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ABSTRACT

The Role of Bandgap in the Secondary Electron Emission of

Small Bandgap Semiconductors: Studies of Graphitic Carbon

by

Neal E. Nickles, Doctor of Philosophy
Utah State University, 2002

Major Professor: Dr. J.R. Dennison
Department: Physics

The question of whether the small bandgaps of semiconductors play a
significant rolein their secondary electron emission propertiesis investigated by
studying evaporated graphitic amorphous carbon, which has aroughly 0.5 eV
bandgap, in comparison with microcrystalline graphite, which has zero bandgap. The
graphitic amorphous carbon is found to have a 30% increase in its maximum
secondary electron yield over that of two microcrystalline graphite samples with
comparable secondary electron yidds: highly oriented pyrolytic graphite and colloidal
graphite. The potentially confounding influence of the vacuum leve has been isolated
through the measurement of the photoel ectron onset energy of the materials. Other
less significant materials parameters are also isolated and discussed. Based on these

measurements, it is concluded the magnitude of bandgap may have an appreciable



effect on the magnitude of the secondary electron yield and further sudies of this
effect with annealed graphitic amorphous carbon are warranted.

In support of thiswork, a hemispherical two-grid, retarding field electron
energy analyzer has been designed, constructed, and characterized for the present
work. The advantages and disadvantages of the analyzer are discussed in comparison
to other methods of measuring secondary electron emisson. The analyzer has a
resolution of £(1.5 eV + 4% of the incident electron energy). A novel effort to derive
theoretical, absolute correction factors that compensate for el ectron losses within the
analyzer, mainly dueto the grid transmission, is presented. The corrected secondary
electron yield of polycrystalline gold is found to be 30% above comparable
experimental studies. The corrected backscattered electron yield of polycrystalline
gold isfound to be 14% above comparable experimental studies. Corrected secondary
yields for the microcrystalline graphite samples are found to range from 35-70% above
those found in five experimental studiesin the literature. The theoreticd correction
factors are estimated to have a 4-6% uncertainty. Reasons for the large discrepancy in
yield measurements with the analyzer are discussed and thought to be due manly to
the lack of similar corrective factors in the previous studies. The supporting

instrumentation is fully characterized, including a detailed error andysis.

(251 pages)
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CHAPTER 1

INTRODUCTION

Secondary electron (SE) emission is the emission of low energy electrons from
amaterial by an incident dectron beam. SE emission in large bandgap insulatorsis
qualitatively understood, but theoretical knowledge about SE emission in
semiconductors with small bandgaps is currently lacking (Iwase and Nakamura, 1997).
The central question of this dissertation is whether the bandgap in these
semiconductors influences SE emission in amanner similar to insulators or whether
the bandgap is below a certain threshold energy needed to impact the SE emission,
making the semiconductors essentially behave like metals. The distinct class of
semiconductor between insulators and metals is not definitively maintained from the
point of view of SE emission. Previouswork has tried to infer the role of bandgap in
SE emission by looking for trends in various materials with a wide range of bandgaps
(Grais and Bastawros, 1982); however, SE emission depends on numerous material
parameters, such as atomic number and escgpe or absorption coefficients (Dionne,
1975), which makes this type of investigation difficult. Current theoretical
understanding of this problem is reviewed in more detail in Chapter 2.

The alotropes of carbon offer a means of addressing this central question,
while minimizing confounding results due to additional material properties. Graphitic
carbons are of particular interest for this study because the SE emission properties of

diamond and diamond-like carbons have alarge variance due to hydrogen termination



(Shih et al., 1997), an additional material property, which is difficult to control and
would confound results as the effects of hydrogen termination are presently not well
understood. Specifically, evaporated graphitic amorphous carbon has asmall
bandgap, but otherwise has similar material properties to microcrystalline graphites
that have nearly zero bandgap. Thegoal of the present work is to measure the SE
emission properties of these two types of graphitic carbons and discover whether the
small bandgap plays arole in SE emission through comparison. Graphitic amorphous
carbon dso is advantageous because the amorphous structure can be thermally
annealed, causing agradual structural change towards nanocrystalline graphite with a
related reduction in bandgap (Robertson, 1986; Dallas, 1996; Dennison et al., 1996).
This control of the bandgap by thermal annealing makes a parametric study of
bandgap possible. Attempts to anneal the amorphous carbon failed in the present
study, but suggestions that may make future work possible are summarized in Chapter
1.

The motivation for the present work is mainly scientific, but there are related
fields of interest. Applicationsthat exploit the SE emission of amaterial aretypically
interested in either the highest or lowest yields possible. Graphitic carbons are
currently the material of choice when low SE emission is desired and much of the
seminal work in thisfield isreviewed in Chapter 2 for the present sudy. In contrast,
diamond has been of very recent scientific interest because doping and hydrogen

termination have been shown to result in extremely high SE emission (Shih et al.,



1997). Although smal bandgap semiconductors typically have intermediate SE
emission properties, undersanding the effect of bandgap will assist efforts to precisely
control their SE emission properties through doping or the introduction of defect states
within the bandgap (Iwase and Nakamura, 1997).

Applications for semiconductors themselves, mainly the manufacturing of
integrated circuits, use SE emission as atool for characterizing morphology and
dopant profiles with scanning electron microscopy ( Castell et al., 1999; Phillips et al.,
1999). Integrated circuits are not bombarded by dectronsin their daily operation, but
understanding the influence of bandgap will contribute to the interpretation of
scanning electron microscope images, which is the main anayticd tool of the
semiconductor industry.

Another field of renewed interest in SE emission isin modeling the potential
adopted by spacecraft surfaces in reaction to an incident flux of electrons from the
Earth’ s plasma (Hastings and Garret, 1996). NASA’s current model for spacecraft
charging underpredicts the potentials seen on satellites in geosynchronous orbit. The
poor database of SEE material parameters used by NASCAP is believed to be a
significant contribution to this problem (Chang ez al., 1998). The SEE properties of
evaporated carbon materials may be particularly important in spacecraft charging,
since spacecraft surfaces often become contaminated with some form of disordered
carbon in space (Davies and Dennison, 1997; Chang et al., 2000).

The dissertation is organized in a standard manner. Chapter 2 will provide the
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requisite background knowledge of SE emission and the current understanding of the
role of bandgap in insulators and small bandgap semiconductors. Experimental work
on graphitic carbon materialsin the literature is al'so fully reviewed. Chapter 3 on
instrumentation and Chapter 4 on experimental methods are relaively detailed due to
the significant amount of effort in that area. The chapters attempt to document the
first generation of the vacuum chamber, its supporting analytical systems, and the
specific experimental apparatus and methodology that were designed, constructed, and
tested for the present study. Chapter 4 also contains a detailed andysis of the random
and absolute errors involved with the SE emission measurements. Before the
experimental datais presented in Chapter 5, the three graphitic carbon samples are
described and their preparation and characterization is discussed. In Chapter 6, the
experimental datais compared with theoretical model functions from Chapter 2 and
the results are discussed. The concluding Chapter 7 summarizes the significance of
the experimental results, along with an evaluation of the performance of the
instrumentation and suggestions for improvements. The dissertation is concluded with
suggestions for future research with evaporated graphitic amorphous carbon for the
study of the role of bandgap in the SE emission properties of small bandgap

semiconductors.



CHAPTER 2

BACKGROUND

The following sections provide background information about secondary
electron emission and the role of bandgap in the process. The chapter concludes with
aliteraure review of the secondary electron emission properties of carbon materids,

specifically graphitic carbons.

Section A. Secondary Electron Emission

Secondary electron (SE) emission is the process by which electrons within a
material are emitted as the result of incident electron or ion bombardment. The
emitted dectrons that were origindly in the material, or “true’ secondary electrons,
cannot be distinguished from backscattered electrons (BSE) that were originally part
of the incident beam; therefore, SE’ s are conventionally defined by their energy as
emitted electrons with between 0-50 eV, while BSE have > 50 eV of energy. The
division isahistorical convention, but is supported by the fact that the SE energy
distribution is sharply peaked below 10 eV and most BSE are nearly dastically
scattered with energies close to the incident beam energy (Seiler, 1983). The average
number of SE emitted per incident electron at a given energy isthe SE yield § of a
material. Likewise, the BSE yield n is defined as the average number of BSE emitted
per incident electron. The sum of these yieldsisthetotal yield ¢ of the material.

Figure 2.1 shows atypical plot of the total, SE, and BSE yields as a function of



incident beam energy. The SE yield increasesat low energies asmore energy is
imparted to the solid. The SE yield tails off at higher energies (which is not
represented well in Figure 2.1) as the penetration of the higher energy incident beam
begins to exceed the mean free path length of SE’ s trying to escape the material. The
modest variation in the BSE yield with energy in Figure 2.1, particularly above afew
100 eV, istypical for most materials.

There are many reviews of SE emission in the literature, which follow the
theoretical and experimental advancesin SE emission studies. The most helpful
review article for the present discussion is the compilation by Dekker (1958), in which
he outlines the semiempirical theories used in this dissertation. Additional insight was
provided by a brief summary by Dionne (1973).

The semiempirical models for SE emission begin from similar basic

assumptions. The first assumption isthat SE emission isa two-step process that is

a--g- [E——
i B-----B---_4
L)
= —o— Total Yield
= - 8- SE Yield
-#- BSE Yield
By e X .
S : : : : :
200 400 00 200 1000

Incident Electron Beam Energy (g%)

FIG. 2.1: Total, SE, and BSE yield for polycrystalline gold sample (see Subsection
5.A.1for details of sample).
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separable into the primary beam exciting a population of SE’s within the material and
then a diffusion process as the SE’ s propagate to the surface and escape the material.

The combination of these two processes can be written in the form

5(2,) = [ n(x 8,) f(x)dx (2.1)

where the function n(x,E,) is the average number of SE’s excited by an incident beam
of energy E, in an infinitesimal layer of thickness dx a distance x below the surface
and f(x) is the probability of a SE reaching the surface from adistance x and being

emitted. The number of SE’s excited in an infinitesimal layer is related to the stopping

power through — El % , Where eis the average energy required to excite a SE within
the material. The probability of a SE reaching the surface and escaping is related to an
exponential absorption law 7} = B exp(—ex) because the process of SE migrating
through the solid has a high scattering rate and is therefore assumed to be more closely
related to diffusion. The exponential and its normalization factor B can be viewed as
the product of two additionally separate terms, where the exponent governs the
diffusion of SE’s and the probability of escape over the surface barrier isrelated to the
constant B (Dionne, 1973). Thisview leads to SE emission modeled as a three-step
process with the addition of the escape probability. Theresult isthat the SE yield

depends inversely on e and exponentially on the absorption coefficient «, which will

be important in the discussion of bandgap and SE yield in Section 2.B. Inserting the



8

expressions for the number of SE produced and the probability of their escape, yields

51:.5‘} =— g_[ j—f exp(—om dx. (22)

The next step is to assume aform for the stopping power i—i , which isthe
distinguishing aspect between the semiempirical theories. There are two distinctive
formulations considered here: the power law model and a formulaion by Sternglass
(19534). The power law model assumes that the stopping power isinversely related to
the energy, which results in more energy being deposited near the surface at lower
incident beam energies. The exact relationship between energy and stopping power is
left arbitrary by the inclusion of a variable exponent to give

dE 1

i -4 2 (2.3
The stopping power coefficient 4 is characteristic of the material and presumably
related to the absorption of theincident electrons’ energy. The variable n will be
referred to as the stopping power exponent. Eg. 2.3 can be integrated to give an

expression for the energy imparted to the sample as the incident electron penetrates the

sample up to a given depth:

E¥x)y=F) - Anx. (24)



The incident energy E, is distinguished from the energy E(x) at agiven depthx. The
maximum range of the electron beam’ s penetration R follows from the value of x in

Eq. 2.4 that gives zero energy:

R=_2 (2.5)

The stopping power of EQ. 2.3 can be phrased in terms of the penetration depth R by

substituting EQ. 2.5 into Eq. 2.4 and computing the appropriate derivative to yield

2 aan(r- A, (27)
x

Substitution of Eq. 2.7 into Eq. 2.2 and a change of variable leads to a closed form
solution. Baroody (1950) was the first to point out that when the SE yield and incident
energy are both normalized by the maximum SE yield s,,,, and energy at that
maximum £, the SE yidd data for alarge number of materials follows arelaively

universal curve. The practice hasled to equations being phrased in terms of §/5,,,, and

E/E, ., which are referred to as reduced yield curves. The energy corresponding to the
maximum yield £, is found by setting the derivative of the yield to zero and the
maximum SE yield is defined by §(E,,,.). The reduced yield equation for the power

law formulation takes the form
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s(7) - %rﬁ‘mm[ggm]x_l[l—exp[—&ﬂ{EE ]“ (2.8)

where

| o

- 2.9
£ 1—expi(—aR) (29)

and

—— [E - aReap|- mfajlr. (2.10)
gl =
The introduction of s, and £, typically rids reduced yield equations of the five
material constantsintroduced in Eq. 2.2 and 2.3 (4, B, «, R, and €), whichisthe main
reason for the universal curve. Notice that for a given value of the stopping power
exponent, the remaining parameters (B, o, R, and €) can be evaluated numerically. The
value of n was widely debated during the formulation of these semi-empirical

methods, but experimental work on the transmission of thin aluminum films by Y oung
led to avalue of n = 1.35 and is the generally accepted value for conducting materials
(Dekker, 1958). Using Young's value for the stopping power exponent, Egs. 2.8-10

reduceto
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5(5}:1.114531“(5}“] {l—exp[—E.EB[EEJ H (2.11)

Eq. 2.11 will be referred to as the Young mode for SE yied and will be used in

Chapter 6 to fit the experimental data.

A single value for the stopping power exponent for all materials is inconsistent
with the varying range of electronsin different materials, especially when
semiconductors or even insulators are considered. A crude empirical formula by
Feldman (1960) for the stopping power exponent has a weak dependence on atomic

number:

5= 12 | (212)
(1-029*log,, Z)

Although Feldman'’ s equation reduces the problem to the number of scattering
particles, the idea of avariable stopping power exponent can be pursued in the present
discussion by allowing an additional free parameter in Egs. 2.8-10. Unfortunately, Eq.
2.10 does not have an inverse; however, the sysem of equations can be reduced to
single variable, aong with s, and E,,,.. After afitis performed to experimental data,
the stopping power exponent can be evaluated numerically. This method will be
referred to as the variable stopping power exponent model, although thereis no closed

form solution.
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Beginning again with Eq. 2.2, the thesiswork of Sternglassled to his
formulation of the SE yield that incorporates the interaction of the incident electrons
with the electron shell structure of the sample atoms. Sternglass simplified the
problem by assuming that the incident beam reaches afairly sharply defined average
depth 1,, or mean free path for the incident beam where al of the SE’s are created.
Theintegral of Eq. 2.2 with n(E,x) < 5(x-4,,) isthen atrivial expression for the total

energy imparted into the sample at that depth:

5=5(1- k) E expl— o). (213)

=

The total energy E isreduced by the fraction of energy expended in producing BSE,
which is given by the BSE's mean energy & and the BSE coefficient n. Careful
examination of the dissertation work of Sternglass (19534) reveds that he adds an
additional overall factor to the front end of this model to correct for the effects of
sample roughness. The contradictory and ingppropriate uses of sample roughness to
explain differencesin SE yield curves will be considered in more detail during the
discussion of the experimental datain Chapter 6.

The relation of the depth 4., to the incident energy is derived from the Bethe
expression for the stopping power, which includes the electronic shdl structure of the

atom. Sternglass makes several simplifying assumptions and approximations to show

A, < A& . Assuming the parametersin Eq. 2.8 (B, € 1, «, and k) are constants of the
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materid, the equation can be put in areduced yield asfollows:

5=§mmiexp[2{l— £ H (2.14)
EII].H}{ EII].H}{

Notice this reduced yield equation has eliminated the additional materials parameters
with the introduction of reduced yield variables. Eq. 2.14 will be referred to as the

Sternglass model and will be used in Chapter 6 to fit experimental data.

Section B. Bandgap and SEE

The literature dealing with the study of bandgap on SE emission isvery limited
(Iwase and Nakamura, 1997). The vast majority of the quantitative theoretical work in
the field of SE emission has been done with free electron metds. The classical
semiempirical theories have been the areawhere bandgap has been introduced in the
explanation of the SE emission of insulators and semiconductors (Dionne, 1975; Grais
and Bastawros, 1982). The more recent quantum mechanical formulations have been
used to describe SE emission in metals, whose free electron assumptions make the
problem somewhat tractable. The literature, which was found and will be discussed
below, typically relies on the role of bandgap in SE emission to verify theoretical
models or deduce other material parameters that are more difficult to measure, such as
the escape probability B or absorption coeffiecent «.

For the purposes here, the two main quantities of interest have already been

introduced in Eq. 2.2: (i) The average energy required to excite a secondary e and (ii)
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the absorption coefficient « or equivalently the inverse mean free path (MFP) for

electron scattering. In an article explaining the origins of many of the common
parameters in SE emission, Dionne (1975) comments e can be related to the sum of the
bandgap and the dectron affinity in insulators. This definition isin contrast to metals,
where e has been related to the work function or even theionization potential of

valence electronsin the gas phase ( Sternglass, 1953a; Dionne, 1975). Although the
definition for insulatorsis logical, notice the result in Eq. 2.2 isthe SE yield then has
an inverse dependence on the bandgap and dectron affinity, which is contrary to
experimental results that show insulators typically have much higher yields than
metals (Seller, 1983). The paradox is resolved by considering the influence of the
bandgap on the absorption coefficient « or inverse MFP, which --asseenin Eq 2.2 --
has a stronger exponentid relationship to the SE yield. Dionne (1975) explicitly
admits the bandgap most likely controlsthe SE yield through its influence on the MFP

rather than by determining the value of e.

The MFP isinfluenced by the bandgap because the bandgap inhibits el ectron-
el ectron scattering near the conduction band minimum. A SE isinitialy excited into
the unoccupied energy states of the conduction band. An excited SE undergoes
scattering with electrons in the valence and conduction bands, phonons due to the
lattice, excitons, and plasmons from the collective behavior of the electrons. Of these
mechanisms, electron scattering with the vaence band dominates in most materials

(Seiler, 1983). In semiconductors and insulators, the bandgap represents the minimum
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energy with which a valence electron must be excited when inelastically scattering
with an excited SE in the conduction band. An excited SE loses a minimum energy of
the bandgap and the interacting valence electron is scattered into the conduction band,
leaving behind ahole. Excited SE’s in materials with a bandgap most often lose their
energy through this electron-hole pair production. There has been research that
supports the idea that the energy necessary to excite an electron-hole pair is three
times the bandgap energy (Alig and Bloom, 1975). This minimum excitation energy
for electrons in the valence band inhibits the el ectron-dectron scattering by reducing
the available states into which the valence electron can scatter. The necessity of
crossing the bandgap results in areduced probability for the interaction to take place,
which trandates into alonger MFP for excited SE in insulators.

The electron-electron scattering is further inhibited near the conduction band
minimum. Through excited SE’s losing energy and e ectron-hole par production into
the conduction band, the electron population in the conduction band begins to settle
near the conduction band minimum. Figure 2.2 shows a qualitative energy-level
diagram for an insulator with alarge bandgap energy £, in relation to the electron
affinity x. The bandgap E, is defined asthe energy needed to excite eectrons at the
top of the valence band to the conduction band minimum, while the electron affinity
is the additional energy necessary for an electron to reach the vacuum level and escape
the material. The vacuum level isthe energy of an dectron that is free from the

material, typically referenced with respect to the Fermi level. The upper hatched
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region of the diagram, between the

___________ E z +tE. : -
conduction band minimum E, and
Evar] 14 . E.+E,, marks aregion of energy were
“Eg - an excited SE is significantly affected
+ E by adecrease in the probability of

exciting an electron-hole pair. Just

FIG. 2.2: Energy band diagram for typical

: below E +E,, a SE cannot excite a
insulator.

valence electron to the conduction
band minimum because the valence el ectron would need to scatter into the forbidden
bandgap. The excited SE can still be involved in low energy scattering, typica of
electron-phonon or impurity scattering, or must return to the conduction band with a
single scattering event, which is more improbable due to the further reduction in
possible states into which to scatter as mentioned above. The decreased probability of
€l ectron-electron scattering is demonstrated by the temperature dependence of SE
yield, indicative of electron-phonon scattering, that is not seen in metals (Dekker,
1958). Studies with diamond show a distinct change in the scattering probability,
clearly visible in SE energy distribution curves, below E +E, that is attributable to the
shift from electron-hole pair production to phonon and impurity scattering (Himpsel et
al., 1979; Shih et al., 1997). The bandgap leadsto areduction in possible states into
which to scatter that results in a decreased probability of scattering and ultimately

relates back to alonger MFP, alower value of the asorption coefficient «, and a
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higher SE yield. Inaddition, insulators that have alow vacuum levd E, . within this
energy region (i.e., x << E,) asshown in Figure 2.2, will emit the majority of these SE
that can travel from deeper within the material. There is an overlap between E, . and
the energy where the excited SE population tends to settle due to their longer lifetimes
and path lengths. The fact that the SE popul ation settles near E,,,. is evidenced by the
sharp peak of the emitted SE energy distribution at low energy (Seller, 1983). Also
for thisreason, any decrease in y will lead to an increase in the SE yield. Through
doping and hydrogen termination, the vacuum level of diamond can be reduced below
E, and this negative electron affinity resultsin SE yields of over 80 electrons/electron
(Shih et al., 1997).

