Temperature Dependence of SiO₂ Cathodoluminescence

Amberly Evans, Greg Wilson, JR Dennison Physics Department, Utah State University

Outline

- Experimental set-up
- Theory and Results
 - Band theory of crystals
 - Electron excitation
 - One relaxation energy
 - Multiple relaxation energy's

- Qualitative temperature dependent model

Experimental Set-Up

Band Theory of (Crystalline) Conductors, Insulators and Semiconductors

Conductor Partially filled bands

Insulator Completely filled bands

Semiconductor Insulators at finite T

Momentum q

Cathodoluminescence of SiO₂ Mirror

Beam off

Beam on

Luminescence: Excitation and Relaxation

Effect of Beam Energy

Multi-Photon Luminescence

Multi-Photon Relaxation

Temperature Dependent Luminescence

-4 C

-80 C

-110 C

SLR Spectral Radiance vs Temperature

Temperature Dependent UV-Vis Spectra

Temperature Model for Multiphonon Luminescence

Low Temperature Model

High Temperature Model

Luminescence: Conclusions

Color of Electron-Induced Luminescence

	Gaussian Energy State			
nperature (K)		Blue	Red	
	0	$\rightarrow 0$	→max	
	Low	in between	in <mark>bet</mark> ween	
	High	\rightarrow half max	\rightarrow half max	
Ter				

Effective Fermi Level

Fermi Energy

- Identify specific defect mechanisms
- Quantify luminescence intensities, peak positions, and peak shifts with T
- Study initial time dependence as traps fill to E_f^{eff}
- Make lower T (<30 K) and higher (<400 K) T measurements

Future Work

Acknowledgement Funding from NASA Goddard Space Flight Center