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ABSTRACT

Knowledge Extraction in Video Through the Interaction Analysis of Activities

by

Omar U. Florez, Doctor of Philosophy

Utah State University, 2013

Major Professor: Dr. Curtis Dyreson
Department: Computer Science

Video is a massive amount of data that contains complex interactions between moving

objects. The extraction of knowledge from this type of information creates a demand for

video analytics systems that uncover statistical relationships between activities and learn

the correspondence between content and labels. However, those are open research problems

that have high complexity when multiple actors simultaneously perform activities, videos

contain noise, and streaming scenarios are considered. The techniques introduced in this

dissertation provide a basis for analyzing video. The primary contributions of this research

consist of providing new algorithms for the efficient search of activities in video, scene

understanding based on interactions between activities, and the predicting of labels for new

scenes.

(154 pages)
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PUBLIC ABSTRACT

Knowledge Extraction in Video Through the Interaction Analysis of Activities

Omar U. Florez

A video is a growing stream of unstructured data that significantly increases the amount

of information transmitted and stored on the Internet. For example, every minute YouTube

users upload 72 GB of information. Some of the best applications for video analysis include

the monitoring of activities in defense and security scenarios such as the autonomous planes

that collect video and images at reduced risk and the surveillance cameras in public places

like traffic lights, airports, and schools.

Some of the challenges in the analysis of video correspond to implement complex op-

erations such as searching of activities, understanding of scenes, and predicting of new

content. Those techniques must transform a video into a collection of more informative

structures (features, objects, and models) to be analyzed by a computer by considering the

relationships of causality and co-occurrence between hidden and observable variables.

The research presented in this dissertation proposes and demonstrates novel algorithms

for automatic and semi-automatic analysis of activities in video. The analysis of video is

approached with machine learning, databases, and information retrieval algorithms to find

repeating patterns and extract co-occurring activities and label them appropriately. The

experiments demonstrate that the proposed techniques overcome the limitations associated

to each of those operations in a better way than existing techniques.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The increasing level of interest for videotaping human activity has produced a massive

amount of data. For example, every minute YouTube users upload 48 hours of video [1],

which is around 72 GB per minute and 103 TB per day. The ever increasing volume of data

creates an urgent demand for video analytics systems in government and industry, in par-

ticular for defense and security, health care, and surveillance. For instance, the Army, Navy

and Air Force, and the Department of Defense, account for 58.4% of all federal spending on

data storage ($1.02B) to mainly store video [2]. Applications of video analytics in security

include autonomous planes that collect video and images at reduced risk, surveillance cam-

eras in public places like traffic lights, airports, and schools, and automatic analysis of videos

shared on YouTube, Facebook, Twitter, and other online sharing websites. The advances

in medical science have created medical diagnosis systems that have massive databases of

electrocardiogram, tomography, and monitoring videos to provide automatic diagnosis and

treatment while reducing the variance of subjective interpretation and human error [3]. On

the industry side, mobile consumption of video is growing dramatically as home bandwidth

increases. Algorithms for video analysis deliver relevant videos to viewers based on their

preference and video content. Example includes websites that recommend videos such as

Netflix and YouTube.

The process of analyzing video into higher-level structures that progressively add more

information and value is shown in Figure 1.1. To a computer, an image is a 2D array of

pixels with discrete numerical values for color; and a video is a sequence of frames ordered

by time. To support searching, scene understanding, and predicting in video, a video (en-
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Figure 1.1. Value associated to different transformations for video.

coded as an array of pixels) must be transformed into a collection of higher-level structures

(features, objects, and models) describing activities made by moving objects. These ab-

stractions can then be analyzed by a computer by considering the relationships of causality

and co-occurrence between hidden and observable variables and modeled with statistical,

data mining, and machine learning algorithms. As depicted in Figure 1.1, predicting and

scene understanding are the transformations that add the greatest value to the goal of an-

alyzing video. However, those problems are open and have high complexity when multiple

actors simultaneously perform activities, videos contain noise, and streaming scenarios are

considered.

In this dissertation, we present novel algorithms for automatic and semi-automatic

analysis of activities in video. The analysis of video content is approached with machine

learning, databases, and information retrieval algorithms to find repeating patterns and

extract co-occurring activities and label them appropriately.

1.2 Video Analysis

The analysis of video is composed of different tasks, each with particular goals and

algorithms. Figure 1.2 depicts the primary steps made when analyzing video, those that
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Figure 1.2. Traditional tasks for analyzing video. Blocks that are shaded represent tasks
that received contributions from this dissertation.

are shaded represent steps that received contributions from this dissertation.

We define the eleven steps as follows.

1. Video Generation: A video consists of a sequence of frames that records activities at

a specific frame rate. Important operations in this step include video encoding and

color management.

2. Feature Extraction: This step consists of representing important information from

video with significant characteristics of less complexity or dimensionality. Examples

of significant features include timeseries to model the temporal behavior of moving

objects, gradients to describe important spatio-temporal points associated to high

variation of motion, and key frames that model the most important scenes during a

video.

3. Storage: This step focuses on the efficient serialization of features in secondary mem-

ory. This is important as videos are large and their size is proportional to the duration

of the recording.



4

4. Streaming: Videos are too large to fit in main memory, but they can be streamed in

real time so only a small portion is temporally stored in main memory for analysis.

Algorithms in this step define time windows in the stream and count subsets of features

over time. The distribution of features usually changes over time (a problem known

as concept drift), so the importance of existing subsets is updated in terms of duration

and age.

5. Compression: Repeated patterns, activities, or features in video can be indexed and

efficiently stored in memory to reduce the size of a video’s content. Continuous features

can be described using symbolic approaches to reduce the number of features needed

to represent activities in video.

6. Similarity Search: This step accounts for the need to make queries on the video

content. Noise usually distorts the feature extraction and therefore affects the rep-

resentation of activities. Thus, similarity search algorithms quickly retrieve patterns

similar to a given query pattern in a short time with a fixed degree of uncertainty.

Examples of similarity queries are range and K-nearest neighbors queries.

7. Understanding: The goal of this step is to model how different moving objects interact

in a video. Some of these interactions are frequent, while others are only important

during the duration of a time window. An interaction can be modeled with random

variables that describe relationships of dependency or co-occurrence.

8. Prediction: Video frames or time windows can be labeled by users. For example, some

parts of a surveillance recording could be annotated as dangerous scenes. The correct

label prediction for new scenes based on prior scenes is the goal of this step.

9. Summary: Videos are large but often have repeated scenes. They can be summarized

by a shorter number of important frames. The importance of a frame can be measured

in terms of how much information it contains such as interesting events or activities.
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10. Editing: The changes on the features that describe activities in a video allow us

to generate new content. Examples include actor replacement and automatic scene

removal.

11. End-User Applications: This step includes concrete applications that use the algo-

rithms in the above steps to provide interesting services such as pedestrian detection,

self-driving vehicles, automatic detection of accidents, and generation of statistics in

soccer games.

1.3 Research Scope

The process of searching, understanding, and predicting activities in video involves

many open problems in computing, which lack an optimal method to provide fast and

precise results. This dissertation presents the following contributions to different stages of

those problems. The contributions have been validated through the peer-review process in

important computing conferences in the areas of data mining (ACM CIKM’10, ’11, ’12),

multimedia information retrieval (ACM SAC’09, ACM MIR’10, ACM SIGAPP’12), and

databases (DEXA’08).

1. Search: We proposed a hashing algorithm, Timeseries Sensitive Hashing (TSH) [4,5],

and formulated the hypothesis that similar timeseries of different lengths map to the

same bucket of a hash table without normalization. Experiments support this conjec-

ture and show that this feature is ideal for large databases as it enables sublinear time

algorithms for searching and linear time algorithms for clustering of timeseries. Exist-

ing research only considered Euclidean vectors, which have the important restriction

of needing the same dimensionality (length) for all of the vectors. The natural step

to obtain an Euclidean vector from a timeseries is to normalize the lengths for the

existing activities, but normalization removes important temporal information and

hinders use of the timeseries in streaming scenarios. The major contribution of our

research is to successfully overcome this limitation allowing us to model activities

with trajectories of variable length. This makes sense because the duration of similar
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activities can vary in a video. For the case of Euclidean vectors, we proposed a novel

graph data structure called the Hyperspherical Region Graph (HRG), and showed

it to be faster than state-of-the-art tree-based algorithms for similarity search. This

is because HRG performs search by going through different neighbors (or subtrees)

without backtracking to upper nodes as tree-based approaches do [6].

2. Understanding: We developed a method to model activities in a video [7,8]. Our main

hypothesis during this investigation is that video scenes could be modeled by the ways

in which words group into topics in a text document. Every scene thus corresponds to

a multinomial distribution over a number of independent activities and every activity

is a cluster of co-occurring features (trajectories or events). This is similar to how

words form topics in a text document. By testing this hypothesis, we find that this

approach notably reduces the complexity of the problem as scenes could be described

with a finite number of topics, but in different proportions. A posterior counting of

subsets of those topics in a video stream allowed us to extract rules to understand the

most frequent interactions between moving objects in a video.

3. Prediction: We introduced a Probabilistic Graphical Model, the Crossdomain Prob-

abilistic Model (CPM) [9, 10], that automatically finds the topics that model the

co-occurrence of trajectories in two parts (domains) of a video. We made the hypoth-

esis that those topics form a common structure of hidden random variables that work

like a bridge to transfer the user annotations (labels) from an existing source domain

to a new one. Experiments showed that we can improve the prediction of labels if we

use content from other domains, which supports our hypothesis. The major contribu-

tion of this research is to incorporate the latent variables that explain the statistical

dependency of features from other domains to increase the average precision in the

prediction of labels for new scenes.

The above algorithms collocate with others that form the state of the art in feature

extraction, similarity search, scene understanding, and scene prediction. To describe that

relationship, we depict alternatives to Timeseries Sensitive Hashing (TSH), the Crossdomain
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Figure 1.3. A hierarchy of different algorithms to analyze video.

Probabilistic Model (CPM), and the Hyperspherical Region Graph (HRG) for each step in

Figure 1.3. In the following chapters, we will describe these algorithms in detail, study

related work, and perform extensive experiments to show their goodness with respect to

similar contenders.

1.4 Example

In this section, we provide an example that shows the outcomes obtained in each of

the steps considered in this dissertation. These results are visually depicted in Figure 1.4.

The generation of a video consists of recording individual frames over time to capture the

interactions of moving objects in scenes. A feature extraction method is needed to find the

trajectories of each moving object, which are shown in the first row of images in Figure 1.4.

A technique to search trajectories by similarity allows us to group comparable trajectories.

This quickly reduces the total number of examples into a vocabulary of discrete elements.

The trajectories shown in each figure of the second row of the example correspond to
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an element in that dictionary of activities. When multiple objects interact in the same

time window, we can measure their frequency of co-occurrence over time. We model this

with random variables that groups co-occurring activities into topics, such that a scene

is generated by a multinomial distribution over those topics. The frequency of subsets of

topics co-occurring in time windows is a value that dynamically changes in the video and

it allows us to rank subsets of activities by importance, as shown in the third row of the

example. Finally, the prediction of scene labels corresponds to computing the probability of

assigning a label for a new scene considering the interactions in previous parts of the video

and their correlation with labels.
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Figure 1.4. An example that shows the outcomes of every transformation for a video.



10

CHAPTER 2

DISCOVERY OF INTERPRETABLE TIMESERIES IN

VIDEO THROUGH DISTRIBUTION OF SPATIO

TEMPORAL EVENTS

2.1 Introduction

Motion capture databases are large and widely used in computer animation, robotics,

physiotherapy, and sport analysis. Since these databases have traditionally stored motions

as time series, many recent efforts have been focus on rapidly indexing [11], comparing [12],

and querying [13, 14] the time series associated with moving objects. However, we are still

at a point where the original motion information comes from frequently expensive motion

capture hardware devices [15], such as the one shown in Figure 2.1. Hence, most research

has been constrained to work with public datasets freely available on the web. In response to

the lack of affordable hardware, we present in this chapter a method to extract interpretable

time series directly from videos. In contrast to the time series extracted using traditional

methods, our time series are not based on the tracking of physical points, but describe

the motion performed in a video stream as the distribution of spatiotemporal events over

frames.

Existing approaches to the expression of human motion as time series have been mo-

tivated by the need for measuring the performance of moving objects as one-dimensional

signals. Although different types of motion capture devices have been employed for such

a goal all have been based on the temporal reading of sensors placed on specific parts of

the body. In [17], Knight et al. use accelerometers in a wearable system to analyze and

search optimal sporting movements. In [18], Hsu et al. align time series acquired from a

motion capture device to produce realistic translations of style in human motion anima-
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Figure 2.1. Hardware-based motion capture. Left: Motion capture sensors in the human
body. Right: The small dots represent sensors placed on specific parts of the person’s body.
Values of these sensors are then tracked over time to generate time series [16].

tion. However, although time series acquired from sensor readings are generally accurate,

the ubiquitous presence of videos makes them attractive as potential sources for motion

analysis. As an example, Keogh et al. [19] generate one-dimensional time series from video

surveillance data by tracking the right hand of a person over time with the goal of matching

the set of time series where the person points with a gun to a target during one second.

In contrast to this approach, ours does not require a learning process to identify specific

motion shapes through video frames since it only recognizes the abrupt intensity changes

made in a local spatiotemporal neighborhood within the input video.

In this chapter, we extract interpretable time series from a widely-available source

of motion video. Based on the assumption that natural motion is typically variable, but

contains some periodicity over time, we want to generate time series that precisely capture

the frequency and amplitude of the movement performed in the video. We experimented

with human movements in video and capture the motions by using spatiotemporal gradients

as descriptors. Rather than learning models from hand-labeled shapes or events in sequences

of frames, we attempt to first describe the motion of each video and then cluster similar

motions based on the time series extracted from videos and not from a raw sensor stream.

Subsequently, we were able to categorize a set of 114 videos that organizes human motion
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into two categories (hand-based and foot-based human motion) with a precision of 86.0%

and 75.9%.

The rest of this chapter is organized as follows. Section 2.2 reviews related work.

Section 2.3 describes the detection of spatiotemporal gradients within videos. Section 2.4

presents the method to convert the discrete sequences of gradients into continuous time

series. In Section 2.5, we show how the time series extracted with this method can be used

to categorize human motion and the problems associated with clustering variable length

time series. Finally, we conclude in Section 2.6.

2.2 Related Work

Much research has been done to extract information from video data. Some of this

research provides methods to make a structural representation of videos. Early work by

Kobla et al. [20] extracts a trail of points in a three dimensional space through reduction

of dimensionality of the Cosine transform coefficients for each frame of a video. In [21],

Fleischman et al. represent hierarchical patterns of temporal information as events from a

sequence of frames. These events are then classified to discriminate video content. Ad-

ditionally, Schuldt et al. [22] also use spatiotemporal gradients to recognize actions from

video data. However, this approach requires prior knowledge, i.e., a set of hand-labeled

videos, to train the SVM classifier, and widely depends on the spatiotemporal position of

each gradient point. Regrettably, such information varies in presence spatial distortion like

movement of the camera and zoom in/out operations. More recently, Lai et al. [23] in-

troduce a motion model to represent animal motion from surveillance videos by using the

difference of consecutive frames as video descriptors.

Although the above-mentioned projects perform well in their respective application

domains, they do not describe the entire motion in the video as a continuous one-dimensional

function over time.

2.3 Spatiotemporal Gradients

In this section, we present the way we extract spatiotemporal gradients from a video.
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Analogous to image analysis, where spatial gradients (or corners) are used to describe

shapes, we use spatiotemporal gradients, not to describe spatial shapes, but motions in

videos. Note that, in image analysis only spatial components are considered, but in video

streams we also deal with the temporal component. Hence, the neighborhood of a point

takes values from the same frame and also from previous and subsequent frames. Our

intuition is that a motion m carried out in the video v is the combination of spatiotemporal

gradients (or interesting points of Laptev and Linderberg [24]) through the frames. These

gradients are generally points with large variation in their spatiotemporal neighborhood.

The advantages of using this type of features in v are:

• In contrast to global spatiotemporal descriptors [25], the spatiotemporal gradients use

local information between image sequences. Hence, subtler spatial variations between

frames are detected.

• Description of the motion based on local gradients can deliver more stable results over

changes of rotation, scale, and video sampling than other features such as textures,

lines, and blobs.

To detect spatiotemporal gradients, we use the spatiotemporal extension of the Harris

Corner Detector [26] made by Laptev and Lindeberg in [24]. Given a point p(x0, y0, t0)

placed in the position (x0, y0) of the image i contained at the frame t0, we are interested

in detecting any point p whose local variations in all directions (x, y, and t) is strong. The

variations of p(x0, y0, t0) in the directions x, y and t are represented by the first order spatial

and temporal derivatives (∂x, ∂y, and ∂t) of the image intensity ip at point p:

Lx = ∂x(g(p, σ2s , σ
2
t )× ip)

Ly = ∂y(g(p, σ2s , σ
2
t )× ip)

Lt = ∂t(g(p, σ2s , σ
2
t )× ip)
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where σs and σt represent the standard deviation with respect to space and time respectively.

The values of σs and σt circumscribe the extension of the spatiotemporal neighborhood

around the point p, and g is the spatiotemporal Gaussian kernel centered at p defined as:

g(p, σ2s , σ
2
t ) =

e
−
(

(x−xo)2

2σ2s
+

(y−yo)2

2σ2s
+

(t−to)2

2σ2t

)
√

(2π)3σ4sσ
2
t

We use the second moment matrix to compute µ, the intensity structure of the local

neighborhood of p. µ is a 3-by-3 symmetric matrix composed of the variations of the points

p ∈ V in directions x, y and t.

µ(p) = g(p, σ2s , σ
2
t )×


L2
x LxLy LxLy

LxLy L2
y LyLt

LxLy LyLt L2
t


Intuitively, the matrix µ contains all the local changes of image intensities in spatial

and temporal directions. Our task consists on finding the local maxima in µ above some

threshold value. Note that the resulting second moment matrix is noisy and rectangular

because it is based on derivatives. Hence, we averaged it with a smooth circular window as

the Gaussian weighting function. A good approximation to finding the local maxima in µ

is the Harris corner function which combines the determinant and the trace of µ as follows.

H(u) = det(µ)− (1/27)trace3(µ)

Then, positive values of H correspond to points with high variation of intensity both

in the spatial and temporal dimensions. As we are interested in high changes of local varia-

tion, there is no room for considering spatiotemporal interest points with small variations.

Hence, we take the top-k points to represent the motion exhibited on each video while sup-

pressing irrelevant variations. The process to identify spatiotemporal gradient from a video

is summarized in Algorithm 1.
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Algorithm 1 Extract Gradients (Video v, int σ2t , int σ2t )

1: for t = 1 to number frames(v) do
2: image← v(t);
3: for x = 1 to width(image) do
4: for y = 1 to height(image) do
5: p← image(x, y, t);
6: Lx(x, y, t)← ∂x(g(p, σ2s , σ

2
t ) ∗ p);

7: Ly(x, y, t)← ∂y(g(p, σ2s , σ
2
t ) ∗ p);

8: Lt(x, y, t)← ∂t(g(p, σ2s , σ
2
t ) ∗ p);

9: µ(x,y,t)← g(p, σ2s , σ
2
t )×

 L2
x LxLy LxLy

LxLy L2
y LyLt

LxLy LyLt L2
t

 ;

10: end for
11: end for
12: end for
13: H ← det(µ)− (1/27)trace3(µ);
14: [g values, x, y, t, L2

t ]← (H > 0);
15: return [g values, x, y, t, L2

y];

2.4 Motion as Timeseries

In this section, we show that spatiotemporal gradients can be turned into time series

to mine motions. A time series is a sequence of observations made sequentially in time and

typically spaced at uniform time intervals. We saw before that given a video v, gradients

can locally represent high intensity variation in spatiotemporal neighborhoods. However,

a time series representation of v has the advantage in describing the entire motion in a

more comprehensive (and one-dimensional) way. Here, we argue that given a video v and

a temporal variable e (called an event in this chapter), a suitable interval of the values of

e defines a shape that can well characterize the type of motion performed in v. Intuitively,

this interval of values is designated as the time series TS that characterizes v. We shall first

define the way we define and quantify an event e at time t. Then, we provide an example

to show how the different values of e over time define a time series.

Definition 1 (event). Given a video v, the event e = (t, G, σ2t ) is defined by the existence

of a set of spatiotemporal gradients gi ∈ G within the interval delimited by [t − σt, t + σt),

where
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1. t is the number of the frame in the video v where e is placed,

2. σ2t is the temporal variance used before to extract gradients,

3. The duration of the event is 2× σt, and

4. The value of the event e is defined as e = |G| ×
∑|G|

i=1 |gi|.

Definition 2 (time series). Given a set of events et ∈ E whose values depend on time t,

the time series TS for the video v is defined as

TSv = et such that t ∈ [1, |v|]

where |v| is the number of frames present in v.