The simple energy level arguments that explain large bandgap insulators do not
translate as well to small bandgap semiconductors, which typically still have dlightly
higher maximum SE yields than metals. Figure 2.3 shows an energy-level diagram for
atypical semiconductor with a smaller bandgap energy and a comparatively high

electron affinity. The smaller

EE ——————— bandgap means that SE energy loss
X due to electron-hole production is
““““““ Eg+E; .
more probable. The previous
E; .
I E z arguments about the shift in
Ev

scattering mechanisms below £, +E,

FIG. 2.3: Energy band diagram for typical  Still apply, but the higher vacuum
semiconductor.
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level decreases the probability these SE’ s will be part of the observed SE population.

The question is clearly whether the SE yield properties of small bandgap
semiconductors have a dependence on bandgap simply to alesser degree than
insulators or whether the el ectron affinity acts as athreshold for the bandgap influence
and small bandgap semiconductors can be treated as if they were metals. Current
qualitative theories about the relationship between bandgap and SE yield do not
necessarily support the idea that the SE yield of small bandgap semiconductors should
be influenced by their bandgaps (Alig and Bloom, 1975; Grais and Bastawros, 1982;
Schwarz, 1990).

Grais and Bastawros (1982) investigate the relationship between bandgap,
MFP and SE yield in their survey of the SE emission properties of semiconductors and
insulators. Using the constant loss formulation of the SE yield actually taken from
Dionne' s 1973 paper, they use experimental data for the maximum SE yield s, and
energy a which tha maximum occurs E,,,. to calculate the MFP at that energy and
compare that with published values of the bandgap for over twenty semiconductors
and insulators. Their results are reproduced in Fig. 2.4, which does not show a dear
relationship between the MFP and the bandgap energy. In rdation to the insulators
considered, the MFP shows only a slight linear dependence on bandgap in the
semiconductors with bandgaps lessthan 5 eV. This supports the idea proposed above
that there is an activation energy for the bandgap to afect the MFP, but the authors

make no comment about the 5 eV limit. The authors proceed to investigate the role of
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FIG. 2.4: Graph of the mean free path (labeed 1) as afunction of bandgap (labeled
E,). Reprinted with permission from Grais, K. I., and A.M. Bastawros, 1982, “A study
of secondary electron emission in insulators and semiconductors,” J. Appl. Phys. 53,

5239-5242. Copyright 1982, American Institute of Physics The numbers refer to
compounds listed in the article. The solid lineisonly aguide for the eye.

bandgap in SE emission with a plot of the maximum SE yield as a function of
bandgap, which isreproduced in Figure 2.5. Be aware the authors have erroneously
used the symbol o,,, typically reserved for the maximum total yield, wheres,, is more
accepted for the maximum SE yield. Again, the bandgap has a distinct influence on
the maximum SE yield for large bandgap insulators (£, > 5 €V). Notice both curves
have the same general trends, which leads one to investigate the relationship between

MFP and the maximum yield.
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FIG. 2.5: Graph of the maximum SE yield (mislabeled ¢,,,) as afunction of bandgap
(labeled Ey). Reprinted with permission from Grais, K. I., and A.M. Bastawros, 1982,
“A study of secondary electron emission in insulators and semiconductors,” J. Appl.
Phys. 53, 5239-5242. Copyright 1982, American Institute of Physics. The label E,,
refers to the fact that the maximum SE yield occurs at the maximum primary beam
energy. The numbersrefer to compounds listed in the original article. The solid line
isonly aguide for the eye.

By taking the MFP data from Figure 2.4 and the maximum SE yield data from
Figure 2.3, amuch better relationship is shown to exist in Figure 2.6. Dionne (1975)
predicted the maximum SE yield should be directly related to the MFP through the

relation

ma

B = 0.9(%][44,1] " (2.15)

Again, B isthe SE escape probability, 4 isthe stopping power coefficient, and eis
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related to the bandgap and el ectron affinity in insulators and semiconductors. The
derivation of Eq. 2.15 proceeds from a so-called constant loss model for the SE yield,
similar to the power law model, and the numerical values are computed when avalue
of n=1.35 is chosen for the stopping power exponent. The similarity between the
shape of the curve in Figure 2.4 and power law of Eq 2.15is close enough as to
encourage atheoretical fit with the other three parameters as constants; however, this
approach exemplifies the downfall of asurvey like thework of Grais and Bastawros
over so many different compounds. The values of the other three parameters, although
they can be argued to have less of an influence than the MFP, are not constants over a
wide range of materials. The point of Eq. 2.15 and the curve in Figure 2.4 is that they

are strong motivation for theinvestigation of differencesin the SE yield of maerias

Maximum SE vield &, .,
=
l
I

2 4 3] a 10 12 14 16 18 20 22
SE mean free path A, (hrmy

FIG. 2.6: Maximum SE yield as a function of calculated mean free path, adapted from

Grais and Bastawros (1982). The numbersin the article referring to the different
materials have been dropped and the data has been sorted according to mean free path.
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where these other material parameters can be assumed to be constant.

The work of Grais and Bastawros demonstrates small bandgap semiconductors
fall into adistinct class from insulators and for which, perhaps, the bandgap does not
affect the MFP enough to impact the maximum SE yield. Again, the apparent onset
energy of the bandgap influence above5 eV isvery interesting and not explained by
the authors. As discussed along with Figure 2.3, the electron affinity could be too
large for the bandgap in these semiconductors to impact the SE yield. Theratio of
electron affinity to bandgap does vary from 12 down to 0.7 for the semiconductors
considered (Grais and Bastawros, 1982), with only modest change in the maximum SE
yield. Thequalitative arguments presented earlier would contend that aratio of less
than 2-3 should begin to influence the SE yield. The highest ratio of dectron affinity
to bandgap amongst the insulators is 0.26 and this insulator displays a factor of 8
increase in maximum SE yield over the semiconductors. Using the work function for
clean graphite in a vacuum (Hansen and Hansen, 2001), an estimate for the electron
affinity of the graphitic amorphous carbon studied in this dissertation is roughly 4 eV
above an average bandgap of 0.5 eV (Robertson, 1986), which is an electron affinity to
bandgap ratio of 4 and classifies the material as a semiconductor with this criterion.
The issue of the electron &finity acting as athreshold energy gains some support in
thiswork, but there is contradictory evidence and the question is not fully addressed or

resolved.

Schwarz (1990) dso argues that e should reate to the bandgap in insulators,
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but he only uses the relationship to qualitatively explain the high SE yield of large
bandgap insulators in contrast to the lower yields of metals and does not remark about
semiconductors.

An interesting work by Alig and Bloom (1975) verifies that the average energy
to create an electron-hole pair in a semiconductor is roughly three times E; by
employing standard semiempirical SE theory, similar to the derivationsin Section 2.1.
The authors are not directly investigating the role of bandgap in SE yield, but
construct an empirical relationship, outlined below, between the SE escape probability
B and the ratio of electron affinity to bandgap as an exercise based on their own theory
about the electron-hole production energy. The authors first use standard semi-
empiricd theory to derive adirect relationship between the SE escape probability B
and the average energy to excite a SE e, which is similar to the work done by Dionne
(1975). Assuming that electron-hole pair production is the main mechanism for
exciting SE and based on their underlying assumption that e is then related to three
times the bandgap, the authors take values for the bandgap and other free parameters
from the literature to derive B. The work to this point is arough approximation of the
work done by Grais and Bastawros (1982).

As an independent verification of their semiempirical work, Alig and Bloom
proceed to derive asimplistic theoretical relationship between B and the ratio y/E,
also based on their underlying assumption the electron-hole excitation energy is three

times the bandgap. For simplicity, the authors assume electron-hole pair production is
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the only means for an excited SE to lose energy. Theimplication is that below a
threshold energy needed to excite another eectron-hole pair, which isroughly 3£,/2 in
their case, a SE has a 100% probability of escaping. The assumption isan overly
simplified version of the previous argument there is atransition in electron energy loss
mechanisms near the conduction band minimum. The authors are ultimately
successful in roughly matching the distribution of their sesmiempirical valuesfor B
with their theoretical predictions, which isasimilar goal for the work of Graisand
Bastawros (1982) with less successful results. Alig and Bloom confuse the original
role of B as a surface transition probability (Dionne, 1975) with the larger role of « in
governing the MFP of excited SE, but thisisaminor point and easily understood
given the number of parameters on which SE yield depends. Although their
assumptions are crude, the work of Alig and Bloom inadvertently gives credibility to
the idea that bandgap plays arole in SE emission properties through inhibiting
scattering below a cutoff energy related to the bandgap. Unfortunately, thereisno
way to draw a quantitative relationship between the bandgap and the maximum SE
yield from their work beyond the qualitative ideas aready discussed.

Again, there is evidence bandgap has arole in SE emission, but there are few
direct studies of the relationship in small bandgap semiconductors. The articles
discussed acknowledge the dependence of the SE yield on bandgap, relying on the
nature of the relationship to substantiate further aspects of their theories or to derive

other material parameters, which are more difficult to measure experimentally.
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Section C. Literature on the Secondary Electron
Emission of Carbon

The literature on the SE emission of carbon materialsis sufficiently abundant.
The straightforward measurements of the SE or BSE yields of carbon materialsisthe
most pertinent to the discussions here, but other broad categories will be discussed.
One of the important aspects of these SE and BSE yield studies of carbon materialsis
the characterization of the type of carbon being studied. A literature search for the SE
yield of carbon led to several articles, which studied several different forms that still
fall under the general class of carbon materials. Graphitic carbons will be the focus of
the present review, but research on forms of diamond will be discussed briefly aswell.

The measurement of the SE emission properties of graphitic carbon materials
was originally done by Bruining (1938) in his efforts to find materids with low SE
yields for use in practical applications were alow yield material would be valuable.
Bruining used a spherical detector without a suppression grid to study carbon black
(soot or turbostatic graphite) and Aquadag™, a colloidal microcrystalline graphite
materid that is discussed fully in Subsection 5.A.3. Although the spherical detector is
the ideal measurement scheme for SE yield measurements, the lack of a suppression
grid could have led to asignificant error in the SE yield measurement because of SE’s
produced on the collecting sphere returning to the sasmple. Bruining’ s work also
suffers from theinability to attain ahigh-quaity vacuum environment that would
ensure the samples were free from contamination. The measurements were carried out

In an evacuated glass tube that included an unknown getter source, but the exact
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pressure was not specified. Despitethese reservations, the work is routinely cited in
the CRC handbook for the maximum SE yield values of graphite and soot (Lide,
1990). Bruining also outlines what would become the standard explanation for the
reduced yield of soot by noting the material has a porous surface, which recaptures a
portion of the emitted SE’s. The affect of surface roughness on SE yield is discussed
more fully in Chapter 6 during a discussion of the experimental data.

Sternglass (1953a) replicated Bruining’s SE yield measurements of Aquadag™
with a much more accurate spherical detector with asuppresson grid and similar glass
chamber with avacuum of 10° torr. Sternglass was not able to measure the maximum
SE yield of Aquadag™ because of his limited energy range, but his results are 20%
higher than those of Bruining, which is at least the direction consistent with the
addition of asuppression grid. Sternglass made an effort to correct for SE's produced
on the suppression grid that return to the sample, which is a unique effort when using a
spherical detector. Sternglass measured the SE yield of an amorphous carbon
produced by electron-stimulated adsorption in the presence of Octoil vapors, which
presumably has a higher concentration of hydrogenation and diamond-like bonding
than the graphitic amorphous carbon sample discussed in Section 5.A.4 and studied in
this dissertation. Following the explanation by Bruining for the differences between
the carbon samplesin his work, Sternglass employed the same surface roughness
argument to explain the differences between the carbons he studied. As mentioned

earlier in Section 2.A, Sternglass went so far as to include an additional parameter in
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his model for the SE yield to account for the effects of surface roughness. The vdidity
of this conjecture will be discussed more fully during the experimental resultsin
Chapter 6.

The SE yield of pyrolytic graphite was measured by Whetten (1965) using a
spherical detector with a suppression grid in an ultra-high vacuum (UHV)
environment. The materia is assumed to be similar to the highly oriented pyrolytic
graphite discussed in Section 5.A.2 during the experimental data chapter. The author
took further measures to reduce the affects of surface contamination by freshly
cleaving the samples while under vacuum. The author reports amaximum yidd in
close agreement to the values for Aquadag™ by Bruining.

Another measurement of pyrolytic graphite was conducted by Wintucky et al.
(1981) in only adlightly higher vacuum environment. The study used a cylindrical
mirror analyzer to measure the higher energy BSE, but the author does not explain the
technique for determining the SE yield. Soot was used as a standard for ther
measurements and their SE yield for soot isin agreement with Bruining's
measurements. The author’s SE yield of the pyrolytic graphite sampleisin agreement
with the measurements of Whetten, but there is no maximum yield at roughly 250-300
eV as expected, which makes the measurements suspect. The author was interested in
the use of ion sputtering to roughen the surface and lower the SE yield of the graphite
samples, which would then be used to increase the electron collection efficiency of the

walls of a high powered traveling wave tube microwave amplifier. High levelsof ion
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sputtering were shown to texture the surface of the graphite samples with spires, which
reduced the SE yidd to lower values than the soat.

Another recent study of the use of carbon coatings to reduce the SE emission of
asurface was carried out by Ruzic et al. (1982). Their interest wasto reduce the SE
emission of wallsin plasma heating experiments for applications in controlled nuclear
fusion. The study did not use an electron analyzer to measure the SE yield, but relied
on sample biasto reject or retain SE’s produced there (see Subsection 3.E.1 for
details). Although the technique is questionable due to the uncontrolled field
environment failing to return higher energy SE to the sample, the authors argued this
error ison the order of 1% and verified their technique by comparing standard
materidsto valuesin the literature. The experimentswere conducted in an adequate
vacuum environment (1.5x10° torr) and the samples were sputtered with argon before
and in between each measurement to rid the sample of contamination and mimic the
environment in the plasma arrays. The authors studied avariety of carbon materials
that include Aquadag™, Glyptal (a carbon based vacuum sealant), electrophoretically
deposited lamp black (soot or turbostatic carbon), and AJT graphite, which isthe
commercial tile actually used in the plasma chambers of interest. All the treated
samples were vacuum baked at 400° C for 1 hour in an atempt to pyrolyze
hydrocarbonsin the materials. Their results for the SE yield of Aquadag™ are 10%
lower than the original work by Bruining. A 10% decrease in SE yield is consistent

with the direction and magnitude of error typically found in the sample bias technique
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of SE yield measurement (Davies, 1999). A group in Southampton has continued this
work with severa publications about the actual graphite pands used to limit the SE
current in these types of nuclear fusion experiments (Woods et al., 1985, 1987;
Fahrang et al., 1993).

Another source of research on carbon comes from the nuclear physics
community making backward and forward yield measurements excited by high energy
(keV to MeV) electron and ion bombardment of thin carbon films. Carbon targets are
used in an attempt to avoid the confounding effects of carbon buildup due to
stimulated adsorption from the beam, with the assumption tha the carbon buildupis
similar to the carbon targets (Dednam et al., 1987). One such article used the simple
sample bias method to determinine the forward and backward SE yield of thin
“carbon” foils (10-2000 nm) in aUHV system (Caron et al., 1998). Although not
stated in the article, thin films of carbon are typically evaporated; however, the
fraction of graphitic or diamond-like bonding depends on deposition temperature
(Dennison et al., 1996). The maximum SE yield of the thin carbon filmsis measured
at over two before ion sputtering reduces the yield to agree with Bruining' s work.

The most recent work in the area of SE emission properties of carbon materials
has been conducted on diamond and diamond-like amorphous carbon materials. Much
of the pioneering experimental work in thisfield has been conducted by Krainsky et
al. (1996). Shih and Y ater have also conducted substantial research in this area and

have written a current review of the study of the SE emission properties of diamond
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(Shihet al., 1997; Y ater and Shih, 2000). The interest in diamond isits extremely
high maximum SE yield resulting from a negative electron affinity the material
devel ops when terminated with hydrogen. Diamond-like amorphous carbons have
al so been the topic of research because the SE emission properties are more robust,
although the yields are lower than crystalline diamond (Liu et al., 1997; Diaz et al.,
1999).

Another class of SE emission studies on carbon have surrounded the use of
high resolution SE energy distribution measurements to investigate the origins of fine
structure in the spectra. The seminal work in this field was carried out by Willis and
only afraction of hiswork isreferenced here (Williset al., 1972a, 1972b, 1974). The
techniqueistypically used as a structural probe to characterize the degree of
crystalline order in a sample, but has also been used to distinguish between different
carbon allotropes (Hoffman et al., 1991). The SE energy distributions of graphitic
carbons have been the subject of study because of their interesting fine structure, but
also for their use as a standard reference for sample fermi-level energy position
(Oelhafen and Freeouf, 1983) or their repeatabl e spectra, which can be used for Auger
€l ectron spectroscopy instrument comparisons (Goto and Takeichi, 1996). Thisarea
of the SE emission characteristics of carbon materials was not fully investigated
because it is not directly applicable to the current study.

The literature review of the SE emission properties of grgphitic carbon

materids reveds these materials are mainly of interest for their low SE and BSE yield
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properties. The literature showsthere are avariety of measurement techniques, with a
10-20% variability between different investigations. Thereis ahigher level of
agreement about the SE yield of microcrystalline graphite materials, like Aquadag™
and pyrolytic graphites, probably due to their repeatable structural characteristicsin
comparison to more highly variable amorphous and turbostatic carbons. The literature
shows that sample contamination does not have as great an influence as with metals,
but ion sputtering can have a significant influence on the SE yield of carbon samples.
Table 2.1 summarizes much of the pertinent information about these graphitic carbon

studies.
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CHAPTER 3

INSTRUMENTATION

The following sections describe the vacuum chamber, the ancillary systems,
the sampl e stage, the source beams, and the electron energy analyzer involved in the
present study. There are additional systems that are not involved in the present work
and will not be discussed, including high energy €electron diffraction (HEED), a
hemispherical analyzer (HSA), a scanning electron microscope (SEM), time of flight

spectroscopy, and aload-lock sample exchange system.

Section A. Vacuum Chamber

All experiments were conducted in an ultra-high vacuum (UHV) chamber,
which ispictured in Fig. 3.1. The chamber is composed of two halves: The bottom
section isfrom a Varian model FC-12E vacuum pumping station and contains the ion
pumps, a popet valve, and ten 2.75 inch flanges used for gasinlet and eectrical
feedthrough. The top of the chamber houses the experimental systems and was
custom designed by Dennison and Riffe and built by Huntington. Although the upper
half of the chamber has a bewildering 36 ports, these ports are directed a only a smdl
number of focal points. The two main focal areas inside the chamber are separated
vertically by 12 inches. The source beams are mounted at this lower level, while the
upper level houses the Auger electron spectroscopy (AES) and SEM systems. The

lower level isdiagramed in Fig. 3.2 and alist of flange information is contained in



Appendix A.

The approximately 125-liter
(1.3 mx 0.35 m ID) chamber is
pumped out with a mechanica pump
(Pfeiffer-Balzers Duo) to 10 torr and
a 55 liter-s* turbomolecular pump
(Leybold TurboVac 50) down to a high
vacuum of 107 torr, after which five
40-liter-s* ion pumps (Varian) are used
to maintain the chamber pressure at

UHYV pressures. The turbomolecular

pump is also used to pump an external

FIG. 3.1: USU UHV surface analysis
chamber, referred to as “FatMan.”

roughing line that runs between gas
inlets, source beams that need differential pumping, and the load-lock system. A
titanium sublimation pump (Varian TSP) is used periodically to assist the high
vacuum pumping, especially during the switch to using the ion pumps or when
outgassing other filaments.

Typical UHV pressures of 10° to 10 torr are obtained by baking the chamber
at 110-125° C for 3-4 days. To bake the chamber, atemporary sted framework is
constructed around the chamber and then covered with “thermoglass cloth” (trade

name Nomex), which is the same material used to make firefighter’s clothing. A set of
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resistive heaters, 10 radiative heaters (220VAC at 180 ohm) plus alarge heater made
up of six flat heatersin parallel (220 VAC at 80 ohm ), provides atotal of 3300 watts
to heat the air inside the cloth oven. This method was chosen over the typical use of
heater tape covered with aluminum foil and has proven to be successful.

High vacuum is monitored with three convectron gauges located near the

turbomolecular pump, the gas handling system, and the load-lock system. The UHV
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FIG. 3.2: Lower level of UHV chamber. Detailed information in contained in
Appendix A.
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pressure inside the chamber is monitored by three nude UHV ion gauges: A gauge at
the top of the chamber, one just above the popet valve in the lower section of the
chamber, and another gauge in the external roughing line to monitor outgassing from
source filaments during their use. The ion gauges use a standard ion gauge controller
(Granville Philips model 307). The chamber’stypical base pressureisin the low 10
torr range. Outgassing of filaments during the use of the electron guns often puts the
operating pressure of the chamber in the mid 10" torr range. A residual gas analyzer
(RGA) (Ametek model 100 amu with electron multiplier) is used to monitor the partial
pressure of gasesin the vacuum. Spectrafrom the RGA during experiments are
presented and discussed in Chapter 5 along with the experimental data

The chamber has been fitted with a sleeve of u-metal magnetic shielding
material (custom built by Magnetic Shield Corporation) to reduce the ambient
magnetic field inside the chamber that can influence low energy electron trajectories.
In addition to the cylindrical sleeve of magnetic shielding, each apparatus that
protrudes into the vacuum is covered with magnetic shielding. The magnetic field
inside the chamber is a cumul ative effect of several fields. Theearth’sfield isroughly
460 milligauss (MG). The VG cold cathode ion gun uses a powerful magnet that, even
with netic p-metal shielding around it, leaks roughly 200 mG. Theion pump wells
are surrounded by magnets that produce an unknown field in the chamber. Early
measurements of the chamber’ s ambient magnetic shield show the field along the

chamber axis averages 60 mG. Edge effects near equipment that reach far into the
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chamber, such as the cylindrical mirror analyzer (CMA) or the hemispherical analyzer
(HSA), show fieldsnear 200 mG and were to be expected. The actual measurements

of magnetic field profiles are discussed further in Appendix A.

