3

10
­2

10
­1

1.9

1.2

c­INV1,
c­INV2

c­INV3

(c) Inviscid Wall - cell-centered

10 50 100 200 400
1/h

10-6

10-5

10-4

10-3

RM
S

D
en

si
ty

 E
rr

or c-INF1,
c-OUT1c-INF2,

c-OUT2

1

 2

(d) Inflow/Outflow - cell-centered

Fig. 3.8: Grid refinement study for various boundary formulations using Ringleb flow.

boundary type is tested in isolation by enforcing Dirichlet conditions on all boundaries but

the one in question. The symmetric density contours of the exact solution are shown in

Figure 3.7(b).

Figures 3.8-3.9 show the results for all boundary conditions listed in Table 3.1. While

only the density error is shown, momentum and energy errors exhibit the same convergence

behavior. Four important observations are made in reference to these figures. First, one

can observe in Figures 3.8(a) and 3.8(c) a substantial decrease in accuracy for the n-INV2,

n-INV3 and c-INV3 cases. These three conditions, which were all verified as second-order

48

1/h

S
u

rf
a

c
e

 E
n

tr
o

p
y

200 400 600 800

10
0

10
1

10
2

10
3

1.2

0.8

n­INV2

n­INV3

n­INV1,
Exact

n­INV1

n­INV4

1.6

(a) Inviscid Wall - node-dentered

1/h

S
u

rf
a

c
e

 E
n

tr
o

p
y

100 200 300 400

10
­1

10
0

10
1

10
2

10
3

1.2

1.5
c­INV3

c­INV1,
c­INV2

(b) Inviscid Wall - cell-centered

Fig. 3.9: Grid refinement study for inviscid wall boundary formulations using Ringleb flow
using entropy as a measure of error.

accurate using MMS, now exhibit first-order accuracy when applied to Ringleb flow. At

first this seems surprising, but may be explained by the fact that the MMS verification only

addresses the mathematical correctness of the discretization of the chosen conditions, not

the appropriateness of the conditions themselves. In all three failed methods, Neumann

terms are included in the inviscid boundary conditions. The Neumann conditions are arbi-

trary and do not correctly represent the physics for this case. In fact, they contradict the

Ringleb solution of the Euler equations, which explains the reduced accuracy. This case

illustrates the critical importance of selecting appropriate boundary conditions for a given

set of physics.

This point is further illustrated by considering subsonic flow over a NACA airfoil at

M = 0.5 and α = 3.0o. Just as for Ringleb flow, this case also demonstrates that symmetry

conditions are not suitable for inviscid walls. Figures 3.10(a)-3.10(b) show Mach contours

for method n-INV1 and n-INV2, respectively. Near the surface, method n-INV2 exhibits

oddly-shaped Mach contours as a result of the improper symmetry condition. Similar errors

have been noted by Wang [27] and Barth [48]. While not shown, extrapolation conditions

for cell-centered schemes predict correct Mach contours, while symmetry conditions again

lead to erroneously shaped contours.

49

(a) method n-INV1. (b) method n-INV2 (symmetry).

Fig. 3.10: Mach contours for two node-centered inviscid wall treatments of a NACA 0012
inviscid airfoil at M = 0.5, α = 3.0o.

A second observation can be made by examining Figure 3.8(a), which shows the effect

of approximating the boundary normal vector at nodal locations for method n-INV1. For

Ringleb flow, the exact normal vectors may be deduced from the exact solution, which

provides x and y locations along the inviscid wall streamline boundaries. Here, the exact

normals are computed. The effect on the accuracy is compared to the approximate normal

vectors computed as the average of the surrounding face normals at a node. Using exact

normals and approximate normals both result in second-order behavior. However, the level

of error using exact normals is nearly half the error using approximate normals. For other

cases with more complex geometry, the effects may be amplified. Methods to compute

boundary normals consistently for complex geometry are an area of future work.

A third observation is that all inflow and outflow conditions tested show sharp second-

order accuracy, as shown in Figures 3.8(b) and 3.8(d). For the inflow and outflow conditions,

specified quantities (entropy, total enthalpy, pressure, etc.) are taken directly from the exact

solution. All of these methods are physically meaningful and compatible with the current

problem. Thus, the MMS results for these conditions are validated. Again, this demon-

strates that the MMS verification procedure is sufficient if physically consistent boundary

equations are used. This is important because it provides a method for the verification of

more complex boundary conditions and interior schemes for which no exact solutions are

50

1/h

D
e

n
s

it
y

E
n

tr
o

p
y

10
1

10
210

­7

10
­6

10
­5

10
­4

10
­3

10
­1

10
0

10
1

10
2

2.1
Entropy error

Density error

1.9

Fig. 3.11: Constant entropy inviscid wall condition, showing second order convergence, both
in density and entropy.

known, such as averaged equations with turbulence models, multiphase flows, or combus-

tion.

Finally, it is interesting to consider the impact of the boundary discretizations on other

quantities besides the conserved variables, such as entropy. Entropy is sometimes used as

a measure of error for inviscid flow cases with uniform inflow [27, 49, 50]. Figure 3.9 shows

the convergence of surface entropy for all inviscid wall conditions in Table 3.1. This figure

shows that none of the methods are truly second order accurate for entropy. Exact normals

were used for the node-centered boundary conditions where possible. Recall that many of

the methods were second order accurate considering the error in the conserved variables, as

shown in Figures 3.8(a) and 3.8(c). This may be explained by the fact that isentropic flow

is only attained if all the conservation laws are satisfied at all degrees of freedom. At the

boundary locations, the full set of conservations laws are not solved. Thus, entropy may

not demonstrate the same convergence behavior as the mesh is refined.

It is possible to formulate boundary conditions which preserve specific flow features,

such as isentropic flow. Entropy-based boundary conditions have been explored by Balakr-

ishnan and Fernandez [26], for example. As a check, a simple method to preserve entropy

for inviscid flow with isentropic inflow conditions by specifying the entropy instead of the

energy combination in Equation 3.9 is used. The third row in the null space matrix is set

51

to zero, and a condition s − sspec = 0 is used instead, where s = p/ργ is a measure of

the entropy. Using this condition, isentropic flow is preserved to the order of accuracy of

the scheme, as shown in Figure 3.11. The figure shows that entropy converges as second

order, just as density does. Extending this method to cases in which incoming entropy is

not constant is an area of future research.

3.4 Conclusions

In this work, a general formulation for arbitrary boundary conditions for node- and

cell-centered finite volume schemes is presented. These conditions may include any com-

bination of Dirichlet, Neumann, extrapolation, and, in the case of node-centered schemes,

the equations of motion themselves. The ease with which one may apply the conservation

equations of motion is one advantage of node-centered schemes over cell-centered schemes.

This avoids the need for extrapolation or extra Neumann conditions which may conflict

with the interior scheme or physical configuration of the problem.

Importantly, the traditional use of the method of manufactured solutions (MMS) is

extended to include boundary conditions. By defining a boundary residual equation to ac-

company the interior residual equation, MMS can be used in both node- and cell-centered

contexts to verify the combined interior-boundary scheme. In this manner, a single man-

ufactured solution can be used to verify any number of boundary conditions conveniently.

Computation of boundary source terms is straightforward, generally requiring much less

algebraic manipulation than the interior source terms.

A number of test cases, including quasi-1D flow and 2D flow demonstrate the use

of the MMS procedure. It is found that the manufactured solution must be chosen such

that the characteristic directions are respected during the boundary condition verification

procedure to maintain well-posedness and stability. While the manufactured solution is

arbitrary, boundary locations should be chosen to roughly coincide with the physics of the

manufactured solution. If this practice is violated, erroneous results will be obtained or

non-convergence will result.

While the correct choice of boundary conditions for a given problem is often not unique,

52

a key finding from studies involving Ringleb flow and inviscid airfoils is that certain bound-

ary conditions may conflict with the interior scheme or the problem configuration. An

example is the use of Neumann symmetry conditions for inviscid walls. Even though the

symmetry condition is verifiably second-order accurate using the MMS procedure, it fails

to produce the proper results when applied in an inappropriate physical context. Thus, the

MMS procedure is only valid when used with physical insight to apply boundary conditions

in the correct way. If used correctly, the MMS procedure provides a method for the veri-

fication of complex boundary conditions and interior schemes for which no exact solutions

are known. In addition, it is found that it is best to use the conserved variables directly

to measure the solution error, as opposed to derived quantities, such as entropy. Entropy

appears to converge as second-order only when all conservation laws are satisfied, or when

specialized conditions are used to preserve constant entropy.