As an example, Figure 2.2 shows the temporal distribution of events from a person

that makes a running motion in a video. Each number in the time-axis represents the

current frame in the video stream and the temporal variance is σ2t = 2 for each frame. Note

that, although the total motion performed in the video can be represented as one general

time series (TS4), some similar patterns are repeated over time (TS1, TS2, and TS3). In

this chapter, we call these patterns unit motions, the minimum pattern in the general time

series (TS4) that captures the nature of the movement present in a sequence of frames.

Although several types of unit motions can be found if a person performs different types of

movements, we assume that we only deal with videos of one type of motion.

From the unit motions shown in Figure 2.2, we can see that a time series relies on three

important attributes.

1. Amplitude. The value of this attribute depends on the value of each event, i.e., the

product of the number of gradient points used to represent the global time series

and the magnitude of change of each gradient associated with an event, as shown in

Definition 1. Note that, by taking the most intensive gradients, we assure to consider

the gradients associated with regular motions.

2. Frequency. This value represents the number of occurrences of a repeating event per

unit motion. Since different temporal variance values lead to define different events,
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Figure 2.2. Temporal distribution of events from a person that makes a running movement
in a video. Note that different time series can be obtained from the video. Although TS4
represents the total motion in the video, we are interested in detecting unit motions (TS1,
TS2, and TS3) that comprise comprehensive types of motions during shorter time periods.

we set this value as constant for all the videos. In other words, a different amount of

gradient points may fall into one event if we set a different duration for the same set

of events.

3. Length. The duration of a time series depends on the duration of the movement

performed in v. Hence, we obtain different lengths from two videos even if they

contain the same type of movement.

Both the amplitude and frequency comprise the information that differs one time series

from another. However, motions are often of different length which makes comparison

difficult. We will discuss our approach to solve this problem in the next section.

2.4.1 Acquiring Time Series for Human Motion Interpretation

We are now ready to algorithmically discuss the extraction of human motion time

series from video stream data. Given a video v, we are interested in retrieving the k most

important spatiotemporal gradients in terms of sharp changes in a local neighborhood whose
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Figure 2.3. Spatial changes of the moving object (in white) with respect to time are used
to evaluate the position of the half line that will divide the body of a person into lower and
upper regions. Note that the position of the half line varies since the position of the person
also varies at each frame. Pixels with variation of intensity close to zero are shown in black.

extension is defined by the squared root of the spatial and temporal variance σ2s and σ2t ,

respectively.

The motion m in v is mainly characterized by the motion exhibited in the upper and

lower part of the human body. If we assume that the motion is made perpendicular and

horizontal to the camera, a half line that divides the human body into two parts (upper

and lower) can be used to describe the global human motion as two time series. Each time

series represents the motion performed in the upper or lower part of the body.

For such a goal, we employ the intensity of the spatial variation of each frame with

respect to time. This information is contained in the three dimensional matrix L2
t and

describes the spatial variations of the moving object by considering contiguous frames. If a

spatial region has slightly changed over these frames, the value of L2
t is close to zero, as is

shown in Figure 2.3. Note that, since the Extract Gradients() method retrieves L2
t , we use

the information contained in it to evaluate the half lines of the person’s body (i.e., moving

object) by computing the mean with respect to y of the values of L2
t that are not zero in

each frame. This line is only defined in the frames that contain spatiotemporal gradients;

otherwise its value is zero. The spatiotemporal gradients that are below its corresponding

half line are considered gradients that represent the lower part motion. Otherwise, they

belong to the type of gradients that represents the upper part motion. Figure 2.4 shows the

two types of gradients (upper and lower placed) found in a video.
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Figure 2.4. By using the half line, we can detect two types of spatiotemporal gradients: lower
(in lighter circles) and upper (in darker circles). The length of horizontal line represents
the duration of an event. Note how spatiotemporal gradients are defined within the interval
represented by the length of this line.

Once we obtain a discrete set of spatiotemporal gradients categorized by their spatial

location in the human body, we want to describe the human motion as a continuous function.

Instead of counting the number of events per frame and obtaining a coarse sampling of the

time series, we follow our definition of events to express the time series as a distribution of

events over time. In such a case, given a frame at the time t, we consider the set of gradients

gi ∈ G that fall in the short-time window of time length equal to [t− σt, t+ σt] as an event

whose value is defined as |G| ×
∑|G|

i=1 |gi|. By slicing this window from the first to the last

frame, we average the number of gradients available in contiguous events and smooth some

noise produced by considering an arbitrary temporal variance in the algorithm. The result

is a composed time series that convolves the number of gradients detected at each event

with the total value of the event. Intuitively, the time series can also be considered as the

distribution of event values over time.

2.5 Clustering Timeseries

In this section, we want to organize human motion time series according to similarity.

This process is known as clustering in data mining and offers some challenges in the context

of human motion.

First, we need to iteratively compare time series of varying length. The length of each

time series depends on the duration of the motion attained in each video. Furthermore,
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Algorithm 2 Extract Timeseries (Video v, int σ2s , int σ2t , int k)

1: [gradients, x, y, t, L2
t ]← Extract Gradients(v, σ2s , σ

2
t );

2: [g values, x, y, t, L2
t ] ← max1≤i≤k{sort([g values, x, y, t, L2

t ])};
3: half lines ← mean(L2

t , 2); // evaluate the mean of Lt with respect to the second
dimension y

4: for t = 1 to number frames(v) do
5: for g in G do
6: if t− σt ≤ tg ≤ t+ σt then
7: if yg < half lines(t) then
8: lower g(t)← lower g(t) ∪ g;
9: else if yg ≥ half lines(t) then

10: upper g(t)← upper g(t) ∪ g;
11: end if
12: end if
13: end for
14: lower timeseries(t)← |lower g(t)| ∗

∑|lower g(t)|
i=1 lower gi;

15: upper timeseries(t)← |upper g(t)| ∗
∑|upper g(t)|

i=1 upper gi;
16: end for
17: return [lower timeseries, upper timeseries];

the same person can perform faster or slower movements at different times. Hence, we

commonly obtain time series with variable length and amplitude even if we choose two time

series of the same type of motion. This fact has a direct effect in clustering tasks because we

iteratively measure the dissimilarity between pairs of time series to set cluster memberships

and evaluate centroids. In fact, traditional distance functions, like the ubiquitous Euclidean

distance, are not suitable in this context since they are based on the pair-wise comparison

of two patterns. In other words, Euclidean distance is unable to tolerate small distortions

and misalignments in a sequence or compare two sequences of different length.

In response to such issues of Euclidean distance, Dynamic Time Warping (DTW) has

been chosen as the preferred dissimilarity function when comparing two time series. How-

ever, DTW is still improved in terms of accuracy by first scaling in length and amplitude

of the associated time series. This effect has recently been noted by other authors. As an

example, Fu et al. in [13] claimed that “it has been shown that in many domains it is also

necessary to match sequences with the allowance of a global scaling factor.” To compare
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two time series (TS1 and TS2) of different length (|TS1| < |TS2|), we avoid pair-wise com-

parison by scaling the longest time series TS2 to the smallest one TS1 by removing the less

important coefficients of the Fourier representation of TS2. The resulting time series TS2′

has the same length of TS1 while still preserves the information contained in the original

time series TS2. This approach leads us to reduce the high error rates obtained by using

the Euclidean distance to compare two time series of different length.

Second, although we could compare the global time series extracted from the video

(e.g., TS4 in Figure 2.2), we prefer to compare unit motions for this task. This is because

the time series associated with the entire video records both the distribution of gradients

over frames and also the silence periods with no motion in the video. Considering unit

motions as words in a voice signal and the remainder of the signal as noise or silence gaps

serves in this context as an analogy. Since the frames associated with intervals without

motion often varies in length, by comparing words only, we reduce the error produced by

adding variable silence gaps in the time series. Thus, if a video only contains one type of

movement, each unit motion is an independent portion of total time series that characterizes

the video.

To extract unit motions from the video, we use the Zero-Crossing rate method heavily

used in speech recognition to detect the interval of the signal that contains isolated words.

This method segments the time series by returning the start and end points of each unit

motion and consists of measuring the rate at which the signal changes from positive to

negative with respect to a horizontal level. Since many unit motions may be retrieved, we

always choose the first one for later activities. If the time series does not exhibit any unit

motion, we consider the frames to contain no motion.

2.5.1 Experimental Results

We tested our proposed method to extract time series from the videos of the Action

Database [22] that consists of 114 gray-scale videos of 6 different types of motions (boxing,

hand clapping, hand waving, jogging, running, and walking) performed by 19 people. All

videos have the same frame size (120 x 160 pixels) and frame rate (25 fps). The number of
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frames in the videos varies from 300 to 750 frames and includes 40 minutes of video in total.

In our experiments, we assume that the movement is made in an orthogonal and horizontal

position with respect to the camera.

For the clustering of the human motion videos, two unit motions (i.e., time series), one

from the lower and one from the upper part of the body, are extracted from each video. We

use the k-Means algorithm to cluster the pairs of time series with k=2, anticipating that

one resulting cluster contains hand-based movements (boxing, hand clapping, and hand

waving), and the other foot-based movements (jogging, running, walking). We measure the

quality of our approach by measuring the precision of each cluster in each type of motion

j, which is defined as follows.

precisionk =
N(ck)

N(cj)
× 100%

where N(ck) represents the number of videos correctly categorized in cluster k and N(cj)

corresponds to the total number of videos that contains the type of motion j (19 videos per

each type). The results of this measure per each type of motion are summarized in Table

2.1.

In the case of the hand-based movement cluster, note that both boxing and hand

clapping motions exhibit more accurate results than the hand waiving motion. This is

because, in the hand waving motion the occasional presence of hand movement below the

half line of the body adds some noise to the pair of time series extracted.

On the other hand, note that the foot-based movement cluster exhibits 11.7% less

accurate results on average than the hand-based movement. This is because these types of

movements involve motions in both the upper and lower part of the body. Hence, some foot-

based movements are recognized as hand-based movements when the upper part movement

is dominating.

These results seem to indicate that although our approach of using the half line of the

human body to discriminate types of human motion works reasonably well, there is still

room for improvement by considering a different method to recognize body regions.
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Table 2.1. Precision of the Classification of Human Motion Timeseries from 114 Videos into
Two Groups (Hand-based Movement and Foot-based Movement).

Motion type Hand-
based
movement

Foot-based
movement

Boxing 89.5% 10.5%

Hand clapping 89.5% 10.5%

Hand waving 78.9% 21.1%

Jogging 28.8% 71.1%

Running 21.1% 78.9%

Walking 22.3% 77.7%

2.6 Conclusion

In this chapter, we propose a new method to model the motions performed in videos

as time series. We define the associated time series as a function based on the values of

events at different frames. Each event is defined as a set of spatiotemporal gradients that

fall in the interval whose extension depends on a given temporal variance. Since gradients

represent the set of points with the largest variation, our approach seems robust in the

presence of noise and irrelevant motions because it works by only considering the most

significant movements in the video.

In conclusion we make two observations. First, by convolving the number and total

intensity of the gradient points present during an event, we obtain more discriminative

time series than by using these values independently. Second, the intrinsic relationship

between spatiotemporal events and frame pixels suggest that more accurate results can be

achieved by an attenuation of irrelevant components like moving shadows and backgrounds.

Moreover, a more accurate method than using the half line of the human body is desirable

to accurately recognize the upper and lower time series from human motions.

As future research, we plan to study the application of the method proposed in this

chapter to analyze real life human motion such as sports and gait movement with the goal

of optimizing human motion categorization through time series analysis.
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CHAPTER 3

FAST SIMILARITY SEARCH OF REALISTIC

TIMESERIES EXTRACTED FROM VIDEO

3.1 Introduction

Timeseries are an important representation of the behavior of processes over uniform

time intervals. They are used in many, diverse fields such as computer animation, robotics,

gene expression, electrocardiograms, stock market quotes, and multimedia data. In this

chapter, we focus on an important and interesting special case: the representation of mo-

tion recorded from live actors and described as a timeseries. The indexing, querying, and

classification of motion-related timeseries is an open problem. The motion of an actor can

be visually represented with timeseries. As an example, Figure 3.1 illustrates the use of

timeseries to represent human motion. The timeseries are generated by sensors placed on

the body of an actor. Each sensor measures an aspect of the motion, for instance angular

velocity or spatial position, as the data is collected over time and thus forms a timeseries.

Motion-related timeseries have features that are not commonly present in traditional

types of vector data, which create additional indexing challenges as described in more detail

below.

High and variable dimensionality : Figure 3.1 shows five timeseries generated by

each actor (hands, feet, and head) during individual trials to record human motion. For

different trials and actors, the duration of the motion varies. It must be large enough

to represent different kinds of motions (e.g., walking, running, jumping, etc.) and each

motion could have a different duration. If we consider these timeseries as vectors whose

dimensionalities are a function of the motions’ duration, we will obtain vectors of high and

variable dimensionality. We call these patterns realistic timeseries to differentiate them
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Figure 3.1. Timeseries generated from human motion as different actors move. Note that
each timeseries is formed by reading the values of one sensor over time.

from other types of data. Figure 3.2 shows three realistic timeseries that are part of a

dataset of N patterns. Both features (high and variable dimensionality) are common in

human motion databases and are the main obstacles to indexing timeseries with traditional

data structures. Realistic timeseries are studied in this chapter and are also found in other

contexts such as speech recognition [27], stock market quotes [28], figure shapes [29], and

query by humming [30].

No Euclidean distance : In a timeseries, the nth value represents a measurement of

a process for the nth time interval, which is a direct result of its preceding values. The

Euclidean distance between two timeseries can be computed by pairing up values from each
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Figure 3.2. Timeseries of different lengths have variable dimensionality. In this case, the
longest timeseries has m dimensions.

timeseries. But timeseries of variable dimensionality cannot be aligned pair-wise, so com-

puting the Euclidean distance is problematic. Even for timeseries of fixed dimensionality,

previous research has found that the Euclidean distance is sometimes unsuitable for real-

world applications [31]. Dynamic Time Warping (DTW) is thus preferred to Euclidean

distance. Though more costly to compute than the Euclidean distance, DTW aligns two

timeseries by considering local distortions and then evaluates the similarity.

DTW does not define a metric space : Though DTW is the most common distance

function for timeseries, unfortunately, DTW does not obey the triangular inequality [29].

Hence, techniques that index timeseries based only on metric distance values (i.e., metric

indices) fail to provide a well-defined search space, and therefore may be unable to be

reliably queried.

Locality-Sensitive Hashing (LSH) [32] is a better technique for supporting nearest neigh-

bor approximate similarity search in high-dimensional data. LSH has been shown to be a

good approach since traditional indexes do not work well with high-dimensional data due

to the curse of dimensionality (in practice datasets with more than twenty dimensions are

considered as high-dimensional and difficult to index efficiently [31]). Although it has been

demonstrated that LSH scales well with high-dimensional data, the behavior of LSH with

data of variable dimensionality, such as realistic timeseries of human motion, has yet to be
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demonstrated.

this chapter proposes a novel hashing algorithm to index large numbers of realistic

timeseries in order to support efficient similarity search. Our algorithm does not guarantee

an exact answer to a search, but guarantees that the answer has a high probability of being

similar to the query timeseries.

Our contributions are as follows. First, we introduce and formally define the notion of

the general dot product. Second, we define a hash function using the general dot product.

The function hashes timeseries into buckets of multiple hash tables whose total query time

is sublinear, i.e., less than O(log(n)). Third, we observe that human motion timeseries

are not uniformly distributed. Hence, we propose a data-driven hashing function. This

approach improves query response times by avoiding skew in the hash function (e.g., by

reducing collisons). Finally, we implemented our algorithm and in this chapter report on

experiments on real-world datasets, comparing our approach to other approaches. To the

best of our knowledge, this is the first work that extends the use of LSH to timeseries.

The rest of this chapter is organized as follows. In Section 3.2 we motivate the need to

index realistic timeseries. Section 3.3 reviews the original LSH algorithm. In Section 3.4,

we introduce our hashing approach to efficiently retrieve realistic timeseries. Section 3.5

reports on several experiments. Finally, the paper concludes in Section 3.6.

3.2 Indexing Realistic Timeseries

Several papers have provided efficient algorithms to perform queries on timeseries,

which are commonly represented as vectors of fixed dimensionality. But some application

areas generate timeseries of variable dimensionality. One such area is streaming motion

data. Motion-related timeseries are usually represented as high-dimensional vectors of vary-

ing length because they depend on the duration of a motion. As an actor moves, sensor

data is generated as a long stream. Efficiently querying these motion-related streams to

find motions of interest is an important task. The motions could be normalized, that is

stretched or shrunk, with some loss of information to a fixed dimensionality, but we do not

know a priori the right dimensionality to normalize to since new motions continue to be
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recorded and added to the data store. Furthermore, the normalization loses information by

distorting the timeseries to fit a fixed dimensionality. Finally, the continuous processing of

new timeseries and queries on existing timeseries may limit other timeseries preprocessing

steps such as discretization and dimensionality reduction.

Most of the previous papers on indexing timeseries tackle the problem by either assum-

ing that the timeseries are of the same length or by performing a dimensionality reduction

step to normalize the dimensionality of the vectors. Table 4.1 summarizes related research

using several dataset features: original dimension, reduced dimension, and normalization

method. All of the papers summarized in the table target high-dimensional datasets, but

the dimensionality of the data in each case is reduced to speed-up computations in main

memory. The intuitive idea is that dimension reduction preserves enough information to

quickly discard non-similar timeseries in a search. Then, once a candidate set is identified,

the original (non-reduced) timeseries are fetched from disk. One paper of Table 4.1 (Scaled

and warped marching [33]) considers more than 50 reduced dimensions during experiments.

Unfortunately, the results are only compared to linear search, so it is unclear how indexing

high-dimensional timeseries using the scaling method introduced in that paper compares to

efficient indexing of timeseries. In any case, all of these papers assume a fixed dimensionality

for the timeseries of a dataset and in most of the cases that dimensionality is low, because

in practice more than twenty dimensions makes an index inefficient [31].

In contrast to other papers, where timeseries retrieval is tackled by dimension normal-

ization, ours is the first approach that provides a sublinear indexing algorithm explicitly

designed to overcome these constraints without preprocessing timeseries or assuming they

have similar dimensionality. This approach is especially suitable in scenarios of stream data

processing such as motion capture, speech recognition, and sensor networks, where time-

series continuously arrive with different lengths, preprocessing steps are not always possible,

and low error rates are required.

3.3 Locality Sensitive Hashing

The Locality-Sensitive Hashing (LSH) algorithm is based in the idea that if two vectors
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Table 3.1. Dimensionalities Considered in Recent Papers on Timeseries Indexing.

Paper
(conference)

Original dimen-
sion

Reduced dimen-
sion

Reduction
method

iSAX [34]
(KDD08)

480, 960, 1440, 1920 16, 24, 32, 40 iSAX

TS-Tree [31]
(EDBT08)

256, 512, 1024 16, 24, 32 PAA

Scaled and
Warped Match-
ing [33] (VLDB08)

32, 64, 128, 256,
512, 1024

21, 43, 85, 171, 341,
683

Uniform Scaling

Exact indexing
of DTW [29]
(VLDB02)

32, 256, 1024 all datasets to 16 PAA

are close together in their original space, then after a scalar projection operation which maps

each vector to a point on a line, these two vectors will remain close. If we quantize the line

by partitioning it into intervals of same width (hash buckets), then we would expect similar

vectors to be mapped into the same line interval. The example given below illustrates this

idea.

Example 1. Let −→p and −→q be two vectors in Rd and let −→v be a vector of the same di-

mensionality, d, as −→p and −→q . We project −→p to a number by performing the dot product

operation −→p · −→v . This projection is then quantized into intervals of fixed width w, also

known as buckets. The same procedure is repeated for −→q with the intention that −→p and

−→q be placed in the same interval, as long as they were similar in their original space (see

Figure 3.3). Both the dot product and the quantization operation define the hash function,

h, for −→p with respect to the vector −→v as follows.

h(−→p ) =

⌊−→p · −→v + b

w

⌋
(3.1)

where b·c is the floor operation and b is a random variable taken from the Gaussian distri-

bution N(0, w2) that helps to evaluate the quantization error.

Hash functions map each high-dimensional vector to a bucket. LSH uses a special
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Figure 3.3. Hashing of vectors p and q by scalar projection.

type of hash function called the Locality-Sensitive hash function, which is similar to the

hash function of Example 1, but with components of −→v selected at random from a p-stable

distribution (Cauchy or Gaussian) [32]. This property makes it possible to statistically

guarantee that two similar vectors p and q will map to the same bucket (h(p) = h(q))

with high probability. Since LSH is an approximate algorithm, it may not find the exact

answer to the query. To reduce the error during query operations, LSH choses more than

one hash functions at random and uses each to partition the search space. Additionally,

many hash tables are considered in parallel in order to increase the likelihood of finding

the right answer in one of the hash tables. This approach has been shown to work well in

high-dimensional data, where the density of the space is almost uniform and therefore the

selection of a hash functions based on a uniform distribution makes it possible to impose a

parametric model to approximate the search space. However, in practice, the distribution of

timeseries associated to real world human action such as motion capture, speech recognition,

and biometry is not uniform mainly because human actions are constrained by body shape.