Section B. Ancillary Systems

The supporting systems for this dissertation work consist of an ion gun used for
sputtering samples and an Auger electron spectroscopy (AES) system used to
characterize sample contamination.

Theion gun (Vacuum Generator model AG5000) uses a cold cathode structure
to ionize the sputtering gas rather than a hot filament. The use of a cold cathode
allows otherwise volatile gases to be used for sputtering. The sputtering gas used in
the current work was argon, which does not need to rely on the cold cathode. The gun
is capable of A currents and beam energies between 300-5000 eV. The spot size can
be focused, but was typically chosen to be on the order of 10 mm because of the size
of the samplesto be sputtered. A permanent magnet around the ionizing chamber of
the gun is used to focus the beam before leaving the gun. As mentioned in Section
3.A, the magnet was shielded with p-metal shielding from disturbing other charged
particle sources.

The AES system (Varian model 981-2730) consists of acylindrical mirror
analyzer (CMA) and electron gun, along with supporting electronics. The CMA has
proven to be capable of routinely operating with instrument line widths of 0.5 %,

which is the measured peak-to-peak energy resolution of the instrument [Fatman Il lab
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notebook, p. 097y]. The eectron gun was fully characterized to find the beam current
density during normal operation. The electron gun was always operated at 2000 eV.
Beam profile measurements reveal the minimum spot size of which thegun is capable
istightly focused around 0.3 mm [Fatman Il lab notebook, p. 100w]. Although the
gun is capable of nearly apA of beam current, the gun was operated below 50 nA as a
compromise between an adequate signal for the AES spectrum and high beam current
densities that might contaminate the samples. Long exposure to beam current
densities on the order of 90-140 pA/cm? has been shown to cause electron stimulated
adsorption of carbon through the disassociation of vacuum chamber gases, while beam
current densities of < 6 uA/cm? are thought to leave the sample unaffected for the total
time the sample is exposed to the beam (Chang et al., 2000). Figure 3.3 shows a

calculation relating the beam current and diameter to this acceptable level of beam
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Bream Drismeter (from)
— Acceptable level of beam current
FIG. 3.3: Calculated graph of beam current and diameter showing the bound of the
acceptable level of beam current density (below and to the right is acceptable).
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current density. Using the minimum spot size puts an upper limit on the beam current
density of 70 wA/cm?, which israther high in comparison to the contamination
threshold. The gun’s settings that resulted in 50 nA beam currents most likely also
lead to alarger spot than represented by the minimum spot size, but the spot size was
not measured again at these settings [Fatman 111 [ab notebook, p. 006y]. As another
precautionary measure, the samples were only exposed to the beam for the minimum
time necessary to maximize the signal and obtain a spectra, which was typically no
more than 10 minutes. The AES spectrafor the samples are presented in Section 5.A

along with adiscusson of the samples.

Section C. Sample Stage

The sample stage was designed to allow for a high sample volume and quick
sample transfer in response for an anticipated high volume of sample measurements
for other grant work by the group. A simplified drawing of the sample stageis shown
inFig. 3.4. The sample stage is a 12-sided carousel that is suspended from arotary
feed-through on top of the chamber. Each face of the carousel is anindividuad module
that can hold an electrically isolated sample or a small detector for observation of the
source beams. The modules fit together like pieces of a pie and are held together by
plates on the top and bottom. The sample stage rests on a circular base connected to a
verticd rod, which is coupled to the rotary feed-through. The circular baseis

electrically isolated from the rod so the sample stage is electrically isolated
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FIG. 3.4: Top and side view of sample stage. The height of amoduleis28.6 mm. The

diameter of the stage from module face to faceis 12.7 cm.
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from chamber ground and the current to the whole sample stage structure can be
monitored.

The stage has been designed so it can be easily removed from the chamber.
One module in the carousdl is sacrificed to make way for a slot, from the center to the
edge, that allows the sample stage to slip away from the circular base on which it rests.
The center region of the sample stageis hollow to alow for the various wires for the
back side of each module to be accumulated and pass through the top plate via a 25-
pin, UHV-compatible, D-type subminiature connector (Insulator Seals Inc. part #
0981901). Figure 3.5 shows the stage without the top plate, exposing the wiring
inside. The cable assembly isshown later in Fig. 3.16 during Subsection 3.E.1. The
connector is necessary for the wiring to be quickly disconnected from the sample
stage, which is then free to be removed from the vacuum chamber via any 8 inch port,
which has been opened on that level. If the chamber is brought to atmospheric
pressure with nitrogen gas, then the sample stage can be modified or replaced with a
duplicate stage without a long bakeout to reach UHV pressure again. Thecableis
bolted to arms that hang from a disc above the base to keep the cable out of the way of
the rotating detector, but has the drawback that if the top flange of the chamber is
opened the cable would have to be detached before the system could be completely

removed and to allow a new copper gasket to be put in place.
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FIG. 3.5: Sample stage with top plate removed. The large cavity sample module
(right) contains the HOPG sample, while the smaller cavity module (front) contains an
OFHC dlug.

Subsection 1. Modules
The sample modules were designed to accommodate a wide variety of samples.
A typical sample moduleisshown in Figure 3.6. All the modules were made from
OFHC copper to avoid surface charging due to an insulating oxide layer, as with
aluminum, which would affect low energy electron trgectories. Samplesare heldina
cylindrical cavity in the face of the module. The samples must either be cylinders

themselves, machined from the sample material, or flat samples attached to cylindrical
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slugs made from 304 stainless steel

or OFHC copper. Two sizeswere
chosen for the sample cavities: The 1
cm diameter holes minimize the
sample-to-collector surface arearatio,

while the 0.75-inch diameter holes

FIG. 3.6 Empt 1-cm cavity sample were intended for awider array of
module.
sample configurations. For example,
the larger cavity can hold a small sample and another cylindricd element that would
be used as atertiary detector to measure electron scatter. Drawings of the smaller and
larger cavity modules are shown in Figs. 2.7 and 3.8, respectively, while an actual
picture of the smaller sample moduleis shown in Fig.3.6.

The samples are electrically isolated from the stage to allow the measurement
of a separate sample current. The sides of the sample are supported by three ceramic
posts (small shaded partsin front view of Figs. 3.7 and 3.8) held in place by set
screws. The holes for the ceramic posts are set back 6.4 mm from the face of the
module to avoid charging the insulators. The bottom of the sampleis supported by a
stainless steel pin that is spring loaded to ensure contact with the sample (see top view
in Figs.3.7 and 3.8). The pin extends through the back of the module in aceramic

sleeve, for electrical isolation, and into the hollow region of the sample stage. One of

the 25 wires from the D-type connector is attached to the pin so the current to the
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FIG. 3.7: Assembly drawing of 1-cm cavity OFHC copper sample module. The
hatched regions are ceramic tubes. Thereisaspring in the sample cavity between the
ceramic washer and the head of the 2-56 screw that makes electrical contact with the
sample. The height of the module is 28.6 mm and the depth is 25.4 mm. The hole at
the top of the moduleis a simple Faraday cup, with a 2-mm diameter and a 20-mm
depth.

sample can be monitored.

There are three diagnostic modules on the stage: A Faraday cup, a phosphor
screen, and aUV detector. All three are grouped together and are set behind the 25
pin connector, since the cable interferes with the SE detector motion and the
diagnostic modules do not need to be studied by the SE detector.

The Faraday cup is essentially a hole used to measure the dectron (or ion)
beam current without losing SE’s or BSE’ s that would effectively reduce (or increase)
the actual incident current. The typical design for aFaraday cup employs aratio of
10:1 between the depth of the hole and the diameter of the gperture so that ~97% of

the electrons emitted as aresult of the incident beam do not escgpe the Faraday cup
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FIG. 3.8: Assembly drawing of 0.75-inch cavity OFHC copper sample module. The
hatched regions are ceramic tubes. Thereis a spring in the sample cavity between the
ceramic washer and the head of the 2-56 screw that makes electrical contact with the
sample. The height of the module is 28.6 mm and the depth is 25.4 mm. The hole at
the top of the moduleis a simple Faraday cup, with a 2-mm diameter and a 20-mm
depth.

(Mooreet al., 1983). Conforming to this standard, the 25-mm depth of the modules
limit a Faraday cup’s aperture to < 2.5 mm. Asshown in the front views of Figs. 3.7
and 3.8, ahole wasdrilled in the sample modules with a 2-mm diameter and 20-mm
depth; however, when the SE detector isin front of the sample, the hole in the drift
tube through the back of the detector is not large enough to deflect the beam into these
Faraday cup holes.

In addition, alarger diameter aperture was needed for incident beam
characterization. One solution would have been to mount a Faraday cup at an angle on
the bottom of the detector’ s cover, but the amount of deflection necessary to reach the
Faraday cup exceeded the abilities of the high energy gun and the low energy gun was

mounted much too close. The solution was to use alimited depth:diameter ratio of



46

2.75:1 and make up for the potential loss of BSE and SE with three solutions: (i)
machining an angle into the base of the hole to diffusely scatter BSE (Miller and
Axelrod, 1997), (ii) coating the cup with a colloidal graphite called Aquadag™ to
reduce the SE and BSE yields (Sternglass, 1953b; Ruzic et al., 1982), and (iii) biasing
the cup to positive voltage to retain the SE produced on the inside of the cup.
Extensive tests of the Faraday cup show a +10 volt bias on the Faraday cup resultsin a
beam current equivalent to a 10:1 design to within 0.5%. Refer to Appendix B for
details of thesetests. A tertiary aperture was mounted around the large aperture
Faraday cup and was electrically isolated so stray currents could be measured and
analyzed. Thefinal design of the Faraday cup and tertiary apertureinside a sample
module is shown in Fig. 3.9.

The phosphor screen is mainly used to verify the various charge particle

beam’ s location and approximate size. The beam current density and energy that

Top View Fromt View

= =

FIG. 3.9: Assembly drawing of Faraday cup and tertiary gpertureinside a sample
module.
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results in visible luminescence makes the phosphor screen less reliable as a measure of
beam current and spot size. The phosphor screen uses P43 type phosphor coated on a
19 mm OFHC copper slug by Grant Scientific. The slug itself has four Faraday cup
holes; however, their small size makes them of little use. The phosphor screen has
proven to be vital for the alignment procedure of the high energy electron gun.

The UV detector is mounted in a custom cavity that accommodates the square
shape of the detector and two pins necessary for measuring the current output of the
detector. The UV detector is a stable, high quantum efficiency AXUV-100G
photodiode (International Radiation Detectors Inc.) that utilizesa p-n junction to
produce a current from the excitation of dectron-hole pairs. The current was

measured from the p-region (anode) with the n-region (cathode) grounded.

Subsection 2. Motion and alignment

The sample stage can move dong three perpendicular axes, rotate around its
main column, and tilt at the top of the chamber. Planar motion (x 12.5 mm in the X
and Y) and full 360° rotation are accomplished with a high precision manipulator
(Varian model 891-2536). The Z-axis of the Varian manipulator is kept fixed and a
12- inch Z trandation stage (McAllister model BLT27S-12) is used to move the stage
between the upper AESYSEM level of the chamber and the lower experimental level of
the chamber. Computer control of the Z trandation with a stepper motor will soon be
implemented through the work of Nielson, Reddy, Willey, and Chang. Thetiltis

accomplished viafour gimbles on atilt stage (McAllister McTilt 200) between the two
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other manipulators.

Of these degrees of freedom, the tilt was the most difficult to align. Alignment
was achieved by repeatedly rotating the stage and viewing the bottom of the stage in
relation to cross-hairs etched in plexiglass on two perpendicular ports of the chamber
(seeportsL7 and L14 in Appendix A). Thisalignment uncovered a misalignment of
the central rod of the stage and platform to which the sage is @tached. Theflaw is
inherent in the manufacturing of the original rod and platform, but only accounts for
+0.5 mm variation in height as the stage completes afull rotation. After thetilt was
aligned, the center of the XY plane could also be found by rotating repeatedly between
perpendicular ports; however, XY alignment was accomplished by aligning the focal
point of the cylindrical mirror analyzer (CMA). The CMA isvery sensitive to
variations in the distance to the sample and must be aligned carefully to maximize
electron counts for agood AES spectra. Since the original design of the chamber put
the CMA'’ stip-to-sample distance to within the precision of 0.5 mm, which is better
than aligning by eye, the later distance was chosen. Aligning the Z-axisis
compardtively easy using the above mentioned cross-hars and along sighting tube to
avoid uncertainty due to parallax. If the stage were perfectly aligned, the rotation from
one sample to the next should then be multiples of 30°, but experience has proven the
cable that conducts the currents from the electron energy andyzer can apply torque to
the stage and led to gross misalignment. The resolution of the manipulators

controlling the stage is on the order of £0.1 mm translation and +0.1° rotation and is
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much less than the uncertainty in the stage alignment, which is typically £0.5 mm and
+1°. Again, torques produced by the electron analyzer cabling can affect the
alignment of the stage, but can be returned to normal with repeated rotation of the
stage until the cable moves into a suitable position at the bottom of the chamber. Any
modest misalignment of these degrees of freedom can be overcome by adjusting the

source beam’ s deflection.

Section D. Source Beams

The chamber is equipped with sources of electrons, ions and photons. Two
electron guns cover the low and high electron energies, a highly focused ion gunis
used to study SE emission due to ion bombardment, another ion gun is used for
sample sputtering, and two light sources are focused through a monochromator onto
the sampleto cover the near infrared, visible and UV dectromagnetic spectrum. Table
3.1 summarizes the source beams used in this dissertation work. The energy ranges of
the electron guns, especialy the 30 keV range of the high energy electron gun, were
chosen to model the energies of electronsin the earth’s plasma that contribute to the
problem of spacecraft charging. An overlap in the energies of the low and high energy
electron guns was anticipated, but discharging and current limiting problems that will
be discussed in the following subsections led to a gap between the energies of the two
electron guns. For the purposes of this dissertation, the two electron guns and the light

sourceswill be discussed in detail.
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Subsection 1. Conrad gun

The electron gun used for alow energy eectron beam is the third generation of
alow energy electron diffraction (LEED) gun originally designed by Conrad (Cao and
Conrad, 1989). A simplified drawing of the electron gun’s electron opticsis shownin
Fig. 3.10. The gun uses on a LaBg filament (Kimball model ES-423E) and uses an
extraction voltage to enhance emission and focus the spot on the target. Three einzel
lenses (E1, E2, and E3 in Fig. 3.10) act to focus the beam further. The power supply
design is novel in that the voltages supplied to these einzel lenses are a constant
fraction of the beam energy. This unipotential design minimizes the need for the
operator to make adjustments to the lens voltages to maintain focus while varying the
beam energy (Clothier, 1991). A schematic of the modified power supply designed

and built by Chad Fish, amember of our group, is shown in Fig. 3.11 (Fish, 1998).

TABLE 3.1: Summary of source beams

Source Particle Type | Energy Range Typical Operating
Current

Conrad electron 10-1000 eV 0-20 nA
HEED electron 4-30 keVv 0-20 nA (wA capacity)
VG Cold Cathode | ion (argon) 0-5 keV ~ uA range
Quartz Halogen photon Near IRto Visible N/A

2000-300 nm

0.6-4.1eV
Deuterium photon Visibleto UV N/A

400-125 nm

3.1-10eV
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FIG. 3.10: Drawing of Conrad gun and lens column. Reprinted with permission from
Cao, Y., and E. H. Conrad, 1989, “High g-resolution gun for low energy dectron
diffraction,” Rev. Sci. Instrum. 60, 2642-2645. Copyright 1989, American Institute of
Physics. The LaB6 cathode isindirectly heated and the base is positioned using three
set screws. Thefirst anode Al serves to extract the beam, while the second anode A2
serves to collimate the beam. The three einzel lenses, E1-E3, serve to further focus the
beam. The distances, d2 and L1-L 3, are beyond the scope of the present work. See
Clothier (1991). The power supply isincluded in rough detail to give perspective.

See Fish (1998). The electron energy is controlled by the supply voltage V.. The
cathode temperature is set by the current supply I..

The first anode control circuit has been revised so the extraction voltage can be
adjusted independent of beam energy, which has proven useful to maximize the beam

current. The other settingsthat optimize the beam current and focus the spot are as
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follows: A1=+15VDC, A2=45%of V., E1 =-150%V, E2=-15%V_, and E3 =
-45% V..

Since the Conrad gun was originally designed for LEED, the fact the gun
operates at extremely low energy (down to 10 eV), but islimited at high energy isno
surprise. The high energy limit over 1000 eV is caused by electrical breakdown that is
thought to occur inside the filament housing of the gun. The energy spread of the gun,
gleaned from the half width-half max of the inelastic BSE peak, is roughly 2.5% of the
beam energy. Subsection 3.E.2 has details of this energy spread measurement.

The beam spot is adequately focused in comparison to 1 cm diameter samples,
the 5 mm Faraday cup aperture, and the 5 mm ID beam pipe of the SE detector. As
shown in Fig. 3.12, the beam profile was studied as a function of beam energy, which
shows little variation. Beam profiles were measured by passing the edge of the
Faraday cup in front of the beam spot. The plateau in the beam profile indicates the
beam isinside the Faraday cup and the distance between the plateau and the
background signal is the width of the beam. Notice that beam profiles were conducted
in both directions because of a suspected anisotropy in the beam’ s shgpe. Using the
six measurements of the beam width in Fig. 3.12, the spot sizeis 3.1 mm £ 0.4 mm.
The beam is not perfectly round and the horizontal profile is roughly 4 mm, estimated
by viewing the width in comparison to the known vertical profile on the phosphor
screen.

Further studies of the electron beam behavior were carried out using the
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FIG. 3.12: Conrad gun beam profiles at three different beam energies. The zero point
of the micrometer height is arbitrary.

Simlon™ charged particle beam modeling program. The basic geometry of the
Conrad gun was reproduced and operating potential s discussed above were given to
the appropriate surfaces. Figure 3.13 showsthe trajectories of a beam of electronsin
the gun column. The model shows a significant portion of the beam islos dueto
divergence between the einzel lens elements, but the beam leaves the gun well
collimated.

Beam currentsin the 20-nA range were chosen as a compromise between low
enough beam current densities that avoid contaminating the sample and beam currents
that would maximize the resolution of the electrometers. Based on typical beam
profiles (see Fig. 3.12), beam currents less than 20 nA lead to a beam current density

of lessthan 2 uA/cm? , well below the carbon contamination threshold (Chang et al.,
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FIG. 3.13: Simlon model of Conrad gun beam column. Therelief isindicative of the
potential relative to the cathode voltage V¢, which happensto be 500 eV. Notice the
divergence of the beam between einzel lenses E1-E3, but the relative collimation as it
leaves the gun.

2000). Beam currents near 20 nA maximize the 20 nA scde on the Keithley model
619 electrometer used to measure the collector current. The custom-built electrometer
used to measure the beam current via the Faraday cup has a 50-nA full scale current
reading.

Once the electron gun has been allowed to warm up for 30-60 minutes, the
stability of the beam is adequate over the time scale for a single measurement, which
isroughly 3 minutes using the Faraday cup and only 20 seconds using the current
summation technique. Thetypical standard deviation in the average of the beam
current measured in the Faraday cup before and after ayield measurement (~ 2
minutes apart) exhibits a 1% variation. Typical variations in the beam current during

the yield measurement itself have been shown to be less than 1%. Details of the two
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techniques for measuring yields are discussed in Section 4.A. Thereisasoan RC
decay time as the beam current changes with energy, which islikely due to the large
capacitors in the Conrad gun power supply that filter out AC fluctuations, but this

relaxation time is less than a minute.

Subsection 2. HEED gun

The high energy electron gun is acommercia gun and power supply for high
energy electron diffraction (HEED) (Kimball ERG-21). Similar to the low energy
gun, the HEED gun also uses aLaB; filament. In contrast with the low energy gun,
the HEED gun does not use an extraction voltage, but rather uses the first gpertureto
suppress emission. The HEED gun is much more flexible than the Conrad gun in that
the filament housing has the ability to be mechanically aligned and the beam can be
electrically aligned as well.

The gun is designed for use as a high energy electron source and its use at 30
keV isonly limited by beam instability due to arc dischargesinside the gun. Typical
beam instabilities have limited usage to less than 20 keV. Asthe gun approaches
relatively low energies below 5 keV, the gun begins to suffer from space charge
limiting. The gun wasinitially thought to suffer from rollerswithin aUHV valvein
the beam line that magnetized after the valve was used repeatedly; however, the
magnetized valve only affected the overd| efficiency of the gun by throwing off its
ability to be precisely aligned. Thereal reason isthat, at these lower energies, alarger

fraction of the charge emitted from the filament begins to remain in the filament
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housing due to the decreasing extraction field penetration into the housing. As space
charge builds up in the housing, a potential gradient develops that limits the efficiency
of the emission to a point where an emitted electron is not accel erated past the first
aperture. Reaching energies near 4 keV isfairly typical, but is dependent on the gun’s
condition, which can change with each vacuum break. The energy spread has not been
measured directly, but the output of the power supply only hasa2 mV peak to pesk
ripple, which isanegligible deviation at 5 keV [Fatman lab notebook 11, p. 024y].