Future work will focus on modifications of the node-centered approach to allow for a

water-tight flux formulation. One possible approach is to introduce ghost nodes into the

node-centered formulation in a manner similar to the cell-centered formulation. Another im-

portant area of investigation includes consistent methods for boundary normal computation.

A possible strategy includes locally reconstructing the surface description from surround-

ing geometry information using a least squares procedure. Derivatives of the reconstructed

surface may then be used to estimate normal vectors.

53

Chapter 4

Preconditioning

4.1 Introduction

Compressible time-marching CFD algorithms rely on iterations to remove numeric

errors in two different ways: convection and dampening. Convection transports iterative

error out of the domain through boundaries at speeds on the order of the particle and

acoustic velocities. Large disparities between these two wave speeds at low Mach numbers

can cause dramatic convergence deceleration. This is because the time scale a time-marching

method must be able to resolve the fastest waves (typically acoustic) in the domain. When

the particle waves speeds are much lower in magnitude, the higher acoustic resolution

becomes unsuitable for the relatively slow moving particle waves, requiring many iterations

to remove errors at these speeds. Preconditioners alter the magnitude of the acoustic waves

such that they are the same order of magnitude as the particle wave speeds in a pseudo-time

approach. This results in faster and more efficient convergence [29–31,33,34].

Along with convection, dampening also removes iterative errors from the domain

through dissipation of high-frequency error. After decades of research, it appears that

some form of artificial dissipation is essential for stability where physical viscosity effects

are small or non-existent, such as for the inviscid Euler equations. Many different models

have been proposed to effectively introduce artificial dissipation into the problem, includ-

ing scalar, matrix, and hybrid schemes. Since artificial dissipation is generally constructed

based on the eigenvalues (wave speeds) inherent in the problem, preconditioning modifies

the dissipation operator. This has an effect on convergence and steady-state accuracy at

low Mach numbers.

A steady state solution is found once numeric errors have been completely removed.

54

This solution is still capable of differing from the real world solution. Assumptions such as

discretization linearity and simplified physics can cause these real errors. The precondition-

ing techniques explored in this work are capable of increasing the accuracy of steady state

solutions.

Unsteady (time independent) problems present additional challenges for precondition-

ing. Unsteady problems not only rely on convection and dissipation for convergence, but

have physically relevant acoustic and particle waves as part of the time dependent solution

itself. Capturing the physical time scales inherent in the problem is the goal of an unsteady

simulation. Preconditioners must be capable of optimizing convergence of the error prop-

agating waves, as well as capturing the unsteady dynamics of the problem. Devising such

“unsteady preconditioners” can be difficult to formulate and is the topic of this chapter.

Much work has been done using Roe diffusion with unsteady preconditioners [1,29,51].

Hosengadi et al. [1] show that Roe dissipation fails in low speed flows with small time

steps. To fix this issue, Liou [52,53] developed a new AUSM+-up scheme that is capable of

accurately resolving both the pressure and velocity fields in this regime. Potsdam et al. [51]

propose a blended Roe scheme that is capable of improved accuracy.

This work focuses on a new method of dissipation used in conjunction with precon-

ditioning to accurately solve highly unsteady low speed flows. A modified CUSP artificial

dissipation scheme is developed that provides improvements to traditional Roe dissipation

methods in certain flow regimes. Similar to Roe, CUSP’s formulation relies on the wave

speeds in it’s definition. The modification to these speeds through preconditioning causes

instabilities in traditional CUSP and AUSM schemes. The addition of pressure dissipa-

tion in the AUSM+-up scheme was shown to be effective. Here, this pressure dissipation

is adapted to take the form of CUSP. CUSP’s basic advantages lie in the fact that CUSP

splits the pressure dissipation from the flow field. This allows the modified CUSP scheme

to increase accuracy of results over preconditioned Roe dissipation.

This chapter is outlined as follows: First, a general preconditioning theory and frame-

work is discussed for steady and unsteady flows. Second, existing and new preconditioning

55

schemes are formulated, with a focus on artificial dissipation operators. Third, results are

presented for steady and unsteady flows. The unsteady flows presented include a convection

dominated case (propagating inviscid vortex) and a pressure dominated case (1D pipe flow

with oscillating back-pressure). Finally, conclusions based on the studies are given.

4.2 Preconditioning Scheme

Preconditioning schemes are used to adjust steady-state waves to help increase con-

vergence, and in some cases accuracy. The purpose of this section is to give the basics

of preconditioning implementation. General preconditioners are presented following the

framework that Merkle [34] presented. Details of different preconditioned sound speeds are

also presented. For simplicity, the following sections all address two-dimensional problems.

It is simple to extend these details to either 1D or 3D codes.

4.2.1 Conversion to Primitive Variables

In two-dimensions, the steady-state inviscid Euler equations can be represented by the

following equation.

∂Q

∂τ
+
∂F

∂x
+
∂G

∂y
= 0 (4.1)

where

Q =



ρ

ρu

ρv

ρE


, F =



ρu

ρu2 + p

ρuv

ρuh0


, G =



ρv

ρuv

ρv2 + p

ρvh0


(4.2)

Here, Q represents the conserved variable vector and F and G represent the inviscid

fluxes in the x- and y-directions respectively. The preconditioning method outlined by

Merkle requires that the conservered variable vector, Q, be converted to primitive variables,

Qv.

56

Qv =



p

u

v

T


(4.3)

The use of primitive variables are primarily for convenience in derivation, but do have

some advantages over conserved variables. Primitive variables make it easier to implement

arbitrary equations of state (ie ideal gas, super-critical, incompressible, etc.) to close the

model. For example, enthalpy is often tabulated as a function of temperature. With

conservative variables it is necessary to iteratively find temperature from the enthalpy. Since

temperature is a known quantity of the primitive variables, the enthalpy can be extracted

with little effort.

Conversion from conserved variables to primitive variables is possible through a Jaco-

bian matrix, Γ. The following equation is equivalent to Eq. 4.1 by use of the chain rule.

Γ
∂Qv
∂τ

+
∂F

∂x
+
∂G

∂y
= 0 (4.4)

where

Γ =
∂Q

∂Qv
=



ρp 0 0 ρT

uρp ρ 0 uρT

vρp 0 ρ vρT

h0ρp + ρhp − 1 ρu ρv h0ρT + ρhT


(4.5)

Subscripts p and T refer to partial derivatives with respect to that variable. For example,

ρp =
∂ρ

∂p
(4.6)

Here, it is assumed that density (ρ) and enthalpy (h) are functions of only pressure (p)

and temperature (T). For example, density and enthalpy are defined for an ideal gas in the

following equation.

57

ρ = ρ(p, T) =
p

RT
, h = h(p, T) =

Rγ

γ − 1
T (4.7)

This conversion of variables allows for a simple yet robust preconditioner to be applied.

4.2.2 Preconditioning Terms

In order to understand how the preconditioner will be added to the new primitive

variable equation, it is imperative to understand the convective wave dynamics of Eq. 4.4.

Eq. 4.4 can be rewritten using new Jacobian matrices Ax and Ay as shown below.

Γ
∂Qv
∂τ

+Ax
∂Qv
∂x

+Ay
∂Qv
∂y

= 0 (4.8)

The convective waves travel at the speed of the Eigenvalues (λ) of this problem. λ can

be found by solving the simple Eigenvalue problem presented below.

(Γ−1A− λI) = 0 (4.9)

where I is the identity matrix. With the discretization scheme presented in Chapter 2 these

Eigenvalues can be found to be,

λ =

{
qa, qa, qa ±Ac

}T
(4.10)

where

qa = Axu+Ayv, A =
√
A2
x +A2

y (4.11)

Here, c represents the physical acoustic sound speed, A represents the face area with x

and y components Ax and Ay, and qa is the face area weighted particle velocity. The area

weighted terms are used here for 2D finite volume flows.

The scheme, thus far, has yet to assume an equation of state to close the model.