Hence, the corresponding search space often exhibits a complex structure; this complexity

is exacerbated if we consider timeseries of variable dimensionality. Our approach to reduce

the complexity of querying this type of search space is detailed in the next section.
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3.4 Our Solution

In this section, we propose an index, named Timeseries Hashing (TSH), to query

realistic timeseries. With this index, we can efficiently find timeseries of any dimensionality

in a timeseries database. TSH, like LSH, is based on the idea of projecting similar vectors to

the same bucket. But unlike LSH, TSH does not expect a uniform distribution of elements

in the search space. Hence, we do not partition the search space using hash functions

randomly chosen from a p-stable distribution. Instead, we perform an initial sampling of

the data in order to learn the best way to partition the search space of a particular dataset.

Additionally, we consider the projection of similar realistic timeseries to the same bucket of

a hash table via a generalized definition of the scalar projection (dot product).

3.4.1 Locality-Sensitive Hashing for Time Series

Initially, the similarity measure used in LSH was the Hamming distance function be-

tween two sequences of bits [35]. Recent papers have explored the idea of using the dot

product operation in LSH to compute a scalar value that represents the L1 or L2 distance

functions between two vectors of the same dimensionality. In this chapter, we extend the

definition of the dot product to vectors of different dimensionality. This extension is in-

spired by the warping path generated when computing the DTW algorithm. The warping

path is the optimal alignment of two sequences by considering local distortions in the data.

To further expand this concept, consider Figure 3.4 as an example. Given two timeseries a

and b of different lengths m and n (n < m), we first compute a matrix that represents the

possible distance values for all the elements in both sequences (Figure 3.4(a)). Then, the

warping path is the optimal alignment of two sequences (Figure 3.4(b)), such that the sum

of local distances between elements is minimized

A naive evaluation of the warping path is computationally expensive O(n2), but some

heuristics can be applied to approximate its evaluation in O(n). In Section 3.4.1, we discuss

the advantages of using these heuristics to generate faster hash functions in TSH. We call

the evaluation of the dot product with regard of the warping path as the general dot product,

and formally define it as follows.
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Figure 3.4. (a) The warping path of two timeseries represents the path with minimal
distortion in the distance matrix. (b) The local alignment is basically the matching of two
timeseries by considering local distortions in the time axis.

Definition 3 (General Dot Product). Given timeseries a = [a1, a2, . . . , an] and b =

[b1, b2, . . . , bm] and an optimal alignment function

f(a) = [f(a1), f(a2), . . . , f(an)] = [b1, b2, . . . , bm]

which matches each element from a to b with respect to the warping path, the general dot

product is defined as:

a� b =
∑n

i=1 aif(ai)

= a1f(a1) + a2f(a2) + . . .+ anf(an)

Note that the original definition of the dot product is a special case of the general dot

product. While the dot product performs a pair-wise comparison of two vectors that have

the same dimension, in the general dot product the comparison is not necessarily pair-wise

since the two timeseries may not be linearly aligned. The general dot product can perform

the scalar projection of timeseries with different dimensionality.

We use Definition 3 to take pairs of non-linearly aligned elements of two timeseries

in order to project the similarity of both timeseries onto a line as follows. We embed

Definition 3 into a locality-sensitive hash function based on scalar projections to index
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vectors of variable dimensionality with respect to a randomized vector −→v . The new locality-

sensitive hashing function for a vector −→p is defined as follows.

h(−→p ) =

⌊−→p �−→v + b

w

⌋
(3.2)

Good query performance using TSH depends on a careful choice of parameters such as

the dimensionality of −→v , the number of hash functions, and the number of hash tables. We

detail these tuning parameters in the next section.

Parameters

While different hash functions partition the search space with more detail, more than

one hash table increases the probability of retrieving the right timeseries in at least one

of the tables. Additionally, the dimensionality of vector −→v also affects the probability of

collision(s).

• |−→v |: −→v is the vector that characterizes the projection performed by a hash function

and |−→v | is the dimensionality of that vector. We empirically determined that if this

value is constant, the number of collisions in the hash table will dramatically increase.

In contrast to the original LSH, the dimensionality of −→v is not constant rather it is

the dimensionality of a vector randomly chosen from the data during initialization.

More details on this process are provided in Section 3.5.1 which describes the way

how we choose the parameters that optimize the use of the index.

• k : indicates the number of hash functions in a hash table. If we consider random values

for each vector, we will obtain independent hash functions since their components

are randomly chosen from a Gaussian distribution N(0, 1). This property, although

desirable in high-dimensional and artificial datasets, is not always efficient when the

structure of the data is complex or forms clusters.

• l : represents the number of hash tables in LSH. By concatenating l hash tables, we

reduce the probability of reporting a wrong answer for retrieving the closest element
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to the query timeseries.

Non-uniform partitioning of the search space

Since it may be difficult to analyze a search space of variable dimensionality, we instead

study the distribution of elements projected in the buckets of one hash table to decide the

goodness of using an approach based on scalar projections. The hash functions described

by Equation (3.2) are locality sensitive since the component values of vector −→v , which

define the hash function, are chosen at random from a p-stable distribution, although their

dimensionality is also chosen at random. The distribution of timeseries into buckets shows

that the random projection operation still produces collisions in the datasets considered in

this chapter. Large numbers of collisions negatively affects the performance of the hash

tables since many elements are considered as candidates to solve a similarity query. We

would like the timeseries to be more uniformly distributed among the buckets to obtain

sublinear times during queries.

Collisions in hash tables can be explained by the way the hash functions discretize

the search space into buckets. The original LSH algorithm randomly tessellates the search

space with k hash functions chosen at random from a Gaussian distribution, as shown

in Figure 3.5(a). By increasing the value of k, timeseries are uniformly distributed into

buckets, but this decreases the accuracy since it is more likely that similar vectors fall into

different buckets. Recent papers have also noticed the same problem with high-dimensional

datasets in Rd. For example, in [36] the buckets with collisions above a certain threshold are

re-partitioned to reduce skew in the hash tables, as shown in Figure 3.5(b). This approach

however leads to a hierarchy of hash tables which is difficult to scale when new elements

are indexed. This is because the structure of different levels of buckets will change as some

buckets become denser than others during insertion of new vectors.

Our approach to reducing the collisions that occur in the hashing of realistic timeseries

with the general scalar projection introduced in this chapter is to tessellate the search space

with timeseries taken from an initial sampling of the the dataset. This results in fine-

grained partitions only in dense regions and wide partitions in sparse regions, as shown in
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(a) (b)

(c)

Figure 3.5. (a) Random partitioning of the search space (b) Hierarchical partitioning of the
search space (c) Partitioning of the search space by considering elements from the space
itself.

Figure 3.5(c). We repeat this process for the l hash tables in order to perform a query with

different resolutions at each hash table. Intuitively, a query is solved by quickly hashing

the query object into each hash table and then joining the results, as shown in Figure 3.6.

Note that, as in the original LSH, the candidates that solve the query become restricted

to a query region of non-arbitrary shape with few elements inside. Care should be taken

to sample the diverse types of timeseries expected since the data in streaming systems

may slightly change over time. If trends are detected in newly arrived data that lead to a

significant increase in the number of collisions, the dataset should be re-sampled and a new

hash function constructed to re-hash the data.
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Queries on TSH

It has been shown that the DTW similarity measure does not describe a metric space

since the triangle inequality property does not hold. Therefore, its iterative use to organize

timeseries based on distances will eventually degrade search accuracy. The hash functions

of TSH directly map each timeseries into one bucket and avoid partially exploring the index

to find the closest timeseries through successive comparisons between pairs of timeseries.

Hence, TSH guarantees to evaluate fewer distance comparisons to perform a query. More-

over, timeseries do not need to be fully stored in main memory. Instead, we store in main

memory the index of the bucket as a key and the name of the timeseries file in hard disk as

a value. By doing this, we reduce the main memory requirements in TSH.

The worst-case time complexity of retrieving a timeseries in TSH is O(kl/t/+n) where

k is the number of hash functions, l is the number of hash tables, and /t/ indicates the time

spent to evaluate the general dot product between two sequences. Finally, the variable n

represents the number of candidates obtained by concatenating results at each hash table;

a large value of n indicates a large number of collisions in the hash tables. Recent papers

on LSH show that k and l are sometimes too large to ensure that the error value is low. A

large value of k is especially problematic because it duplicates the entire dataset in memory.

The partitioning of the search space using timeseries chosen from the dataset yields a more

efficient tessellation as shown in Figure 3.5. This data-driven approach improves the accu-

racy for queries with few hash tables. Low values of k and l make the complexity analysis

of a query mostly dependent on the cost of computing the general dot product (described in

Definition 3) and the number of candidates retrieved. While we have introduced two tech-

niques to reduce the value of n (variable dimensionality in hash functions and non-uniform

discretization of the search space), techniques to reduce the value of /t/ are discussed in

the next section. Note that O(kl/t/ + n) << O(N) commonly holds even for hash tables

with moderate collisions, where N is the size of the timeseries dataset.

Reducing the Hashing Cost

The general dot product definition uses the warping path generated by the Dynamic
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Figure 3.6. Three hash tables, each one discretizing the same search space with different
hash functions.

Time Warping algorithm to find a non-linear alignment between two timeseries before pro-

jecting their similarity into one scalar value. However, this algorithm has a quadratic time

complexity that limits its use to only timeseries of short length. Previous papers have pro-

vided some techniques to improve the speed of compute it without significantly degrading

the correct alignment of two timeseries. As an example, consider the Sakoe-Chiba band and

the Itakura parallelogram shown in Figure 3.7(b) and Figure 3.7(c). The enclosed areas cor-

respond to positions within the distance matrix where the warping path is expected to lie.

Hence, positions located out of these bands do not need to be evaluated. By evaluating the

warping path within a constrained band, we do not need to compute all the values within

the matrix. The width of each band is specified by an external parameter. However, if the

optimal warp path does not completely fall inside the band, some error will be introduced

during the total alignment. For the indexing of timeseries in TSH, we will use the Sakoe-



38

(a) (b) (c)

Figure 3.7. (a) Original DTW alignment (b) Sakoe-Chuba Band constraint (c) Itakura
Parallelogram constraint. Both (b) and (c) have a width of 10 and 22, respectively.

Chiba band to speed-up the alignment of two timeseries, yielding faster hash functions for

realistic timeseries.

3.5 Evaluation

We performed a comprehensive performance evaluation of our algorithm in terms of

precision, response time, and scalability against the following indexes.

LSH [32] — This is the original implementation of the hashing scheme extended in this

chapter. A dimensionality normalization step was performed on the data in order to

be able to index timeseries, since they had to be of the same dimensionality to use

LSH, with Euclidean distance.

TS-tree [31] — This data structure was specially designed to index timeseries by avoiding

subtree overlap through lexicographic ordering on time series. Timeseries are normal-

ized and quantized into symbols to obtain a compact description. This feature makes

TS-tree faster than region-based indexes like R-tree.

R-tree [37] — This spatial index is commonly used during experiments on timeseries in

the literature [29, 31, 33]. We use the Euclidean distance to evaluate dissimilarity on

normalized timeseries.
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M-tree [38] — This metric index uses a distance function to organize objects based on

dissimilarity. Special nodes are created to serve as pivots and objects are stored in

leaves. Since DTW is not a metric distance, we expect less accurate results in this

index due to the lack of a metric search space. We use DTW in M-tree in order to

have other index that retrieves variable-dimensional timeseries without normalization.

All of the experiments were performed on a 3.6 GHz Pentium 4 with 2 GB RAM. In

this section, we describe those experiments and their results on the following datasets.

1. CMU motion capture database : This dataset is considered the largest motion

capture dataset publicly available. It consists of 2,435 motion clips, each one with

segments manually labeled, performed by 83 actors, and with 26 hours of motion in

total. The timeseries are generated by tracking the Y-axis position of the actor’s right

hand as done in [39]. The dimensionality of this dataset ranges between 53 and 5,237.

2. Mocap Database HDM05 : This dataset contains 70 motion classes, each with 10 to

50 different realizations performed by five actors. In total there are 1,500 motion clips

and 210 minutes of motion data. From each motion clip we generate one timeseries by

tracking the right hand as with the CMU dataset. The dimensionality of this dataset

ranges between 49 and 4,034.

3. Motion from video: We generate this dataset by extracting timeseries from video

data by following the approach discussed in [40]. The videos were taken from the Ac-

tion Database [22] and consist of 6 different types of motions (boxing, hand clapping,

hand waving, jogging, running, and walking) performed by 19 actors. The number of

frames in the videos varies from 300 to 750 frames and includes 40 minutes of video

in total. The dimensionality of this dataset ranges between 10 and 58.

3.5.1 Experiment 1: Selection of parameters

As discussed before, TSH reports efficient results when adequate values for k, l, and

/−→v / are chosen. Hence, we propose here an effective method to choose a suitable combi-

nation of these parameters constrained by the response time and precision. Intuitively, we
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are looking for a method which finds the number of hash tables (l) and hashing functions

(k) which report the most precise and fastest results for a certain dataset. To reach that

goal, we generate different instances of TSH for k = {8, 16, 32, 64, 128} and l = {1, ..., 20}

and then measure the corresponding response time and precision for all the datasets.

Let 1 − ϕ and t be the error degree and response time of a query. The value of ϕ is

obtained by computing the precision of a 1-nearest neighbor query: the number of times

that the set of elements retrieved by TSH also contains the right answer obtained by a

brute force algorithm for the same query. If after 100 queries, TSH always reports the right

timeseries, then the error degree will become zero. The response time is the time spent to

evaluate ϕ divided by the number of queries performed. Unless stated otherwise, we follow

the above definitions of precision and response time in all our experiments.

First, we find the number of hash functions k that reduces the error degree such that

1 − ϕ is less than a threshold (1 − ϕ < 0.03). As shown in Figure 3.8(a), the error degree

for the CMU motion dataset (each individual line) is reduced when more hash tables are

considered. In that figure each k value is associated to one l value, and both define a

particular instance of LSH that considers the error 1−ϕ below the threshold. Once we find

different combinations for k and l, we evaluate the dependence of these values with respect

to time T (k, l) such that the minimum value of T (k, l) is chosen. This process is outlined in

Figure 3.8(b). Each peak represents an suboptimal combination of k and l obtained from

Figure 3.8(a). We are looking for the best of these combinations that reduces the response

time. Variable /−→v / takes the dimensionality of a vector randomly chosen from the dataset

during the non-uniform partitioning of the search space. Since the timeseries are of variable

length, the value of /−→v / is a non-constant number in the index. For constant values of /−→v /,

we observed an increment in the number of collisions for timeseries of variable length. The

same approach is performed in the other two datasets to find a suitable combination of k

and l which are used in the precision, response time, and scalability experiments described

next.



41

(a)

(b)

Figure 3.8. (a) Error values for different combinations of number of hash functions and hash
tables. Note that for a given error threshold 1− ϕ, we find candidate pairs of k and l that
minimize the error values. (b) These combinations are then refined to choose the values
that optimize the query in terms of response time.

3.5.2 Experiment 2: Precision

The aim of this experiment is to evaluate the average precision of our approach against

other well-known indexes. Given an index i and a database d, we evaluate the average

precision by splitting the dataset into two parts: 90% for indexing and 10% for testing.

Once we index the dataset, a random timeseries from the testing part is chosen for searching.

We perform a 1-nearest neighbor query and check if it includes the same element reported
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(a)

Figure 3.9. Average precision for the three datasets in decreasing order.

by a linear scan with DTW as dissimilarity function. After repeating this process for 100

iterations, we average the precision values of the index i in order to avoid some biased

results during the experiment. Figure 3.9 condenses the average precision values sorted in

decreasing order. TSH performs better than other indexes independent of the size of the

dataset. Note that M-tree reported the worst results in all the cases. This is expected

since the DTW distance function does not fully define a suitable metric space to perform

similarity queries in M-tree. The length normalization of timeseries and the use of Euclidean

distance as similarity measure make R-tree a better choice than M-tree in terms of precision.

We see that the original LSH algorithm with Euclidean distance does not perform as well

as TSH, especially in the largest dataset (CMU). This is because TSH does not need to

normalize the timeseries in the dataset to the same dimension and because TSH uses DTW

as its similarity measure. TSH thus takes advantage of the original information contained

in the data to distinguish non-similar timeseries. Figure 3.10 visually shows examples of

1-nearest neighbor queries in TSH.
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(a) Crouching

(b) Kicking and punching

(c) Walking

(d) Rotating arms

Figure 3.10. Results of four 1-nearest neighbor queries in TSH for the HDM05 database.
While the first row of each figure represents a query, the second row shows the closest
movement found in the database.
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(a)

(b)

(c)

Figure 3.11. Scaling measurements for (a) CMU (b) HDM05 (c) Videos datasets

3.5.3 Experiment 3: Response time

The goal of this experiment is to measure the average time spent to retrieve the nearest

timeseries from a dataset. We perform a similar procedure to that of Experiment 1 to

evaluate the average response time and show the results in Figure 3.12. Although the hash-
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based approaches (TSH and LSH) have are fastest, we already observed from Experiment 1

that TSH reports more precise values than LSH. TS-tree exhibits acceptable precision and

speed in all of the datasets. However, TSH is still faster and more precise than TS-tree.

These results indicate that TSH is more efficient than any index considered in this chapter.

(a)

Figure 3.12. Average response time for the three datasets. The order of indexes is the same
as in Figure 3.9.

The alignment of two time series with different dimensions may be costly, especially

in the case of motion sequence where time series are expected to be large. Every time we

query a time series in the database, TSH evaluates the DTW distance between that time

series and the vector v of every hash function to find similar time series. The evaluation

of the DTW function may hinder the performance of the index, particularly when several

hash tables are considered in parallel. As shown in Table 3.2, the use of the Sakoe-Chiba

band alleviates the query process of realistic time series for the datasets considered in this

chapter. This is because the computational order of the DTW algorithm is reduced by

considering a global constraint in the evaluation of the distance matrix of two large time

series.
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Table 3.2. Use of the Sakoe-Chiba Band to Speed Up Similarity Queries on the Datasets
Considered in this Chapter. Each Value Represents the Average Response Time of Similarity
Queries.

Dataset TSHSakoe−Chiba (ms) TSHno Sakoe−Chiba (ms)

CMU 1062.52 1581.31

HDM05 803.31 1148.82

Video 35.26 48.62

3.5.4 Experiment 4: Scalability

In this experiment, we want to study the behavior of TSH as the size of the database in-

creases. We vary the size of the database and measure performance to determine scalability

(the performance should be (at worst) linear in the size of the data in order to ensure good

performance for large databases). We incrementally increased the size of the dataset from

10% to 100% of the original size (by selecting a random testing subset from the dataset).

We measured an average response time, as was done in previous experiments. Figure 3.11

shows that for the datasets considered in this chapter, TSH exhibits good scalability. In

all the cases LSH is the closest contender. This is because both algorithms are good at

distributing timeseries into buckets uniformly and quickly retrieving them using hashing

functions. However, in contrast to LSH, TSH is specially designed to reduce the number of

collisions for timeseries of variable length.

3.6 Conclusion

In this chapter, we generalized the scalar projection (dot product) to support the

indexing of timeseries of variable length using a novel hashing technique. We proposed

one approach to reduce the collisions associated to map timeseries into buckets of a hash

table. This approach enables us to define multiple hash tables that increase the probability

of retrieving the nearest neighbor of a query timeseries in sublinear computational time.

We conducted performance studies on three real datasets associated to human motion from

different sources (systems of motion capture and video data). One reason for the popularity

of LSH is that, in theory, it ensures that that two similar vectors are mapped similarly.
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However, much of the theoretical analysis provided in the original implementation of LSH

relies on statistical assumptions like a uniform distribution of the data. As we saw in

this chapter, this is not the case for motion datasets. Rather than providing a theoretical

analysis, we empirically look for the combinations of parameters that yield low error rates

for similarity queries. This data-driven approach to constructing hash functions is how we

efficiently index human motion timeseries data that come from non-uniform distributions.

Our results show that the approach introduced in this chapter can retrieve timeseries of

non-arbitrary dimensionality efficiently. In particular, TSH is superior for large datasets

with large and variable dimensionality, the hardest case when the indexing of timeseries

associated to human motion is considered.
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CHAPTER 4

DEMONSTRATION OF TIMESERIES SENSITIVE

HASHING FOR HUMAN MOTION

4.1 Introduction

The goal of the research presented in this demonstration is to make it easier for appli-

cations to index and query timeseries that are of high and variable dimensionality. These

timeseries are found in many application areas, such as image and video processing, data

stream mining, data compression, and near duplicate detection. For instance, a timeseries

of variable dimensionality is generated when a process (e.g., the trajectory of a person walk-

ing in a video) is measured over uniform time intervals, but with no predetermined length

(e.g., not every video or activity within a video has the same duration). Previous research

has developed efficient algorithms to index and query timeseries that are vectors of fixed

dimensionality. Current practice is to normalize variable dimensionality timeseries to some

fixed dimensionality. But when processing a live video stream, for instance, new timeseries

are continually being produced and the a priori (often incorrect) choice of a single, fixed

dimensionality may lead to important data in a timeseries being manufactured or discarded.