The beam diameter is variable with the magnetic lens in the nose of thegun. A
set of beam profiles taken by using the Faraday cup as asharp edgeis shownin Fig.
3.14. Aswith the Conrad gun, the beam profile was measured by passing the edge of
the Faraday cup in front of the beam spot. The beam spot can be a minimum of 180

microns, but was typically kept at 800 microns to avoid high beam current densities.
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FIG. 3.14: Beam spot of HEED gun showing minimum spot size and without
focusing.
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Figure. 3.14 shows the effect on beam size of the focusang lens. Using the same logic
as with the Conrad gun, beam currents were kept below 20 nA and the resulting beam
current densities where always below 4 nA/cm?,

The stability of the HEED gun is slightly better than the Conrad gun, with
average deviations during the course of a measurement varying less than 0.5%. Even
when the beam current changes, theratio of the beam current to the emission current,
or the efficiency of the gun, has been shown to be even more stable (varying less than
0.4% over the course of 10 minutes). By knowing the efficiency and monitoring the
emission of the gun, the beam current can be predicted when the beam isnot in the
Faraday cup by multiplying the emission current by the efficiency. Work was done to
show the efficiency varied linearly with the beam energy if the electrical alignment of
the gun was maximized at each energy. Additiond progress was made to fully
characterize the electrical alignment needed to maximize the beam current a each
energy of interest, but the work was abandoned &fter tests showed that a summation of
all the currents within the dectron energy analyzer estimated the beam current to

within 3% of the Faraday cup current with a precision of better than 0.5%.

Subsection 3. Light sources
Assummarized in Table 3.1, aquartz halogen and deuterium lamp were
employed to provide arange of photon energies between 0.6 eV to roughly 10 eV.
The near infrared to visible light spectrum (0.6 eV to 4.1 €V) was produced by a 100-

W tungsten/halogen lamp (Sciencetech model TH1), while the visible to ultraviol et
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light spectrum (3.1 eV to 10 eV) was produced by 30-W deuterium RF-powered
continuum source (Hamamatsu model L7292). The range of the deuterium lamp was
restricted to roughly 7 eV due to absorption from air leaking into the nitrogen purged
housing for the beam line. The important energy range around the vacuum level of the
materials considered (roughly 5 eV) was easily covered by the light sources. The
photon beam energy is selected by using a modified Czerny-Turner monochromator
(Sciencetech 9055) with typical energy steps of 1 nm (0.01 eV) and a precision of
better than 0.2 nm. A manually operated “flipping mirror” is used to select the source.
The emitted light from the monochromator is refocused on the sample with a
custom-designed optical array, consisting of a FL=406 mm AIMgF2-coated concave
mirror (Oriel 44550) and two UV -protected auminum flat mirrors (BSC 5BS). The

beam at the sample was visually measured to be a5 mm x 5 mm square.

Section E. Hemispherical Retarding Field Energy Analyzer
Severa methods of measuring the total, SE, and BSE yields of a material were
explored during the design process that ultimately led to the use of a hemisphericd
retarding field energy analyzer. These various methods and the reasons behind the
final choice are described in the next Subsection (3.E.1), along with a description of
the constructed analyzer. The testing and characterization of the ingrument is
discussed in Subsection 3.E.2, which provides the basis for the reliability of the

measurements to follow.



60

Subsection 1. Design and construction

The choice of amethod for measuring the total, SE, and BSE yields of a
sample was a compromise between the scientific desireto obtain high quality, absolute
yields and the practical design concerns of interfacing with the high sample volume of
the sample stage. A brief review of the standard methods of measuring yields will be
discussed to give insight into the reasoning behind the detection method chosen for the
current study.

The goal of any apparatus used to measure the total, SE, and BSE yields of a
materid isto separate the SE and BSE yields from the total yield. Recall that ayield
is defined as the average number of total, SE, or BSE electrons per incident electron
from the beam. The beam istypically measured with a Faraday cup, which was
described in Section 3.C.1. Measuring the current from the sample during eectron
bombardment is a net current due to the beam current and the SE and BSE currents
together. Since SE’s are defined to have < 50 eV, the SE and BSE populations can be
separated by some method of energy analysis and rgection or collection of either the
low energy SE or the high energy BSE populations. There were three methods
initially considered for the design of an electron yield apparatus, each with their
advantages and drawbacks.

The most common method is to apply a+50 volt bias to the sample, which
creates an electric field that directs the SE’s back towards the sample. The SE current

is then given by the difference in the sample current at +50 volts and when grounded.
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The advantage of this method is the ease of implementation. A standard scanning
electron microscope (SEM) is able to take this type of measurement without
modification (Ruzic et al., 1982; Schou, 1988). The main problem isthat the eectric
field between the +50 volt sample and the closest grounded surface (typicaly the
holder) do not necessarily return the SE’ s to the sample surface. Analysis done by
Davies (1999) on asimilar method estimates the error in the SE yield due to
uncontrolled fields near a sample holder can be >20%. This method was not pursued
in favor of the next two options.

The second method points a Faraday cup, capable of energy differentiation, at
the sample in an effort to measure a portion of the SE’s emitted from the surface
(Davies, 1999). In contrast to the previous method, a SE is distinguished from a BSE
by grounding or applying -50 volts to an aperture inside the Faraday cup, which passes
or rgectsthe SE’'s. The fact that thefinite solid angle of the Faraday cup only
measures a fraction of all the SE’s emitted from the sample is overcome by integrating
over the theoretical angular distribution of SE’s (Jonker, 1951). The disadvantage of
this method is the assumption that the emission angle of a SE is mantained until it is
detected. Previouswork by our group has shown the angular distribution is distorted
by electromagnetic fields that aretypical in UHV chambers, even with adequate
magnetic shielding (Nickles er al., 1998). Another disadvantage is the necessarily
small apertures of the Faraday cup result in measuring picoamp (102 amp) currents,

which is complicated by signal noise (Davies, 1999). Given these concerns, this
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method is feasible and even has some advantages over the method that wasfinally
chosen.

The SE detector was designed after a hemispherical, retarding-grid energy
analyzer (HGRFA) similar to the apparatus used in low energy electron diffraction
(LEED) (Mooreet al., 1983). A cross-sectiond drawing of the detector isshown in
Fig. 3.15. The detailed dimensions will be discussed after a general overview of the
purpose of the design isreviewed. The sampleis surrounded by layers of
hemi spheres—beginning with an inner grid, then a suppression grid, a collecting
hemisphere, and an outer cover—all attached to a circular faceplate. The collector
measures nearly al the electrons emitted from the surface. In front of the collector,

the suppression grid can be grounded or biased to -50 volts, which acts to pass or filter

7T
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FIG. 3.15; Cross section of HGRFA interfac md wﬁh&mple stage (at bottom).
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out the SE current. The actual details of the SE yield measurement will be discussed
in Chapter 4 on experimental methods. Aninner grid at ground in front of the
suppression grid ensures the fields created by voltages on the suppression grid are
nearly radial, along the path of the electrons. Theinner grid also creates afield free
region around the sampl e that allows the suppression grid to be at the high potentials
necessary to study BSE emission without adversely affecting the beam. A grounded
tube extends from the back of the analyzer to just past the inner grid, which allows the
incident electron beam to enter through the back of the detector without being affected
by potentials on the suppression grid or collector.

In contrast to the Faraday cup approach, the HGRFA design does not require
angular integration, the measurement of small currents, or the assumption that the SE’s
maintain their emission angle because the collector covers al of the 180° field of view
of the sample. The main disadvantage in comparison to the Faraday cup approach is
that electrons scatter off the grid wires that should otherwise be measured by the
collector. These errors introduced by the HGRFA design were thought to be
manageable and will be discussed in Section 4.B on error analysis.

A more typical desgn uses aspherical retarding grid analyzer, which obviously
has alarger field of view and has the advantage of recapturing BSE emitted from the
collection surface (Sternglass,1953b; Whetten, 1965; Thomas and Pattinson, 1969;
Miller and Brandes, 1997). The spherical design was rgected because of practical

concerns: The design restricts one to a small volume sample holder at the center of the



spherical collection surface and the placement of source beamsisrestricted to a
vertical plane perpendicular to the samples. The HGRFA was chosen over the
spherical design because it could interface with the high volume sample stage aready
designed and the UHV chamber accommodated the source beams in a horizontal plane
around the samples. Again, the choice of the HGRFA is a compromise between the
experimental concerns for high quality, absolute yield measurements and the practical
concerns surrounding the sample stage and the UHV chamber.

Returning to the simplified drawing of the analyzer’s cross sectionin Fig. 3.15,
the specific dimensions and materids of the HGRFA will bereviewed. The 31.5-mm
radius inner grid was custom-built from 304 stainless steel 0.004 inch diameter 20 x
20 mesh with 84% open area, following the methods outlined by Taylor (1988). The
37.6-mm radius suppression grid was built from the same wire as the inner grid and is
electrically isolated from the faceplate, which dlows for voltage biasing of the grid
wires and the current to be monitored. Behind the suppression grid, the collecting
hemisphere is a 3.18-mm thick aluminum hemispherical fence fennel, coated with
Aquadag™ colloidal graphite to reduce SE production. Aswith the suppression grid,
the collector is electrically isolated to allow for voltage biasing and current
measurement. The collector is not concentric with the inner and suppression grids due
to practical design and construction constraints. Encasing the collector, the outer cover
is made from the same material as the collector with a dlightly larger radius and is used

to shield the back of the collector from stray currents. The circular faceplate to which
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al the hemispheres are bolted is made of OFHC copper and the surface exposed to the
interior of the HGRFA is coated with Aquadag™. The 304 stainless seel beam pipeis
also coated with Aquadag™ (with 5-mm ID, 6-mm OD and 41.3-mm length) and
enters through the back of the analyzer, where it is grounded to the outer cover, and
reaches just past the inner grid. The whole HGRFA is designed to interface with the
sample stage so the inner surface of the faceplate is aligned exactly with the surface of
the sample module.

In order to access each sample in the carousel and yet still utilize the varied
source beams, the HGRFA hangs from an arm on sample stage’s main column that can
rotate independently from the stage. A preliminary version of the detector is shown
with the stage in Fig. 3.16. Theanalyzer rotates when thisarm comes in contact with
apost that isfixed in space. While the stage continues to rotate, the HGRFA daysin
place and slips from one sample to the next. The HGRFA alignment with any
particular sample is maintained by a pin that restsin grooves in the top plate of the
sample stage (see Fig. 3.17). Oncethe HGRFA is aigned with the desired sample, the
stage and HGRFA together rotate away from the fixed post and into position in front
of the desired source beam. A spring between the HGRFA face and the arm provides
tension to keep the HGRFA in line with the sample groove while moving. A picture
of the completed HGRFA mounted to the sample stageinside the UHV chamber is
shown in Fig. 3.17. A scale drawing of the HGRFA and the sample stage in the

vacuum chamber is shown in Fig. 3.18 for perspective.
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FIG. 3.6: A preliminary version of the HGRFA and sample stage, showing the
detector arm.
Subsection 2. Testing and characterization

The conventional test of retarding field anayzers used for SE yield
measurementsis aplot of the collected current as afunction of both retarding and
attractive fields ( Sternglass, 1953a, 1953b; Frederickson and Matthewson, 1971;
Reimer and Drescher 1977). The retarding field actsto reject low energy SE's and so
the collected current will tail off as more of the SE energy population fails to reach the
collector. The shape of thistail will depend on the SE and BSE energies, but the

conventional definition of SE means the curve should be relatively flat above 50 volts.
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With an atractive field, any change in collected current isdue to previously
uncollected electrons being focused to the collector.

In the case of the HGRFA, the plot shown in Fig. 3.19 is of collector current as
afunction of positive and negative voltage on the suppression grid. The HGRFA
curve iscompared with asimilar curve from the dissertation work of Sternglass
(19534), which used a spherical detector. The collector maintains a +50 volt bias with

respect to the suppression grid in order to retain SE’s produced on the collector
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FIG. 3.18: Schematic of HGRFA in UHV chamber.

surface. The collector currents have been normalized by the beam current of each
measurement separately, so differencesin the total yields of each sample will offset
the two curves. The HGRFA characterization was conducted with the Conrad gun at
500-eV beam energy incident on an OFHC copper sample. The Sternglass curve was
measured using a tantalum sample with a 1520-eV electron beam energy. The
difference in the SE yield of copper a 500 eV and tantalum at 1520 eV is on the same

order as the differencein the absolute accuracy of the two detectors (Sternglass,
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FIG. 3.19: Normalized collector current versus suppression grid voltage bias curves

comparing the present HGRFA and the spherical analyzer used by Sternglass (1953b).

The collectors maintain a +50-volt bias with respect to the suppression gridsin both

cases.

19534), so the following discussion will refrain from comparison of the absolute scale
of the curves and focus on their relative shape. The HGRFA collector current has been
corrected for the drift of the electron gun current during the course of the
measurement. Sternglass does make a correction for SE’s produced on his suppression
grid because it is part of the collection surface in his detector, but the curve in Fig.
3.19 isthe uncorrected curve.

Thetail of the undifferentiated SE energy distribution, which isthe O to -100-
volt region of the graph, should be characteristic of that population. Again, the
conventional definition of SE’'s comes from the assumption there are very few SE’s at

and above 50 eV, which means that thistail of the curve should be rdatively flat above
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50 eV. Both the HRGFA and the Sternglass curve show an approximately linear
increase beyond 25 eV. Sternglass does not comment on theincreasein his
dissertation because his correction factor for SE’s produced on the suppression grid
helps to flatten the curve. SE’s produced on the suppression grid of the HGRFA do
not affect the collected current because the suppression grid is not included in the
collection surface as in the Sternglasswork. The fact that the HGRFA’s tall at these
negative voltages has afixed slope means the differentiated SE energy distribution
will flatten at roughly 25 eV, which is consistent with typical SE energy distributions.
The linear nature of the increase leads one to suspect aleakage current. The 1 nA of
additional current reflects an effective resistance of roughly 10 megaohmes.
Experiments with the collector’ s leakage current, as measured under bias and without
stray currents in the chamber, measures the effective resistance of the collector to be
on the order of 100 teraohms. Another possible explanation could be multiply
reflected BSE's that have lost enough energy so as to contaminate the SE current from
the sample. A test of this theory would be to use an incident beam of extremely high
energy so as to distinguish the BSE and SE popul ations with impunity. Another
explanation is that the suppression grid is ineffectively retarding the SE population,
but this seems unlikely. Poor suppression grid construction would result in poor
resolution, but not a complete lack of an equal potential surface across the suppression
grid and before the collector. Field penetration of that magnitude is not possible with

the 1.2-mm suppression grid openings in comparison to the more than 6 mm distance
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between the collector and the suppression grid.

The positive bias portion of the curve also does not flatten as expected, which
does occur with the Sternglass data. Again, the exact magnitude of the disagreement
is uncertain due to the unspecified beam energy of the Sternglasswork. As
mentioned, the most probable cause is due to current not previously collected beng
focused to the collector. Some focusing of SE that were previously lost by
intercepting the inner and suppression grid wires was to be expected. The Sternglass
curve would not reveal this behavior because his suppression grid is already part of the
collection surface. In fact, the additional current collected by focusing SE’s away
from the suppression grid is evidence a correction factor is needed to compensate for
SE’ s not collected at 0 volts bias due to the opacity of the suppression grid. Such a
correction factor is discussed in Section 4.B on error analysisand detailed in Appendix
C. Aninteresting experiment that would test this notion of focused SE’s, which was
not carried out, would be to add the HGRFA suppression grid current to the collector
current.

Another troubling aspect of the HGRFA curve isthat it again does not flatten
beyond 50 eV, which indicates higher energy BSE that have multiply scattered are
becoming part of the SE population. Another explanation isthat 100 volts of positive
bias does not directly translate into the focusing 100 eV electrons, which isthe more
likely explanation. The bias curve could not be conducted with more than a 100 volts

because of the limits of the available power supply. Again, leakage current has been
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ruled out. Sternglass (1953a) had similar experiences with alinear increase during
positive bias, not shown here, and said the increase routinely occurred on
contaminated samples and was resolved by outgassing the sample. He attributed the
behavior to “field effects’ without further explanation, presumably referring to contact
potential differences or sample charging due to oxide layers. The OFHC copper
sample had been sputtered prior to the measurement of the HGRFA collector current
curve and so contamination is not an issue.

In summary, the HGRFA detector displays a different collector bias curve than
the spherical collector used by Sternglass, notably the additiona current collected with
positive suppression grid bias. Rather than being a weakness of the HGRFA, the
additional current is most likely due to the fact the suppression grid isisolated from
the collector and is able to reveal theincrease in collector current due to SE’s focused
away from the suppression grid wires that previously stopped them from reaching the
collector.

The energy resolution of the HGRFA can be inferred by attempting to measure
asharp risein collector current as a function of electron incident energy and observing
the width that is actually measured. Asseen in Fig. 3.20, the initial rise of the SE
emission energy digtribution provides arelatively sharp peak and the full width at haf
maximum has been measured to aresolution of 1.5 eV + 0.4 eV, which is an upper
limit of the detector’ s resolution. This resolution estimate is corroborated by the

absence of the s-bond peak at 7.5 eV usually observed in HOPG during higher
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FIG. 3.20: SE energy distribution of HOPG sample used for estimate of resolution of

HGRFA. Theincident beam energy is 500 eV.

precision SE emission spectroscopy measurements (Oelhafen and Freeouf, 1983). An
estimate of the resolution a higher energy comes from observing the inelastic BSE
peak in afull electron energy spectrum, which isshown in Fig. 3.21. The BSE peak
should only reflect the thermal spread of the LaB, filament and the energy spread of
the BSE. Assuming the energy resolution is greater than both of these effects, the
HGRFA resolution can be estimated from agaussian fit to the BSE peak. The results
of thefit are afull width at half maximum of 4.0 £ 0.2 eV at 81 eV incident beam
energy. Theresults of both these estimates lead to an energy resolution of + (1.5eV +
4% of the beam energy) eV. The lack of better resolution is assumed to be due to the
non-uniform nature of the custom-built bias grid.

Significant effort has been made to estimate the corrective factor necessary to

account for SE and BSE that do not reach the collector due to the inherent geometry of
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FIG. 3.21: BSE peak of polycrystallinegold using a~ 81 eV energy beam.

the HGRFA or unwanted scatter that do reach the collector. The corrective factor is
necessary to get accurate absolute SE and BSE yield measurements. A summary of
this corrective factor will be discussed in Section 4.B along with an error analysis of

the collector currents.

Section F. Data Acquisition System
The electronic circuitry and data acquisition will now be discussed in detail.
There are two main circuits to discuss: The patch pand circuitry and the HGRFA

cricuitry, which deliver currents from either the sample stage or HGRFA to an
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electrometer that converts the currents into voltages and then the voltages are recorded

by the computer data acquisition card.

All the currents from the sample stage, which includes the stage, dl the
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samples, the Farday cup, and the UV detector, pass through the chamber on a 25-pin,
D-type subminiature Kapton™ cable (MDC model KAP-R25 ) to awell shielded
parallel printer cable (IEEE 1284) on the outside. The Kapton™ cable is unshielded
and relies on the chamber walls for noise reduction. The external cable plugsinto a
panel that separates each wire to aBNC connector. Leads can be connected from any
of the BNC connectorsto any one of five custom made electrometers (Analog Devices
546). Unconnected |eads are grounded at the BNC connectors.

The schematic in Fig.3.22 details the circuit for asingle, arbitrary signal lead
from the 25-pin cable as the signal is processed by the electrometer circuitry (from
right to left in Fig. 3.22). Theinput signal enters on the shielded Sig/N BNC input
(right, Fig. 3.22). Theinput signal can be output to an external electrometer,
connected to the Hi/Low output (right, Fig. 3.22), or to the internal
electrometer/isolation amplifier board (center, Fig. 3.22). Theinput signal can be
biased by either an external bias voltage source connected to the ExtBias BNC input
(right, Fig. 3.22) or by ainternal bias potentiometer (R18) connected across two power
supplies (Lambda, model LM2200) that provide a+60 VDC biasrange. These two
power supplies (bottom, Fig. 3.22) aso provide£7.5 VDC and £15 VDC for the
integrated circuits supply voltages. When using the internal bias option, the Low jack
provides a convenient connection to monitor the bias voltage.

The electrometer and data acquisition board are protected from these

potentially high common mode bias voltages by a unity gain, noninverting isolation
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amplifier (Analog Devices 202) before each electrometer that is capable of 2000-volt
isolation. Theisolation amplifier circuit includes a 50-kHz low pass filter on the input
and a 0.1-uf capacitor between the outputs, which acts as afilter aswell [FatMan 11,
pp. 047w & 067y]. Specificaly, asigna filter is provided by C8, resulting in atypical
3-mV ripple at £5V output, with asignal bandwidth of ~1 kHz [refer to Fig. 13 on p.
8 of Analog Devices, 1994]. The low voltage input side of the isolation amplifier is
filtered with R9 and C7, with asignal bandwidth limit of ~5 kHz [refer to Fig. 12 on p.
7 of Analog Devices, 1994]. The isolated supply voltage from the isolation amplifier
used to drive the electrometer isfiltered by C3-C6.

The patch panel dectrometer uses a cost-effective monolithic integrated circuit
(Analog Devices 546) operating in astandard current-to-voltage converter [refer to
Fig. 35 0n p. 10 of Analog Devices, 1989]. The electrometer current range is set by
the feedback resistance factor determined by the resistance across pins 2 and 6.
Closing switch SW1, SW2, or SW3 resultsin afullscale range of £50 nA with 0.01
nA resolution, £500 nA with 0.1-nA resolution, or £5 pA with 1-nA resolution,
respectively. The feedback scheme is described in detail in Shaw (1992).