Consistent with this, it is necessary to define the physical sound speed in an arbitrary

58

manner. Eq. 4.12 shows this arbitrary defintion

c2 =
ρhT

ρhTρp + ρT (1− ρhp)
(4.12)

As previously discussed, with a large disparity in the magnitude of these waves, con-

vergence and efficiency suffers. To attain fast convergence at low particle velocities, the

Jacobian Γ is replaced by a new Γp. Γp is selected to ensure that the wave speeds are of

the same order of magnitude. Γp can only apply to the pseudo-time terms to maintain time

accuracy of the simulation, since the real-time waves need to remain un-preconditioned. Γp

is defined below.

Γp =



ρ′p 0 0 ρT

uρ′p ρ 0 uρT

vρ′p 0 ρ vρT

h0ρ′p + ρhp − 1 ρu ρv h0ρT + ρhT


(4.13)

Γp is nearly identical to the actual Jacobian where ρ′p replaces ρp. ρ′p is a new term

that is not related to the physical derivatives. Selection of the best definition is part of

the study done here. To leave this derivation as general as possible, ρ′p is purposefully not

defined at this moment, but is addressed in the next section. The general Eigenvalues for

any selection of ρ′p are shown below.

λ =


qa

qa

1
2

[
qa
(
1 + d

d′

)
±
√
q2a
(
1− d

d′

)2
+ 4ρhtd′ A

2

]
 (4.14)

where

d = ρhTρp + ρT (1− ρhp)

d′ = ρhTρ
′
p + ρT (1− ρhp)

(4.15)

For preconditioning to be effective it is necessary for the acoustic wave speeds to be

59

the same order of magnitude as the particle speeds. λ3,4 in Eq. 4.14 contain both particle

waves and acoustic waves. Sankaran [29] and Merkle [34] showed that the acoustic waves for

preconditioned problems now travel at a new speed Vp. From Eq. 4.14 the “preconditioned

sound speed” can be written as

V 2
p =

ρht
d′

(4.16)

By selecting Vp to be the same order of magnitude as the particle wave speeds, the

goal of preconditioning is achieved. Once the preconditioned sound speed is selected it is

possible to back out the definition of ρ′p as

ρ′p =
1

V 2
p

− ρT (1− ρhp)
ρhT

(4.17)

The selection of Vp drives the definition of ρ′p in the preconditioning Jacobian matrix

Γp. The next sections show two popular methods for defining the preconditioned sound

speed.

Steady Preconditioning

Assuming a problem is steady state simplifies the model by letting physical time terms

go to zero. Steady state problems only have convective waves in pseudo-time. Modification

of these wave speeds can increase convergence, but not change the order of the scheme. For

this case, the artificial steady state sound speed (V s
p) is set to the particle wave speed,

V s
p =

√
u2 + v2 (4.18)

At low speeds, defining V s
p this way increases convergence and can reduce the error [29].

When Mach numbers are greater or equal to 1, there is no need to adjust the acoustic waves.

In fact, setting the artificial sound speed higher than the physical sound speed reduces

accuracy [29]. To limit the steady state artificial sound speed a simple minimum function

is used.

60

V s
p = min(

√
u2 + v2, c) (4.19)

In supersonic regimes, Eq. 4.19 will set the artificial sound speed to the actual sound

speed. This reduces the Eigenvalues to the their non-preconditioned form.

Unsteady Preconditioning

When physical time terms can no longer be neglected, the problem becomes unsteady.

The numerics to solve unsteady problems relies on stepping through time in some small

increment, ∆t. As ∆t becomes small, the physical acoustics dominate the problem. Cap-

turing these physical acoustics accurately requires that the sound speed not be altered. If

it is altered, convergence slow downs and accuracy problems may arise [1].

The Strouhal number (Str) is a dimensionless number that relates the time step to a

reference length and particle velocity. In effect, the larger the Strouhal number, the more

acoustically driven the problem is.

Str =
L

π∆t
√
u2 + v2

(4.20)

To create the unsteady preconditioner V u
p , the Strouhal number is introduced to

Eq. 4.19 to create,

V u
p = min

(
max

(√
u2 + v2, Str

√
u2 + v2

)
, c
)

(4.21)

There are several important characteristics of the unsteady preconditioner in Eq. 4.21.

First, as ∆t becomes small and Str becomes large, the scheme reduces to a non-preconditioned

state. This occurs because the preconditioned sound speed is “capped” at c. This behavior

is desirable to resolve the physically acoustic waves. The other main characteristic is that

as time steps become large (and the Str decreases) V u
p behaves as the steady state precon-

ditioner. This intuitively makes sense, as the particle velocities are now more important

and the time scale is less significant. It is also consistent with the idea that a steady state

61

problem has an infinite time step. The addition of the Strouhal number bridges the gap

between steady and acoustically driven unsteady problems.

Stagnation Points

Stagnation points are areas of the flow where particle velocities are zero. This is typical

in external aerodynamics where a leading wall interacts with a flow, such as the tip of an

airfoil. Both of the previous definitions break down at stagnation points. When the cell

reference velocity becomes zero, Eq. 4.17 becomes invalid due to a division by zero. In the

application of external flows, a free stream velocity is easily found. Using the free-stream

velocities near stagnation points is a prominent way of dealing with this problem. For

internal combustion-like flows, a free-stream value is not readily available and is not easily

definable. Using the particle velocity from near by cells as a reference at the stagnation

point solves this issue. The cases with stagnation points in this chapter were solved using

the free-stream velocities near stagnation regions.

4.3 Challenges with Dissipation Terms

Artificial dissipation is an essential term in the fluxes for stability. The numeric flux is

defined as,

F̂k =
1

2
(F(QL) + F(QR))−Dk(QR, QL) (4.22)

where Dk is the artificial dissipation at face k.

Many different models exist to define Dk. Roe dissipation is widely used in precon-

ditioning application and is explored here. Much work has already been done with pre-

conditioners, the goal of presenting it here is to validate that the models used in thesis

corroborate with previously found work. There are known issues with preconditioners and

Roe diffusion. For this reason a new modified CUSP is introduced. The basics of the

original CUSP scheme are presented in this section.

62

4.3.1 Roe

Roe discovered that the fluxes can be written in terms of the flux Jacobian and the

conserved variables, if the flux Jacobian is computed at the “Roe averaged state.” He was

successful in showing that

FR − FL = Ak(QR −QL) (4.23)

where A = ∂F
∂Q is the flux Jacobian. For the previous equation to hold true, A must be

computed using quantities that are averaged in a special way from the right and left states.

uk =

√
ρLul +

√
ρRuR√

ρL +
√
ρR

, vk =

√
ρLvl +

√
ρRvR√

ρL +
√
ρR

, h0k =

√
ρLh

0
l +
√
ρRh

0
R√

ρL +
√
ρR

(4.24)

By using this relationship, Roe was able to create a widely popular dissipation scheme

that is capable of stabilizing the the numeric fluxes.

Dk =
|Ak|

2
(QR −QL) =

Xk |Λk|X−1k
2

(QR −QL) (4.25)

where Xk and X−1k represent the left and right Eigenvectors, Λk is a diagonal matrix of

the Eigenvalues, and subscript k indicates the values are found at the face between cells.

The absolute value of the Eigenvalues helps to ensure that the proper wave directions are

maintained in the numeric fluxes. This method is often called Matrix dissipation.

It is straightforward to apply Roe’s matrix dissipation to primitive variables with pre-

conditioning.

D = Γv
∣∣Γ−1v Av∣∣ (QvR −QvL) = ΓvXv |Λv|X−1v (QvR −QvL) (4.26)

The preconditioned Roe scheme provides stability for the new preconditioned wave

speeds. Xv and X−1v are defined below:

63

Xv =



0 0
λ̃4−qn d

d′

λ̃4−λ̃3
λ̃3−qn d

d′

λ̃3−λ̃4

0 −ny nx
ρ(λ̃3−λ̃4)

nx
ρ(λ̃4−λ̃3)

0 nx
ny

ρ(λ̃3−λ̃4)
ny

ρ(λ̃4−λ̃3)

1 0
1−ρhp
ρhT

λ̃4−qn d
d′

λ̃4−λ̃3
1−ρhp
ρhT

λ̃3−qn d
d′

λ̃3−λ̃4


(4.27)

X−1v =



−1−ρhp
ρhT

0 0 1

0 −ny nx 0

0 ρ
[
λ̃3 − qn dd′

]
nx ρ

[
λ̃3 − qn dd′

]
ny 0

0 ρ
[
λ̃4 − qn dd′

]
nx ρ

[
λ̃4 − qn dd′

]
ny 0


(4.28)

where

nx =
Ax
A
, ny =

Ay
A
, qn = nxu+ nyv, λ̃3,4 =

λ3,4
A

(4.29)

Extensive research has been done on Roe dissipation in conjunction with both steady

and unsteady preconditioners. Hosengadi [1] showed through asymptotic analysis the gen-

eral trend of behavior for these schemes. A table showing the effects of Strouhal number

and Mach number have on the accuracy can be found in Table 4.1.