It would be better to index each timeseries without normalizing it.

Table 4.1 summarizes a few of the key papers in previous research. All of the pa-

pers listed target high-dimensional datasets. Each chooses to normalize by reducing the

dimensionality of the data to some fixed dimensionality, and in most of the cases that

dimensionality is relatively small.

In this demonstration, we will show how to index timeseries without normalizing or

reducing dimensionality using an indexing technique called Timeseries Sensitive Hashing

(TSH) [4]. In contrast to other approaches, TSH has linear or sublinear time complexity
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Table 4.1. High-dimensional Datasets and Reduction Techniques Considered in Recent
Papers on Timeseries Indexing.

Paper
(conference)

Original dimen-
sion

Reduced dimen-
sion

Reduction
method

iSAX [34]
(KDD08)

480, 960, 1440, 1920 16, 24, 32, 40 iSAX

TS-Tree [31]
(EDBT08)

256, 512, 1024 16, 24, 32 PAA

Scaled and
Warped Match-
ing [33] (VLDB08)

32, 64, 128, 256,
512, 1024

21, 43, 85, 171, 341,
683

Uniform Scaling

Exact indexing
of DTW [29]
(VLDB02)

32, 256, 1024 all datasets to 16 PAA

for both indexing and searching without reducing the timeseries to a fixed dimensionality.

As we will demonstrate, TSH is especially suited to stream data processing such as motion

capture, real-time video analysis, speech recognition, and sensor networks, where timeseries

with different lengths continuously arrive, preprocessing steps are not always possible, one-

scan algorithms are needed, and low error rates are necessary.

4.2 The Demonstration of TSH

This section gives a short tutorial on TSH. The demonstration will use a web application

to take the audience through a series of multimedia queries of increasing complexity, from

image to motion capture and video data. The web application allows a user to perform four

main activities: 1) initialize the interface with a random sampling of objects chosen from a

database, 2) report how elements are distributed in hash buckets, 3) visualize a hierarchical

clustering of the entire dataset, and 4) perform a similarity search. We invite readers to

visit the TSH project website to experiment with TSH in the on-line demo and download

the Java implementation1. The hash tables are persistently stored using BerkleyDB [41], so

the software can scale to support large datasets (i.e., it is not limited by available memory).

1http://omarflorez.info/index.php?id=tsh
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(a)

(b)

Figure 4.1. (a) List of primate skulls randomly selected from the database. (b) A similarity
query in the system. The first element represents the query (distance of 0) and repeated
elements found in parallel hash tables were discarded.

4.2.1 A Quick Overview of TSH

TSH is an index that clusters timeseries with similar shape which are close in the <1

space. TSH employs the concept of general dot product to compare two vectors of different

dimensionality using a non-linear alignment of elements, rather than using the Euclidean

norm in the <n space.

TSH embeds general dot product into a number of hash functions, which allows each

timeseries to be projected into <1 (e.g., a bucket) with high probability of finding similar
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elements in the same bucket. TSH chooses timeseries from the database to construct the

hash functions, which we previously observed did improve precision [4]. Additionally, TSH

uses multiple hash tables, performs a search by hashing within each table, and unions the

partial results. In summary, TSH is formed of L hash tables, each one defined by K hash

functions that project elements to buckets of a chosen width in <1 (the width is a parameter

that can be used to tune TSH).

4.2.2 Example Searches using TSH

Figure 4.1 (a) shows a random sampling of a Primate Skulls dataset. We generate a

timeseries for each image by computing its centroid and then evaluating distances from that

point to the pixels in the border of the skull. The resulting timeseries is expressive enough

to distinguish important features such as nose angle, depth of the lower jaw, and prominent

forehead.

Figure 4.1 (b) shows a screenshot of the application when a user clicks on an image

performing a query of an adult female Sooty Mangabeys primate. This primate lives on the

west coast of Africa and belongs to the Cercopithecidae family and Catarrhini infraorder.

While 80% of the neighbors retrieved by TSH (a, b, c, d, e, and g) belong to the Catarrhini

infraorder and share important features such as long fangs, similar forehead, and very

convex napes, the remaining 20% (f and g) also exhibits those visual features, but they

belong to the Platyrrini infraorder. Both Catarrhini and Platyrrini are two close instances

of five possible infraorders for primates. This example shows that timeseries can be used

to evaluate similarity queries for image data. The title of the application also contains

relevant information about the query such as precision/recall of the subset retrieved and

the time/memory spent during the query in the system. Additionally, the demo reports

variance in the dimensionality (min/max length) associated to the result set.

In the above example, we took advantage of the same orientation and uniform back-

ground to extract well defined timeseries and obtain consistent results in the Primate Skull

database. However, the timeseries extracted from motion capture data are more challeng-

ing and complex to analyze since the motion performed by different actors can be in any
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(a)

(b)

Figure 4.2. (a) Motion capture videos chosen at random. (b) A similarity query performed
by TSH. Note that all the videos retrieved belong to the same running activity.

direction, be composed of other small movements, and have a larger variance in duration, as

shown in Figure 4.2 (a). The timeseries defined for each instance of the database represents

the position of the right hand of each actor in the z-axis. The result of querying the running

activity 09 05 is illustrated in Figure 4.2 (b). It shows the retrieval of ten videos, each one

containing different actors doing the activity 09. The recall is lower in this case (58.8%)
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than in Figure 4.1 (b) since more than ten elements belong to this class, but TSH only

retrieves a subset of them. In other words, TSH only retrieves the timeseries projected to

the same buckets in multiple hash tables with high precision (100%). The user can obtain

higher recall values by increasing the bucket width, but at the cost of increasing the response

time.

Additionally, we show search effectiveness with a subset of 100,000 elements of The

Million Song Dataset,2 a freely-available collection of audio features and metadata. TSH

will provide consistent results if the result set obtained by a 10-NN query is included in

the one retrieved by a linear scan, a brute force algorithm that yields complete precision.

Figure 4.3 reports average precision of TSH, with respect to a sequential search, which

ranges between 92% and 95% over different database sizes.

Figure 4.3. Average precision for TSH.

4.2.3 Clustering

The demo will also allow users to explore the notion of using a general dot product

to create a hierarchical clustering. TSH projects similar timeseries to the same buckets

in multiple hash tables, forming a particular neighborhood in the projected space. Those

points that have more than T elements and are within a distance of D are denominated as

core points.

2http://labrosa.ee.columbia.edu/millionsong/
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TSH aggregates clusters into increasingly larger clusters in a hierarchy as follows. Pairs

of clusters that have the shortest distance between their members can be connected. Those

timeseries that are not core points can be considered as outliers and safely removed. The

algorithm stops when a single cluster is reached. Otherwise, we increase the value of D

to merge distant clusters. TSH reduces the time complexity of the original hierarchical

linkage clustering algorithm from O(nlogn) to O(n) because of its constant response time

for nearest neighbor queries.

Figure 4.4 (a) shows a random selection from the Motion from Video dataset. It

contains six types of activities performed by 19 actors with dimensionality varying from

112 to 184 dimensions. A timeseries is extracted from each video by defining intensity

gradients and then evaluating their spatial distribution over time. The clustering on this

data with TSH, as shown in Figure 4.4 (b), reports some relevant characteristics underlying

the dataset.

First, note that five groups were discovered, each one shown in a different color. Each

group is a type of motion performed by an actor. While the cluster in red (a) merges two

types of similar activities (jogging and running), the other clusters shows a proportional

distribution of elements. Next, the highest link in the display shows the existence of two

large groups ({a, b, c} and {d, e}). In practice, those groups correspond to hand-related

(hand waving, hand clapping, and boxing) and feet-related (walking, jogging, and running)

activities. While clustering is approximated with TSH, it quickly groups elements projected

similarly in <1 and uses the general dot product to find similar timeseries from video.

Those timeseries are often more challenging since they contain noise related to illumination,

shadows, and camera motion.

4.3 Architecture

Our implementation builds on the Jetty HTTP server and Java Servlet container, which

provides both dynamic content interaction with multimedia databases and the TSH index.

Before we can execute similarity queries on objects, we need to find its timeseries

representation in the Data layer. The technique to extract those features from an object
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(a)

(b)

Figure 4.4. (a) A random selection from the Motion from Video database. (b) Hierarchical
clustering performed by TSH. Note that timeseries extracted from videos are the most
complex shown in this demonstration.

will vary according to the nature of its underlying data (images, music, video, motion

capture, etc). In our running examples, we showed multimedia objects to the user, each

one linked to a timeseries in the Presentation layer. Those timeseries are encoded in <

key, value > pairs within TSH; key is an integer representing a bucket id in TSH and

value is a string representing the path to the file containing the timeseries pattern on hard-

disk. Thus, mappings allow us to save space by not storing the entire timeseries in main
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memory. The index will perform similarity queries and clustering by quickly obtaining keys

in multiple tables and collecting the timeseries found into a single result set in the Structure

layer. Eventually, TSH will contain more mappings than permitted in main memory. TSH

supports the insertion of large multimedia databases with fast lookup operations in TSH

by extending the HashMap representation of BerkeleyDB to thus enable persistence in the

Persistence layer.

4.4 Previous Work

Previous research on efficiently indexing timeseries typically relies on dimensionality

reduction to eliminate variable dimensionality. As discussed in Section 4.1, current practice

is to employ on dimensionality reduction techniques (iSAX [34], PAA [31], Uniform Scal-

ing [29], etc.) to make timeseries more tractable to compute. These indexing techniques fall

into two categories: region-based and lexicographic. R-tree is a region-based index com-

monly used for experiments with timeseries. Its main downside is the presence of overlap

between regions for high-dimensional data. One example of a lexicographic index is TS-

tree [31], which avoids subtree overlap during insertion. There are (at least) two clustering

techniques that employ a hashing approach [42, 43]. However, they only consider the case

where points have the same dimensionality and Euclidean distance is the only option as a

similarity measure.

4.5 Summary

The demonstration will guide the audience through examples in a new index called

TSH. We demonstrate the potential of TSH to perform quick analysis of complex timeseries

in multimedia data. Particularly, queries in TSH show high precision and visual soundness

and the hierarchical clustering seems to group similar elements coherently. The audience

can download our Java implementation from the project’s website and try their own queries

during the demonstration.
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CHAPTER 5

RULE EXTRACTION TO EXPLAIN VEHICLE

INTERACTIONS IN VIDEO WITH GUARANTEED

ERROR VALUE

5.1 Introduction

In many real-world applications, data takes the form of an ordered sequence of items

that arrive continuously. Over time, a huge amount of data can accumulate and the distri-

bution of data within a stream can vary. Traditional examples include Sensor Networks [44]

and Internet Packet Streams [45]. These scenarios provide explicit representation of atomic

elements and the frequency of their combinations must be computed in a single scan because

of the continuous arrival of data.

Video can also be modeled as a data stream. Video is widely used in real-time moni-

toring applications, e.g., of an oil spill, a store entrance, or an airport. In a video stream we

are interested in discovering and monitoring the hidden rules that govern the behavior of

multiple objects occurring in the same scene. Discovering these associations over streams

of video raises three new issues, which extend traditional techniques.

1. Common behaviors describe activities - The similar actions of different moving objects

discovered in the stream (e.g., a car moving from right to left) need to be categorized

under a common behavior called an activity.

2. No a priori knowledge of activities - The activities are not known in advance, rather

they depend on the moving objects present in each video. Some method or model is

needed to automatically infer activities from a video.
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3. Users expect real-time processing and query answering - Answers to user queries about

activities must be timely. Since there is a vast amount of data in a video stream, and

the data arrives continuously, a method is needed to incrementally discover activities

in a single pass over the data stream. Users will be satisfied to have an approximate

answer with guaranteed low error value.

These challenging issues motivate our design of a framework for the real-time analy-

sis of streaming video. Our visual surveillance system is designed to automatically answer

questions such as: “Which is the most frequent scene seen so far?”, “How important is that

scene in the stream?”, and “Is there a rule that explains the interactions between activities

that are also seen in similar scenes?” To do this every scene is modeled as a combination

of zero or more activities made by individual moving objects. That set of activities circum-

scribes the interactions between activities found in an scene and its frequency represents its

importance over the stream.

In this chapter, we tackle the problem of finding the rules that govern the co-occurrence

of activities in a continuous video stream with no prior knowledge of the number of activities.

As we shall show, the discovery of activities is an off-line process in which event distributions

are grouped. The discovery of rules is a on-line process that approximates the importance

of each rule with guaranteed error value.

5.1.1 Contributions

This chapter makes the following contributions.

• We propose an unsupervised framework that efficiently addresses the complete process

of scene understanding over video streams. Previous research (see Section 5.5) pro-

poses either time consuming algorithms that are hard to scale to a stream or assumes

a fixed number of activities in a video.

• We propose an algorithm to extract rules in a single pass over a video stream approx-

imating the frequency of the activities found in a video with lower/upper bounds and

providing guaranteed error values.
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• We provide evidence that shows that hierarchical Bayesian models, including the

hierarchical Dirichlet Process (HDP), are non-parametric Statistical models that suit

the problem of activity recognition and visual surveillance. Most previous research has

considered the generation of topic models under those models for large text datasets.

We extend those findings to a noisier domain such as video databases and demonstrate

that a hierarchy of two processes is needed to automate the discovery of activities.

5.1.2 Paper organization

The rest of this chapter is organized as follows. Section 5.2 describes a method to

discover activities from video and provides an intuitive example to explain the need of

a hierarchy for this problem. Section 5.3 discusses the frequency analysis of activities

incrementally discovered from streams of video. Section 6.6 experimentally demonstrates the

usefulness of the proposed approach for real traffic video. Section 5.5 discusses related work.

Section 5.6 indicates limitations and possible extentions to this work. Finally, Section 6.7

concludes the paper.

5.2 Discovery of Activities

The problem of discovering activities in a video involves three kinds of information:

events, actions, and activities. An event is an low-level interest point that represents a pixel

with high variance in its spatio-temporal neighborhood. For a moving object, events occur

in a bounding box forming a particular spatial arrangement of points that characterizes the

action being performed. While a set of events characterizes an action (e.g., a car moving

from right to left or a person walking in certain direction), activities are clusters of actions

with similar event representation. This terminology and hierarchical relationship between

events, actions, and activities have been adopted by the Computer Vision community, so

we too use these common definitions. Given an input video, we take two consecutive frames

and use a threshold to remove pixels with low intensity, as shown in Figure 6.1 (a). Then, we

extract their events (gradient points) using a technique by Laptev et al. [46]. We evaluate

connected components in Figure 6.1 (a) (represented as bounding boxes) to find moving
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(a) Segmentation (b) Bounding boxes (c) Motion grids and Events

Figure 5.1. Describing activities of moving objects with events. (a) Motion information is
segmented with pairs of consecutive frames (b) Bounding boxes enclose activity information
(c) When zooming-in the frame, we can see how the spatial arrangement of events describes
similar activities within 4× 4 bounding boxes.

objects in the scene as shown in Figure 6.1 (b). Finally, we place grids on those boxes to

discretize the location of existing events into n × n small regions, as shown in Figure 6.1

(c). Note that we want that every connected component often corresponds to a single

moving object, so we obtained better results by only considering rectangular bounding

boxes, enclosing components, with width-to-length ratio in the interval of (0.7, 1.3). When

we divide the number of events found in every small region by the total number of events

in a motion grid, we estimate the probability of finding an event in that region. For objects

performing the same activity (G1) in Figure 6.1 (c), we can see how the grids also show a

similar spatial arrangement of events.

Our goal at this stage is to model how events are organized into activities. Thus, in this

section we use a hierarchical model of two levels to generate activities in video as multimodal

probability distributions over events. The following example intuitively explains how this

hierarchy works.

Example 2. Let G0 be a collection of possible traffic activities G0 = {TurnRight ,TurnLeft ,

GoSouth} present in a video. We model a video as a sequence of combinations of activi-

ties with temporal order. Thus, instances of activities in G0 are sparse over video frames

forming the next sequence of actions: G = {[TurnLeft11, TurnLeft12], [TurnRight21, Turn-

Left13, GoSouth31], · · · }, where [.] delimits a scene as shown in Figure 5.2. Each action
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Figure 5.2. An example that shows the hierarchical process to discover activities in video.

in the scene is described by an n × n bounding box, whose row-wise traversal defines a

histogram y = {y1, y2, ..., yn×n} that represents the multimodal probability distribution θji

describing the activity j in terms of the i − th position of a motion grid. In this exam-

ple, the turn-left activity G1 is formed by three similar (but not identical) turn-left actions

{TurnLeft1,TurnLeft2, TurnLeft3}, which have similar event distributions (represented as

histograms in the lowest level of the hierarchy). Hence, the locations of events within a

bounding box effectively characterizes those actions as instances of the activity G1. Activi-

ties G2 and G3 are formed in a similar way.

The above example gives us an intuition about the hierarchical dependency between

events, actions, and activities involved in this problem and models it with two levels in

Figure 5.2. The lower part of the hierarchy generates a mixture of events yi that uniquely

defines an action with multimodal distribution θji. The second level generates a list of

activities G0 distributed as the mixture model Gj over several multimodal distributions

θji. These two groups of information come from different, but related mixture models.
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The hierarchical way of forming activities seems to indicate that both groups share some

mixture parameters. However, note that we do not know the number of mixture component

in G0 needed to represent the clustering process involved. In our case, it is difficult to

specify a priori the number of event observations (regions in a grid) and activities needed to

correctly interpret interactions in a traffic video. Our approach is to set the number of event

observations as an external parameter dependent on the resolution of a particular video, but

infer the number of activities by using a Dirichlet process in each group of actions. The use

of a Dirichlet Process is justified by its property of providing a non-parametric estimation

of the number of mixture components for groups of observations.

We first define the Dirichlet Process and then present a hierarchy of two Dirichlet

Processes that can discover a number of activities in video.

Dirichlet Process

Each event observation can be generated independently by a mixture component θji.

Let θ be a mixture component (cluster) associated to the event observation yji

Definition 4 (Dirichlet Process). A Dirichlet Process (DP) is a stochastic process that

generates a distribution G in the form of an infinite mixture of components θi = {θ1, θ2, ...},

a base distribution G0, and a positive scaling parameter α.

The construction of the Dirichlet Process can be formulated with sequences of indepen-

dent random variables (π′i)
∞
i=1 and (θi)

∞
i=1, as originally stated in [47]:

π′i | α,G0 ∼ Beta(1, α)

θi | α,G0 ∼ G0

such that the random distribution G is then defined as:

πi = π′i

i−1∏
l=1

(1− π′l)
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G =
∞∑
i=1

πiδθk

where δθi is an atomic distribution centered on θi. For convenience, we shall abbreviate the

construction of π as π ∼ GEM(α). Note that θi is a multinomial probability distribution

over event observations yi. In other words, the random variable θi has a probability of being

associated to the set of event y = {y1, y2, ..., yn×n}. Hence, the distribution base G0 also

needs to be distributed as a multinomial distribution. This property of having a family of

multivariate probability distributions is especially found in the Dirichlet distribution1, so we

model G0 as being distributed as that distribution, G0 ∼ Dirichlet(D0).

The Dirichlet Process generates a list of clusters of events θ = {θ1, θ2, ...} from the

mixture model G that characterizes an activity based on the event observations yi. Although

this setting can represent appropriately one activity, it cannot represent several activities,

which is needed for activity recognition in video. The modeling of activities is defined as a

hierarchy of two DPs that relates the generation and activities jointly.

5.2.1 The Hierarchical Model

We employ the Hierarchical Dirichlet Process (HDP) introduced by Teh et al. [48] to

mutually learn both actions and activities by considering a second DP which models groups

of actions θji into activities Gj . The result is a hierarchical process which can be understood

as the two level DP represented in Figure 5.3.

The lower level of the hierarchy generates an unbounded number of HMMs (Hidden

Markov Models) that learn activities with an unknown number of states, considering event

probabilities from a motion grid as observable variables. The upper level combines similar

actions (learned in the HMM) into activities.

Lower Level. The first level in the hierarchy constructs a variant of the Hidden

Markov Model with state transitions distributed as Gj . The HMM is a doubly stochastic

Markov chain in which a sequence of state variables x = {x1, x2, . . . , xT } is hidden, but the

1This is the reason why a Dirichlet distribution is commonly denominated as a distribution of distribu-
tions.
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Figure 5.3. A hierarchical process to find activities in video. Each circle is a random variable
and shading represents events observations from a grid.

sequence of observations y = {y1, y2, . . . , yT } is observable. Changes between states are

modeled with state transition probabilities and every state xi is a multimodal variable that

emits a discrete set of observations with some probability distribution. Traditionally, HMM

assumes a Gaussian distribution for this property. However, it could represent even more

complex observation behaviors when the output of the states is represented as the mixture

of two or more Gaussians.

Every HMM is defined by the probability of each state to transit to other states and the

probability of each state to emit an observation. In our model, both groups of information

are assumed to be distributed as probability mixture models Gj for states and θji for

observations. A Dirichlet Process is used to approximate each mixture model with an

unknown number of mixture components. Since we do not assume an arbitrary number of

states, the transition to an infinite number of states is modeled using a DP following the

construction procedure presented in Definition 4.