Therelatively high 7-ka output impedance of the electrometer/isolation
amplifier causes cross-talk to take place between channels of the data acquisition
board which requires an input impedance of <1 ka. The problem with a higher source
impedance is the resistance competes with the RC time constant of the multiplexer on

the computer interface card, which controls the scanning of more than one signa with
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theinterface card. Therefore, aunity gain, low impedance operational amplifier
(Intersil CA3130E) operating in the voltage follower mode follows the
electrometer/isolation amplifier (left, Fig. 3.22). This voltage follower includes a 100-
uf capacitor (C1) between the outputs, which again acts as alow pass filter. Fina
filtering is done at the input terminals for the computer analog-to-digital converter
interface card (I0tech Dagboard) operating in differential andog input mode. The LO
terminal for each DAC differential andog input istied to analog common through a
100-ke metal foil resistor. The combined filtering limits the response time of these
electrometers to roughly a second.

Asshown in Fig. 3.23, the second circuit involvesthe collector and bias grid
currents from the HGRFA. A simplistic schematic of the HGRFA is shown & left in
Fig. 3.23. From the face of the HGRFA, two coaxia Kapton™-coated wires run
inside a grounded shielding wireto MHV feedthroughs near the bottom of the
chamber. From the MHV connectors, triaxial cables carry the currents and voltages to
adual channel electrometer (Kiethley modd 619). In order to measure high energy
BSE spectra, the bias grid and collector need to float to high voltage, which resultsin
the outer shield of the MHV connection floating at high voltage. The voltage biasing
of the collector and grid are actudly done a the 2A input of the dectrometer, which is
connected to the inner shield of the triaxial connection and hence floats the shield of
the coaxial cables leading back to the HGRFA. The voltageis supplied by a computer

controlled voltage source (Keithley model 230), which is capable of £110 VDC. The
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suppression grid is biased with this variable voltage supply, while the collector is bias
to constant +50 volts higher than the voltage delivered to the grid, using a separate
supply (Lambda modd LM-130-60). The electrometer can float to 250 volts, but to
bias the grid and collector any higher the AC power for the electrometer is plugged
into an isolation transformer which allows the case ground of the electrometer to float
to 4000 rms voltage. The output voltages from the electrometer must pass through
isolation amplifiers, which are capable of 3500 rms voltage isolation, to guard the data
acquisition board from the high bias voltage aswell. These are custom made isolation
amplifiers similar to those in the patch panel, but use a different integrated circuit
(Burr Brown ISO 121) capable of 3500 rms voltage isolation. Three separate 12-VDC
power supplies provide operating voltages for the grid isolation amplifier high voltage
side, the collector isolation amplifier high voltage side, and the isolation amplifier low
voltage side.

Once the currents have passed through the 619 or patch panel €ectrometers,
the outputed anal og voltages are sampled with a data acquisition card (lotech dagboard
200A) controlled by a Pentium PC running Windows 95 and using LabView graphical
interface instrumentation control software. The data acquisition board has 16 channels
capable of 16-bit analog-to-digital conversion at a maximum sample rate of 100 kHz.
The 16-bit analog-to-digital conversion resultsin aresolution of roughly 0.004%,
which far exceeds the expectations for noise reduction of the measured currents. The

16 channels are wired as eight differentid inputs with the negative side referenced to
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ground through an 100 ke, 1% accuracy metal film resistor. With all eight channels
enabled, sampling is conducted at 10 kHz with a 50-psec delay between sampling the
channelsto allow for the computer’s RAM buffer to assimilate the information. Faster
sampling is feasible, but was deemed unnecessary given the static nature of the
signals.

The basis for each measurement in LabView is an average of 10,000 samples.
The Kiethley 619 electrometer additionally averages four analog-to-digital
conversions at 60 Hz. Subsequent analysis has shown this large amount of sampling
at such a high acquisition rate leads to a correlation between the individual
measurements. Specifically, the standard deviation of the 10,000 point mean isless
than the standard deviation of 100 such means. The standard deviation was therefore
used, rather than the standard deviation of the mean, as an estimate of the error in a
10,000 point mean, which is an overestimate of the error. While the standard
deviation of the mean would have resulted in 1% of the standard deviation, analysis of
the error after the collection of the data shows the standard deviation was typically a
factor of 2-3 timeslarger than the error in repeated measurements. When low beam
currents were used, the standard deviation could be 10 times larger than estimates of
the error from repeated measurements. A better sampling scheme would be to take
repeated measurements of a smaller number of points and then use the standard
deviation of the mean for the repeated measurement (e.g., 20 measurements of 3,000

samples).
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Noisein all the signals could not be reduced to negligible amounts. The
average standard deviation in the signal of the collector, the suppression grid, the
stage, and the sample are reported in Table 3.2 along with an estimation of the linear
growth in the noise with increasing current. The intercepts of these linear fits, or the
background noise suffered when the signals are low, become significant when the
measured currents are below 2 nA. The background noise on the collector current
signal will prove to be the driving source of error, aswill be discussed in Section 4.B
on error analysis. The noise in the stage and sample currents, measured with the
custom-built electrometers, is due to unfiltered 60-Hz pickup and shot noise
presumably from the circuit boardsthemselves. The noise in the collector and grid
currents, measured with the Kiethley 619, are not likely due to problems with the
electrometer. Using a clean input signal, the Kiethley 619 only displays a 6-7 mV
ripple onits 2.5-volt output [Fatman I11 lab notebook, p. 033y]. The noise probably
originates from within the biasing el ectronics associated with the electrometer, but 60-
Hz pickup from the current wiresin the vacuum chamber has also not been ruled out.

TABLE 3.2: Error in current signals from linear fit to standard deviations over the
typical range of measurement

Current Signal Background Noise Linear growth Typica Signal
(intercept) with Signal (slope) Range
Collector 0.08 nA 0.01 nA 0to 25nA
Grid 0.08 nA 0.002 nA -0.6t0 0.4 nA
Stage 0.4 nA 0.008 nA 0to 20 nA
Sample 0.4 nA 0.07 nA 0to 10 nA
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The error was not resolved before measurements were conducted because the collector
currents were anticipated to be nearly 20 nA, which puts the background noise below

1%.



CHAPTER 4

EXPERIMENTAL METHODS

The following sections discuss the experimental procedures and error analysis.
The next section will cover the process of measuring signals used to determine the
total, SE, and BSE yields. In addition, the measurement of the SE energy distribution
and photoyield will be discussed. Thisincludes the computational approaches to
convert measured raw datato yield values and a description of the data acquisition
algorithms. The second section presents detailed error analysis of these

measurements.

Section A. Measurement Technique
The measurement of the totd, BSE, and SE yields — quantities discussed in
theory in Section 2.A of the background section on SE emisson — are determined in
practice through the measurement of currents produced by the respective populations
of electrons emitted from the sample, as normdized by the incident beam current I, ...
Using the HGRFA, the determination of the total yield ¢ is accomplished by
measuring the current to the collector surface while the suppression grid is grounded

LOV).

5oLl

; (4.1)

D



85

The collector surface is the hemisphere behind the suppression grid and does not
include either the inner or suppression grids. Other measurements schemesin the
literature do include the grid currentsin 1.(0V) (Sternglass, 1953a; Thomas and
Pattinson, 1969). The measurement of currentsin Eq. 4.1 introduces the aspect of
time, with the inherent assumption the two currents do not vary appreciably over the
time taken for their measurement. The veracity of these assumptions will be discussed
in Section 4.B when the error analysisis considered.

Measurement of the BSE yield n requires the exclusion of the SE’s from the
total current, which is accomplished with a-50 volt bias on the suppression grid. The
current measured on the collector while the supression grid is biased to -50 volts
1.(-50V) isthen the BSE current and can be written as

L) w2

I-!lem

The SE yield s is calculated from these two measurements by taking the difference

between the totd yield and the BSE yidd as follows:

_ Iﬂ(EIV]I—I;(—SEIV}_ (4.3)

g=og—§
Ibem

All three yield curves can be determined by measuring the three currentsin the above

eguation as a function of incident beam energy. Measuring these currentsisa
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combination of manual and computer-automated processes. The automated data
acquisition is controlled by aLabView virtual instrument (V1) program, which is
discussed thoroughly in Appendix D and is summarized here.

Thetotal and BSE currents are averages measured on the collector during two
separate voltage bias schemes for the suppression grid and collector surface. First, the
variable voltage power supply used to bias the suppression grid is grounded and the
current to the collector ismeasured. Thisis the collection mode and is relaed to total
emission current through EqQ. 4.1. The collector surface is aways biased +50 volts
with respect to the suppression grid so an attractive field to the collector retains all the
SE’ s produced on the collector. The collector needs to act as a measure of the current
impinging on the surface without losing current to subsequent SE production. After
the total current is measured, the suppression grid is biased to -50 volts and the
collector current is measured again. Thisis the suppression mode and is rdated to the
BSE current through Eq. 4.2. The measurement of each quantity only takes 1 second
and there is a built-in 5-second pause after each voltage adjustment. Including the
minimal time taken for the LabView program to communicate with the DAQ board,
the measurement of the yield current during the two mode is accomplished in less than
20 seconds. Both the collection and suppression mode collector currents, including
their associated random errors, are recorded for the eventual caculations that lead to
the total, SE, and BSE yields once the beam current has been measured.

The beam current is measured as the sum of dl the currents to surfaces within
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the HGRFA, which include the collector, the bias grid, the stage, and the sample.
Recall that the inner grid of the detector is grounded to the faceplate and the faceplae
touches the sampl e stage; therefore, the stage current includes all those surfaces.
Charge conservation is approximately maintained in that only a small fraction of the
beam current is thought to be able to leave the HGRFA without hitting one of these
surfaces (e.g., through the beam pipe). To account for temporal variationsin the
currents, the beam current is actually taken as the mean of the summed current during
the collection and suppression modes with the HGRFA. The actual variation in the
beam current during these measurements is minor because less than 20 seconds
transpires as mentioned. Error in the beam current will be discussed in detail during
the next section on error analysis.

Another method for measuring the beam current used for diagnostic purposesis
to use the Faraday cup module. Since that module isin adifferent location on the
sample carousel than the sample, the stage must be rotated between the Faraday cup
and the sample with the detector in front both before and after the yield currents are
measured. To infer the beam current at the moment when the collector current is being
measured, an average is taken between the Faraday cup current measured before and
after the collector current is measured. Thetime from the initial measurement of the
beam current in the FC, rotating to and from the detector, and completing the second
beam current measurement took an average of 3 minutes. The beam current is

assumed to vary little and at most monotonically during the rotation. The former will
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be shown to be the case in the next section on error analysis for both electron guns.
Since the center of the Faraday cup and the center of the HGRFA beam pipe are not
necessarily aligned so that a rotation alone moves from one to the other, the electron
gun’ s deflection is used to maximize the Faraday cup or sample current before each
measurement. Maximizing the sample current was chosen over maximizing the
collector current because the sample current is larger for most points along ayield
curve.

As an improvement to the FC measurement technigue, the emission current of
the HEED gun can actually be monitored during the time that the HGRFA is being
used, which can a'so be used to determine the beam current. Theratio of the beam
current to the emission current gives the gun efficiency. By knowing the efficiency of
the gun before and after a measurement, the beam current can be inferred by
measuring of the emission current at the time of the HGRFA measurements and
multiplying by the mean efficiency of the gun. Experience has shown thislevd of
effort and sophistication was unnecessary in comparison to using the sum of the
currents within the HGRFA. The variation in the efficiency of the HEED gun over the
average time to make a yield measurement with the FC (3 minutes) is only dlightly
less than the 0.5% maximum variation seen in using the current sum technique with
the HEED gun.

Given the choice between the two methods of measuring the beam current, the

data presented in this dissertation uses the current summeation technique because of the
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relative ease of the measurement. The Faraday cup measurement has been discussed
and isdetailed in Appendix B because it is the basis for the confidence in the current
sum technique. Although the FC is the most reliable measurement of the beam
current, the two methods have been compared and the small absolute error in the
current sum technigue will be discussed with other systematic errors in the next
section on error analysis.

With the beam current measured using the current summation technique and
the total and BSE currents measured during the collection and suppression modes, the
simple calculations shown in Egs. 4.1-4.3 are handled by the LabView VI (see
Appendix D) and lead to the total, SE, and BSE yields. Then anew beam energy is
adjusted and the process begins again.

The SE energy distribution is determined by measurement of the collector
current as a negative voltage bias on the suppression grid isvaried. Initialy, the
suppression grid is at ground. The variable power supply (Keithley model 230) to the
suppression grid is then ramped over negative voltages of the desired resolution until
-50 voltsis reached, which defines the end of the SE population. Typical energy steps
are 0.25 volts, while the precision and accuracy of the variable power supply are both
0.05% of the voltage and the power supply is capable of ddivering millivolts.
Measurements of the collector current are taken between each voltage step. Asthe
negative voltage to the suppression grid is increased, more of the SE population is

rejected from reaching the collector surface. Ramping the bias grid voltage up to the
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beam energy rejects the BSE as well and allows the full energy spectrum to be taken.
Although the voltage supply used hereislimited to 100 volts, there is the capacity to
use an external HV supply with aisolation amplifier. The raw datais aplot of
increasingly less current measured at the collector as a function of negative voltage
bias to the suppression grid. Differentiating the raw data results in a graph of the
portion of the emitted electrons that were rejected at each energy step, which isthe SE
and/or BSE energy distribution. Figure 4.1 presents an example of an energy
distribution of all the emitted electrons, using a gold sample and a roughly 80-eV
beam energy. To report the energy-resolved SE yield, the beam current must be
recorded in order to normdize the raw data before the derivativeis calculated. This

additional step was not carried out for the SE energy distributionsin this dissertation.

Arbitrary # of Electrons
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FIG. 4.1: A typica energy digribution of all the emitted electrons. The sampleis
polycrystalline gold and the beam energy isroughly 81 eV.
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The oversight could be rectified by normalizing the first point on the undifferentiated
spectrum to give the total yield measured elsewhere.

The photoyield measurement is a comparatively simple process comprised of
two sets of measurements that do not involve the HGRFA. First, the sampleis biased
to -10 voltsto prevent low energy SE’s from returning to the sample and decreasing
the measured current. Then, the sample current is measured as a function of incident
photon beam energy. The incident photon energy steps are carried out by computer
control of the light source monochromator.

The second set of measurements are of the incident photon intensity as a
function of photon beam energy. This measurement is analogous to finding the
incident electron beam current with which to normalize the electron induced yield
measurements. The photon beam is directed onto the UV detector and the induced
current is measured as the monochromator steps through the same energy spectrum
used when the sample current was measured. The room lights are turned off and the
view ports of the UHV chamber are covered with aluminum foil due to the sensitivity
of the UV detector. The resulting current measurement is also corrected for the
quantum efficiency of the photodiode. Simple division of the sample current by the
corrected photodiode current leads to the photoyield as afunction of incident photon

energy.
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Section B. Error Analysis

Since the BSE and SE yields induced by electron bombardment are the focus
of this dissertation, this section provides a detailed error analysis of these yields. The
accuracy of the electron gun beam energies is consdered first, followed by an analysis
of random errorsin each of the currents that make up the yield measurements. Findly
the absolute uncertainty in the yield measurements will be discussed.

The incident electron beam energy for both the Conrad and HEED guns were
adjusted by hand, measured through meters on their power supplies and recorded by
hand in the experimental datafiles. The HEED gun energy error went through a more
rigorous analysis and resulted in lower absolute error than the Conrad gun. Extensive
effort was made to calibrate the exact voltage delivered to the cathode with the HEED
gun power supply’s 0-5 volt output of the beam energy meter reading, as measured
through LabView [Fatman Il lab notebook, p. 52-54]. The output of the power supply
was dropped over a 10,000 to 1 Fluke voltage divider and the resulting current was
measured with a Kiethley 160 electrometer. This calibration of the beam voltage to
the computer sampling of the meter output was better than +5 volts and could most
likely be improved using a higher precision electrometer (e.g., aKiethley 616). The
final yield measurements did not record these more exact values of the energy through
LabView due to an oversight. The meter on the HEED gun power supply only hasa
repeatability of £200 volts. Luckily, the dial on the HEED gun power supply was

also calibrated to within £20 volts, which is < 0.5 % error at the lowest operating
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voltage setting. The precision of the HEED gun power supply at a given voltageis
extremely good, with the power supply rated at better than 0.005% accuracy.

The Conrad gun power supply reports the voltage to the cathode on adigital
meter on the front panel only. Verification of the actual voltage output of the power
supply against the reading of the meter was never carried out. Assuming the meter is
more accurate than human error in adjusting the Conrad gun power supply voltage, the
energies recorded for the data are accurate to within £1 volt. Having a custom built
power supply, the precision of the voltage delivered by the Conrad gun power supply
cannot be taken from the factory specifications of the commercial power supply inside
the Conrad gun power supply. Analysis of the variability in the voltage delivered by
the Conrad gun power supply was not carried out.

There are three sources of random error in the current measurements used to
determine the SE and BSE vyields as discussed in the previous section. One potentially
unseen source of random error is the subjectivity introduced by maximizing the
Faraday cup or sample current to ensure that the electron beam is centered in the
Faraday cup or HGRFA beam pipe. If an effort is made to maximize these currents at
each point along ayield curve, then the measurements are independent and the error in
misaligning the beam is random. Figure 4.2 shows the repeated measurement of the
SE yield of agold sample (discussed in Subsection 5.A.1). Below 500 eV on one of
the curves, no attempt was made to correct the alignment of the beam and thereisa

maximum of 10% error introduced as depicted on the top graph in Figure 4.2. Beyond



94

10 — .

g - L-\

B — : .
4 - o ~
2, -

Fercentage Difference

0o M T e N

T T T T T
200 400 E00 200 1000
Incident Electron Beam Energy (V)

B - @ -3
4 . H- e, 4
1.8 E’:mf i E]“E—E"iqi

164 . . -B- SE01 1
' " m - &- SE0Z

144

S
121 % +

1.0 -lﬁ T

200 400 GO0 a00 1000
Incident Electron Beam Energy (g%

FIG. 4.2: Repeated measurement of gold sample showing possible error introduced by

using poor experimental technique. The top graph plots the percentage difference
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500 eV both curves demonstrates there is good repeatability in the measurements, with
an average disagreement of better than 0.5%, if the procedure is followed diligently.
This potentia random error in the beam current is not reflected in the error bars when
using the current summation technique of estimating the beam current. Error in the

measurement of the beam current dueto adjustment is reflected in the error bars only
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when there is a measurable deviation between the two measurements of the beam
current that comprise the averaged beam current. Error dueto beam adjustment is
mainly an issue when the Faraday cup is being used as the measure of the beam
current and rotation of the HGRFA isinvolved in the yield measurement. In that case
continual adjustment of the beam deflection isrequired. Since the current summation
method is used as a measure of the beam current, the beam current is averaged
between measurements during the collection and suppression modes and thereis no
beam deflection adjustment involved between the two modes. The electron beam may
drift in position as a function of energy, but the correction for that drift is adjusted
between individual points on the yield curve. Inconsistent adjustment of the beam
deflection between the measurement of each point along ayield curveresultsin a
random error in the beam current that affects the yield, but is not reflected in the error
bars. The magnitude of the possible error involved in the adjustment of the beam, as
mentioned above, is not large enough to impact the error in the current analysis.

The next two sources of random error, variations in the measured quantities
themselves and random noise on the current signal's, both manifest themselvesin the
standard deviation of the mean current measured and are difficult to separate. As
discussed in Section 3.F of theinstrumentation chapter, the resolution of the data
acquisition system is sufficiently high (0.004%) as to be removed from the problem.

The beam current cannot be assumed to be a static quantity and variations of

the beam current in time will be included in the standard deviation reported with the
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average beam current. Recall that the measured beam current is atwo-point average
of the summed currents within the HGRFA during the roughly 20 seconds between
both the collection and suppression modes. The error in beam current used to estimate
the uncertainty in yield measurementsis half the separation between the two points.
During the time to measure the yield currents, the Conrad gun beam current varied no
more than 1% and the HEED gun varied no more than 0.5% on average for more than
200 beam current measurements taken during the data presented in this dissertation.
As shown on Table 3.2, which summarizes noise on each signal, the current
measurements that are summed to estimate the beam current — the collector,
suppresson grid, stage and sample currents— typically had a minimum error of at least
0.6 nA andincreasesto 2 nA at thetypical full range of the currents. These errorsin
theindividual current signds are inconsistent with the 0.5-1% errors shownin
repeated measurements of the beam current, especially at low beam currents where the
background noise beginsto dominate. For this reason, the standard deviations of the
constituent currents that go into the estimation of the beam current are thought to be
due primarily to signal noise and not uncertainty in the beam current itself.

Theyield currents are not assumed to vary appreciably during the 20 seconds
needed to record a pair of measurements during the collection and suppression modes
of the HGRFA. A variation inyield would be due to evolving contamination on the
sample and is assumed not to occur given the low beam currents used (see Section

3.B). There could be an additional concern that fluctuations in the voltages supplied to
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the suppression grid during the supression or collection mode might translate into
added uncertainty in the yidd currents. As mentioned previously, the uncertainty in
the Keithley 230-variable power supply islessthan 0.05% or a 25-millivolts error in
the -50-volt bias during the suppression mode, which has a negligible influence in the
collection current measured.