From Table 4.1, it is clear that Roe is sufficient for steady or low Strouhal number prob-

lems. Roe dissipation breaks down when the Strouhal number is high and Mach number is

low. In these cases, the different preconditioning schemes struggle in different areas. Steady

preconditioning is capable of resolving velocity fields, but pressure (acoustic) suffers. The

opposite is true of the unsteady preconditioner. These results are validated in section 4.4.

4.3.2 CUSP Background

Roe Diffusion is computationally expensive. Inversion and creation of large matrices

are costly. CUSP was originally introduced to be more computationally efficient than Roe as

well as have better upwinding and shock capturing characteristics. Jameson [36] presented

a similar framework to Roe, but with constants (α∗ and β) that are less computationally

64

Table 4.1: Description of how preconditioned effects convergence (O(1) is preferred) using
a Roe diffusion scheme [1].

Steady Low Mach Number Limit

Pressure Field Velocity Field

No Preconditioning O(M) O(1/M)

Steady Preconditioning O(1) O(1)

Unsteady Low Mach/ Low-Str Number Limit

Pressure Field Velocity Field

No Preconditioning O(M) O(1/M)

Steady Preconditioning O(1) O(1)

Unsteady Preconditioning O(1) O(1)

Unsteady Low Mach/ High-Str Number Limit

Pressure Field Velocity Field

No Preconditioning O(1) O(1/M)

Steady Preconditioning O(Str) O(1)

Unsteady Preconditioning O(1) O(1/M)

expensive to compute. In two dimensions with area weighted terms this can be expressed

by,

D =
1

2
α∗cA∆Q+

1

2
β (F(QR)−F(QL)) (4.30)

where ∆ refers to the difference between right and left states. For example,

∆Q = QR −QL (4.31)

Using simple algebra and several substitutions the above equations can be rewritten

into a more convenient form:

D =
1

2
αAc∆Q+

1

2
βQ̄∆qa +

1

2
β∆fp (4.32)

where

65

αAc = α∗Ac+ βq̄a, fp =



0

Axp

Ayp

qap


(4.33)

and an over-bar refers to the arithmetic average of the right and left states.

α and β are chosen to give optimal characteristics in subsonic, transonic and supersonic

regions. In supersonic regions, true upwinding is desired. Upwinding allows information at

on faces to be only a function of the cells that lie “up wind” from the face. One point on

the interior of the transonic shock also provides crisp and efficient shock waves. In subsonic

regions the directions of the waves is persevered in the fluxes. The details of derivation of

what α and β should be are omitted in this work [36,54]. They are defined below:

α = |Ma| (4.34)

β =


max(0, 2Ma − 1) if 0 ≤Ma ≤ 1

−max(0, 2Ma + 1) if − 1 ≤Ma ≤ 0

sign(Ma) if |Ma| ≥ 1

(4.35)

Ma in the above equations is the local area weighted Mach number, Ma = qa
Ac . This

distinction in 2D is important. Using the area weighted Mach number ensures that diffusion

is only introduced on faces where fluxes cross the boundaries of the cell.

CUSP has clear advantages in numerical efficiency, drastically reducing the number of

computations required. CUSP’s ability to discretely capture shocks and upwind for super-

sonic flows demonstrate some the accuracy advantages of CUSP. A primary disadvantage of

CUSP is that when linearized, it is not diagonally dominant. Many implicit architectures,

such as line-implicit Gauss-Siedel used in this work, require the left hand side (LHS) of the

equations be diagonally dominant. Roe diffusion naturally can be linearized to meet this

requirement. For the tests in this chapter, Roe diffusion is used for the LHS regardless of

66

which method is implemented on the right hand side of the equation.

4.3.3 Modified CUSP Scheme

The limitations on preconditioned Roe diffusion highlighted by Table 4.1 has been

studied by a number of researchers. Potsdam [51] created a blended Roe scheme to remedy

the issue. Potsdam et al. used selection matrices to combine the pressure fields of the un-

steady preconditioner and the velocity fields of steady preconditioners. Although effective,

this work focuses on the benefits of CUSP’s split pressure formulation to generate accurate

solutions in the low Mach number, high Strouhal number limit.

The CUSP scheme previously discussed breaks down when the preconditioning schemes

are introduced at low Mach numbers. Liou et al. [53] showed a similar trend with AUSM,

a CUSP-like dissipation scheme. To solve this issue in AUSM, Liou introduced two new

forms of dissipation into the AUSM scheme; added pressure dissipation for the interfacial

Mach number and additional velocity diffusion to the pressure terms. In order to determine

to correct dissipation additions required, Liou relied on asymptotic analysis. This analysis

is not repeated here.

While the addition of pressure dissipation is readily accepted in research [1, 37, 38],

the velocity dissipation is much more controversial. Liou’s velocity dissipation terms are

designed to only have an effect for transonic and supersonic flows and to have no impact on

low speed flows. Hosengadi [1] showed that it was necessary for shock like applications to

remove pressure oscillations, but that the amount of dissipation added was dramatic and

had an adverse impact on accuracy.

Following the work of Liou, the additional pressure diffusion is added to CUSP in this

work. Since the focus is on low speed flows, velocity dissipation is omitted. Liou’s pressure

dissipation term is written in a form that is consistent with CUSP below.

γAc̄Q̄∆p (4.36)

where

67

γ =
Kp

fa

max(1− αM̄e
2
, 0)

ρ̄c̄2
(4.37)

and

fa = Mo(2−Mo), M2
o = min(max(M̄e

2
, M̄e

2
Str2), 1) (4.38)

Me =

√
u2 + v2

c
(4.39)

Kp is a constant between 0 and 1. Liou proposes that a value of 0.25 is effective. This value

is used for the results of this chapter.

It is interesting to note that the Mach number (Me) for the added pressure dissipation

cannot be the area weighted Mach number as used for the traditional CUSP scheme. It

is possible for the area weighted Mach number to become 0 on certain faces, which causes

divide by 0 errors in the γ term. For this reason and to be consistent with the preconditioner

definitions, the actual local Mach number is used.

The newly modified CUSP scheme can be written entirely by

D =
1

2
αAc∆Q+

1

2
βQ̄∆qa +

1

2
β∆fp + γAc̄Q̄∆p (4.40)

4.4 Results

In this section, many different test scenarios are presented to highlight the new CUSP

scheme. First, it is necessary to validate and verify that both Roe and CUSP were imple-

mented properly. Verification of the interior scheme is done using MMS solutions. A steady

state airfoil is analyzed for validation. Second, in order to isolate the velocity field from

the pressure field, two problems are introduced: an inviscid traveling vortex and 1D pipe

with a time oscillating pressure on the outflow. The vortex is a velocity driven problem,

whereas the pipe is an acoustically driven problem. The results from Table 4.1 are validated

using Roe dissipation and compared to the new CUSP algorithm described by this chapter.

68

Table 4.2: List of test scenarios for Fig .4.1
Symbol Test Scenario

RN Roe dissipation with No preconditioning

RS Roe dissipation with Steady preconditioning

CN CUSP dissipation with No preconditioning

CS CUSP dissipation with Steady preconditioning

Convergence of these cases is demonstrated to show the effect of low-speed precondition-

ing. Although many tests were performed to understand the physics and numerics of these

particular problems, only the fundamentally important cases are shown in this section. All

tests in this section are performed on 2D strand grids.

4.4.1 Verification and Validation

Verification provides a robust way of confirming numeric accuracy and code implemen-

tation. It is beneficial to use MMS verification any time a new scheme is being introduced.