G0 | γ,H ∼ GEM(γ)

Gj | α,G0 ∼ DP (α,G0)

θji | α,G ∼ DP (α0, Gj)
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for each j = 1, 2, ..., the probability θji related to the activity j are learned with a HMM of

states x and observations y, which have the following distributions.

xt | xt−1, (Gji)∞j=1 ∼ Gxt−1 for states

yt | xt, (θji)∞j=1 ∼ F (θxt) for observations

here, Gj is the distribution for the squared matrix that represents the transitions between

states for the activity j. Different activities will be learned by HMMs with different distri-

butions Gj .

Upper Level. While the lower level generates a list of HMMs that recognizes indi-

vidual activities, the upper level in the hierarchy selects the optimal HMMs associated to

the activity j. The result is a list of activities G = {G1, G2, ...} distributed as a mixture

model G0 with base distribution H, and a positive scaling parameter γ.

G0 | γ,H ∼ GEM(γ)

In other words, the base distribution G0 generates the distributions Gj by grouping

similar HMMs that learns similar event distributions θji. Teh et al. [48] also use Gibbs

sampling schemes to do inference under the HDP model. To detect the activity associated

to a bounding box with a sequence of events observations {y1, y2, ..., yn×n}, first the trained

HMM with highest log-likelihood score is selected. Second, the activity of the corresponding

Gj associated to the item j is chosen.

5.3 Discovery of Interactions

The output of the hierarchical model present in Section 5.2 is able to discover the ac-

tivities that positively correlate in frequent scenes. The discovery of important interactions

between those activities can take at any time over the video stream as scenes continuously

arrive. Thus, analysis of this data must be incremental as multiple scans to learn the

underlying interaction model of the video stream would be too expensive. The algorithm

proposed in this section extends the well-known Apriori algorithm [49] by generating ap-
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proximate rules over a video stream in a single pass and with guaranteed error value. The

output of the algorithm is a subset of dynamic activity interactions with an importance

value over the video stream at time t.

The algorithm is based on the plausible idea that a video stream is formed by a sequence

of short scenes in which activities are simultaneous. Two or more consecutive frames define

a scene that contains subsets of the set of activities learned in Section 5.2 with a hierarchy

of two Dirichlet Processes. Those subsets of activities are denominated activity sets in this

chapter to represent a spatio-temporal environment for co-occurring activities. Note that

complex activities do not occur solely in one scene, but they propagate their behavior over

consecutive ones. Hence, we define a transaction as a larger time window that contains

a sequence of scenes. This is a range that specifies the maximum allowed time difference

between the earliest and latest occurrence of activities.

Two important properties of activity sets are their support (f) and error value (ε).

While the support refers to the approximate number of transactions that contain an activity

set, the error value is guarantees that the approximate results will not exceed that number.

Frequent activity sets are those with support value above some threshold. We want to

compute rules of the form set1 → set2 such that set1 ∪ set2 has high support.

To compute approximate support values in a single pass, we need to store frequent

counts of activity sets previously seen in the stream into a data structure D. Note that D

can be any data structure that efficiently implements the operations exist(), get(), insert(),

and update(). Commonly, a prefix tree data structure is used to store activity sets in

lexicographical order along with their frequency counters in O(1) [50]. Entries in D have

the following format:

< set, fset,∆set >

where set is an activity set, fset is a lower bound for the real frequency value fset, and ∆set

represents the difference between its upper and the lower bounds. Note that those bounds

define an interval that contains the real frequency value fset.
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fset ≤ fset ≤ fset + ∆set

Later, we will show that the upper bound can be reduced to εN , where N is the number of

transactions seen so far in the stream and ε is the desired error value.

The algorithm starts by logically dividing the incoming stream into transactions of w =

1
ε scenes. The set of activities, let’s call it cand, contained in an incoming scene represents

recent information to be analyzed by its frequency count in the current transaction. To do

that we first evaluate its power set P(cand), excluding the null set, to evaluate the possible

combinations of activities that may be frequent. Note that the power set of a scene does

not produce a huge number of activity sets C since a scene commonly contains only the

interaction of a limited number of activities. The index of the current transaction being

analyzed is denoted as bcurrent and its value is computed as bNw c.

For every activity set set in C, the algorithm looks up set in D to know whether it

exists or not. When set is seen for the first time, and therefore it is not in D, we check

whether set has a high support value in the w scenes of the current transaction. If so, we

assign the lower bound on its frequency as fset = 1 and the extension of its confidence

interval as ∆set = bcurrent = bNw c. This indicates that we have currently seen set at least

once on the stream and at most once on every transaction, respectively. The lower bound

fset will increase when new instances of set are found in later windows.

If set is currently stored in D, its lower bound fset is increased by 1. The extension of

its interval is updated by the difference between its current and former transaction indices

such that a low uncertainty value is obtained when a set recently occurs often and a high

uncertainty value is computed when there is a large gap between occurrences. An upper

bound below bNw c (i.e., the current number of time windows processed so far) is an indicator

that the activity set may have been frequent in early transactions, but has not been updated

recently. Hence, we delete those entries with fset+∆set ≤ bNw c to only generate co-occurring

rules based on recent and frequent activity sets.

Every activity set set is inserted in a priority queue Q of size K. Subsequently, after
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all the scenes in the current transaction have been processed, Q will automatically retain

the K most frequent activities sorted by their approximate support f set. The process of

estimating approximate activities is summarized in Algorithm 3.

The use of lower and upper bounds assure us that after reading N scenes in the stream,

those activity sets whose frequency exceed bNw c will be stored. Since w = 1
ε , the threshold

is b N1/εc and thus bεNc is a guaranteed worst-case approximation on the value of fset.

Algorithm 3 SetCounting(T,D,N,w)

1: //T : current transaction
2: for i = 0 to w − 1 do
3: cand← Ti; //activity set cand at the ith scene
4: bcurrent ← bNw c;
5: //power set on each scene
6: C ← P(cand)− {∅};
7: for j = 0 to /C/ do
8: set← Cj ;
9: fset ← count(set);

10: //Inserting activity set
11: if !D.exist(set) & fset ≥ bNw c then
12: D.insert(< set, fset, bcurrent >);
13: else
14: //Updating approximate support
15: old← D.get(set);
16: fset ← fold + fset;
17: interval← bcurrent − (fold + ∆old);
18: D.update(< set, fset, interval >);
19: end if
20: //Pruning condition
21: if fset + (bcurrent)temp ≤ (bcurrent)set then
22: D.remove(set);
23: end if
24: if D.get(set) 6= {∅} then
25: Q.push(< set, f set,∆set >);
26: end if
27: N ← N + 1;
28: end for
29: end for
30: return Q;

Given the frequent activity set set = set1 ∪ set2 seen so far in the stream, we want to

represent its interactions in the same scene by set1 → set2 (set1∩set2 = ∅, set2 = set−set1).
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The importance of this abstraction is measured by its confidence.

confidence(set1 → set2) =
fset1∪set2
fset1

Note that this value is not exact since its evaluation relies on approximate frequency

counts, so we consider a guaranteed worst-case approximation of fset ±
bεNc
2 . The process

of incrementally producing rules for a current transaction is summarized in Algorithm 4. In

our experiments we use the confidence and support of a rule to determine its importance.

Algorithm 4 ApproximateRuleExtraction(Stream S)

1: D ← 0; //D: data structure
2: Q← 0; //Q: priority queue
3: N ← 0; //N : number of scenes so far
4: w ← 1

ε ; //w: number of scenes in T
5: while true do
6: Q← SetCounting(S.getTransaction(), D,N,w);
7: while Q.hasElements() do
8: < set, fset,∆set >← Q.pop();
9: for every nonempty subset set1 of set do

10: set2 = set− set1;
11: if confidence(set1, set2) ≥ confidencemin then
12: print(rule : set1 → set2);

13: print(support : fset ±
bεNc
2 );

14: end if
15: end for
16: end while
17: N ← N + w;
18: end while

Note that while the Apriori algorithm uses the anti-monotone property to avoid com-

puting all possible combinations of activities, we evaluate all possible subsets of activities

in a scene in seek of approximate their counting over the video stream. However, we reduce

the candidate space by keeping only those that are frequent and recent over the stream.

We thus assume that if a subset of activities is frequent in a transaction, it could also be

frequent during the incoming part of the stream. Those subsets that are frequent, but

become outdated, are removed as candidates. The inserting of frequent candidate subsets

in Q provides frequent interactions for the current transaction, where we can discover rules
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with high confidence values as the stream arrives.

Note that set1 → set2 defines the co-occurring interactions between the antecedent

and consequent part of that rule and not the estimate of the probability of finding set2

under the condition that these transactions also contain set1. This information could also

be modeled as an additional layer in the Topic Model described in Section 5.2. However,

the resulting model would not be as dynamic and incremental as the one proposed in this

chapter. Our algorithm, rather than solving the efficient storing of frequent itemsets, aims

to make its working adaptable to the limited resources of a system while providing bounds

and a guaranteed error for frequency values. We study this problem in detail in the next

subsection.

5.3.1 Dynamic Memory Usage

The approximate counting of frequent itemsets helps us to understand the significance

of scenes in a video. However, both the detection of items in the video (Section 5.2) and their

posterior frequency evaluation (Section 5.3) have different memory requirements. While

the detection of itemsets takes consecutive frames to recognize items based on events, the

approximate counting of itemsets is much faster and provides better approximations when

more time windows are considered. To illustrate this concept consider Figure 5.4 as an

example. A stream of video frames arrives continuously as input. We trained the Dirichlet

Process introduced in Section 5.2 to recognize itemsets by assigning labels to activities. The

output of this process is a time window of w transactions.

We can increase the probability of finding itemsets in several transactions by reading

B > 1 time windows. This also provides a more effective pruning of those itemsets with

supports below than (s−ε)N . Thus, we store in a queue as many time windows as possible,

being B = 1 the lowest value. However, memory space is a limited resource that may hinder

the evaluation of approximate frequency counts when few transactions are considered. This

problem is especially important in our case because of the amount of memory already

devoted to recognize activities in a continuous stream of video frames. This makes dynamic

the amount of memory available in the system with values even less than required to store
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Figure 5.4. A broad representation of the approach introduced in this chapter. A continuous
video stream is discretized in windows B that contain a variable number of transactions at
time t to approximate the frequency counts of itemsets in the window.

one time window.

Thus, there is a trade-off between storing as many windows as possible, to better

approximate frequency values, and compute the frequency of itemsets within a window as

soon as one time window is received. An intermediate solution is to dynamically adjust the

parameter B to control the number of time windows to be stored in the queue.

If the number of windows is less than B and enough memory is available, then we

keep inserting time windows in the queue. If the amount of memory is almost full and the

number of windows in the queue is less than B, then we delete those windows to avoid

storing older frequencies. If memory is not full and there are more than B windows in the

queue, we keep inserting windows until some threshold is exceeded and then take the total

number of windows in the queue to improve the approximation on frequent counts.

Let MB be the space in memory allocated to store B windows, MB = wB. A windows w

contains 1
ε transactions with at most /I/ items (i.e., possible types of activities). Thus, the

maximum amount of memory to allocate a window is w = /I/·1
ε transactions and therefore

we store MB = B/I/
ε units in the queue. The amount of available memory at time t is then

defined as the difference between the total memory at time t and the memory employed to
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store B time windows at time t.

M t
available = M t

total −
Bt/I/

ε

Assuming that the last state in the queue, in which we took B time windows, is stable,

we want to preserve the balance between windows stored in the queue and the corresponding

amount of memory available:

#transactionst−1

M t−1
available

=
#transactionst

M t
available

once Mavailable and B are considered in the above equation, we obtain the amount of time

windows needed to read in memory to assure the stable working of the system at time t.

Bt =
M t
totalB

t−1

M t−1
total

Note that although both /I/ and ε are fixed parameters, we can consider Bt as a

running parameter in our model. An inadequate control of B may hinder the performance

of the system since it affects the number of transactions that need to be created, updated,

or removed from the data structure D. This is especially important when D is implemented

on hard disk, a common scenario when very large stream databases are considered.

By modeling the allocation of transactions in memory in terms of B, we make this

process adaptable to that limited resource. We would like to always set B to a high value

to have more accurate approximations for the counts of itemsets, but this value needs to be

decided according to the total amount of memory in the system at time t− 1, which is not

constant.

5.3.2 Summary

In this section, we have computed frequent itemsets with approximate support and

guaranteed error value while adjusting dynamically the number of transactions needed to

effectively evaluate support values. Intuitively, the more transactions we take, the more
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precise frequency approximations we obtain. However, more available memory will be con-

sumed as well. Our method reduces space complexity by adapting the algorithm to the

amount of memory available before any process to update frequency values for itemsets is

incrementally performed.

5.4 Experiments

In this section, we test the performance of our technique with outdoor videos where

moving objects describe traffic scenes governed by the state of multiple semaphores. The co-

occurring interactions are modeled by frequent sets of activities with large confidence values

over the video stream. We experiment on the following datasets: Street Intersection2

(normal quality, 25fps, 45 minutes, 5 semaphores), Karl-Wilhelm & Strabe Streets3

(normal definition, 25fps, 1 hour, 3 semaphores), and Roundabout Junction4 (normal

quality, 25fps, 1 hour, 3 semaphores).

The experiments are run on a 3.6 GHz Pentium 4 with 2 GB RAM and all the above

datasets are publicly available to facilitate later experimental comparisons.

5.4.1 Experiment 1: Discovering activities

Before studying the quality of the co-occurring relationships generated to describe

scenes in videos, we analyze in this experiment the recognition of activities with the model

presented in Section 5.2. We compare our instantiation of the hierarchical Dirichlet Process

(HDP) to another probabilistic topic model, the Latent Dirichlet Allocation (LDA) [51],

recently used in [52–54] to also segment visual features from video into activities, and a

supervised approach, the Support Vector Machine (SVM). Most existing research employs

hierarchical Bayesian models or non-probabilistic classifiers to recognize activities in video,

so by using both LDA and SVM we cover two representative techniques in the literature.

We used the first 20 minutes of each dataset for training in order to take the remaining

data for testing by labeling and recognizing activities on it. Pairs of consecutive frames are

2http://www.eecs.qmul.ac.uk/∼jianli/Junction.html
3http://i21www.ira.uka.de/image sequences/
4http://www.eecs.qmul.ac.uk/∼jianli/Roundabout.html
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Table 5.1. Information on the Training Stage for Each Dataset.

Dataset Activities Time to Compute

Street Intersection 37 4.38 min.

Karl-Wilhelm & Strabe 31 3.51 min.

Roundabout Junction 24 2.57 min.

processed to identify moving pixels, events, and connected components. The observations

consist of bounding boxes around moving objects with resolutions of 8 × 8 for the Karl-

Wilhelm & Strabe dataset and 4 × 4 for the Street Intersection and Roundabout

Junction datasets. This is because the camera in the first dataset is placed on a far

building, so we need grids with higher resolutions to describe small objects. This process

provides a collection of unlabeled motion grids to the hierarchical model. We do not assume

any prior knowledge in the number activities to be discovered. DP parameters were fixed

at {α = 11, γ = 0.9}.

Table 6.1 shows the number of activities found and the time consumed by each dataset.

Since LDA and SVM cannot find the number of activities from the video, we first use HDP

to discover the number of activities and then employ K-means to generate a number of

clusters in the training dataset and assign them a label. Finally, we train SVM with these

already labeled groups and perform generalization in the remaining video to assign labels to

moving objects, as also described by Yin and Meng [53]. By contrast, LDA only needs the

number of activities provided by HDP to be trained and recognize activities. The finding

of activities by these three techniques is measured by comparing their clustering “goodness”

on the testing data considering the same number of activities and increasing database size.

Figure 5.5 shows the result of grouping activities in each dataset with the trained HDP,

LDA, and SVM. Since there is not a direct way to compare the accuracy of two clustering

algorithms, we estimate the average clustering error by averaging the distance between the

activities that belong to each cluster by their total number of cluster elements. This number

indicates how similar are the actions, represented by their event distributions, which belong

to the same cluster. A large value will indicate poor clustering since the actions within a
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cluster will be heterogeneous indicating large entropy in the cluster. Hence, an algorithm

with a low average clustering error is preferred. We computed the error along the duration

of each video and plotted the result in Figure 5.5. The technique used in this chapter

provides the lowest error value for every dataset, but this difference is smaller for datasets

with fewer activities. For instance, while we can clearly see the advantage of using HDP to

detect activities in the Street Intersection dataset (37 activities) and the Karl-Wilhelm

& Strabe dataset (31 activities) in comparison to other methods, the discovery of activities

in datasets with fewer activities, like the Roundabout Junction dataset (24 activities),

produces comparable error values in each method. This behavior was also noticed by Wang

and Mori [55] when comparing different Bayesian models for human activities recognition

in video. Additionally, LDA seems to have a better behavior than SVM with K-means in

all the datasets considered in this chapter.

5.4.2 Experiment 2: Discovering Interactions

In this experiment, we study the significance of the generated rules to understand

the dependencies between the activities discovered in Experiment 1. Transactions of size

/w/ = 25 scenes is a value that works in all the datasets in order to find activities temporally

correlated in the same window. Thus, every transaction is the input to the Algorithm 3

and since w = 1
ε , we approximate the frequency counts of every activity set with an error

value of ε = 0.04.

The number of transactions, topics, and the processing time to discover association

rules for every dataset are summarized in Table 6.1. The Street intersection dataset

exhibits more topics than the Karl-Wilhelm & Strabe dataset since five traffic lights

decomposes complex activities into a large number of well-defined scenes. On the other

hand, the Roundabout Junction dataset contains a few number of topics due to the

limited types of activities performed and considerable amount of frames with no activities.

The processing time to generate rules seems to be proportional to the number of topics

discovered in each dataset.

We consider a minimum support value of 4%, a minimum confidence value of 90%, and
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Table 5.2. Information on the Datasets Preprocessed to Discover Association Rules.

Dataset Time windows Topics Rule
generation time

Street Intersection ∼ 15000 37 8.74 sec.

Karl-Wilhelm & Strabe ∼ 11000 31 5.41 sec.

Roundabout Junction ∼ 7000 24 3.28 sec.

activity clusters with more than 10 elements in order to generate representative rules. We

thus extract rules from the Street Intersection (37 topics and 16 rules), Karl-Wilhelm

& Strabe (31 topics and 13 rules), and Roundabout Junction (24 topics and 10 rules)

datasets. In these datasets, as more constraints govern the activities (e.g., traffic lights, one-

way roads, intersections, etc.), more topics will be generated and more frequent rules will

be discovered. This evidence seems to indicate that every constraint imposes an underlying

logic that fragments complex activities into a large number of small scenes, which are

easy to represent with events and form well-defined activities, and therefore are likely to

be frequent during the video. For the Street Intersection dataset, some of the rules

uncovered with the algorithm proposed in this chapter are depicted in Figure 5.6 (a) and

detailed in Figure 5.6 (b). The first three rules are high-confidence associations that suggest

a strong correlation between vehicles moving in parallel lanes (G2 and G3) or those moving

from side to side (G7 or G11) while other vehicles move away from the center to the top left

of the scene (G3). Those activities are mutually exclusive since there are five traffic lights

that prevent vehicles moving from side to side from colliding with those moving across the

parallel lanes. Consider the first rule {G7} → {G3} as an example. The last two rules

indicate the co-occurring dependency between cars turning right (G5) while others that are

moving from right to left (G7). This behavior, exemplified by rule {G5} → {G3, G7}, is

justified since those vehicles use the same traffic light to move from the bottom right part of

the scene to either the bottom left or the top left edge, as seen in scene 4 and 5 of Figure 5.6.

For the Karl-Wilhelm & Strabe dataset, three confident interactions are shown in

Figure 5.7 (a) and expressed with rules in Figure 5.7 (b). We notice the regular presence of

the activity G5 in those scenes. This behavior is reasonable since the activity G5 corresponds
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to vehicles going along Strabe avenue, a very busy road in the dataset. The first rule {G2} →

{G5} exemplifies the interaction of vehicles going in parallel lanes without restrictions. The

second rule is similar, but additionally contains the activity of cars going from the center to

the bottom left of the screen (G7). Furthermore, the usual interaction of cars going straight

in the avenue (G5) and then turning right after that (G7) is explained by rule {G5} → {G7}.

For the Roundabout Junction dataset, we show common interactions in Figure 5.8

(a) and detailed in Figure 5.8 (b). The roundabout in the video segments the motion of

vehicles into multiple activities. The first rules {G11} → {G3} represents the sequence

of car activities going straight (G3) and then joining the roundabout (G3). By contrast,

the second rule {G9} → {G2} explains the co-occurring relationship of vehicles taking

lanes separated by the roundabout. Finally, while some vehicles circulate alongside the

roundabout emerging as two activities (G5 and G14), another set of cars take a different

way by turning left from the center to the upper part of the scene (G8). These sequences

of co-occurring associations reflect the transitions between significant scenes in datasets

governed by multiple lanes, traffic lights, and a roundabout.