Unfortunately, the signal noise in the collector current that is the basis for the
yield currentsis very significant and creates an unphysical uncertainty in the yied
measurements. Specifically, the 0.08 nA background noise listed in Table 3.2 for the
collector current is the driving factor in the error associated with the SE and BSE
yields at low energy. This background noiseislessthan 1% of the typically 20 nA of
collector current measured during collection mode when a beam current of 20 nA is
used (i.e., the SE yield is near unity for the materials of interest). Even though the
BSE yields are an order of magnitude lower, the error in the collection current
measured during the suppression mode with 20 nA of beam current should not exceed
4%. The error in the SE yield is made dlightly worse becausethe SE yield is
computed as the difference between two collector currents, which resultsin the
background noise being doubled and the effective current being slightly reduced.

With the expected 20 nA of beam current these errors are still less than 1%, which was
the reasoning for the measurement of the data to proceed without further error analysis
and refinements to the dataacquisition system.

Thered problem isthe 0.08 nA background noisein the collector current,
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which does not vary with beam current, became significant due to a drastic reduction
in the available beam current from the Conrad gun at low energies. Thisreduction in
beam current, observed during the HOPG and g-C measurements, is shown in Figure
4.3 as afunction of beam energy. Asthe beam current fallsnear 1 nA, the 0.08 nA
background noise constitutes roughly a 16% error in the SE yield and potentially an
80% error inthe BSE yield. Large error in the SE and BSE yield measured with the
HEED gun are also aresult of the low fraction of the beam current measured at the
collector, due to the low SE and BSE yields at the HEED gun’s high energies, and the
unfortunate use of low beam current itself in some cases. Aswill be pointed out in
Chapter 5 when the experimental datais presented, repeated measurements of the SE
and BSE yields at low energy show that the repeatability is within 3%, while the error

bars around those same measurements are over 60%.



99

In summary, the random error in the SE and BSE yield measurements depends
on energy through the reduction in available beam current and the constant
background noise of the collector current signal. When beam currents of near 20 nA
are available, the collector current in the collection mode has a 1% error and in
suppression mode has a4% error. The contribution of the collector current to the error
in the SE yield istypically 2% due to the calculation involving a difference between
the collection currents. In comparison, the maximum 1% error in the measurement of
the beam current only makes a significant contribution to the error in the total yield
measurement, when the collection current error is comparable. In all other
measurements, especially when lower than 20 nA beam currents are employed, the
collection current error dominates the error in the yield measurements.

Asis often the case in experimental work, an estimation of the systematic error
Is much more ambiguous. One obvious source of error in the measured currentsis the
absolute calibration of theinstrumentation used to acquire the current data. The data
acquisition board has been factory calibrated and no evidence for an error in this
calibration could be resolved with any measurement. The Kiethley 619 used to
measure the collector and grid currents was calibrated according to proceduresin its
operating manual [Fatman 11 lab notebook, p. 038w]. Using aclean input signal, the
Kiethley 619 only displays a6-7-mV ripple on its 2.5-volt output [Fatman |11 lab
notebook, p. 033y]. There could be a slight benefit in filtering the AC power from the

wall, but thisimprovement is beyond the scope of the present error andysis. The
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custom-built electrometers in the patch panel were calibrated against a clean current
supply as measured with a high precision Keithley 616 electrometer. The current
supply was custom-built from an AA battery and an appropriate high precision resistor
to give currents within the 20 nA range. The electrometers were connected in series
and their output was displayed with LabView. The potentiometers that control the
offset and slope of the electrometers were adjusted until they agreed with the current
supply to within better than 0.1%. Uncertaintiesin the measurement of the currents
were averaged out through repeated measurement with LabView. Additionaly, any in
situ offsets to the electrometers were zeroed just before yield measurements were
carried out by a procedure in the LabView VI used to acquire theyield data, whichis
discussed in more detail in Appendix D. In summary, each current signal has been
calibrated to better than 0.1% accuracy and possible offsets are compensated for by the
LabView VI .

Another source of systematic error comes from the reliability of the Faraday
cup current as a measure of the true beam current. The current sum technique has
been compared with measurements of the beam current that employ the Faraday cup.
The average disagreement between the two methods is less than 3%. The current sum
technique consistently underestimates the beam current in comparison to using the
Faraday cup, presumably because some charge does escape the HGRFA without
detection. Again, the Faraday cup measurement of the beam current is the basis for

the confidence that the current summation technique is an accurate reflection of the
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true beam current. As mentioned in Subsection 3.C.1 and detailed in Appendix B, a
+10 volt bias on the Faraday cup agrees with the hole in the sample module that has a
10:1 length to diameter ratio to within 0.5%. The overall accuracy of the current
summation technigue in estimating the beam current that would be measured by an
appropriately sized Faraday cup is less than 4%.

The most important source of systematic error isthe HGRFA. Theintent of
the detector isto collect all the electrons emitted from the sample, but the wires and
other surfaces inside the detector block some fraction of these electrons from reaching
the collection surface. To asmaller extent, the collector and these other surfaces dso
emit BSE and SE as aresult of electron scatter and these unwanted el ectrons can reach
the collector. The result isthe yields of a sample as calculated in the manner
mentioned at the beginning of this chapter are lower than if the dl the electrons were
measured on the collector without error. Theoretical correction factors have been
derived to correct the SE and BSE yields based on the geometry and materials of the
HGRFA. The details are presented in Appendix C and will be summarized here.

The firg-order correction for either yied accounts for the opacity of the grid
wires that prevent emitted electrons from reaching the collector. Using laser light, the
optical transmission of the two grid system was measured. The laser light was
defocused through an optical microscope lens, passed through the assembled two-grid
system, and then refocused into an optical sensor. Theintensity registered with and

without the two grid system in the beam path were compared to determine the
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transmission of the grids. Repeated measurements of different areas of the grids were
averaged to best estimate the average transmission of the two grid system. The
resulting estimated transmission is 70.2% with a precision of better than 0.5%.

A second-order correction to the yields accounts for (1) the limited view of the
sample because of surfaces other than the grids, (2) the finite BSE yield of the
collector surface, and (3) electrons lost out the beam pipe. These three loss currents
that comprise the second order correction are reflected in Figure 4.4. An empirical
estimate of the second-order correction due to terms (1) and (3) was determined using
alight source to stimulate photoemission and subsequent cal culation of the ratio of
electrons leaving the sample, or the sample current, to those measured at the collector.

The experiment estimates the transmission of low energy SE through the grids,

1 111 1
I H I
I (=] I

|

|
FIG. 4.4: Second-order corrections to the yields to account for lost currents due to (1)
other surfaces that obscure the collector besides the grids, (2) the finite BSE yield of
the collection surface, and (3) current lost out the beam pipe.
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including the (1) limited view and (3) electrons lost out the beam pipe. For
comparison, an independent theoretical calculation of this correction was done, based
on the grid transmission measurements and geometry of the HGRFA (see Appendix
C). Theresults of the experiment and the theoretical effective transmission of SE
agree to within 3% [Chang UV source lab notebook, pp. 11-12]. The geometry factor
in terms (1) and (3) should not depend on electron energy significantly, so
confirmation of these termsfor low energy electronsis sufficient. The BSE yield also
suffers from the finite BSE yield of the collection surface, which resultsin lost current
that would be measured in the ideal case. To minimize the BSE current leaving the
collector surface, the collector was sprayed with colloida graphite (Aquadag™) with a
BSE yield of 0.07 (Sternglass, 1953b). Since the SE yield is the difference between
the total and BSE yields, both of which suffer from lost BSE current from the
collector, thereis no need to account for term (2) in the SE yield. In order to retain SE
produced on the collector surface and eliminate the need for a further correction, the
collector was always biased +50 volts with respect to the suppression grid to create an
attractive field.

The highest order of correction considered involves the BSE that have scattered
from multiple surfaces and then return to the collector. These scattered currents are
shown in Fig. 4.5. The SE yield also suffers from unwanted SE s created by these
scattered BSE’ s bombarding the faceplate of the HGRFA or the exposed face of the

module.
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FIG. 4.5: Higher order correctionsto the BSE yield due to scatter from (@) the inner
grid to the HGRFA face, (b) the suppression grid to the HGRFA face, and (c) the
suppresson grid to the inner grid and then back to the collector surface. The SE yidd
suffers additionally from these scattered current creating SE’ s that are collected, but
did not originate from the sample due to the source beam.

There are separate correction factors for the BSE and SE yields due to the
different biasing scheme during their measurement. Thefinal BSE yield correction

factor is a percentage of the measured BSE yield v, as follows:

m=r,(152) (4.9

The uncertainty in the absolute correction factor for the BSE yield is difficult to
estimate. Although the transmission of the two-grid system has been measured with

better than 0.5% precision, the two independent estimates of the effective transmission
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mentioned above disagree by 3%. Choosing one of these estimates for the effective
transmission of the two grids would reduce the error because the measurements were
both precise; however, the disagreement between thetwo is used for the uncertainty
because it more honestly reflects the lack of knowledge about how SE and BSE pass
through the grids. Likewise, the actual measurements of the detector geometry are
known to better than 0.5% and most of the yield measurements for the materials are
known to within 1-2%; however, the variation in the corrective factor due to the
uncertainty in the assumptions of the mode has a much greater influence. By
assuming less is known about the exact paths of BSE within the detector, the
corrective factor can be shown to vary by 1.5%. Assuming the BSE’s undergo
spectral scattering instead of diffuse scattering can be shown to have a 1.5% impact on
the corrective factor. Given the three contributions discussed above (with detalsin
Appendix C), aworst case estimate for the uncertainty in the BSE corrective factor is
6% or 1.52+0.09 (+6%).

The SE yidd has two corrective factors: a percentage of the corrected BSE
yield given by Eq. 4.4 that accounts for SE’ s created by BSE scatter and an overall
factor that corrects for the effective transmission of the HGRFA grid structure. The
SE yield s isthen related to the measured SE yield §,, and the corrected BSE yield

given by Eq. 4.4 through the expression

S=[8, - n0.06)](147). (4.5)
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The nature of the SE yield correction demandsthat the BSE yield be corrected first
before the SE yield correction factor can be determined.

The uncertainty in the SE yield corrective factor is again impacted by the
disagreement between the two experimental estimates of the effective transmission
discussed above, which resultsin a 3% uncertainty in the 1.47 overall corrective factor
of SE lost before reaching the collector. Although the uncertainty in the 0.06
corrective factor is compounded by the uncertainty in the BSE correction, the fact that
the BSE yield istypically 10-20% of the SE yield reduces the overall impact. The
uncertainty involved in deciding whether BSE undergo spectral or diffuse scattering
can change the 0.06 correction to 0.09; however, this uncertainty isless than 1% of the
overall correction for aBSE yield that is 20% of the SE yield. The SE yield corrective
factor has a 4% overall uncertanty.

In order to evaluate the BSE corrective factor, high energy BSE yields for a
polycrystalline gold sample (see Subsection 5.A.1) measured with the HGRFA and
corrected with Eq. 4.4 were compared with reputable values from the literature. A
reputable measurement from the literature should combine asimilar technique for
measuring the BSE yidd, an equivalent UHV vacuum environment, and some
attention to the beam current denisty and exposure to avoid carbon contamination.

The BSE yields measured with the HEED gun were chosen because of the confidence
in the HEED gun performance and the fact that the BSE yidd of gold a high energy is

relatively flat. Figure 4.6 compares BSE yields of polycrystalline gold using the
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FIG. 4.6: Comparison of BSE yield of gold with corrected value using Equation 4.4
and result from literature. The correction is broken down into the three parts discussed
in the text and Figs. 4.2 and 4.3, along with an empirical correction factor from the
literature.

HEED gun with measurements by Reimer and Drescher, which was the best source for
the high energy BSE yield of polycrystalline gold because the authors do not rely on
calibrating their measurements to a previous standard (Reimer and Drescher, 1977).
The figure breaks down the BSE correction into the first, second, and higher order
corrections discussed above and shown in Figs. 4.4 and 4.5. The BSE corrective
factor predicts a 14% higher BSE yield than that measured by Reimer and Drescher.
Assuming the random uncertainty in the measurement of 3% is compounded by the

absolute uncertainty of 6%, then the two separate measurements could conceivably
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only disagree by 5% of the HGRFA measurement. Although their experimentd
methods are sound, Reimer and Drescher include their suppression grid in the
collecting surface but make no mention of correcting for current lost from the grid due
to BSE and SE produced on the grid wires returning to the sample. This oversight
would tend to decrease the measured BSE yield by underestimating the BSE current
reaching the collection surfaces. Sternglass derived such a correction for a sphericd
detector with a suppression grid, and has shown that the correction can be as high as
15 % for gold (Holliday and Sternglass, 1957). The work of Sternglassis arguably not
directly applicable to Reimer and Drescher, who use a hemispherical grid rather than a
spherical arrangement, but suggests that the descrepancy between our corrected
measurements and those of Reimer and Drescher could be the result of ignoring the
correction for current lost from the grid.

A comparison of the measured SE yield for the polycrystalline gold sample,
using the HGRFA and the Conrad gun, against another reputable measurement by
Thomas and Pattinson (1970) isshown in Fig. 4.7. Thefigure shows the full
correction given by Eq. 4.5 (dashed line with squares) and the 147% correction that
accounts for the effective grid transmission (dashed line) are nearly the same.
Although the shape of the curves agrees quite well, the percentage difference between
the corrected SE yield and the datafrom Thomas and Pettinson is roughly 30% in this
case. Thislarge disagreement isinconsistent with the 3% random uncertainty in the

data and the 4% uncertainty in the SE yield correction factor. Aswith the Reimer and
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FIG. 4.7: Comparison of SE yield of gold with corrected value using Eq. 4.5 and result
from literature. The first-order correction for the grid transmission is shown as well.

Drescher article, the suppression grid isincluded in the collecting
surface and no mention is made of correcting for the current loss due to BSE and SE
produced on the grid. The authors use a spherical detector and report the grid
transmission (85%) and material (tungsten), but without the exact geometry of the
detector the correction factor derived by Sternglass cannot be calculated. Even with
the 15% correction used by Sternglass for his detector (Holliday and Sternglass, 1957),
thereis still more than a 10% disagreement between the experimental data.

In conclusion, both the BSE and SE corrective factors used in this dissertation
are higher than comparable measurements in the literature. The BSE correctionis
14% higher, but could possibly agree to within 4% if the random and absolute

uncertainties are compounded. The similar structure of the detectors and the lack of
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any corrective factor in the comparative work gives afair amount of credibility to the
BSE corrective factor. The large disagreement between the corrected SE yield and the
comparable work is disappointing. The effective transmission of the grid system,
which makes up the bulk of the correction factor, has been measured with two separate
techniques and found to disagree by only 3%. The more difficult estimate of the
unwanted SE produced by scattered BSE might be seen as a possible term for reducing
the grid correction to agreement with the comparative work, but the low BSE yields of
surfaces within the HGRFA reduce this potential correction by roughly afactor of 10
even before the opacity to BSE and SE transmission of those surfacesis considered.
Although the comparable work does not apply a corrective factor for the geometry of
their spherical detector, this correctionis most likely on the order of 15%. Even with
the random and absolute uncertainties of the SE correction factor, thereis still roughly
a 10% disagreement between the two sets of data At the end of the derivation of the
theoretical correction factorsin Appendix C, the assumptions for the theoretical
development are tested by predicting the current that should be measured on the
suppresson grid. Although the shape of the current with suppression grid voltage is
consistent with expectations, the values are significantly different than predicted by
the theoretical model.

The corrective factors of Egs. 4.4 and 4.5 are still used without modification
for the experimental data presented in Chapter 5 because the first order correction

factors find both theoretical and empirical support, and are the dominate termsin the
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theoretical correction factors. Again, the full derivation of the theoretical correction

factors for the BSE and SE yields can be found in Appendix C.
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CHAPTER S5

EXPERIMENTAL DATA

This chapter includes a description of the samples, along with their preparation
and characterization. A short subsection dealing with attempts to anned the graphitic
amorphous carbon sample is also included. The experimental SE and BSE yields for
each sample are then presented with a discussion of the general features and trendsin

the data.

Section A. Sample Preparation and Characterization

The following section describes the general properties, manufacturing source,
preparation, cleaning, and characterization of the gold and carbon samples used to take
the data described in the subsequent section of this chapter.

Before discussing each sample in turn, the experimentd conditions common to
all the samples will be discussed. In order to thoroughly assess thereliability of a SE
emission experimental study, the dissertation work of Davies (1999) defines a set of
parameters that should be reported along with any SE emission measurements. The
following subjectswill serve as a guide so the reader can successfully judge the merits
of the current experimental work:

1. Sample preparation.

2. Base and operating pressures.

3. Sample smoothness.
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4. Direct characterization of surface contamination (e.g., Auger electron
Spectra).

5. Sample treatment under vacuum (e.g., time under vacuum, sputtering,
annealing).

6. Electron beam current density and time of exposure.
Again, some of the experimental conditions are common to all the samples. The
samples were mounted in the vacuum chamber for 7 months prior to taking the data,
but only one month after a complete bakeout of the vacuum system. The bakeout
resulted in base pressuresin the mid 10 torr range. Operating pressures for the guns
are only slightly higher. Theresidud gas andyzer (RGA) spectrum at this vacuum is
shown in Fig. 5.1. The RGA reveasthe vacuum islimited by water and CO or N,
even with the bakeout and a complete leak check of the system with helium gas. The
cluster of peaks near the water isa signature of methane in the system, whichis
thought to be a byproduct of the TSP outgassing during use and is difficult to remove
with ion pumps. There are dso small peaks of CO,, argon and helium that are typical
in aRGA spectrum. The remaining numerous small peaks throughout the spectrum
are theresult of a power outage prior to the bakeout that caused backstreaming of
mechanical and turbomolecular pump oils into the vacuum chamber. The absence of
large hydrocarbon peaks higher than 50 amu is a positive sign of a partial recovery
from the accident by the bakeout. This accident will be referred to again when the

Auger spectra are considered.
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FIG. 5.1: RGA spectrum showing the partial pressures of gas inside the vacuum
chamber.

The gold measurements were taken repeatedly during the months prior to the
carbon measurements. The yield measurements of the HOPG and g-C samples were
taken on the same day and the Aquadag™ sample was studied only one week prior.
As mentioned in Section 3.B, the beam current densities were always kept below 6
pAlcm? in an effort to reduce surface contamination due to electron beam stimulated
adsorption of vacuum contaminants. The only exception was the 10 minutes of
exposure to 70 wA/cm? beam current densities during an AES scan.

The samples, along with their preparation and characterization, will now be

discussed in turn.
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Subsection 1. Gold

The gold sample used to test and calibrate the instrumentation is a 6N purity
neutron activation foil with polycrystalline structure. The sample roughness was
measured independently with an STM to have an rms height of 8nmover al.4x 1.4
um? area. Prior to insertion in the UHV chamber the sample went through a series of
cleaning procedures adopted from previous work on the SE emission properties of
gold by Davies (1999). The gold sample was chemically cleaned in toluene,
methylene chloride, acetone, isopropyl acohol, methanol, warm nitric acid and rinsed
in distilled water. The sample was kept in distilled water prior to insertion in the UHV
chamber.

The sample was glued to a1 cm diameter stainless steel sample slug with a
mixture of UHV compatible adhesive (Vacsed), acetone, and silver powder to ensure
conductivity [Nickles lab notebook, p. 46]. The stainless steel slug was chemically
cleaned with methylene chloride, then acetone, and finally methanol. The gold was
cleaned in situ with argon ion sputtering by a 1keV, 4.3 uA beam for 30 minutes
[FatMan 111, p. 025]. AsseeninFig. 5.2, the cleanliness of the surface was verified by
Auger electron spectroscopy (AES). Referring to Section 3.B, al the AES spectra
presented here were taken with electron beam of 2 keV with less than 70 nA/cm? of
beam current density. The two spectra shown in Fig. 5.2 reved that the ion sputter has
asignificant effect on thelevel of carbon contamination, which is reduced to

approximately 18% concentration on the sputtered sample. The aomic concentration
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FIG. 5.2: Auger electron spectra of polycrystalline gold before and after ion sputtering.
The spectrum of the contaminated gold prior to ion sputtering shows nearly 50%
carbon contamination in comparison to the 18% carbon level on sputtered sample.

of carbon is only an estimate because the gold peak for which the sensitivity is known

could not be resolved from the background noise.

Subsection 2. Highly oriented pyrolitic graphite

Highly oriented pyrolytic graphite (HOPG) is a manufactured graphite material
that emulates the properties of naturally occurring crystalline graphite. A perfect
graphite crystal is characterized by planes of hexagonal rings constructed of strong
covalent bonds commonly referred to as o bonds. The triagonal nature of the bonds
around a carbon atom in graphite is referred to as an sp? hybridation, as opposed to the
sp’ hybridized, tetrahedronal bonds in adiamond crystal structure. The hexagonal
planes of graphite are referred to as the basal planes and are bonded together by

weaker = bonds, which involve the fourth atom of carbon not bonded in the plane.



117

Although not a perfect graphite crystal, HOPG is characterized as having roughly 1
pm of coherent hexagonal order within the basal plane and roughly 4 .m stacking
order of the planes themselves (Moore, 1973). The maerial has the structural
properties of crystalline graphite on um length scales and therefore has macroscopic
properties very similar to crystalline graphite. The most important property for the
current investigaion is that HOPG is a semi-metd with zero bandgap. The resistivity
of HOPG across the basal plane is 4x10° @-cm and is 5x10 Q-cm along the axis
between the planes (Klein, 1962). The density is2.260 gm/cm?(Lide, 1990). The
surface of HOPG is very smooth, as demonstrated by the ability of scanning tunneling
microscopy (STM) images to resolve the hexagonal ordering on an aomic scale. The
optical microscope picture of the sample in Figure 5.3 confirms that the sampleis
extremey smooth over macroscopic distances.