This simple check was performed in Fig. 4.1 using steady state MMS. The different lines

and symbols found throughout Fig. 4.1 are described by Table 4.2.

The MMS verification is able to show that for all quantities and methods, the output

is second order accurate and behaves properly. It is interesting to observe that although all

lines are second order accurate, the accuracy is clearly changing. This could be due to a

number of factors. Regardless of whether the RHS is using CUSP or Roe, the LHS requires

the use of the diagonally dominant Roe scheme. For the parameters of source terms chosen

to define the MMS solution, the optimum preconditioned pressure additions of CUSP could

be providing an excessive amount of dissipation.

To get general validation of the dissipation schemes, a NACA 0012 airfoil was tested at

a relatively low Mach number. Fig. 4.2 shows the pressure contours for a variety of cases.

A free-stream cut-off velocity was specified for preconditioning at the stagnation point

and is necessary for convergence. Fig. 4.2(c) shows the solution without preconditioning.

The stagnation point is not captured in the detail as the two preconditioned cases found

69

(a) Pressure (b) u Velocity

(c) v Velocity (d) Temperature

Fig. 4.1: Verification plots using steady state MMS for primitive variables p, u, v, and T
with a Mach number of 0.05. Symbols are defined by Table 4.2

70

(a) Roe with Steady Precon. (345 Iterations) (b) CUSP with Steady Precon. (584 Iterations)

(c) Roe without Precon. (2724 Iterations)

Fig. 4.2: Pressure contours of a 2D NACA 0012 airfoil with free stream Mach number of
0.05 with no angle of attack.

in Figs. 4.2(a) and 4.2(b). Near the stagnation point, the particle velocity approaches

zero. This creates a very large disparity in the wave speeds. Although the solution in the

non-preconditioned case converges, it is possible for the overall convergence criteria to be

reached where large errors are still propagating locally near the stagnation point. Local

preconditioning aids in overall convergence, as well as the convergence at the stagnation

point.

The iterations for each airfoil is also reported in Fig. 4.2. Without preconditioning,

dramatic efficiency problems are seen. Implementation of CUSP slows down convergence

slightly. This is generally attributed to the difference between the LHS and RHS in the

implementation. This simple case highlights how preconditioning is able to increase the

accuracy of the solution as well as aids in convergence.

71

Fig. 4.3: Initial contour of vorticity on a 64 by 64 strand mesh.

4.4.2 Inviscid Propagating Vortex

Inviscid vortices are primarily velocity driven problems. Although a pressure field

exists, pressures only respond to the velocity field. An inviscid propagating vortex is an

unsteady problem, where some vortex travels at a free stream (U∞) velocity in time. Ideally,

the vortex will maintain it’s shape with time and simply translate through the domain.

CFD discretization creates diffusion that will introduce errors into the solution. To test

this phenomena, a simple 2D vortex is used to initialize the domain. Unsteady time steps

are used to allow the vortex to propagate across the domain. In this simplified case, it is

assumed the free stream velocities only exist in the x direction.

The vortex is initialized using several user defined parameters. R is the radius of

the vortex, β is the strength of the vortex, and xc and yc are used to specify its starting

point. Fig. 4.3 shows a sample 2D initialization of the vorticity over a square domain. The

following equations define how the vortex is initialized and assume an ideal gas equation of

state.

72

δu = −U∞β y−ycR e−r
2/2

δv = U∞β
x−xc
R e−r

2/2

δT = 0.5(U∞β)2e−r
2
/cp

(4.41)

where

u0 = U∞ + δu, v0 = δv, T0 = T∞ − δT

ρ0 = ρ∞

(
T0
T∞

) 1
γ−1

, ρ∞ = P∞
RgasT∞

, P0 = ρ0 ∗RgasT0

r =

√
(x−xc)2+(y−yc)2

R , U∞ = M∞
√
γRgasT∞

(4.42)

Due to the unsteady nature of the problem, the boundaries of the domain become

difficult to enforce. The exact solution as a function of time was imposed on the boundaries.

This may cause issues as the vortex enters or leaves the domain. To avoid this issue,

boundaries were placed “far” from the edges of the vortex.

In the absence of viscous terms, the exact solution should allow the vortex to travel

with no diffusion at the free stream velocity. The exact solution can be represented by the

initialization equations from Eqs. 4.41 and 4.42 where the center is moving. The new center

is found as

xc(t) = xc0 + U∞t, yc(t) = yc0 (4.43)

At a given time, the exact vorticity can be found to be

ω =
U∞β

R
e−r

2/2(2− r2) (4.44)

For unsteady problems, selection of the physical time step is critical. It is important

to choose a time step to capture the flow dynamics efficiently and correctly. The “CFL”

73

number relates a velocity, time step, and cell width to help specify the time step.

CFL =
Udt
dx

(4.45)

where U is some velocity scale, dx is typically taken as the average cell width and dt is the

physical time step. U can be chosen to be either the particle speed (CFLu) or the acoustic

speed (CFLc). CFLu = 1 allows the particles to move about 1 cell per time step, where

CFLc = 1 allows the physical acoustics do the same. These two situations are of current

interest specifically how the new CUSP modification and preconditioners behave.

In order to validate the accuracy of Table 4.1, as well as the implementation of the

preconditioners, Roe diffusion was tested. For this velocity driven case, Table 4.1 indicates

that using no preconditioner and the unsteady preconditioner in the high Strouhal limit

will yield reduced accuracy.

Fig. 4.4(a) shows the data for a “snapshot” of vorticity at some time after the vortex

is allowed to translate down stream for various preconditioners. The vorticity is taken at

the centerline. The steady preconditioner captures the vorticity (or velocity field) much

better than the non-preconditioned case. The introduction of the Strouhal number in the

unsteady case, works to “blend” the steady preconditioner to the un-preconditioned case.

Here, the time step is large enough that the high Strouhal limit is not reached.

Fig. 4.4(b) shows the convergence of the psuedo-time terms at a given time step. The

unsteady preconditioner outperforms the other schemes. By converging with fewer itera-

tions, the unsteady preconditioner decreases the computation time required. Fig. 4.4(b)

highlights just one of many time steps. As the number of time steps in a problem grows,

this speed up becomes increasingly important. The results from Fig. 4.4 are consistent with

those found in Hosengadi et al. [1] and with Table 4.1.

To explore the effects of higher Strouhal numbers, the CFL number was lowered.

Fig. 4.5 shows a similar case to Fig. 4.4, but with a CFLc = 1 rather than CFLu = 1.

The reduction in the time step causes a dramatic increase to the Strouhal number. In this

case, the unsteady preconditioner reduces to the un-preconditioned state, consistent with

74

(a) Vorticity (b) Convergence

Fig. 4.4: Plots of propagating vortex with Roe diffusion on a square strand domain with a
CFLu = 1, Str = 20.4, Mach = 0.005, and 20 points across the vortex.

(a) Vorticity (b) Convergence

Fig. 4.5: Plots of propagating vortex with Roe diffusion on a square strand domain with a
CFLc = 1, Str = 4076, Mach = 0.005, and 20 points across the vortex.

its definition. The vorticity plot found in Fig. 4.5(a) shows this behavior and highlights the

unsteady preconditioners inability to accurately describe the velocity field at high Strouhal

numbers. Again, Fig. 4.5(b) shows that the steady preconditioner suffers to efficiently

converge in this highly unsteady case.

The unsteady preconditioning method is extremely effective at converging efficiently.

When the time step is very small, it outperforms the steady preconditioner. As time steps

grow, it is capable of reducing to the steady preconditioner. This process is shown by

Fig. 4.4(b). The convergence advantages of the unsteady preconditioner are offset in this

75

(a) Vorticity (b) Convergence

Fig. 4.6: Plots of propagating vortex with CUSP diffusion on a square strand domain with
a CFLu = 1, Str = 20.4, Mach = 0.005, and 20 points across the vortex.

scenario by the drop in velocity field accuracy. The desire to capitalize on the unsteady

preconditioners superior convergence while not loosing accuracy is the main motivation

behind the implementation of a preconditioned CUSP.

In order to showcase the effectiveness of CUSP, the cases in Figs. 4.4 and 4.5 were re-

run using the newly modified CUSP diffusion algorithm. These results are found in Figs. 4.6

and 4.7.