5.4.3 Discussion

The time complexity for learning activities with the hierarchical Bayesian method used

in Section 5.2 is: multiple

O(W ) +O(EG) +O(G2)

where W is the number of scenes used for training, E is the total number of regions in a

motion grid, and G is the number of activities discovered. Note that the resolution of a grid

will affect the number of event observations during training. The space complexity spent

for this process is

O(GE) +O(G) +O(GW ) +O(EW )

The time complexity to discover interactions in a transaction is:

O(2G(W + 1) + TKlog(K))
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where W is the total number of scenes in a transaction and K is the size of a priority queue.

We multiply that expression by the number of transactions seen so far to have a notion of

the time complexity. We assume a constant insertion and searching time, as provided by a

hash table, during the counting of activity sets. For every scene, G represents the maximum

number of activities observed. Note that although the expression 2G is the power set of

activities and it may provide a large number of activity sets to be computed, in practice it

is not common to find all the possible activities in the same scene. Thus, this number is

small allowing us to obtain an approximation algorithm for this problem.

5.5 Related Work

In this section we compare our approach with related efforts. For clarity, we keep

our comparison focused in each stage of the video process (i.e., discovery of activities and

discovery of interactions). The recognition of activities in video is an open problem that

has received much attention lately. Commonly, low-level visual features and actions have

been modeled and classified to provide interpretation of activities. While the traditional

way to categorize existing research is by motion representation such as local features (e.g.,

changes in velocity, changes in curvature of motion trajectories, and gradients) or global

features (e.g., key frames), recent research has employed hierarchical Bayesian models such

as LDA [51] and HDP [48] to cluster local motions into activities successfully, c.f., [52–54].

The above research has led to techniques that can discover atomic activities, but such tech-

niques omit the complex interactions between activities commonly present in video. Wang

et al. [54] approach this problem by adding one more level to the hierarchy of the LDA and

HDP Bayesian models and providing extended versions of integral probabilistic hierarchical

Bayesian models (LDA, HDP, and Dual-HDP mixture models) to cluster moving pixels into

atomic activities and interactions. Similarly, Li et at. [56] infer global behavior patterns

through modeling behavior correlations through a hierarchical probabilistic Latent Semantic

Analysis (pLSA). Both techniques, however, learn global interactions disregarding temporal

information. By contrast, our on-line technique relates frequent activities in a transaction

and removes those that become infrequent over time. In other words, by decoupling both
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the discovery of activities and interactions, we can incrementally learn interactions without

assuming the same probability of co-occurring relationships over time, a reasonable scenario

imposed by the processing of continuous video streams.

5.6 Limitations of this Work

To understand the behavior of moving objects in a video stream, we adopt events based

on moving pixels as low-level visual features that characterize their spatial dependencies.

While we have showed their expressiveness to discover activities and co-occurring relation-

ships, others features can also be adopted to consider different attributes such as shape,

trajectory, and appearance to distinguish between vehicles and people, detect when vehi-

cles stop because of a red light, or when people describe two trajectories by crossing at a

crosswalk in both directions. An extension of this work is to use trajectory and appearance

information to differentiate activities (e.g. a car going left and a person going left). Ad-

ditionally, the assumption of having a static camera recording activities is reasonable for

traffic surveillance, but we will need to stabilize regions containing moving information, as

in [55], to extend our work to more dynamic scenes. As future research, we plan to study

other similar domains where crowds of moving objects also have different behaviors at the

same time. Also, we want to study the relationship between frequent activities and recog-

nition of abnormal situations, often related to dangerous events for the domain of traffic

roads. Additionally, video summarization can also be implemented by providing to the user

a sequence of important scenes in terms of confidence and support values.

5.7 Conclusion

In this chapter, we propose a framework to find approximate co-occurring associations

from video stream data considering unsupervised clustering of events (low-level visual fea-

tures) into activities. We define activities as actions described by similar event distributions.

A hierarchy of two stochastic processes is used to avoid considering an arbitrary number of

activities in the video. The most visible aspect of this effort is the incremental generation of

rules that discover the interaction of frequent activities for current scenes. Our experimental



80

results show that our approach efficiently and automatically discovers sets of activities in a

video stream while evaluating their frequent occurrence and co-occurring relationships with

guaranteed error value.



81

(a) Street Intersection

(b) Karl-Wilhelm & Strabe

(c) Roundabout Junction

Figure 5.5. A comparison of the average clustering error in each dataset. It measures the
similarity of the elements within clusters.
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(a) Scenes

(b) Rules

Figure 5.6. Experiment on the Street Intersection dataset. (a) A selection of high confidence
association rules. (b) Scenes of the Street Intersection dataset with high confidence values
over time. Changes between scenes represent transitions between significant scenes.
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(a) Scenes

(b) Rules

Figure 5.7. Experiment on the Karl-Wilhelm & Strabe dataset. (a) A selection of high con-
fidence association rules. (b) Scenes of the Street Intersection dataset with high confidence
values over time.

(a) Scenes

(b) Rules

Figure 5.8. Experiment on the Roundabout Junction dataset. (a) A selection of high con-
fidence association rules. (b) Scenes of the Street Intersection dataset with high confidence
values over time.
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CHAPTER 6

WHAT TO REUSE?: A PROBABILISTIC MODEL TO

TRANSFER USER ANNOTATIONS IN A

SURVEILLANCE VIDEO

6.1 Introduction

Surveillance videos are widely used in real-time monitoring applications, e.g., of an

oil spill, a store entrance, or a traffic road. Due to the nature of surveillance, continuous

recording is needed to capture events during days and weeks. This produces dynamic

content that makes it difficult to reuse labeled data from other parts of the video to improve

prediction in current scenes. The prediction of labels in surveillance videos raises three

important issues which go beyond traditional machine learning algorithms:

1. Mixed membership. The mixture components that form a video scene are not known

in advance; rather they should be learned based on the frequent co-occurrence of

discrete activities in the video. This explains the need for a generative process, like

Latent Dirichlet Allocation (LDA), to generate a proportion of topics for every scene.

2. Dynamic content. video is noisy and external situations produce different features

(activities) persistently. As LDA provides topics based on feature co-occurrences,

we obtain different topics at different places in the video. This makes it difficult to

compare statistical models trained in different domains.

3. User annotations are scarce and expensive. We can ask users to provide labels for

every scene via crowdsourcing, but usually those are limited to a small portion of the

data. Repeating this process when every new external variable happens is not scalable
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in a continuously growing video database. We rather want to improve precision by

reusing labels of the existing domain that best fit our current data.

Based on the above observations, we propose the Crossdomain Probabilistic Model

(CPM). The basic idea is to generate topics that model activities of two domains jointly.

Those become the common latent variables to propagate labels from a source to a target

domain. The similarity of two domains, in terms of the number of common activities, guides

the inference of latent variables.

6.1.1 Contributions

This chapter makes the following contributions.

• Our probabilistic model is able to learn topics that explain the co-occurrence of ac-

tivities across domains. Existing research performs prediction by considering a single

domain [57, 58]. This leads to poor precision and recall values when marginal and

conditional distributions change in the video.

• This model is able to represent the arbitrary relationships between domains with a

covariance matrix that weights more the domains that share more observable variables

in the content.

• We propose an approach that combines content and labels. Previous research (see

Section 6.3) proposes algorithms that learn conditional dependencies between random

variables to explain the content of video scenes, but omits the generation of labels

by users. Both content and labels are observable variables in our problem that are

learned jointly. This way, when users annotate a scene as dangerous, our model puts

some bias in the corresponding topics that describe the scene.

6.1.2 Chapter Organization

The rest of this chapter is organized as follows. Section 6.2 describes important def-

initions used in this chapter to set a common terminology. Section 6.3 discusses related
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work. Section 6.4 analyzes three methods to connect content present in different domains.

Section 6.5 introduces our probabilistic model. Section 6.6 shows experiments that demon-

strate the usefulness of the proposed approach for real traffic videosets. Finally, Section 6.7

concludes the chapter.

6.2 Notation and Terminology

The problem of understanding video involves three kinds of information: events, activ-

ities, and scenes. An event is a trajectory that exhibits the temporal behavior of a moving

object, for example, consider the trajectories of vehicles going up, down, and turning right

in Figure 6.1 (c). Then, an activity groups trajectories with similar shape. To do that,

we compute the hash key of every trajectory with the Timeseries Sensitive Hashing (TSH)

algorithm proposed in [4]. TSH has the ability to map timeseries with similar shape, but

different length (see Figure 6.2 (a)), to the same bucket of a hash table with high probabil-

ity. As shown in Figure 6.2 (b), the result is a dictionary of discrete activities (e.g., A, B,

C, and D) computed in linear time, where each entry in the vocabulary corresponds to a

bucket in the hash table that contains a number of trajectories. Note that, the tuning of

the parameters of TSH (e.g., bucket width and hash function) will create a dictionary with

a given number of actives. Finally, a scene is a time window of fixed length that contains

a set of activities. This terminology and hierarchical way of generating events, activities,

and scenes has been adopted by the Computer Vision community, so we also consider these

common concepts in this chapter. The reader can consider activities as the words and scenes

as the documents of a text corpus.

Formally, we define the following terms to use in this chapter:

• An activity ai is the basic unit of discrete data. It is an entry of a fixed dictionary of

V terms.

• A topic βk is a distribution over a subset of activities.
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(a) Segmentation (b) Bounding boxes (c) Trajectories

Figure 6.1. Describing surveillance video for traffic roads. (a) Motion information is seg-
mented with pairs of consecutive frames (b) Bounding boxes enclose activity information
(c) Bounding boxes are tracked during a time window to extract trajectories, highlighted
in white.

• A scene m is a time window containing a collection of N activities denoted by A =

{a1, a2, ..., aN}. We can generate a scene, m, as a proportion, θm, over K existing

topics.

• An annotation is a numeric value r = {0, 1} provided by a user to represent his/her

perception of a scene (e.g., is this scene dangerous? ).

• A domain D is a matrix of users I as rows and scenes M as columns. Users annotate

the scenes of a domain with the value rim,

rim =

 1, if scene m is annotated as dangerous

0, otherwise (scene m is annotated as non-dangerous)

.

As explained previously different domains will generate the content of video scenes in dif-

ferent ways in response to external variables. This makes it difficult to predict the labels of

scenes in new domains.
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(a) Similar trajectories mapped back to video scenes

(b) Content of some buckets in the hash table

Figure 6.2. Discovery of activities in video. (a) Similar trajectories show a similar shape in
video scenes. (b) They are mapped to buckets A, B, C, and D of TSH.

6.3 Related Work

6.3.1 Latent Dirichlet Allocation (LDA)

We use LDA to generate topics in video. A topic is a distribution over activities that

co-occur frequently in scenes. Every scene is thus formed by a multinomial proportion over

K topics.

Let’s fix the following parameters of the model: K topics, β (each βk is a vector of

probabilities over the V entries of the dictionary of activities), and the Dirichlet parameter

α (a vector of K components with αi > 0). LDA models every scene m with the following

generative process:

1. Choose a topic proportion θm from the distribution Dirichlet(α)

2. For each of the N activities,

(a) Choose topic id zmn from the multinomial distribution Mult(θm)

(b) Choose an activity amn from the multinomial distribution Mult(βzmn)
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Figure 6.3. Graphical model representation of LDA. Activities are shadowed to represent
an observable variable.

The above process explains how LDA allows a scene to exhibit a mixed membership over

the K possible topics. For example, LDA can capture that the scene shown in Figure 6.1 (c)

the scene contains topics β1 and β2, where β2 corresponds to a collection of two frequently

co-occurring activities (vehicles going down and vehicles turning right) in the second lane. A

latent variable for this scene represents the proportions over K = 5 possible topics showing

that topics β1 and β2 are active, θ = {0.6, 0.4, 0.0, 0.0, 0.0}. Note that similar scenes will

exhibit similar topic proportions, θ. Hence, θm provides a low-dimensional representation

for the content of a video scene, m.

LDA is formed of conditional relationships between activities, topics, and parame-

ters. Figure 6.3 shows these dependencies as a probabilistic graphical model. It includes

hidden variables (per-activity topic assignments zmn, per-scene topic proportions θm, and

per-dataset topic distribution βk), observable variables (activities a), and a dataset-level pa-

rameter (Dirichlet parameter α). The hidden variables reflect a space of latent variables for

the corpus, so its posterior inference is needed to estimate which topics best fit to activities

in every scene. The posterior distribution over all the random variables in the model can

be decomposed into a product of conditional distributions,1 as follows.

1Both Equation (6.1) and Figure 6.3 are equivalent as they represent conditional dependence between
random variables
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p(θ, z|a, α, β) =

N∏
n=1

p(θ|α)

N∏
n=1

p(zn|θ)p(an|zn, β) (6.1)

We can use variational Expectation Maximization (EM) as a deterministic alternative

to Markov Chain Monte Carlo (MCMC) to approximate the computation of the posterior

distribution p(θ1:M , z1:M |a1:N , α1:K , β1:K) as in [51]. This will optimize independently the

variational parameters that govern the latent variables of Equation (6.1) by minimizing

the Kulllback-Leibler (KL) divergence between the variational distribution and the true

posterior p(θ, z|w,α, β).

6.3.2 Activity Mining

The recognition of activities in video is an open problem that has received much at-

tention lately. Commonly, low-level visual features and actions have been modeled and

classified to provide interpretation of activities. While the traditional way to categorize ex-

isting research is by motion representation such as local features (e.g., changes in velocity,

motion trajectories, and gradients) or global features (e.g., key frames), recent research has

employed hierarchical Bayesian models such as LDA [51] and Hierarchical Dirichlet Process

(HDP) [48] to cluster those activities into scenes [52–54]. The above research has led to

techniques that can discover atomic scenes, but such techniques omit the complex interac-

tions between scenes commonly present in video. Wang et al. [54] approach this problem

by adding one more level to the hierarchy of the LDA and HDP Bayesian models and pro-

viding extended versions of integral probabilistic hierarchical Bayesian models (LDA, HDP,

and Dual-HDP mixture models) to cluster moving pixels into atomic activities and inter-

actions. Similarly, Li et at. [56] infer global behavior patterns through modeling behavior

correlations through a hierarchical probabilistic Latent Semantic Analysis (pLSA). Both

techniques, however, learn global interactions disregarding temporal variations in the dis-

tribution of activities. By contrast, our technique models video scenes with topics that do

not assume the same probability of co-occurring activities over time, a reasonable scenario

imposed by the processing of continuous video streams.
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(a) Feature-level (b) Topic-level (c) Cross-domain level

Figure 6.4. Three different strategies for Domain Adaptation. The random variables a1:M
and β1:K represent activities and latent variables, respectively.

Despite all of the existing research in activity mining in surveillance videos, little has

been done on taking advantage of user’s annotations of scenes across domains. In this work,

we combine content and user annotation in different domains to predict the labels of future

scenes.

6.4 Domain Adaptation

The mining of activities for multiple domains exhibits new characteristics to existing

algorithms that also model video scenes as a combination of topics, yet in a single domain [52,

54]. Topics get partially preserved when we project them to other domains. In our video

problem, this happens because both source and target domains have different vocabularies

of activities and different marginal and conditional probabilities (dependency relationships

between random variables). These issues violate fundamental assumptions of topic modeling

for mining crowd activities in video.

However, the content of two different domains is transferable if both domains share

a set of common variables (which can be observable or latent). Our goal is to discover

domain-independent variables that connect similar content in two domains. We analyze

this transferring at three different levels: feature-level, topic-level, and cross-domain level.
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6.4.1 At a feature-level

A simple approach is to find a set of observations (activities) present in the dictionary

of both domains, as seen in Figure 6.4 (a) and then perform a K-means clustering over

these common features to generate K mixture components. Then, in each scene we obtain

a low-dimensional representation on the content by computing a histogram of activities

indexed by each of the K clusters and normalizing.

6.4.2 At a topic-level

We compute topics with LDA in each domain independently and define a similarity

measure between topics in terms of the number of activities that they share across do-

mains. Every topic is connected to its most similar topic in the other domain, as seen in

Figure 6.4(b). When we separate connected topics, we end up with a new set of mixture

components that connects content in both domains. As before, we compute the content for

each scene by counting the number of activities indexed by each mixture component.

6.4.3 At a crossdomain-level

The last two approaches are sub-optimal solutions to find latent variables that are

relevant for domain adaptation. This is because either video activity is noisy and unstable

or domain-specific topics model co-occurrence of activities in each domain, but fails to

represent mutual co-occurrence across domains.

We improve the above two methods by collapsing activities of both domains in a com-

bined dataset and extracting topics to have a common latent variable to explain both

domains, taking special care to consider the same number of activities in each domain to

avoid bias in the generation of topics for a particular domain, as shown in Figure 6.4(c).

Our experiments show that this method provides better recall values than feature and topic

level techniques.
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Figure 6.5. Multiple source and target domains, missing annotations are shown with Xs.

6.5 Crossdomain Probabilistic Model

Consider the setting of three source domains and a current target domain depicted in

Figure 6.5. Scenes in source domains are annotated as dangerous (rij = 1) or non-dangerous

(rij = 0). Conversely, scenes of the target domain are not annotated (rij =X). We would

like a model that predicts those missing values based on the similarity of content in previous

source domains and in how multiple users similarly annotate scenes as dangerous.

A source domain can be factorized into latent vectors ui ∈ RK (for users) and vm ∈ RK

(for scenes), respectively. The annotation of user i to scene m in the original matrix can be

approximated by the inner product between their corresponding latent vectors,

rim ∼ uTi vm (6.2)

by minimizing the least squared error with respect to true user annotations rim,

minU,V
∑
i,m

(rim − uTi vm)2 + λu ‖ui‖2 + λv ‖vm‖2 (6.3)

with regularization parameters λu and λv.

Note that the inner product uTi vm corresponds to a prediction of whether user i con-

siders the interaction of activities contained in scene m as dangerous. However, such a

prediction cannot be computed in a target domain because those scenes are not annotated

and therefore rim is not available for Equation 6.2, as visually described in Figure 6.5.
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We introduce the Crossdomain Probabilistic Model (CPM) to alleviate that problem.

CPM learns user annotations on latent variables that connect the generation of content

across a pair of source and target domains (see Section 6.4.3 and Figure 6.4(c)). CPM uses

those cross-domain topic proportions, θm, in place of the latent vector vm of Equation (6.2)

to factorize the user annotations in both domains, as follows.

ri,m ∼ N (uTi θm, c
−1
ij ) (6.4)

being c−1ij a precision parameter.

However, such predictions should include an uncertain quantity εm that offsets the topic

proportion in response to the dissimilarity of their corresponding domains. This information

is encoded using a normal distribution with expected value equal to the number of activities

in the target domain and variance equal to the number of different entries in the dictionary of

activities of both domains.2 The idea is to penalize source domains that are different in terms

of feature representations. Thus, a latent vector vm explains a scene m as vm = θm + εm,

where εm ∼ N (µ, Σ) is equivalent to

vm ∼ N (θm + µ, Σ)

which models when the document latent vector vm is close to its topic-proportions θm. This

makes a user annotation equivalent to,

E[ri,m|ui, θm, εm] ∼ N (uTi (θm + µ),Σ))

∼ N (uTi vm, Σ) (6.5)

This cross-domain factorization can also be generated as a probabilistic graphical model

with the following generative process,

2A prior for ε is considered a purely subjective assessment in the way how a target domain is related to
other source domains. Different and more expressive metrics to relate content across domains could be used
such as the part of the day or the month when the recording took place.
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1. For each of the I users,

(a) Choose a latent vector ui from N (0, λ−1u IK)

2. For each of the C collapsed datasets that combines a target domain with a source

domain,

(a) For each of the M documents,

i. Choose a topic proportion θm from the distribution Dirichlet(α)

ii. Choose the document offset εm from N (µc, Σc)

iii. Set document latent vector as vm = εm + θm

iv. For each of the N activities,

A. Choose topic id zmn from Mult(θm)

B. Choose an activity amn from Mult(βzmn)

v. For each existing user-scene annotation (i, m),

A. Choose an annotation ri,m from ∼ N (uTi vm, c
−1
ij )

Similar approaches that also model user annotations as a probabilistic matrix factor-

ization over users and items do not consider the presence of multiple domains and therefore

lose the advantage of transferring existing labels to a target domain to improve prediction

[59,60].