The HOPG sample was donated by Greg Swain’s lab and the source is most

likely Advanced Ceramics Corporation in Cleveland, OH. Rather than clean the

FIG. 5.3: Optical microscope pictures of HOPG (left), g-C (middle), and colloidal
graphite (right). The images are 1 mm across. The magnification is approximately
50:1.
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surface chemically, a fresh surface of the HOPG can be exposed by adhering tape to
the surface and pulling off alayer or more of the HOPG. The weak =-bonds along the
graphite planes allow the surface to be easily cleaved. Aswith the gold sample, the
HOPG was glued to a chemically clean, stainless steel slug with the silver adhesive
mixture. Sinceion sputtering has been shown to change the SE emission of graphite
(Wintucky et al., 1981; Goto and Takeichi, 1996; Caron et al., 1998), the samples
were cleaned in situ by baking the chamber at 125° C for 4-5 days. The AES spectra
in Fig. 5.4 shows the bake-out had little or no affect on surface contamination. The
atomic concentrations of the contaminants are listed on the plot. The presence of
silicon along with the oxygen suggests hydrocarbons from the turbomolecular pump

oil accident are still contaminating the sample.
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FIG. 5.4: Auger electron spectrum of HOPG sample. Types of contaminates and their
relative concentration are listed near each peak.
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Subsection 3: Colloidal graphite

Colloidal graphiteis microcrystalline graphite powder suspended in liquid to
form apaste. The crystalline nature of the powder gives the material similar properties
to HOPG, but without the long range order. Colloida graphiteis crystadline graphite
on 0.1-1 micron length scales.

The colloidal graphite was purchased from Ladd Research and was originally
manufactured under the trade name Aquadag™ by Acheson. Aquadag™ is a solution
of graphite powder, ammonia, and a proprietary dispersive agent (Derer, 2001). The
dispersive agent is a natural polymeric saccharideto keep the graphite powder in
solution. The ammoniais used in the liquid to keep the pH high because the sugars in
the dispersive agent make the solution susceptible to bacteria. The resistivity of a
dried film is estimated to be 50 o-cm and the density is 2.0 gm/cm? (Derer, 2001).

The Aquadag™ paste was diluted 2:1 with de-ionized water in order to spray
the mixture onto a clean sample slug. The Aquadag™ was sprayed onto a 0.7-inch
304 stainless steel slug using an air brush sprayer with nitrogen at 25 psi. Spraying
from a distance of 20-30 cm gave a spray patern of 5-8 cm in diameter. To ensure
good adhesion, the stainless steel slug was heated to above 70° C with a hot air gun
before spraying and the hot air gun was used for 1-2 minutes after spraying to quickly
dry the sample. Two samples of Aquadag™ were prepared with two coats of spraying
on the first sample and one coat on the second sample. The coatings are estimated to

be 10-100's of microns thick. Subsequent analysis confirms that there was no
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difference between a single coating and two coatsin the SE and BSE yields. The
optical microscope picture in Fig. 5.3 shows slight roughening of the surface as a
result of being sprayed onto the sample blank. There was no additional cleaning prior
to insertion into the vacuum chamber. Again, ion sputtering was avoided and the
bakeout was the sole means of cleaning the samplein siru. The dispersive agent in the
Aquadag™ reportedly does not break down until temperatures of over 400° C (Derer,
2001). The AES spectrum of the Aquadag™ sample, shown in Figure 5.5, reveals
almost no surface contamination. Given the similar nature of HOPG and Aquadag™,
the difference in contaminant coverage is striking. The lack of contamination in
comparison to the other carbon samplesis most likely due to differencesin the
surfaces’ adhesion as all the samples were exposed to the same environment in the
vacuum chamber for identical lengths of time. The dispersive agent in Aquadag™
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FIG. 5.5: Auger electron spectrum of Aquadag™ sample. The relative concentration
of adsorbed oxygen is listed near the peak.
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must inhibit the bonding of further hydrocarbons; however, the low atomic
concentration of oxygen in the Aquadag™ does not support a large presence of the

dispersive agent.

Subsection 4. Evaporated graphitic amorphous carbon

The defining qualities of evaporated graphitic amorphous carbon (g-C) have
been in question until recent work has been able to characterize the material in relation
to other forms of carbon. Asthe name implies, evaporated graphitic amorphous
carbon istypically produced by evaporating carbon a temperatures above 200°
(Dennison et al., 1996). Amorphous carbons are typically classified by the ratio of
their sp? to sp? bonding. The g-C is thought to have alarge fraction, over 95%, of sp?
bonding with the sp® bonding at the edges of 1.5-2 nm islands of multi-member rings
(Robertson and O’Reilly, 1987). Thelevel of disorder inthis amorphous material is
responsible for a0.4-0.7 eV bandgap (Robertson, 1986). Theresistivity of g-Cis0.5
Q-cm (Gao et al., 1989). The density is 1.82 gm/cm? (Stoner, 1969). The aeria
density of the actual sample used in these experiments was 21.3 pgm/cm?, which
corresponds to a thickness of roughly 1.2 microns (Dennison, 1985). The amorphous
carbon sample was supplied by Arizona Carbon Foils. The g-C carbon films were sent
on aglass microscope slide with a surfactant detergent between the film and the slide.
The surfactant allowed the film to be floated off the slide onto the surface of deionized
water and then onto a chemically cleaned, stainless steel slug. Optical interferometry

confirmsthat the samples are very smooth, with aroot mean square roughness of less
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than 1 nm over an area of 245x239 u.m? (Lee, 1995). The optical microscope picture
in Fig. 5.3 does reveal some blistering of the surface due to trapped water, but the
surface is otherwise smooth. Again, the AES spectrum in Fig. 5.6 shows avoiding ion
sputtering and relying on the bake-out to clean the g-C surface did not eliminate

contamination.

Subsection 5. Annealing the g-C sample
Attempts were made to anneal the g-C, which has been shown to bring about
structural changes towards nanocrystalline graphite (Wada et al., 1980; Rouzaud et al.,
1983; Dillon et al., 1984; Ddlas, 1996). The structural changes were assumed to
decrease the bandgap towards that of nanocrystalline graphite, which would allow for

a study of the correlation between changes in the bandgap and the SE yield within the
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FIG. 5.6: Auger electron spectroscopy of g-C. Types of contamination and their relative concentration
are listed near each peak.




123

same material. The annealing was done in a vacuum furnace (Lindberg model 55035)
capable of amaximum temperature of 1050° C and regulates its temperature to within
+2°. The furnace was pumped by the turbomolecular pump used to rough pump the
UHV chamber. Although the exact pressure was not monitored, the vacuum can be
safely assumed to be better than 10 torr from experience with similar pumping
arrangements where vacuum gauges were employed. Thin molybdenum 1 cm
diameter discs were chosen as the substrate for the films because molybdenum’s low
coefficient of linear expansion (5x10°/degree) resultsin the least strain to the g-C
films, whose coefficient is assumed to close to graphite (2x10°/degree) (Marton,
1979). Annealing temperatures were chosen at 450, 650, 850, and the maximum
temperature of the furnace, 1050° C mainly because these temperatures cover the
available range well. The heat treatments lasted for 1 hour, excluding the periods of
heating and cooling, to correspond with the work by Dallas (1996). The 650 and
1050° C heat treatments fall on either side of the 850-950° C temperature range where
carbon intertitials are gradually released and basic ring structures develop (Rouzaud
et al., 1983). Theremoval of in-plane defectsis the next stage of structural change
and does not occur until above 1500° C. The filmswould not fully graphitize until
temperatures above 2000° C. Both of these stages exceed the maximum temperature
of which the furnace was capable.

All of the heat treatments resulted in severe blistering of the sample surface, as

seeninFig. 5.7. The1050° C heat treatment resulted in the g-C being compl etely
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removed from the disc. The blisteringisdueto
trapped water between the sample slug and the

g-C films as mentioned before. Attempts were
made to preheat the samples at low

temperatures to release the trapped water, but

proved unsuccessful. One solution, which was

of g-C annealed at 650° C for 1 hour.
Theimage is 1 mm across and the
magnification is approximately 50:1.

not tested, would befor the manufacturer to
evaporate the g-C straight onto the
molybdenum discs, but adhesion to any metal is difficult (Stoner, 2001).
Experimenting with thicker g-C films than 20 .gm/cm? (areal density) may be
necessary as thin samples tend to adhere less. Anneding g-C at high temperature has
proved successful on sapphire (Ddlas, 1996), but using an insulaor as a substrate
introduces problems with charging during the SE yield measurements. A small piece
of metal could be connected from the g-C film to the metal slug below the sapphire,
but the charging of the insulator may still disrupt the electric fiddsin the HGRFA

during measurements.

Section B. Yield Measurements
The SE and BSE yields will now be presented for the three carbon samples:
HOPG, Aquadag™, and g-C. Theyields for the gold sample are discussed in Section

4.B on error analysis as they apply to the repeatability of the measurements.
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Subsection 1. HOPG

The SE and BSE yield of HOPG over an energy range of 50-16000 eV are
shown in Fig. 5.8. Thetotal yields of the carbon materials will not be presented. The
BSE yields are so low (averaging 0.1) and flat the total yield only amounts to a slight
shift in the SE yield curve. Thecurvesin Fig. 5.8 are plotted together on alinear scale
to give asense of perspective. All subsequent graphswill plot the SE and BSE curves
separately with the energy on alog scale to show the detalls of the data. The SE and
BSE yields of HOPG are shown in detail on semi-log plotsin Figs. 5.9 and 5.10. The
plots contain two data sets covering different energy ranges, using the Conrad gun
between 50-1000 eV and the HEED gun between 4.5-16 keV as the electron sources.
The method of data collection and analysis that converts the measured currents into the
yield curves with error barsis discussed in Chapter 4 onthe experimental methods.

Fitting the data with theoretical curves will be done in Chapter 6 during the discussion
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FIG. 5.8: Linear plot of SE and BSE yield of HOPG sample using the Conrad and
HEED electron guns.
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FIG. 5.9: SE yield of HOPG displayed as a semi-log plot.

of the experimental data.

Two data points on the SE yield curve in Fig. 5.9, at 250 and 350 eV, were
taken out of sequence and deviate dlightly from the rest of the curve. These points are
dlightly higher, which would indicate the beam current is being underestimated by the
sum of the current within the HGRFA. The cause is most likely a change in the focus
of the beam spot that results in some of the beam impacting the cover or beam pipe
before reaching the sample. The error bars noticeably increase in both plots below 250
eV. Asdiscussed in Section 4.B on error analysis, the increased error isdueto a
decrease in the available beam current from the Conrad gun at these energies coupled
with background noise in the collector current that does not scale with the signal. The
large error bars do not truly reflect the uncertainty in the SE yield. Notice the three

measurements at 50 eV that agree within a standard deviation of 3%, which is much
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higher precision than represented by the error bars on the graph that show nearly a
60% standard deviation at that energy.

The error bars on the HEED gun portion of both yields also are adrastic
overestimation of the error in the measurements. Again, the cause for the large error
has been traced to the collector current, coupled with the low beam currents used to
acquire the datathe HEED gun data. Typicd error in yields measured with the HEED
gun using nearer to 20 nA of beam current is equivalent to the higher energy Conrad
gun data. The agreement of the HEED gun curve with the Conrad gun data at |east
lends some credibility to the accuracy of the measurements. Also notice that the BSE
yield in Fig. 5.10 does not decline to zero at 50 eV as expected, which pointsto a
systematic error in the measurement or simply the fact that two popul ations are not

separable by the conventional definition.



128

Subsection 2. Aquadag™
The SE and BSE yield of Aquadag™ are shown on semi-log plotsin Figures
5.11 and 5.12. The datawas collected and andyzed in the same manner as the HOPG,
which is discussed in Chapter 4 on experimental methods. The noticeable aspect of
the SE yield curve isthereis poor agreement between the low and high energy data,
which will be discussed further in Chapter 6. There were fewer points measured for
both curves aswdl. Otherwise, the data hasthe same features as previously

mentioned with the HOPG.

Subsection 3. g-C
The SE and BSE yield of g-C are shown on semi-log plotsin Figs. 5.13 and
5.14. Again, the data collection and analysis was conducted in the same manner as the
other carbon samples. The most noticeable aspect of both the SE and BSE yieldsis

that the high energy datafalls off as it approaches lower energies and does not seem to
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FIG. 5.11: SE yield of Aquadag™ displayed as a semi-log plot.
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FIG. 5.12: BSE yield of Aquadag™ displayed as a semi-log plot.

be a continuation of the lower energy curvestaken with the Conrad gun. The causeis
most likely due to incorrect or a complete lack of adjusting the deflection to maximize
sample current between each measurement. Although the values are not completely
absurd, datais essentially of no use and is only included as an example of poor
experimental procedure. The low energy datais excellent in comparison, although
thereis still the increasing error at lower energy as was seen in the previous data. As
with the HOPG data, there are multiple points taken at 50 eV that again display a

repeatable precision of 3% in contrast to the 40% error reflected in the error bars.
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CHAPTER 6

DISCUSSION OF RESULTS

This chapter will focus on the SE and BSE yields of the carbon sampleswith
an emphasis on explaining the differences in maximum SE yield of the samples. After
fitting the SE yields with semiempirical models over the full energy range, the low and
high energy parts of the SE yield will be discussed separately. Then the BSE yields
will be discussed, except without fitting to amodel function. Yieldswill also be

compared with values found in the literature.

Section A. SE Yield Data

There were three semiempirica models reviewed in Section 2.A: The Y oung
model of Eqg.2.11, the Sternglass model of Eq. 2.14, and a variable stopping power
exponent model, which is a numerical method based on Egs 2.8-10. Theoretical fits
using each of these models to the SE yield data of the three carbon samples will now
be discussed in turn.

A semi-log plot of the SE yield for HOPG, g-C and Aquadag™ with theoretical
fits using the Y oung model from Eq. 2.11 are compared in Figure 6.1. The two fitting
parameters of the Y oung model, the maximum yield s,,,. and energy at which the
maximum yied occurs E,,,., are recorded in Table 6.1 along with reduced chi-squared
values for an evauation of the fits. The graph shows the model function does not fit

the peaks or the high energy tailswell and thisis reflected in the high reduced chi-
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squared values. The stopping power exponent of » = 1.35 in the Y oung model is
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responsible for the tails of the curves being too shallow. Closer inspection reveds that

the low energy section of the Aquadag™ datais agood fit to the model, but is till

inconsistent with the high energy data. Thefit to the Aquadag™ peak gives a



TABLE 6.1: Young model fitting parameters for SE yields
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Material 8 max E,.. (V) Reduced x*
HOPG 1.76 + 0.08 179+ 25 3.7
g-C 212+ 0.09 144 + 17 16
Aquadag™ 1.65+ 0.04 253+ 17 0.94
TABLE 6.2: Sternglass model fitting parameters for SE yields

Material 8 ma E,.. (eV) Reduced x?
HOPG 1.69 + 0.03 259+ 7 0.71
g-C 2.13+0.06 230+ 14 0.01
Aquadag™ 1.54 + 0.02 343 + 10 2

TABLE 6.3: Variable stopping power exponent model fitting parameters for SE

yields

Material 8 E,.. (eV) n Reduced y?
HOPG 1.74+ 0.03 280+ 16 1.61+0.03 0.29
g-C 220+ 0.04 244+ 9 1.62+0.01 0.29
Aquadag™ 1.64 +0.03 264 + 20 1.37+0.03 0.92

convincing valuefor E,,,., while the HOPG and g-C curves are inadequatefits to give

suitable values.

A semi-log plot of the SE yield for HOPG, g-C and Aquadag™ with theoretical

fits using the Sternglass modd from Eq. 2.14 are compared in Figure 6.2. The same

fitting parameters discussed above are recorded in Table 6.2 for the Sternglass model.

In comparison to the shifted peaks of the Y oung model, the Sternglass model fits the
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semiempirical fits using the Sternglass model of Eq. 2.14.

datawdl at low energy. The Sternglass mode does not fit any of the high energy data
well, which istypical for the Sternglass model. The large error bars of the high energy
section of al the curvesisthe only reason the fits give suitable reduced chi-squared
values, otherwisethe lack of inflection in the model at lower energy would lead to

poor fitsfor al the curves. The low reduced chi-squared values for the HOPG and g-C
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data give credible valuesfor E,,,., but the shallow tail of the low energy section of the
Aquadag™ data pulls that peak towards higher energy and leads to apoor fit. The
poor fit to the Aquadag™ datais an indication that the shallowness of the low energy
tail is dueto a problem with the measurement procedure. The data might otherwise

follow the HOPG and g-C datain lining up better with the high energy data.
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Semi-log plots of the SE yield for HOPG, g-C, and Aquadag™ with theoretical
fits using the variable stopping power exponent model are compared in Fig. 6.3. The
three fitting parameters and the reduced chi-squared are recorded in Table .3. As
expected, the indusion of another free parameter leads to better fits of the data at both
low and high energy. The qudity of all thefitsisreflected in their low reduced chi-
sguared values. The only exception is the high energy section of the Aquadag™ data,
where the fit is dominated by the smaller error barsin the tail of the low energy section
of thedata. Again, thisisfurther evidence that the shallow tail of the low energy
section of the Aquadag™ may be due to experimental error. The Aquadag™ datais
expected to agree with the HOPG data as they are both crystalline graphite on 100-
1000 nanometer length scales. The only substantial disagreement between the two
curvesisthetail of the low energy section. The agreement between the HOPG and
Aquadag™ at high energy, but not in the tail at low energy, is further evidence that the
5-6 data pointsin the tail might have suffered from an error, most likely alack of the
necessary continual adjustment of the beam position, that caused these vaues to be
dlightly higher. Additionally, the disagreement between the low energy tail of the
Aquadag™ and the other two curvesis exemplified by the values of the stopping
power exponent for the three fits. Although the maximum SE yields of HOPG and g-
C differ, the curves are in good agreement as to the value of 1.6 for the stopping power

and E

max

exponent. While the maximum SE yield s control the height and position

max

of the maximum, the variable stopping power exponent controls the fall-off in the tail
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of the curve. The disagreement between the stopping power exponent of the
Aquadag™ and the two other curvesis adirect result of the shallownessin the low
energy tail of the Aquadag™ data.

The stopping power exponent is a bulk property that depends primarily on the
type of scattering species, which isthe samein al three cases. A crude empirical
eqguation for the stopping power exponent (Eq. 2.12), based on measurements of the
electron stopping range in materials of varying atomic number, gives avaue for
carbon of 1.55 (Feldman, 1960). The relative agreement between the Feldman’s
eguation and the stopping power exponent for the HOPG and g-C supports the atomic
number as a dominant factor. This agreement is further evidence that a single stopping
power exponent, asis used in the Young model of Eg. 2.11 and has been acommon
assumption (Dionne, 1975; Grais and Bastawros, 1982), is not appropriate across
different materials. Eg. 2.10 of the variable stopping power exponent model relates
the stopping power exponent to the product of the SE absorption coefficient « and the
penetration depth R. This product of «R has also been assumed to be constant in other
research (Dionne, 1975; Grais and Bastawros, 1982), which may be more justified
than disregarding the dependence on atomic number because the two quantities
typically counterbalance each other when they vary with other material parameters.
An example of this offsetting behavior will be discussed in Subsection 6.A.1 when
density is considered as a factor in the maximum SE yield. One might argue the

surface contamination found on the HOPG and g-C that was absent on the Aquadag™



138

explains the difference, but then the high energy section of the data should disagree as
well. The discussion of this disagreement in the Aquadag™ data will be discussed

further as the low and high energy portions of the data are considered in more detail.

Subsection 1. Low energy section of SE yield data

The variable stopping power exponent model best represents all three carbon
data sets together and will be used exclusively as the three data sets are compared in
more detail. Figure 6.4 shows alinear plot of the low energy sections of the three
carbon samples dong with their fits to the variabl e stopping power exponent model.

The three carbon samples come close to agreeing on the energy E,,,. a which
the maximum yield occurs. Thevauesfor E,,. fall on the lower side of values
between 275-310 eV (see Table 2.1) found in the literature (Bruining, 1938; Whetten,
1965; Wintucky et al., 1981; Ruzic et al., 1982; Caron et al., 1998). Thereisa
decreaseinthe E,,,, of g-C that deserve further consideration due to its implications
about the SE escape depth that is possibly the effect of the increased bandgap. As
argued previoudly, the stopping power of the carbon samples should be similar and
therefore adecreasein E,,,. would be due to a decrease in the average escape depth of
the SE’'s (Dionne, 1975). A decreased escape depth means the SE yidd reaches a
maximum at a shorter penetration depth, which occurs at alower E,,,.. Relying on the

assumption the HOPG and Aquadag™ samples should agree on £, the mean energy

ax?

between the HOPG and Aquadag™ (272 + 18 €V) does not lie beyond a statistically
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FIG. 6.4: Linear plot of low energy section of HOPG, g-C, and Aquadag™ SE yields
along with semiempirical fitsusing the variable stopping power exponent modd.

significant distance from the value for the g-C sample (244 + 9 eV). Although the
changein E,,,. between the g-C and the other forms of carbon is in the opposite
direction that would be consistent with the idea of an increase in the escape depth of g-
C, the datais not sufficient to fully evaluate the idea.