Both Figs. 4.6(a) and 4.7(a) show accuracy improvements in the unsteady precondi-

tioned case when compared to their Roe counter parts. In the low Mach number high

Strouhal number limit, the modified CUSP is able to resolve the unsteady issue that Roe

portraits. Similar to the airfoil in the previous section, CUSP shows a slight decrease

in convergence when compared with Roe. This is most likely due to the LHS and RHS

discrepancies.

4.4.3 Oscillating Back Pressure

The previous case highlighted the velocity field. In order to isolate the pressure field, a

case was devised to purposefully introduce pressure waves as the driving factor. A simple 1D

pipe was modeled using a 2D strand code with uniform cells in the y-direction. Pressure on

the outflow was oscillated sinusoidally in time to create pressure waves. This is represented

76

(a) Vorticity (b) Convergence

Fig. 4.7: Plots of propagating vortex with CUSP diffusion on a square strand domain with
a CFLc = 1, Str = 4076, Mach = 0.005, and 20 points across the vortex.

by

px=L = P∞(1 + εsin(wt)) (4.46)

where P∞ is the free-stream pressure, px=L is the outlet pressure, w is the frequency that

the pressure is driven, t is the physical time, and ε is some scale factor.

The selection of ε was set so the overall pressure varied less than 1/2 of the dynamic

pressure. This prevents the pressure oscillation from reversing the flow direction. It is

noteworthy that 1/2 was chosen relatively arbitrarily. ε is defined below by

ε = 0.5
0.5ρ∞u

2
∞

P∞
(4.47)

Another dimensionless parameter is introduced that relates the frequency of oscillation,

the length scale of the domain, and the initial flow velocity. The length scale (length of the

pipe L) for this problem was set to one. This parameter (Ω) is used to set the frequency of

oscillation.

Ω =
wL

u0
(4.48)

The boundary conditions for the inlet of the pipe warrant discussion. It is necessary

77

to fix enough of the state to close the problem, while still allowing the outflow pressure

to propagate. One method is to use non-reflecting Reimann invariants. Here, stagnation

pressure and enthalpy were fixed at the inlet. These allow the pressure to propagate out

the inlet, but do exhibit some reflective behavior. At low frequencies, this was found to

be negligible. At high frequencies, it was possible to observe flow behavior before the

information arrived at the inlet, avoiding the issue altogether.

This case has the advantage of having an exact solution for truly incompressible flows.

The solutions show that at a given time step, the pressure is linear in space while the

velocity is constant. The exact solution is presented without derivation below.

u(t) = − ε

ρ∞u∞(1 + Ω2)

[
sin(wt)− Ωcos(wt) + Ωe−u∞t/L

]
(4.49)

p(x, t) = [εsin(wt) + ρ∞u∞u(t)]
x

L
− ρ∞u∞u(t) (4.50)

When frequency and Mach number are low, the incompressible solution should be a

good approximation of the compressible solution. Figs. 4.8 and 4.9 show this situation

for both CUSP and Roe. Pressure (at the center of the domain) and velocity are plotted

over time. Good agreement is shown between the exact incompressible solution for all

methods, again validating the algorithms. Figs. 4.8(c) and 4.9(c) reiterate that the unsteady

preconditioner is clearly preferred for convergence characteristics.

To understand the flow behavior as frequency increases, it is necessary to explore how

the acoustic wave travel in time and space. The period of the outflow pressure oscillation

(Tw) in seconds can be calculated by

Tw =
2π

w
=

2πL

ΩM∞c∞
(4.51)

These pressure waves travel in space at the acoustic speed (c). Multiplying the period

by the speed at which the wave travels, yields the physical period (Lw) of the sinusoidal

pressure wave.

78

(a) Pressure over time (at center). (b) Velocity over time.

(c) Convergence

Fig. 4.8: Plots of oscillating back pressure with Roe diffusion using a 2D strand mesh of
128 by 4 with a CFLc = 100, Str = 81.5, Mach = 0.005, Ω = 10.

79

(a) Pressure over time (at center). (b) Velocity over time.

(c) Convergence

Fig. 4.9: Plots of oscillating back pressure with CUSP diffusion using a 2D strand mesh of
128 by 4 with a CFLc = 100, Str = 81.5, Mach = 0.005, Ω = 10.

80

(a) Pressure over time (at center). (b) Convergence

Fig. 4.10: Plots of oscillating back pressure with Roe diffusion using a 2D strand mesh of
128 by 4 with a CFLc = 1, Str = 8150, Mach = 0.005, Ω = 100.

Lw = c∞Tw =
2πL

ΩM∞
(4.52)

When frequencies are low (i.e. Ω = 10) the physical period of the wave is much larger

than the domain of the problem. In these cases, the pressure will appear linear and the

incompressible exact solution becomes a good approximation. Lw in Figs. 4.8 and 4.9

was approximately 125 times larger than the domain length. As Ω increases the solution

becomes increasingly invalid. Fig. 4.10 shows a case where Ω = 100. Here, the physical

period is about 12.5 times larger than the domain scale. The curvature of the physically

acoustic waves is now no longer negligible. Fig. 4.10(a) shows the pressures at the center of

the domain. It is clear that the the compressible effect of the pressure waves is beginning

to manifest in the solution.

To explore the effects of the acoustic waves over the domain of the pipe, Ω was increased

to 4000. This creates a physical period about 1/3 the length of the domain. The expected

solution over the domain is a perfectly traced sinusoidal pressure wave that correlates to the

outflow oscillations. Figs. 4.11(a) and 4.12(a) show the pressure waves, as they are allowed

to travel leftwards through the domain. In order to accurately track the high frequency

waves, CFLC was reduced dramatically to 0.025.

Table 4.1 states that for a pressure driven problem, the steady state preconditioner

81

(a) Pressure over the domain. (b) Convergence

Fig. 4.11: Plots of oscillating back pressure with Roe diffusion using a 2D strand mesh of
128 by 4 with a CFLc = 0.025, Str = 326000, Mach = 0.005, Ω = 4000.

(a) Pressure over the domain. (b) Convergence

Fig. 4.12: Plots of oscillating back pressure with CUSP diffusion using a 2D strand mesh
of 128 by 4 with a CFLc = 0.025, Str = 326000, Mach = 0.005, Ω = 4000.

should struggle when Roe dissipation is used. This is consistent with the wave portrayed

in Fig. 4.11(a). The addition of the modified CUSP scheme improves the steady state

preconditioner’s accuracy in this regime.

Even though CUSP is able to improve the accuracy of the physical pressure waves

using the steady preconditioner, the steady preconditioner convergence still suffers. This

is highlighted in Figs. 4.11(b) and 4.12(b). Unsteady preconditioning in combination with

CUSP is capable of accurately capturing both velocity and pressure fields, and has better

convergence characteristics.

82

4.5 Conclusions

Shortcomings of Roe artificial dissipation models with preconditioning were shown in

the low Mach number, high Strouhal number limit. A new CUSP scheme was introduced to

improve accuracy in this regime for both acoustic and convective unsteady problems. The

behavior of the preconditioned CUSP scheme was studied for acoustic dominated prob-

lems by setting up flow in a pipe with oscillating back-pressure. For convection-dominated

flows, the scheme was evaluated for a propagating inviscid vortex. The new CUSP scheme

significantly reduced discretization errors in both regimes. It was also shown that the in-

troduction of the Strouhal number into the preconditioning definition improves efficiency

greatly as time steps become small. Combining the new CUSP with unsteady precondition-

ing is robust and improves accuracy as well as efficiency of compressible CFD algorithms

for low speed flows.

Future work will focus on the linearization of the CUSP scheme. This will reduce the

stability and convergence issues when having different left and right hand side dissipation

implementation. More work will focus on defining the Strouhal number locally, rather than

with global scales. The current Strouhal number definition requires some insight to the

physics of the problem, where local scales could better “tune” the preconditioning and

require less user input. Exploration into the addition of velocity dissipation terms is also

planned. Another important are for future work includes investigation of the fluxes on

moving meshes. This is a particular interest of strand grids.

83

Chapter 5

Conclusions

The objectives of this thesis were to:

1. Determine a robust and general method for boundary condition verification.

2. Devise a general method to unify boundary implementation for arbitrary formulations

with arbitrary spatial discretization methods.