6.5.1 Learning Parameters

Let’s assume the topics β1:K are fixed, the posterior distribution of CPM p(u, v, θ, z|Σ, λu, α, β)

can be factorized as follows,∏I
i=1 p(ui|λu)

∏M
m=1 p(ri,m|ui, vm)p(vm|Σ, µ, θm)p(θm|α)∏N

n=1 p(zn|θm)
∏N
n=1 p(am,n|zm,n, βk)

This expression is computationally intractable as the cardinality V xMxN is huge. Our

goal is to maximize the posterior distribution by optimizing the functional dependence of
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the Gaussian on each hidden parameter. For example, the posterior of p(vm|µ,Σ, θm) has

the quadratic form,

(vm − (θm + µm))TΣm(vm − (θm + µm))

because each topic proportion is biased in response to a dissimilarity metric encoded in

the covariance matrix Σ, vm ∼ N (θm + µ, Σ). Similarly, the quadratic form of the user

annotation p(ri,m|ui, vm) is defined as,

(ri,m − (uTi vm))T ci,j(ri,m − (uTi vm))

The log likelihood of the posterior represents this value as the sum of probabilistic

components,

L = −λu
2

∑
i u

T
i ui − 1

2

∑
m (vm − (θm + µm))TΣ(vm − (θm + µm))

−
∑

i,j (ri,m − 1
2(uTi vm))T ci,j(ri,m − (uTi vm))

+
∑

m

∑
n log(θjkβk,wjn)

First, we optimize L in terms of U and V and set them to zero to find their optimal

parameters, similar to [61]. Then, we derive L in terms of θ to learn the topic proportions

for each document and apply Jensen’s inequality to provide a lower bound in terms of a

function q(θ) that can be factorized with K independent components as q(θ) =
∏K
i q(θi).

The result the following factorization, q(θ) = q1(θmk)q2(βk,wmn), which can be optimized by

coordinate ascend to find their optimum parameters by fixing one of them at each iteration.

6.6 Experiments

In this section, we test the performance of CPM with surveillance videos recording

activities in traffic roads. Moving objects describe traffic scenes governed by the state of

multiple semaphores. We experiment on the following datasets: Street Intersection3

3http://www.eecs.qmul.ac.uk/∼jianli/Junction.html
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Figure 6.6. Probabilistic Graphical Model of CPM. Activities amn and annotations rim are
observable variables shadowed in gray. Note that domain independent topic proportions θm
are defined for a each collapse dataset.

(normal quality, 25fps, 90 minutes, 5 semaphores), Karl-Wilhelm & Strabe Streets4

(normal definition, 25fps, 2 hour, 3 semaphores), and Roundabout Junction5 (normal

quality, 25fps, 2 hour, 3 semaphores).

We generate a ground truth in every dataset by asking users to manually tag time

windows of 10 seconds with either “dangerous” or “safe”. We generate domains in each

dataset by considering three consecutive source domains of 20 minutes at the beginning of

each video and a target domain of 20 minutes in the end of the video. This generates 360

scenes for the source domain and 120 scenes for the target domain. To compute precision, we

assume that no labels are available in the target domain and consider a hit if the average

value of the precision with respect to the number of users is larger than 0.5 and a miss

otherwise. For the generation of dictionaries of activities in each video, we use the same

hash function in Timeseries Sensitive Hashing (TSH). The number of activities found in

each video depends on the complexity of the scene, as shown in Figure 6.1. The more traffic

lights yields more segmented activities and a larger dictionary. The experiments are run on

a 3.6 GHz Pentium 4 with 4 GB RAM and all the above datasets are publicly available to

4http://i21www.ira.uka.de/image sequences/
5http://www.eecs.qmul.ac.uk/∼jianli/Roundabout.html
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Table 6.1. Information of the Training of Each Dataset.

Dataset # Activities Time to
Compute

Street Intersection (5 semaphores) 318 4.21 hours

Karl-Wilhelm & Strabe (3 semaphores) 227 4.37 hours

Roundabout Junction (3 semaphores) 235 4.43 hours

facilitate later experimental comparisons.

6.6.1 Experiment 1: Finding Parameters

Before studying the performance of the algorithm, we analyze in this experiment the

optimal values of external variables K (number of topics) and Σ (covariance between a

source and target domain) for each dataset considering all the datasets.

First, we want to study the effect of changing the numbers of topics K in the model.

We fix the other input parameters {α = 0.1, λu = 0.5, Σ = 0.3, 0.3, 0.3} and then compute

the Mean Average Precision (MAP@20) for 30% of the scenes in the target domain with

a varying number of topics. Figure 6.7 shows that a value of K = 50 topics provides a

consistent result for all the datasets. Note that, the Street Intersection dataset shows the

highest precision as it also contains the largest total number of activities. This is because

scenes are better defined by topics that model co-occurrence with enough number of discrete

activities.

Second, we observe the effect of the covariance matrix to relate different combinations

of source and target domain in a video. We choose the Roundabout Junction dataset for

this experiment because it is the largest, so it is more likely to find multiple domains. We

fix this time the number of topics to K = 50, in response to the above experiment, and

the other input parameters as {α = 0.1, λu = 0.5}. Then we compute the Mean Average

Precision (MAP@20) for 30% of the scenes in the target domain, but considering each of

the three source domains independently. Only one component of the covariance matrix is

activated at a time to distinguish its entire effect (e.g., when considering the first source

domain, only Σi=t,j=1 is activated). Figure 6.8 shows that the last domain gets the highest
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Figure 6.7. Finding the optimal number of topics for each videoset in CPM.

precision with a value of Σi=t,j=3 = 0.8. The choice of the last domain makes sense as

it is the closest in time and thus the most likely to contain similar distributions in latent

variables. Note that this effect may vary in much larger videos.

6.6.2 Experiment 2: Average Prediction in Target Domain

To make a competitive comparison, we evaluate the performance of CPM with the

optimal K and Sigma parameters computed in Experiment 1 and {α = 0.1, λu = 0.5},

in terms of the Mean Average Precision (P@20) for predicting the true label in the target

domain. This experiment examines the following methods:

a) SVM (trained with common feature-level vectors, as explains in Section 6.4.1)

b) SVM (trained with common topic-level vectors, as explains in Section 6.4.2)

c) Collaborative Filtering (concatenating both source and target domains in a single

matrix) and

d) CPM

As summarized in Figure 6.9, CPM shows better prediction of dangerous scenes in the

target domain. The closest competitor is Collaborative Filtering, which does not consider
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Figure 6.8. Finding the optimal values in the covariance matrix that relates content with
respect to each source domain.

any video content, but only user preferences on scenes. This shows the advantage of com-

bining content and user annotations for describing activities in surveillance video. On the

other hand, SVM cannot make adequate generalization as the underlying distributions of

observations and latent variables change for different domains. This is more evident when

the temporal gap between source and target domains is large as in the Karl-Wilhelm &

Strabe Streets and Roundabout Junction datasets. However, when the temporal distance

between source domains and the target domain is small, the performance of SVM with

topic-level vectors is similar to Collaborative Filtering.

6.7 Conclusion

In this chapter, we have discussed methods to transfer labels from an existing domain to

a target one in a surveillance video. This transferring happens when two domains share a set

of random variables. In this chapter, we have studied the way how crossdomain topics have
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Figure 6.9. Comparison of prediction techniques in terms of Mean Average Precision. (a)
SVM (trained with common feature-level vectors) (b) SVM (trained with common topic-
level vectors) (c) Collaborative Filtering and (d) CPM

the ability to bridge domain with co-occurrence of activities. Finally, we let users guide the

relevance of topics to explain the presence of dangerous activities in a collaborative basis.
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CHAPTER 7

CONCLUSIONS

7.1 Introduction

Video is a massive amount of data that contains complex interactions between moving

objects. Moreover, the continuous recording of activities during long periods is needed to

capture interesting events. We then need different techniques to analyze video to uncover the

relationships between moving objects and to learn the correspondence between content and

labels. For example, a surveillance camera recording traffic scenes will require methods to

extract patterns from moving objects (e.g., trajectories). As that information is continuous

and affected by noise, we will need to discretisize it into a dictionary of representative

activities. A scene is thus defined by a subset of activities in a time window. How some

activities co-occur is dynamic and can be explained by a statistical mixture of distributions

over activities in multiple time windows.

The research presented in this dissertation provides the basis for analyzing video. The

primary contributions of this research consist of providing new algorithms for (a) the efficient

search of activities in video, (b) scene understanding based on interactions between activi-

ties, and (c) the predicting of labels for new scenes. The results from this research provide

techniques to achieve those goals. In the following sections, we address our contributions

to these areas as well as possible extensions and future work.

7.2 Contributions

The algorithms presented in this dissertation have been tested by comparing their

performance to existing approaches in the state-of-the-art. The superior performance in

the experiments supports the hypothesis stated in each chapter in relation to the analysis
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video. We identify the following contributions in each of the areas above mentioned.

7.2.1 Contributions to Similarity Search

Consider trajectories in video that represent spatio-temporal behaviors of moving ob-

jects. We proposed a hashing algorithm, Timeseries Sensitive Hashing (TSH), which gener-

alizes the scalar projection (dot product) to support the indexing of timeseries of variable

length. We computed the optimal parameters of the data structure in a data-driven ap-

proach to efficiently index human motion timeseries that come from non-uniform distribu-

tions [4,5] and also activities of vehicles in traffic videos [8]. The initial hypothesis was that

the activities in video could be indexed with better precision and faster time response if we

would consider a hashing approach that encoded a non-linear correspondence of trajectories

within its hash function. This conjecture was more general than previous approaches as the

indexing of vectors of same dimensionality became a special case.

The results of the experiments provided evidence that supported that hypothesis. For

example, TSH was shown to have better average precision when performing 1-nearest neigh-

bor search in three different motion databases (CMU motion capture database, HDM05

mocap database, and Human Motion Video dataset). The advantage in terms of average

precision for using TSH is 31.7% in comparison to tree-based approaches (M-Tree and R-

tree) and 23.5% when TSH was compared to another hash approach (LSH). In contrast

to the other competitors, TSH does not need to normalize the timeseries in the dataset to

the same dimension because it encodes the Dynamic Time Warping (DTW) distance in the

hash function. TSH thus takes advantage of the original information contained in the data

to distinguish non-similar timeseries and provides better precision values.

When we study the time response of TSH by incrementally increasing the size of the

dataset from 10% to 100% of the original size, TSH exhibited good scalability, having LSH

as the closest contender. This is because both algorithms are good at distributing timeseries

into buckets uniformly and quickly retrieving them using hashing functions. However, in

contrast to LSH, TSH is specially designed to reduce the number of collisions for timeseries

of variable length while providing good precision results.
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The code that implements TSH was released in October, 2012 under the MIT License

and it is free for download and modification [62].

7.2.2 Contributions to Scene Understanding

We provided a method to find approximate co-occurring associations from a video

stream by considering the unsupervised clustering of discrete events. The frequent co-

occurring relationships between activities are incrementally computed over the stream [7,63].

Our main hypothesis during this investigation was that video scenes could be modeled by

the ways in which words group into topics in a text document. Every scene in the video thus

corresponded to a multinomial distribution over a number of independent topics. This is

similar to how words form topics in a text document. Most previous research had considered

the generation of topic models for large text datasets. Our work extended those findings

to a noisier domain such as video databases and demonstrated that a hierarchy of random

variables could automate the discovery of scenes in video.

The experiments consisted of discovering interactions of activities based on association

rules. The generated rules helped us to understand the temporal co-occurring relationships

between activities in three real traffic video datasets (Street Intersection, Karl-Wilhelm &

Strabe, and Roundabout Junction). For example, in the Roundabout Junction dataset, we

show how the most frequent rule segmented motion of vehicles into multiple activities such

as vehicles going straight and then joining the roundabout. The second most frequent rule

explained the co-occurring relationship of vehicles taking lanes separated by the roundabout.

While some vehicles circulate alongside the roundabout emerging as two activities, this rule

also showed that another set of cars takes a different way by turning left from the center

to the upper part of the scene. A visual inspection of these rules supported the original

hypothesis considering topics as reliable components to describe the content of video scenes.

7.2.3 Contributions to Scene Prediction

We introduced a statistical model to approximate the value of random variables. Their

dependency explains the co-occurrence of activities and annotations in different parts of a
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video. The random variables for the content correspond to the topics that we discussed for

scene understanding. The random variable for the annotations describes how users annotate

the content in video with labels. Our hypothesis was that the topics that describe scenes

are stable enough to be present in the video. Thus, they could be used to transfer labels

from one part of the video to another.

We implemented a Probabilistic Graphical Model, Crossdomain Probabilistic Model

(CPM) [9, 10], that automatically found the topics that model the co-occurrence of trajec-

tories in two parts (domains) of a video. Experiments supported our hypothesis by showing

improvement in the average precision of predicting labels for new scenes when we use 20

minutes of previous content located at the beginning of each video. We experimented with

implementations of the Support Vector Machine (SVM) that consider topic modeling scenes

either in a source domain or in a cross domain representation, but the closest competitor

was Collaborative Filtering. This showed the power of predicting labels by considering how

other people labeled video scenes. CPM demonstrated that the idea of incorporating latent

variables that explained content across domains, and then finding the linear correspondence

of those to random vectors associated to user annotations on previous scenes, increases the

average precision by 15% in the prediction of labels for new scenes. Those results thus gave

evidence to support the initial hypothesis.

7.3 Future Work

The models and techniques proposed in this work are only initial steps to solve the

problem of video analysis and much work remains. Specifically, some characteristics that are

not considered yet include the incremental and distributed learning of models for prediction.

The current models can handle large videos, but do not yet enable the kind of real-time

updating to deal with streaming scenarios in security and surveillance or the possibility of

obtaining annotations from an online community via crowdsourcing. This section offers an

overview of research necessary to move our models and methods in that direction.
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7.3.1 Future Work on Similarity Search

Previous research on efficiently indexing timeseries typically relies on dimensionality

reduction to eliminate variable dimensionality. Current practice is to employ dimensionality

reduction techniques (iSAX [34], PAA [31], Uniform Scaling [29], etc.) to make timeseries

more tractable to compute. The intuition is that dimension reduction preserves enough

information to quickly discard non-similar timeseries in a search. These indexing techniques

fall into two categories: region-based and lexicographic. R-tree is a region-based index

commonly used for experiments with timeseries and one example of a lexicographic index

is TS-tree [31], which avoids subtree overlap during insertion. There are (at least) two

clustering techniques that employ a hashing approach [42,43]. However, all those techniques

only consider the case where points have the same dimensionality and Euclidean distance

is the only option as a similarity measure. TSH is especially suitable in scenarios of stream

data processing such as motion capture, speech recognition, and sensor networks, where

timeseries continuously arrive with different lengths, preprocessing steps are not always

possible, and low error rates are required.

Future work on similarity search will consider the problem of storing the search index in

secondary memory and representing it in a distributed environment. This feature responds

to the presence of a massive amount of trajectories that cannot fit into main memory.

The distributed nature of TSH, mapping of elements into independent buckets in constant

time, is adequate for being implemented under the MapReduce programming model [64].

Thus, a Map operation will project a timeseries to a specific bucket in a distributed node

and a Reduce operation will collect and store in hard disk all the timeseries that were

mapped to the same bucked, but in distributed nodes. The implementation of TSH in

a distributed environment will reduce the computational time of clustering algorithm for

massive timeseries datasets. This is because every bucket in TSH already contains a group

of similar elements after indexing all the elements of the dataset.

7.3.2 Future Work on Scene Understanding

Related efforts to model activities in video consider co-occurring relationships between
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low-level visual features. Recent research employs Bayesian models such as HDP [48] and

LDA [51] to successfully cluster discrete activities into topics [52–54]. Those methods lead

to techniques that can discover atomic components to represent scenes, but they omit the

complex interactions between topics. Wang et al. [54] approached this problem by adding

one more level to the hierarchy of LDA to thus describe global behavior patterns through

topic correlations. By contrast, our on-line technique assumes a fixed number of topics and

relates their frequent co-occurrence in multiple time windows. In other words, by decoupling

both the discovery of activities and interactions, we can incrementally learn interactions

without assuming the same probability of co-occurring relationships over time. This is

a reasonable scenario imposed by the processing of continuous video streams, where the

definition of interactions between activities is more dynamic than the definition of activities

in itself.

Future work on scene understanding will need to consider the problem of finding topics

incrementally. Faster methods to infer over random variables are needed to detect the

emergence of new subsets of activities that frequently co-occur. The Collapsed Variational

Bayes (CVB) method is specially designed to approximate inference for a probabilistic

graphical model by assuming that latent random variables are mutually exclusive [65]. CVB

has been shown to be more computationally efficient than the standard variational Bayes

inference algorithm described in Chapter 6. However, CVB still cannot perform incremental

updates for topic discovery.

7.3.3 Future Work on Scene Prediction

Previous attempts to predict labels for new scenes in video assume that the distribu-

tion of activities is the same along the video [52, 54]. We consider that different parts in

the video define individual domains, where the vocabularies of activities and conditional

probabilities between random variables are particular to each domain. Existing research

performs prediction by considering a single domain [57, 58]. This leads to poor precision

and recall when marginal and conditional distributions change in the video. Despite all of

the existing research in activity mining in surveillance videos, little has been done on taking
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advantage of users’ annotations of scenes across domains. In our work we consider that

the content of two different domains is transferable if both domains share a set of common

variables (which can be observable or latent). Our goal is to discover domain-independent

variables that connect similar content in two domains.

Future work on the prediction of labels for video scenes will study how labels are

generated to explain interactions of activities. Note that those labels are usually provided

by a small group of users that may be biased toward some events expected in the video

recording (e.g., dangerous scenes). Crowdsourcing is a technique that uses a large online

community to subdivide repeating tasks that can be solvable by human interpretation. For

example, we could ask people to annotate scenes as dangerous or safe according to their

common sense and choosing the right labels by voting. This will provide more reliable labels

for scenes and the prediction of labels for new scenes will provide more meaningful results as

well. Existing platforms for performing crowdsourcing with a real online community include

Amazon’s Mechanical Turk [66] and Microwork [67].
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CHAPTER A

An Incremental Graph Data Structure to Perform Similarity

Search for Euclidean Vectors

A.1 Introduction

Searching is a fundamental problem in a modern information system. Indexing is the

most well-known technique to speed up a search process, and user queries are evaluated

for the given selection predicate over the indexed key by exact matching. However, exact

matching may not be suitable for complex and less-structured data objects. For example,

the probability for two iris patterns to exactly match is very low, even when they belong to

the same individual. For this type of data, imprecise search or search with error, based on

the notion of similarity (or dissimilarity) between objects, has a more practical value.

Similarity search in metric spaces involves distance computation between the data

objects. Due to the potential high cost of distance computation for every pair of data

objects in a large database, reduction in distance computation becomes the focal point in

developing an efficient similarity search technique.

In metric spaces, tree- and graph-based techniques [38,68–71] have been proposed to re-

duce the search space and subsequently reduce the overall number of distance computations

by virtue of the “triangle inequality.” However, a tree structure has an inherent limitation:

the search starts only from the root of the tree, and once it fails to find a reasonable so-

lution to the given query in the current subtree, backtracking may be unavoidable. Due

to this limitation, the authors in [70] noted that a fully connected graph will be an ideal

structure for a fast similarity search as long as we can afford the cost for the update of the

extra edges. Although reduction in distance computation in graph-based solutions to the

similarity search problem has been achieved to a certain extent recently, the intrinsic cost
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overhead in graph construction still makes graphs less competitive than trees as a practical

solution, and hence the graph-based similarity search in metric spaces has been noted as an

open research problem [71–74].

In response to the need of an efficient graph-based solution which takes advantage of no

backtracking while avoiding extraneous graph construction cost, we propose in this paper

a new efficient, graph data structure, called Hyperspherical Region Graph (HRG), for the

similarity search problem in a metric space consisted of a large volume of data objects,

inspired by the relative neighborhood graph (RNG) [75]. The issue of high construction cost

of the graph with a large number of data objects is mitigated by modeling the search space

as an RNG of vertices each of which represents a set of data objects called hyperspherical

region, instead of a graph of individual data objects, in our approach. In other words, the

proposed graph has substantially less number of vertices than the existing neighborhood

graphs, by which efficient graph construction and reduction in distance computation are

achieved.

Our empirical analysis of the proposed HRG in comparison with the graph-based data

structure (Incremental-RNG) recently proposed in [71] and two state-of-the-art tree-based

structures M-tree [38] and SA-tree [70] shows that HRG always outperforms Incremental-

RNG in any case with regard to i) data structure construction time and ii) similarity search

performance, both of which are tested by the number of distance computations, response

time and memory usage. On the other hand, HRG’s performance gain over M-tree and SA-

tree was noticeable during search time but not in construction time, which is anticipated

for a graph structure compared to a tree. HRG performed better than the two tree indices

with the 2D, 3D and 16D datasets but not with the 175D dataset used.

The paper is organized as follows: Section A.2 presents a review of previous work.

Section A.3 describes the proposed technique. Section A.4 shows the experimental results.

Finally, we provide a concluding remark in Section A.5.

A.2 Preliminary Concepts and Previous Work

There have been a number of metric access methods proposed for the search problem in
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general metric spaces. Comprehensive surveys on this topic can be found in [76], [77], [78],

and [79].

Metric space:. Formally, given a universe U of data objects and a distance function

d : U × U → R+, a subset S of U is called a metric space if d satisfies the following

axioms for any objects x, y, z in S: (1) d(x, y) ≥ 0, (2) d(x, y) = d(y, x), and (3) d(x, y) ≤

d(x, z) + d(y, z) (triangle inequality).

The triangle inequality is the key axiom for search space pruning as it circumscribes

the bounds of search space during a similarity query processing. Given any three objects

o, p, q ∈ S, suppose that the distances d(q, p) and d(p, o) are known, while d(q, o) is not.

Then, it is not difficult to see that d(q, o) can be expressed with its lower and upper bounds

as |d(q, p)−d(p, o)| ≤ d(q, o) ≤ d(q, p) +d(p, o). Any search subspaces beyond these bounds

are pruned.

Metric access methods:. As described in [79], these algorithms can be roughly

classified as pivot-based and compact partition algorithms.

The main idea behind pivot-based algorithms is to select a set of distinguished elements

called pivots and store the distances from each pivot to the objects in the database with

the goal of saving distance computations. Since different sets of pivots partition the search

space in different ways, the problem of choosing a good selection of pivots is not trivial.

Roughly speaking, good pivots have a high level of separation from other pivots and from

other objects in the dataset. Yianilos [80] proposed the use of pivots in a tree structure

called Vantage Point Tree (VPT), where an object p is chosen as a pivot and the median

distance is evaluated to assign the objects with smaller (or larger) distance than the median

distance to the left (or right) subspace of p, respectively. This procedure is recursively

applied to obtain new pivots. Brin [81] extended this idea by using more than two pivots

and assign closest points to each pivot. The recursive use of this method leads to an m-ary

tree called Geometric Near-neighbor Access Tree (GNAT), being m the number of pivots

considered.

On the other hand, compact partition algorithms attempt to obtain more local regions
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than those based on pivot algorithms by means of compact regions. Ciaccia et al. [38]

suggested M-tree as a metric access method with fixed-size regions, each of them represented

by a central object. M-tree resembles to R-tree [37] such that all the objects are stored

in the leaf nodes while the internal nodes keep pointers to the nodes at the next level.

This approach has become very popular and many methods are a variant of the M-tree

family. However, the overlap between regions makes M-tree works well in low and medium

dimensions, but not in high dimensions. Hence, when working with high dimensional data,

the overlap between regions could be so high that the idea of representing data with a

hierarchy of regions is compromised when compared to a sequential search [82]. Navarro [70]

reported a better result with a high dimensional data using an approach which recursively

gets closer and closer to the query through neighbors in the data structure rather than

using the classical divide-and-conquer pruning search of M-tree. Navarro concluded that

although a graph fully exploits this technique, it presents high costs for inserting vertices

and updating edges.

A.3 Hyperspherical Region Graph

As introduced in Section A.1, our strategy in finding a solution to the similarity search

problem in a large metric space is to design a graph data structure. We prefer a graph-based

approach mainly because additional edges in a graph allow us to traverse the data structure

without backtracking to upper vertices which is required in a tree [38, 68–70]. In addition,

the constraint on the root node as a starting point in a tree is relaxed in a graph because

any vertex can be a starting point.

Note that the flexibility in graph traversal is enabled at the expense of additional edge

insertions. Subsequently, an efficient management of edge insertion must be addressed in

order to make a graph practical as an alternative to a tree data structure in similarity

search. We now present the graph structure proposed in this paper, called hyperspherical

region graph (HRG).



123

A.3.1 The Graph

The proposed hyperspherical region graph is a type of the relative neighborhood graph

(RNG) [75] defined as follows:

Definition 5. Given a graph G = (V,E), let H(vi, vj), for any pair of vertices (vi, vj) ∈ V 2,

be the hypersphere of radius d(vi, vj), for some distance function d : V × V → R+, with

vi as the center of the hypersphere. Then, G is a relative neighborhood graph if any edge

(vi, vj) ∈ E satisfies the neighborhood relationship constraint: (H(vi, vj)uH(vj , vi))∩V = ∅

where H(vi, vj) uH(vj , vi) returns the inner volume of the lune formed by the intersection

of the two hyperspheres excluding the lune’s surface.

In other words, two connected vertices are neighbors in RNG. Intuitively, RNG reduces

redundant neighborhood relationships by excluding the edge between adjacent vertices v1

and v2 if any vertex v3 is found in the lune formed by the intersection of the hyperspheres

centered at v1 and v2, i.e., if the distance from v3 to either v1 or v2 is smaller than the

distance between v1 and v2.

The reason for using RNG instead of other types of graphs such as Delaunay triangu-

lation is that RNG is defined based only on distances between vertices. This characteristic

makes RNG a suitable option to perform similarity search not only in Euclidean spaces but

also in arbitrary metric spaces. HRG extends the idea of RNG to represent the structure

of a metric space using representative vertices of hyperspherical regions as follows:

Definition 6. A hyperspherical region H = (v, c, O) in a metric space is a hypersphere of

objects {v, O = {o1, o2, . . . , on}}, where (1) v is the center object of H, (2) c is the capacity

of H, i.e., the maximum number of objects that can be included in H, and (3) O is the set

of member objects that are currently contained in H (with the exclusion of v). Furthermore,

the distance between v and the farthest object in H is called the radius of H.

From now on, H(v) will be used as a shorthand notation for H(v, c, O) as long as c

and O are clear in the context. Furthermore, cH(v) denotes c of H(v), and |H(v)| = |O|+1.

Definition 7. Given a set of hyperspherical regions {H(v1), . . . ,H(vn)}, the hyperspherical

region graph GH = (V,E) is a relative neighborhood graph where V = {v1, . . . , vn}, i.e.,
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the center objects of the regions, and E is the set of edges between neighboring vertices.

Furthermore, cH(v1) = . . . = cH(vn)

Since a hyperspherical region graph GH is consisted of only the vertices that are centers

of hyperspherical regions, not of all the data objects, the number of vertices in GH is

generally smaller than that of the RNG of the same dataset, which enables us to construct

GH by a less number of edge insertions. We now continue to discuss on the construction of

a hyperspherical region graph.

In HRG construction, our goal is to minimize the update (either insertion or deletion)

of the existing edges whenever we add a new object into the graph. The realization of this

goal involves identifying the regions affected by vertex insertions, and hence we present the

search technique used first.

A.3.2 Similarity Search in HRG: Range Search

A range search is defined by the set of objects which are at most at the distance r from

the query object x.

Definition 8. Given a universe U of data objects, RangeSearch (x, r) = {s ∈ U|d(x, s) ≤

r}.

To reduce the search space in range search, the search is performed at two different

levels in our approach: (1) the graph level, and (2) the region level.

Graph-level reduction. For the graph-level search space reduction, being a the

starting vertex chosen randomly, the distance between x and each of the neighboring vertices

of a, denoted N(a), including a, is computed first. Then, a search space reduction technique,

inspired by the spatial approximation method [70], is applied to visit only the vertices which

are “close enough” to x among the vertices in {a}∪N(a) based on the distances. “Closeness”

is defined as follows:

Definition 9. Given a set of vertices V and the query object x, v ∈ V is a “close-enough”

vertex to x if d(x, v) ≤ min dist+ 2r where min dist = minw∈V d(x,w) and r denotes the

given distance tolerance to x from v.
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This search space reduction technique is applied recursively through all the neighboring

nodes that are close enough to x as long as such neighbors are found and have not been

visited yet. All the visited vertices with no close-enough neighbors other than the originating

neighbor are identified as candidate vertices.

Let {v1, . . . , vk} be the set of candidate vertices of x. Then, any region H(vi) (1 ≤

i ≤ k) which intersects that of x, i.e., H(x) is returned as a candidate region because

they have a higher likelihood of containing the target objects of the range search than the

non-intersecting regions.

Region-level reduction. The objective of this step is to find the range search result

by the given query object x and radius r. The result consists of the objects that are selected

from the member objects of the candidate regions by checking if they belong to the range

search region centered at x with radius r. In this process, a search space reduction is

achieved by using the triangular inequality to avoid computing the distance between each

member object o and x, i.e., d(x, o). Note that the distance between the center object

v and o is already known. The distance between x and v has been already calculated

also. Hence, we can approximate our decision that o belongs to RangeSearch(x, r) if the

condition |d(v, x)− d(v, o)| ≤ r holds.

Note that it is guaranteed that for any pair of vertices v1, v2 in a Delaunay triangulation

graph, there exists one or more paths from v1 to v2. Since HRG is an extension of RNG

and RNG is a subgraph of Delaunay triangulation, the path of minimum length between

v1 and v2 exists. Using both search space reduction techniques, we were able to visit 30%

less edges in our approach than in SA-tree. Figure A.1 contrasts the area explored by our

approach and SA-tree when performing a Range Search around the object x. The range

search process is summarized in Algorithms 5 and 6.

A.3.3 Construction of HRG

HRG is a dynamic structure that allows to insert new objects at any time. Before

inserting a new object x into GH = (V,E), we search a vertex a ∈ V which is closer to x

than any other vertex, starting at vertex b ∈ V . This search is known as Nearest Neighbor
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(a) SA-tree (b) HRG

Figure A.1. Edge exploration by SA-tree and HRG. Thicker edges denote visited edges. A
fewer edges are visited in HRG than in SA-tree.

Algorithm 5 RangeSearch(Object x, Range r) // x: query object, r: query radius

1: result := ∅;
2: a := random vertex in GH ;
3: min dist := ∞;
4: RangeSearch(a, x, r, min dist, result);
5: return result;

Search and intuitively includes the following steps:

1. Start with a random vertex b in GH .

2. Compute the distance between the new object x and each vertex in N(a).

3. Traverse to the smallest vertex ai ∈ N(a), and repeat from Step 2 as long as a vertex

with a shorter distance is found.

As soon as such nearest vertex a is found, x is inserted into H(a) rather than being

inserted as a new vertex in GH . In such a case, we check the cardinality, |H(a)|, of the

updated H(a). If |H(a)| is less than or equal to the capacity of H(a), c, the insertion

operation of x is completed. If H(a) is already saturated to its capacity, H(a) is divided

into two regions H ′(a) and H(y) such that one of the farthest objects y of H(a) becomes

a new vertex in GH , and all other objects in H(a) are retained in H ′(a). Subsequently, a
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Algorithm 6 RangeSearch (Vertex a, Object x, Range r, Distance min dist, Stack S)

1: if a has not been visited yet then
2: if d(a, x)− r ≤ radiusRegion(a) ∨ d(a, x) + r ≤ radiusRegion(a) then
3: for each object o in H(a) do
4: if |d(a, x)− d(o, a)| ≤ r then
5: if calculateDistance(o, x) ≤ r then
6: result := result ∪ {o};
7: end if
8: end if
9: end for

10: end if
11: min dist := min{{min dist} ∪ {d(b, x) : b ∈ N(a)}};
12: for b ∈ N(a) do
13: if d(b, x) ≤ min dist+ 2r then
14: mark b as VISITED;
15: RangeSearch(b, x, r, min dist, result);
16: end if
17: end for
18: end if

new region H(y) = (y, cH(a), {}) is generated. Note that the capacity of H(y) is set to the

same capacity of H(a). This process is summarized recursively in Algorithm 7.

Note that the addition of a new vertex in GH , subsequently the addition of the cor-

responding new region, requires the update of the neighborhood relationships among the

vertices because the relationships may change according to the neighborhood constraint of

RNG. This can be as simple as inserting an edge between the new vertex x and the ex-

isting vertex from which x was born. However, x may change the existing neighborhood

relationships.

We now compare the constructions of a hyperspherical region graph GH of capacity 2

and a relative neighborhood graph GR step by step in the following example using Figure

A.2. In the example, η(a, b) denotes the neighborhood relationship between vertices a and

b.

Example 3. Each object (either vertex or non-vertex) in Figure A.2 is labeled according to

their insertion order. The lefthand side of each subfigure shows GH whereas the righthand

side GR. Figure A.2(a) shows the first two objects 1 and 2 are inserted into GH and GR
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(a) Insertion of 1 and 2 (b) Insertion of 3

(c) Insertion of 4 (d) Insertion of 5

(e) Insertion of 6

Figure A.2. A step-by-step construction comparison of our HRG and the RNG. The left
graph of each subfigure is the HRG while the right is the RNG. During the insertion of the
six objects, HRG modified five edges whereas RNG 11 edges. This saving is proportional
to the capacity of the hyperspheres.

respectively. Because the capacity of GH is 2, object 2 becomes a member object of the

region centered at object 1, H(1). Object 1 becomes the only vertex in GH at the moment.

In contrast, two objects 1 and 2 become neighboring vertices in GR and hence η(1, 2) holds.

As object 3 is inserted into H(1) due to its closer distance to object 1 than object 2,

object 2 is separated from H(1) to form a new vertex in GH . Hence, η(1, 2) is established.

On the other hand in GR, η(1, 2) is revoked, and η(1, 3) and η(2, 3) are added because the

neighborhood constraint defined in Def. 5.

In Figure A.2(c), since d(1, 4) < d(1, 3), object 3 becomes a new vertex in GH and

object 4 becomes a member of H(1). In Figure A.2(d), object 5 is inserted into H(3) due to

its distance to vertex 3.

Now consider the evolution of GH in Figure A.2(e) in which object 6 is inserted into

H(3). Due to this update, object 5 is expelled from H(3) and inserted into H(1), which

has a cascading effect on object 4. In other words, object 4 is expelled from H(1) because
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d(1, 4) > d(1, 5).

HRG minimizes the insertion of edges between vertices by storing non-vertex objects

in regions without creating edges. For example, after the six objects are inserted in Figure

A.2, HRG with capacity of 2 modifies only 5 edges (4 insertions and 1 deletion) whereas

RNG modifies 11 edges (8 insertions and 3 deletions), leading to 55% less edge update in

HRG.

Insertion of a new vertex into GH may have an impact on the neighborhood relation-

ships in GH since GH is a type of RNG. Clearly, we want to avoid to reevaluate the entire

neighborhood relationships each time we add a vertex, but update only the neighborhood

relationships affected by the new vertex. This strategy is called LocalInsert in our algorithm.

LocalInsert. Given the new vertex x which is the center of the region having no

member objects yet, LocalInsert() first identifies the vertices which are located within certain

distance r from x. The distance r is determined based on the distance from the new vertex

x to the center of the closest region H(a), i.e., d(a, x), and another distance to the farthest

object f in H(a), i.e., d(f, x). We want to scale this distance by a tolerance parameter ε.

If ε is set to a larger value, we can obtain a more global solution with the price of high

edge update cost. On the other hand, with a smaller ε, we can achieve more cost effective

edge update with potentially less optimal graph structure. Practically, a real number in the

range [0− 1] is chosen for ε.

By using the range query with the distance r as the radius, we obtain existing vertices

in the graph which are potentially neighbors to the new vertex x. For this set of vertices,

actual neighborhood relationships are updated. By employing this strategy, we are able to

achieve a better performance than Incremental-RNG [71]. The process of inserting a new

vertex in GH is summarized in Algorithm 8.

A.4 Experimental Results

We tested the proposed HRG in terms of construction and similarity search operations

using two real and two synthetic datasets.
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Algorithm 7 Insert (Vertex b, Object x) // b: starting location, x: new object

1: a := the vertex of the region where the nearest neighbor to x is placed;
2: if |H(a)| < c then
3: H(a) := H(a) ∪ {x}; // x becomes a member object of H(a)
4: save distance d(a, x);
5: else if d(a, x) > regionRadius(H(a)) then
6: LocalInsert(a, x); // insert x as a new vertex
7: else
8: H(a) := H(a) ∪ {x}; // x becomes a member object of H(a)
9: x := farthestObject(H(a)); // x: farthest object in H(a)

10: H(a) := H(a)− {x};
11: LocalInsert(a, x);
12: end if

Algorithm 8 LocalInsert (Vertex a, Vertex x)

1: f := farthestObject(H(a));
2: r := (d(a, x) + d(f, x)) ∗ (1 + ε);
3: result := RangeSearch(x, r); // result: set of vertices
4: buildRNG(result ∪ {x}); // x becomes a new vertex; update neighborhood

1. HSV-3: This is a real dataset consisted of 15,000 3-dimensional objects obtained from

a color image by sampling the hue (H), saturation (S), and value (V) of every three

other pixel.

2. Faces-175: We generated this real dataset consisted of 600 175-dimensional objects

from 600 face images found in the CMU Face Database.1 Each face figure is divided

into 5×5 = 25 regions and the following seven features are extracted from each region:

the average and the standard deviation for each of H, S and V, and the percentage of

the presence of skin color in a region, which yield 600 feature vectors of 7×5×5 = 175

dimensions.

3. Synthetic-2: This synthetic dataset contains 1,000 2-dimensional vectors normally

distributed in 10 clusters with overall standard deviation of 0.1 over a rectangle with

a minimum and maximum value of 0 and 1 on each dimension respectively.

1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-8/ml94faces/faces
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4. Synthetic-16: This synthetic dataset contains 1,500 16-dimensional vectors normally

distributed in 10 clusters with overall standard deviation of 0.1 over a hypercube with

a minimum and maximum value of 0 and 1 on each dimension respectively.

The performance of HRG was then compared to those of the two most well known tree

structures M-tree [38] and SA-tree [70], and a graph data structure Incremental-RNG [71]

in terms of the number of distance computations, total response time, and memory usage.

1. Number of distance computations (NDC): Whenever a new object is to be inserted or a

similarity query is performed, a number of distance computations are to be performed

between the new/query object and some of the existing vertices in the graph. In

fact, the number of times two objects are compared in a data structure is a measure

independent of the hardware or software platform. For this reason, NDC has been

a traditional measure to evaluate the performance of data structures and similarity

search methods in metric spaces [38,68,69,77,79].

2. Response time: While NDC is one major factor contributing to the time complexity of

an algorithm, the response time is useful to evaluate the overall system performance

of each approach in comparison.

3. Memory usage: An algorithm may be able to achieve a high performance while requir-

ing a significant amount of main memory. We believe that space requirement should

also be taken into consideration for a fair evaluation.

The Euclidean distance (L2) was used as the distance function in our experiments.

Furthermore, for similarity search, we used the range query to make our results comparable

to others since the experimental results of other approaches found in the literature are based

on this type of search. All the algorithms were implemented in Java 1.6 and tested on a 2.0

GHz PC with 2038 MB of RAM running 32-bit Microsoft Windows Vista.
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(a) Range query: Synthetic-2 (b) Range query: Synthetic-16

(c) Range query: HSV-3 (d) Range query: Faces-175

Figure A.3. Comparison of HRG by number of distance computations in range search. Note
that the scale of y-axis is different from one figure to another.

A.4.1 Similarity Search Performance

NDC. In this test, the data structures in comparison were tested with different range

search radii, ranging from 10% to 100% of the maximum distance2 between the two farthest

objects in the dataset. HRG performed better than all other structures with Synthetic-2,

Synthetic-16 and HSV-3, as shown in Figures A.3(a), A.3(b) and A.3(c). With Faces-175,

HRG outperformed Incremental-RNG with a comparable performance with M-tree (see

Figure A.3(d)). In case of Faces-175, potentially high overlap among the regions in HGR

offsets the anticipated benefit of HRG. In case of such high dimensional data, we observed

that SA-tree is the best out of the structures in comparison.

Response time. This test was conducted in a similar way to the above to measure

the total evaluation time of range searches. All the test dataset was fit into the main

memory. The performance of HRG in this test was congruent with the result of NDC,

2This distance is referred as the dataset length in Figures A.3, A.4 and A.5.
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(a) Range query: Synthetic-2 (b) Range query: Synthetic-16

(c) Range query: HSV-3 (d) Range query: Faces-175

Figure A.4. Comparison of HRG by total range query evaluation time at various radii.

which was anticipated because the main cost during running time is the computation of

distances between objects, as the result is shown in Figure A.4.

Memory usage. In this test for the total memory requirement during range searches,

in contrast to the previous tests, M-tree and HRG used less memory than the others in

case of Synthetic-2 and HSV-3, as shown in Figures A.5(a) and A.5(c), since both data

structures store in memory the precomputed distances between vertices and the objects

inside the associated regions. In case of Figures A.5(b) and A.5(d), note that the scale of

y-axis is relatively small.

A.4.2 Construction Performance

In this test, HRG consistently performed better than Incremental-RNG in all the cases.

In comparison with the construction time of the tree indices, however, HRG generally was

not able to perform better than the trees due to neighborhood update on extra edges. (Due

to the page limit, the detail figures are omitted.)
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(a) Range query: Synthetic-2 (b) Range query: Synthetic-16

(c) Range query: HSV-3 (d) Range query: Faces-16

Figure A.5. Comparison of HRG by memory usage during similarity query. Note that the
scale of y-axes of (b) and (d) is substantially smaller than that of (a) and (c).

A.5 Conclusions and Future Work

This paper introduced a graph-based indexing algorithm and discussed its performance

for the similarity search problem in metric spaces. The proposed algorithm, which uses a

small representation of the search space, can be classified as a compact partitioning al-

gorithm. The notion of neighborhood present in the spatial approximation search tech-

nique [70] is fully exploited in the graph. Moreover, since each vertex is the center of a

hyperspherical region, our approach only visits the neighbors which are close enough to the

query object, thus saving the evaluation of distances between the query object and other

objects.

The experimental results showed that the proposed method performs better than other

tree and graph-based approaches in similarity search with datasets of moderate dimension-

ality. In case of a high dimensional dataset, we observed overlap between regions, which

offsets the benefits of the proposed structure.
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Clearly, the region overlaps observed in a high dimensional dataset needs to be ad-

dressed in the future work. More complex objects also need to be considered in order to

further validate the benefits of using the proposed graph structure.
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