3. Formulate a preconditioning scheme with improved accuracy for acoustic and convec-

tive unsteady problems.

Strategies for accomplishing these objectives were discussed in detail in the main body of

this thesis. Here, a summary of the findings for each objective is given.

5.1 Conclusions for Objective 1 - New Boundary Verification Technique

The method of manufactured solutions (MMS), which has been heavily researched

as an effective tool for verification of interior discretizations, was extended to apply to

boundary conditions. Introducing a new boundary residual that mimics the form of the

interior scheme allows a single manufactured solution to verify both the boundary and

interior simultaneously. This method applies to both node- and cell-centered paradigms.

The verification method was tested using quasi-1D flow and 2D flow. The proper order

of accuracy was obtained using MMS when the boundary conditions were implemented

properly. To ensure that the boundaries were implemented properly, cases with exact

solutions were tested.

Situations were explored where verification failed, but the exact solution proved that

the boundaries in question were implemented correctly. This occurred when the MMS

solutions chosen violated the characteristic direction of the boundary. It is necessary to

84

ccarefully hoose either the location of the boundary or the MMS solution to ensure the

characteristic directions are respected.

Verification is a mathematical exercise and shows only the correctness of the boundary

algorithms. Verification is not sufficient or intended to ensure that physical problems have

the proper boundary conditions imposed. An example of this was explored with Neumann

symmetry at an inviscid wall boundary for Ringleb flow. The Neumann symmetry verifies

correctly, but is not a proper boundary condition for physics of the problem. This was also

evident with inviscid airfoil cases, in which qualitative errors at surface boundaries were

apparent.

5.2 Conclusions for Objective 2 - New Generalized Boundary Implementation

Framework

A generalized framework was created for boundary implementation that includes Dirich-

let, Neumann, extrapolation, and conservation law conditions at boundaries. Unlike node-

centered boundary conditions, cell-centered boundary conditions are not easily amenable

to using the equations of motion. Consequently, care must be taken with cell-centered

schemes to choose conditions that do not conflict with the governing equations of motion.

Extrapolation was found to be useful for cell-centered schemes for this reason.

5.3 Conclusions for Objective 3 - New Preconditioning Scheme

Shortcomings of Roe artificial dissipation models with preconditioning were shown in

the low Mach number, high Strouhal number limit. A new convective upwind split pressure

(CUSP) scheme was introduced to improve accuracy in this regime for both acoustic and

convective unsteady problems.The behavior of the preconditioned CUSP scheme was studied

for acoustic dominated problems by setting up flow in a pipe with oscillating back-pressure.

For convection-dominated flows, the scheme was evaluated for a propagating inviscid vortex.

The new CUSP scheme significantly reduced discretization errors in both regimes.

85

5.4 Suggestions for Future Work

Future work for boundary verification will focus on modifications of the node-centered

approach to allow for a water-tight flux formulation. One possible approach is to introduce

ghost nodes into the node-centered formulation in a manner similar to the cell-centered for-

mulation. Another important area of investigation includes consistent methods for boundary

normal computation. A possible strategy includes locally reconstructing the surface descrip-

tion from surrounding geometry information using a least squares procedure. Derivatives

of the reconstructed surface may then be used to estimate normal vectors.

Future work for preconditioning schemes needs extension to viscous flows. Viscous

flows add additional scales to the problem, making preconditioning less intutive. Viscous

flows are prevelant in many practical problems of interest. Further exploration of needs to

occur in three-dimensions and for more complex flow fields. Rotorcraft simulation provide

a good scenario where viscous boundaries, complex flows and three-dimensional effects all

exist.

86

References

[1] Hosangadi, A., Sachdev, J., and Sankaran, V., “Improved Flux Formulations for Un-
steady Low Mach Number Flows,” ICCFD7 Paper ICCFD7-2202, 7th International
Conference on Computational Fluid Dynamics, Big Island, Hawaii, July 2012.

[2] Katz, A., Wissink, A., Sankaran, V., Meakin, R., and Chan, W., “Application of
strand meshes to complex aerodynamic flow fields,” Journal of Computational Physics,
Vol. 230, 2011, pp. 6512–6530.

[3] Chan, W., Rogers, S., Pandya, S., Kao, D., Buning, P., Meakin,
R., Boger, D., and Nash, S., “Chimera Grid Tools User’s Manual,”
[http://people.nas.nasa.gov/ wchan/cgt/doc/man.html], 2010.

[4] Work, D., Tong, O., Workman, R., Katz, A., and Wissink, A., “Strand Grid Solution
Procedures for Sharp Corners,” AIAA paper 2013-0800, AIAA 51st Aerospace Sciences
Meeting, Dallas, TX, January 2013.

[5] Wissink, A., Sitaraman, J., Sankaran, V., Mavriplis, D., and Pullmiam, T., “A multi-
code python-based infrastructure for overset CFD with adaptive cartesian grids,” AIAA
paper 2008-927, AIAA 46st Aerospace Sciences Meeting, Reno, NV, January 2008.

[6] Sitaraman, J., Katz, A., Jayraman, B., Wissink, A., and Sankaran, V., “Evaluation of
a multi-solver paradigm for CFD using overset unstructured and structured adaptive
Cartesian grids,” AIAA paper 2008-660, AIAA 46st Aerospace Sciences Meeting, Reno,
NV, January 2008.

[7] Meakin, R., Wissink, A., Chan, W., Pandya, S., and Sitaraman, J., “On Strand Grids
for Complex Flows,” AIAA paper 2007-3834, AIAA 18th Computational Fluid Dy-
namics Conference, Miami, FL, June 2007.

[8] Wissink, A., Katz, A., Chan, W., and Meakin, R., “Validation of the Strand Grid
Approach,” AIAA paper 2009-3792, AIAA 19th Computational Fluid Dynamics Con-
ference, San Antonia, TX, June 2009.

[9] Wissink, A., Katz, A., and Sitaraman, J., “PICASSO: A Meshing Infrastructure for
Strand-Cartesian CFD Solvers,” Tech. Rep. 2012-2916, 2012.

[10] Roache, P., “Code Verification by the Method of Manufactured Solutions,” ASME
Journal , Vol. 124, March 2002.

[11] Roy, C., Nelson, C., Smith, T., and Ober, C., “Verification of Euler/Navier-Stokes
codes using the method of manufactured solutions,” International Journal for Numer-
ical Methods in Fluids, Vol. 44, 2004, pp. 599–620.

[12] Veluri, S., Roy, C., and Luke, E., “Comprehensive Code Verification for an Unstruc-
tured Finite Volume CFD Code,” AIAA paper 2010-127, AIAA 48th Aerospace Sci-
ences Meeting, Orlando, FL, January 2010.

87

[13] Diskin, B., and Thomas, J., “Comparison of Node-Centered and Cell-Centered Un-
structured Finite-Volume Discretizations: Inviscid Fluxes,” AIAA paper 2010-1079,
AIAA 48th Aerospace Sciences Meeting, Orlando, FL, January 2010.

[14] Diskin, B., Thomas, J., Nielsen, E., Nishikawa, H., and White, J., “Comparison of
node-centered and cell-centered unstructured finite-volume discretizations. Part I: vis-
cous fluxes,” AIAA Paper 2009-0597, 2009.

[15] Diskin, B., and Thomas, J., “Effects of mesh regularity on accuracy of finite-volume
schemes,” AIAA paper 2012-0609, AIAA 50th Aerospace Sciences Meeting, Nashville,
TN, January 2012.

[16] Eriksson, S., and Nordström, J., “Analysis of mesh and boundary effects on the ac-
curacy of node-centered finite volume schemes,” AIAA paper 2009-3651, AIAA 19th
Computational Fluid Dynamics Conference, San Antonia, TX, June 2009.

[17] Katz, A., and Sankaran, V., “Mesh Quality Effects on the Accuracy of Euler and
Navier-Stokes Solutions on Unstructured Meshes,” ICCFD6 Paper, 6th International
Conference on Computational Fluid Dynamics, St. Petersburg, Russia, July 2010.

[18] Diskin, B., and Thomas, J., “Accuracy Analysis for Mixed-Element Finite-Volume
Discretization Schemes,” NIA Report 2007-08, National Institute of Aerospace, 2007.

[19] Roy, C., “Review of Code and Solution Verification Procedures for Computational
Simulation,” Journal of Computational Physics, Vol. 205, 2005, pp. 131–156.

[20] Luke, E., Hebert, S., and Thompson, D., “Theoretical and Practical Evaluation of
Solver-Specific Mesh Quality,” AIAA paper 2008-0934, AIAA 46th Aerospace Sciences
Meeting, Reno, NV, January 2008.

[21] Giles, M., “Accuracy of Node-based Solutions on Irregular Meshes,” Lecture Notes in
Physics, Vol. 323, 1989, pp. 273–277.

[22] Choudhary, A., Roy, C., Luke, E., and Veluri, S., “Issues in Verifying Boundary Con-
ditions for 3D Unstructured CFD Codes,” AIAA paper 2011-3868, AIAA 20th Com-
putatonal Fluid Dynamics Conference, Honolulu, June 2011.

[23] Rizzi, A., “Numerical Implementation of Solid Body Boundary Conditions for the Euler
Equations,” ZAMM , Vol. S8, 1978, pp. 301–304.

[24] Jameson, A., Baker, T., and Weatherill, N., “Calculation of Inviscid Transonic Flow
Over a Complete Aircraft,” AIAA paper 83-0103, AIAA 24th Aerospace Sciences Meet-
ing, Reno, NV, January 1986.

[25] Dadone, A., and Grossman, B., “Surface Boundary Conditions for the Numerical So-
lution of the Euler Equations,” AIAA Journal , Vol. 32, 1994, pp. 285–293.

[26] Balakrishnan, N., and Fernandez, G., “Wall Boundary Conditions for Inviscid Com-
pressible Flows on Unstructured Meshes,” Int. J. Numer. Meth. Fluids, Vol. 28, 1998,
pp. 1481–1501.

88

[27] Wang, Z. J., and Sun, Y., “Curvature-Based Wall Boundary Condition for the Eu-
ler Equations on Unstructred Grids,” AIAA paper 2002-0966, AIAA 40th Aerospace
Sciences Meeting, Reno, NV, January 2002.

[28] Allmaras, S. R., “Lagrange Multiplier Implementation of Dirichlet Boundary Condi-
tions in Compressible Navier-Stokes Finite Element Methods,” AIAA Computation
Fluid Dynamics Conference, AIAA 2005-4714.

[29] Sankaran, V., and Merkle, C. L., “Analysis of Preconditioning Methods for the Euler
and Navier-Stokes Equations,” Tech. Rep., von Karman Institute for Fluid Dynamics,
Tullahoma, TN, 1999.

[30] Turkel, E., “Preconditioning Techniques in Computational Fluid Dynamics,” Annual
Review 1999.31, Annu. Rev. Fluid Mech., 1999.

[31] Caughey, D., and Jameson, A., “Fast preconditioned multigrid solution of the Euler
and NavierStokes equations for steady, compressible ows,” International Journal for
Numerical Methods in Fluids, Vol. 43, 2003, pp. 537–553.

[32] Chorin, A., “A Numerical Method for Solving Incompressible Viscous Flow Prolbems,”
Journal of Computational Physics, Vol. 2, August 1967, pp. 12–26.

[33] Weiss, J., and Smith, W., “Preconditioning Applied to Variable and Constant Density
Flows,” AIAA Journal , Vol. 33, No. 11, November 1995, pp. 2050–2057.

[34] Merkle, C., Sullivan, J., Beulow, P., and Sankaran, V., “Computation of Flows with
Arbitrary Equations of State,” AIAA Journal , Vol. 36, No. 4, 1998, pp. 512–521.

[35] Sankaran, V., and Merkle, C., “Efficiency and Accuracy Issues in Contemporary CFD
Algorithms,” AIAA Paper 2000-2251, AIAA, 2000.

[36] Jameson, A., “Analysis and Design of Numerical Schemes for Gas Dynamics 1 Artifi-
cial Diffusion, Upwind Biasing, Limiters and Their Effect on Accuracy and Multigrid
Convergence,” International Journal of Computational Fluid Dynamics, Vol. 4, 1995,
pp. 171–218.

[37] Shen, Y., and Zha, G., “Low diffusion E-CUSP scheme with implicit high order WENO
scheme for preconditioned NavierStokes equations,” Computers and Fluids, Vol. 55,
2012, pp. 13–23.

[38] Zha, G., Shen, Y., and Wang, B., “An improved low diffusion E-CUSP upwind scheme,”
Computers and Fluids, Vol. 48, 2011, pp. 214–220.

[39] Gustafson, K., Introduction to Partial Diferential Equations and Hilbert Space Methods,
Dover, Mineola, 3rd ed., 1999.

[40] Kundu, P. K., and Cohen, I. M., Fluid Mechanics, Elsevier, Oxford, 4th ed., 2008.

[41] Jameson, A., “Analysis and Design of Numerical Schemes for Gas Dynamics 2 Artificial
Diffusion and Discrete Shock Structure,” International Journal of Computational Fluid
Dynamics, Vol. 5, 1995, pp. 1–38.

89

[42] Babuska, I., “Error-Bounds for the Finite Element Method,” Numer. Math., Vol. 16,
1971, pp. 322–333.

[43] Katz, A., and Sankaran, V., “Mesh Quality Effects on the Accuracy of Euler and
Navier-Stokes Solutions on Unstructured Meshes,” Journal of Computational Physics,
Vol. 230, No. 20, 2011, pp. 7670–7686.

[44] Tota, P., and Wang, Z. J., “Meshfree Euler Solver Using Local Radial Basis Functions
for Inviscid Compressible Flows,” AIAA paper 2007-4581, AIAA 18th Computational
Fluid Dynamics Conference, 2007.

[45] Kirshman, D., and Liu, F., “Gridless Boundary Condition Treatment for a Non-Body-
Conforming Mesh,” AIAA paper 2002-3285, AIAA 32nd Fluid Dynamics Conference,
St. Louis, MO, June 2002.

[46] Koh, E., and Tsai, H., “Euler Solution Using Cartesian Grid with Least Squares Tech-
nique,” AIAA paper 2003-1120, AIAA 41st Aerospace Sciences Meeting, Reno, NV,
January 2003.

[47] Shapiro, A. H., The Dynamics and Thermodynamics of Compressible Fluid Flow ,
Vol. 2, The Ronald Press Company, New York, 1954.

[48] Barth, T. J., “Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler
and Navier-Stokes Equations,” Tech. Rep., von Karman Institute for Fluid Dynamics,
Moffett Field, CA, March 1994.

[49] Luo, H., Xiao, H., Nourgaliev, R., and Cai, C., “A Comparative Study of Different
Reconstruction Schemes for a Reconstructed Discontinuous Galerkin Method on Ar-
bitrary Grids,” AIAA paper 2011-3839, AIAA 20th Computational Fluid Dynamics
Conference, Honolulu, HI, June 2011.

[50] Andren, J., Gao, H., Yano, M., Darmofal, D., Ollivier-Gooch, C., and Wang, Z., “A
Comparison of Higher-Order Methods on a Set of Canonical Aerodynamics Applica-
tions,” AIAA paper 2011-3230, AIAA 20th Computational Fluid Dynamics Conference,
Honolulu, June 2011.

[51] Potsdam, M., Sankaran, V., and Pandya, S., “Unsteady Low Mach Preconditioning
with Application to Rotorcraft Flows,” AIAA paper 2007-4473, AIAA Computational
Fluid Dynamics Conference, Orlando, FL, July 2007.

[52] Liou, M., “A Sequel to AUSM: AUSM+,” Journal of Computational Physics, Vol. 129,
1996, pp. 364–382.

[53] Liou, M., “A sequel to AUSM, Part II: AUSM+-up for all speeds,” Journal of Compu-
tational Physics, Vol. 214, 2006, pp. 137–170.

[54] Katz, A., “Course Notes for MAE 6440 - Advanced Computational Fluid Dynamics,”
Tech. Rep., Utah State University, Logan, UT, 2012.

	Improvement in Computational Fluid Dynamics Through Boundary Verification and Preconditioning
	Recommended Citation

	tmp.1374262671.pdf.9c6oC