The maximum SE yield s,,,,, of the HOPG and Aquadag™ sampl es show
relative agreement as they are both crystaline graphite on 100-1000 nanometer length

scales. Thevauesof s, for Aquadag™ and HOPG are 60-70% above published

max

values (see Table 2.1) that find s,,,. to be roughly unity (Bruining, 1938; Whetten,

1965; Wintucky et al., 1981; Caron et al., 1998). The disagreement is dlightly larger
than the correction factor used to compensate for the geometry of the HGRFA. The

dissertation work of Sternglass (1953a) is the only reviewed literatureto use a
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correction factor and his values for Aquadag™ are 20% higher than the articles
previously cited, but the present work with HOPG and Aquadag™ is still 35% higher.
The disagreement with the literature is unfortunate, but is thought to be limited to the
HGRFA correction and does not impact comparisons between the data that follow.

The maximum SE yield of g-C (2.2 £ 0.04) is approximately 30% higher than
the HOPG (1.74 + 0.03) and Aquadag™ (1.64 £ 0.03) curves, which is consistent with
the idea outlined in Section 2.B the bandgap of g-C increases the electron mean free
path or equivalently decreasing the absorption coefficient « and leads to an increased
SE yield. There are other possible explanations for the increased SE yield of a
material, which deserve consideration.

Thereisvery little variation in the scattering species that could account for
differencesin the SE yields. The bulk material of the samples consists of carbon
atoms with less than 8% impurities in the g-C samples, which is thought to be residual
surfactant on the back of the sample from the preparation slide (Stoner, 1969). The
film thickness is another material parameter that can beruled out. All the samples
exceed amicron of thickness, which is much larger than the mean free path in carbon
at the energies of interest (Seah and Dench, 1979). Other important properties of the
three samples are summarized in Table 6.4 to facilitate the further discussion of their
role in the maximum SE yield of thethree samples.

Thereisa 20% variation in the density of the HOPG (2.267 gm/cn?) in

comparison to that of g-C (1.82 gm/cm?®). The density of Aquadag™ isan
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TABLE 6.4: Summary of important material properties of graphitic carbon samples

HOPG Aquadag™ g-C
Property (Subsection 5.A.2) (Subsection 5.A.3) | (Subsection 5.A.4)
Bandgap semi-metal (0 eV) semi-metal 0.4-0.7 eV
Density 2.267 gm/cm? 2.0 gm/cm?® 1.82 gm/cm?®
Structure microcrystalline randomly oriented | no long range order
graphite with um graphite due to multi-
planar stacking microcrystallites member ring
structure
Surface <1 nm-atomic <lum-visible <1nmover
Roughness resolution with STM | surface roughness 245x239 pm?
Contamination Si: 25% Oxygen: Oxygen: 3% Si: 15% Oxygen:
25% 16%
Photoyield 52eV £0.05eV 52eV £0.05eV 54¢eV £0.05eV
Onset
Resistivity 5x102 @-cm ~500-cm 5x10* @-cm
(intraplanar)
4 x10° @-cm
(interplanar)

intermediate value (2.0 gm/cm?®). The effect of changesin density on the SE yield is

not straightforward. The density is directly proportional to a material’s stopping

power and inversely proportional to the penetration depth; however, the density is aso

inversely proportional to a material’s mean free path. Consider the agreement of the

stopping power exponent between the HOPG and g-C. Again, the variable stopping

power exponent model relaes the stopping power exponent to the product of the SE

absorption coefficient « (the inverse mean free path) and the penetration depth R in Eq.

2.10. The agreement of the stopping power exponent suggests the potentially longer
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penetration depth R in the less dense g-C is counterbalanced by the longer mean free
path and so HOPG and g-C should be regarded as equals with respect to the effects of
density. Thereisasimilar counterbalancing relationship between the product of the
stopping power coefficient A and the mean free path in equations for the SE yield like
Eg. 2.15. Sincethe density isdirectly proportional to the stopping power and
indirectly proportional to the mean free path, the density cancels out in the product
that appearsin Eq. 2.15. The higher maximum SE yield is then left to depend on the
other factors that influence the incident beam absorption and the SE mean free path,
independent of density. The evidence in Subsection 6.A.2 supports the argument that
the production of SE, related to the stopping power, issimilar in all the samples, while
the migration of the excited SE differsin the g-C sample due to its bandgap.

The differing structure of the samples might explain the increased maximum
SE yield of the g-C sample. The argument could be made that the microcrystadline
structure of the HOPG and Aquadag inhibits their SE emission by reducing the SE
migration to the surface across basal planes and grain boundaries. The counter-
argument isthat SE migration in crystallographic directions should then be enhanced
in comparison to the amorphous g-C, and could equally well lead to higher yields for
the microcrystalline graphites. Therelative agreement of the HOPG and Aquadag is
consistent with research that found no differencesin SE yield between crystalswith
varying orientation and polycrystalline samples, where the increased grain boundaries

might impede emission (Miller and Brandes, 1997). The structure does not have a
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direct influence on the maximum SE yield, other than indirectly through the creation
of the bandgap.

The smoothness of asample’ s surface is known to affect the SE yield
(Bruining, 1938; Wintucky et al., 1981; Ruzic et al., 1982; Borovsky, 1988). The
surface roughness argument is valid in a limited number of cases, but has been
misused in the explanation of experimental data. Using the fact that the SE yield
generdly increases with the incident beam angle, Borovsky argues surface roughness
can be viewed as alarge number of tilted surfaces acting together to actually enhance
emission (Borovsky et al., 1988; Caron et al., 1998). Although the enhanced emission
of tilted surfacesis part of the reason for contrast in scanning el ectron microscope
images, the idea surface roughness enhances the emission of a macroscopic areais not
generally accepted and exemplifies how the argument has been historically misused.

The generally accepted idea is the extended structure from the surface due to
roughness recaptures some portion of the SE emitted. The original argument by
Bruining (1938) actually applied to porous surfaces, rather than simply roughened
surfaces. The roughening of carbon samples, either by substrate sanding or ion
sputtering of the sample, has been shown to decrease the SE yield (Wintucky et al.,
1981; Ruzic et al., 1982). Asmentioned in Chapter 2, Sternglass (1953a) even went
so far as to include an additional parameter for sample roughnessin his theoretical
equation for the SE yield to explain the differences between Aquadag™ and an

amorphous carbon sample derived from electron stimulated adsorption of carbon in the
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presence of Octoil vapors. His results show that the amorphous carbon has a 20%
higher yield than Aquadag™, which is consistent with the results presented here even
though the amorphous carbon is of a different origin. Sternglassincludes Bruining's
soot measurements in his work and argues the increasing smoothness of the samples —
from soot to Aquadag™ to amorphous carbon —is responsible for the increasing yield.
The inclusion of the HOPG sample in the present work refutes the idea sample
roughness alone explains these differencesin SE yield. Although the optical
microscope pictures in Figure 5.3 show the Aquadag™ to have arougher surfacein
comparison to the STM work on g-C, the HOPG sample is known to be extremely flat
from typical STM measurements. HOPG and Aquadag™ would need to have
equivalent surface roughness for Sternglass' s explanation to be valid, which is
arguably not the case just from the optical microscope picturesin Figure 5.3. The
degree of surface roughness amongst the samplesis not reflected in their SE yield
measurements.

The most obvious explanations for the differencesin SE yield relate to the fact
that the HOPG sample had more hydrocarbon contamination than the g-C sample.
The contamination could be driving the HOPG yield down rather than the bandgap
increasing the g-C yield. Thisideais not supported by the Aquadag™ sample, which
showed little contamination and yet still has a SE yield comparable to HOPG.

The g-C contamination could also serve to terminate the small fraction of

dangling sp’ bonds in the g-C with oxygen or hydrogen and reduce the electron
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affinity of the g-C, which has been shown to increase the SE yield of hydrogentated
diamond-like amorphous carbon (Diaz et al., 1999). This explanation is not supported
by the photoyield measurements of the samples shown in Fig. 6.5. The method in
which the photoyield data was acquired is discussed in Chapter 4. The current emitted
from the sample is measured as a function of increasing incident photon energy and
then normalized by the incident photon intensity. Photoyield measurements of the
HOPG had to be taken after a vacuum break due to an intermittent grounding problem
between the sample and the stage when the other photoyields were measured.

The onset of the photoyield marks the minimum energy needed to emit an
electron from the material. The measurement is an indication of the vacuum level of
each material. Inthe HOPG and Aquadag™ samples, the onset energy isindicative of

the work function of the sample. In the g-C sample, the onset energy is better
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FIG. 6.5: Photoyield measurements of the HOPG, Aquadag™, and g-C samples. The
data below 8x10° electrons/photon were assumed to be noise.
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represented by the electron affinity as measured from the Fermi energy, whichis
typically taken to be midway through the bandgap in a semiconductor. Asseenin Fig.
6.5, the fact that the g-C sample has a higher onset energy does not substantiate the
idea the hydrocarbon contamination has lowered the vacuum level of the material and
increased the SE yield. This argument leads to the expectation that the onset of the
photoyield should occur at lower energy than the HOPG or Aquadag™. Very rough
guantitative estimates of the onset energies can be made by choosing a zero level of
photoyield (see Fig. 6.5). The onset energies for the photoyield (where the baseline
noise intersects the photoyield) are 5.20 + 0.05 eV for the HOPG or Aquadag™ and
5.40 + 0.05 eV for the g-C. The difference can beinterpreted asa0.2eV + 0.1 eV
increase in the g-C bandgap over the zero bandgap of the microcrystalline graphite.
The measurement is substantially lower than the values of 0.4-0.7 eV in the literature
(Robertson and O’ Reilly, 1987), but the method is admittedly very crude. The result
does agree better with optical absorption work done by Ddlas (1996) that gives a Tauc
gap of 0.1 eV. Agan, theresult is only meant to show the vacuum levd of the g-C is
not lower than the microcrystalline graphite samples. The measured difference in
photoyield could have been verified by a separate technique using SE energy
distribution measurements with the HGRFA. Contact potential differences between
the emitting sample and the collecting surface, coated with Aquadag™, can be seen as
an offset of the initial rise in the SE energy distribution curve. A difference in work

functions between the sample and collector establishes a background electric field even
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when both surfaces are grounded. This background field offsets the energies of the SE
energy distribution. Unfortunately, the resolution needed to measure the roughly 1 eV
potential difference between the g-C sample and the Aquadag™ collecting surfaceis
beyond the roughly 1.5 eV resolution of the HGRFA (see Subsection 3.E.2).

The resistivity of the samplesisindicative of the ability of free eectronsto
move under the influence of an electric field, which does not directly correlate to the
migration process in SE emission. The low resistivity in metalsis as much areflection
of the large number of available electrons for conduction as their mobility in the
material. In contrast, the high resistivity of typical insulatorsis due to the lack of
conduction electrons as aresult of their bandgap, even though the electron mean free
path is much longer in comparison to metals. The increased resistivity of the g-C
sample in comparison to even the intraplanar resistivity of HOPG is due to the
presence of the bandgap. The bandgap decreases the number of available conduction
electrons at room temperature by requiring a minimum energy before conduction can
take place. In thissense, the resistivity is once removed from the material parameter of
interest in SE emission (the bandgap) and involves aspects of conduction that only
indirectly apply to the process of SE emission, like the process of making valence
electrons available for conduction. Asareflection of the bandgap, the higher
resistivity of the g-C sample correlates with its higher maximum SE yield. The
resistivity of the Aquadag™ sample was given by the manufacturer (Derer, 2001) and

may not reflect an accurate measurement. The resistivity of the g-C sample has been
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reported to be roughly equivalent to HOPG, which would make the previous discussion
moot, but that estimate was based on measurements of the index of refraction and not a
direct measurement (Stoner, 1969). Although the resistivity does correlate with the
maximum SE yields of our carbon samples, excluding Aquadag™, the bandgap is
recommended as a more direct materid property of interest for SE emission.

In comparison with the ideas discussed above, the bandgap argument is the
most compelling explanation for the higher SE yield of the g-C sample. Both the
HOPG and Aquadag™ have zero bandgap, while the g-C is known to have a
measurable bandgap. Inconsistencies or the absence of a correlation in density, surface
roughness, or levels of contamination prove these explanations do not account for the
increased SE yield. The one glaring difference between the g-C sample and both the

HOPG and Aquadag™ samplesis the presence of the bandgap.

Subsection 2. High energy section of the SE yield data

The high energy tails of the HOPG, g-C, and Aquadag™ samples are compared
inFig. 6.6. Asmentioned in Section 5.2, the 5-7 keV data points of the g-C curve
downward instead of the upward rise seen in the other carbon data. The discrepancy is
probably due to improper alignment of the beam during the measurements. The HOPG
and Aquadag™ data shows good agreement, only differing by 10%, which far exceeds
the 120% uncertainty represented by the error bars. Recall from Section 5.B that the
large error bars are due to an overlooked signal noise, coupled with reduced beam

current. The agreement between the HOPG and Aquadag™ reaffirms the fact that the
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FIG. 6.6: Linear plot of high-energy section of HOPG, g-C, and Aquadag™ SE yields
along with semiempirical fits using the variable stopping power exponent modd.

two materials are very similar in composition. Again, the fact that the two
microcyrstalline graphite data sets agree so closely a high energy casts some doubt on
thetail of the low energy data for the Aquadag™ sample, which does not line up well
with its high energy data nor the other carbon data at the low energy range.

Excluding the three anomal ous data points between 5-7 keV in the g-C high
energy SE curve, the g-C datais 30-35% higher than the HOPG and Aquadag™. The
increase in the SE yield of g-C matches that seen in the low energy section and is
further evidence the bandgap of g-C leadsto ahigher SE yield. The variable stopping
power model still predicts an increased SE yield at these higher energies, but to alesser
degree than is reflected in the dataitself. Given the poor experimental techngiue used

to acquire the g-C data, the size of the increase is more likely somewhere in the range
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between the theoretical and experimentd values. The result is significant because an
increased SE yidd even a high energy suggests the cause of theincreaseisrelaed to
the migration process of the excited SE, as postulated, and not to the production
process. If the reason for the increased SE yield was due to enhanced production of SE
by the incident electrons, then the effect would decrease with increasing energy as the
production began to take place further from the surface. The model that is consistent
with the datais an essentially constant production of SE’sin all our carbon samples
and an increase in the depth from which the excited SE’s can migrate through the g-C

and still escape, which increases the SE yield a all energies.

Section B. BSE Yield Data

The BSE yidld curves for HOPG, g-C and Aquadag™ are compared in Fig. 6.7.
The high energy g-C data should be overlooked because its spurious results are due to
poor experimentd technique. Thereis no difference between the low energy HOPG
and g-C curves outside the error bars on the data Excluding the g-C curve, the high
energy sections of the HOPG and Aquadag™ data are in excellent agreement and line
up well with the low energy data. The BSE yield of all the samples was expected to be
similar because the processis essentially an interaction between the incident electron
and the atoms within the sample, which are carbon atomsin all cases. Thegenera
flatness of the curves agrees with the work of Sternglass, but the average BSE yield is
almost double his mean value of 0.07 in the 250-2000 eV range (Sternglass, 1953b;

Holliday and Sternglass, 1957). The low energy Aquadag™ data agrees with the
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FIG. 6.7: Semi-log plot of HOPG, g-C, and Aquadag™ BSE yields.

HOPG and g-C data except in the range between 200-600 eV. The Aquadag™ data
does not show the small rise around 350 €V as seen in the other two samples. The
most obvious explanation is that the hydrocarbon contamination of the HOPG and g-C
samplesis affecting their BSE yields at low energy. This explanation is inconsistent

with the fact that the BSE processistypically insensitive to surface contamination
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(Chang et al., 2000). Anocther explanation for the risein the BSE yields of HOPG and
g-C isthat SE's created on the backside of the suppression grid by BSE scattering off
the collection surface are significantly contaminating the BSE yield curve at low
energy. Thisexplanation is not plausible for three reasons: (i) there is no reason that
the Aquadag™ should not also suffer from the unwanted current; (ii) the roughly 30%
increase in the BSE yields of HOPG and g-C over the flat value represented by the
Aquadag™ sampleisfar greater than the 2% predicted correction for this affect (see
Appendix C for details); and (iii) the peak of the rise at roughly 350 €V isinconsistent
with the location of the maximum SE yield a 450 eV of the 304 stainless stedl grid
wires (Ruzic et al., 1982). Thereisno solid explanation for the disagreement in the

BSE yields.
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CHAPTER 7

CONCLUSIONS

The following chapter draws conclusions about experimentd results, assesses
the adequacy of the experimental apparatus, suggests modifications to the system, and

provides guidance for future research.

Section A. Conclusions about the Experimental Results

The key result of this experimental investigation is the measurement of a 30%
increase in the maximum SE yied of g-C over that of microcrystalline graphite
samples, like HOPG and Aquadag™. From Table 6.3, the error in estimates of the
maximum SE yield of these graphitic carbon samplesislessthan 2%. Material
parameters and confounding variables, like the vacuum level of the g-C sample, have
been isolated and measured so the bandgap of g-C can be said to be a dominant factor
in the reason for the increased SE yield of g-C. Theresistivity also correlates with the
increased SE yield, but the resistivity isjust an indication of the bandgap, which isthe
more fundamental cause for theincrease. Therole of the bandgap in the SE yield of a
small bandgap semiconductor like g-C has been established experimentally.

This conclusion should not be understated because there was very little
evidence to support the idea that the relationship would exist or be measurablein a
small bandgap semiconductor. Thereisessentially no discussion in the literature of the

role of bandgap in the SE emission properties of semiconductors and the studies that do
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exist show avery weak dependence on bandgap. The proposal for this dissertation
identified the electron affinity as a significant confounding variable because a
reduction in the vacuum level could also explain an increasein SE yield. The effort
taken to remove the electron affinity and other material parameters from the discussion
has provided the confidence for the conclusion that the bandgap of g-C is responsible
for the difference in maximum SE yield that was measured.

Another significant result is that the increased SE yield is maintained at high
energy, which suggests the reason for the increase is related to the migration process of
excited SE’s and not their production. The large error in the high energy data makes
the result less convincing, but the theoretical fit with the variable stopping power
exponent model shows arelatively constant increase, independent of energy.

An unsuspected result of the present study is the establishment of thevariable
stopping power exponent model that uses Egs. 2.8-10 as an improved aternative to the
Y oung and Sternglass semiempirical models typically used to fit SE yield curves. The
introduction of the stopping power exponent as another free parameter is supported by
the close agreement between the prediction of Feldman’s semiempirical model of Eq
2.12 for the stopping power (n=1.55 for carbons) with the value n ~ 1.6 found for the
HOPG and g-C. The disagreement of the stopping power exponent for Aquadag™ is
discouraging, but this area of the research was unrelated and would benefit from future

study.
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Section B. Conclusions about the Experimental
Apparatus and Methods

The instrumentation and methodology employed for the study were sufficient in
that the difference in the maximum SE yield of g-C and the microcrystalline graphite
was measurable and repeatable. From Fig. 4.2, the apparatus is capable of a repeatable
precision of lessthan 1% at medium energies, although the error bars present an
uncertainty that is more than double. Likewise, some of the repeated data points at low
energies for the HOPG and g-C samples can be used to estimate a precision of less than
3%, whilethe error bars a those energies are nearly 10 times as large. Enhancements
to the experimental system are discussed in the next section.

The UHV chamber and supporting surface analytical systems were well suited
to the investigation. The AES system’s role in determining surface contamination is
crucial for any SE emission investigation because of the surface sensitivity of the
phenomenon. Although the sample stage was not designed specifically for this
particular investigation, the large sample volume (eight samples and three beam
analysis modules) proved to be beneficial for comparative measurements between
samples exposed to the same vacuum environment and experimentd conditions. The
electron guns were sufficiently characterized and performed well for the experiments.
The unfortunate loss of UHV vacuum conditions due to the accidentd venting of the
chamber to mechanical and turbomolecular pump oil vapors was the most detrimental
part of these experiments.

The use of the HGRFA for the SE emission measurements was a compromise
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between the ideal spherical detection scheme and the design requirements of
interfacing with the sample stage and multiple source beams. The primary advantage
of the HGRFA isthat it can used in conjunction with the sample stage to study
multiple samples within the same experimental conditions. The performance of the
HGRFA hasbeen well characterized and can be said to be an adequate system in
comparison to similar experimental designs. Thetwo-grid system employed hereisa
unique feature. The exact sources of error in the present system are difficult to assess
from collection bias curve in Fig. 3.18, which is open to a variety of interpretations
(see Subsection 3.E.2 for discussion). The absolute BSE and SE yield correction
factorsresult in yields that are 15-30% larger than reliable values found in the
literature; this may result from the fact that no attempts to correct for detector error
were included in the previous studies used for comparison. The comparative nature of
this dissertation study reduces the impact of overestimating the SE or BSE yield. As
shown in Figs. 4.4 and 4.5, the shape of the experimental curves measured with the
HGRFA isin excellent agreement with comparable work in the literaure.
Section C. Suggested Modifications to
Experimental System

The most important area for improvement is the data acquisition system. The
immediate goal would be to have the error bars accurately reflect the variation that
results if the measurements are repeated. As mentioned above, the apparatus is capable

of 1% precision above 500 eV and 3% uncertainty below 100 €V beam energy. A
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deliberate study of the error involved in repeated measurements of a specific sample,
similar to the work presented for gold in Section 4.B on error analysis, would be good
torevisit. An easy and immediate improvement would be to modify the data
acquisition system to sample the data in repeated sets of suitably large measurements
to estimate the error involved in the yield measurements better, as discussed in Section
3.F. Reporting the standard error in the mean of 20 means from a large number of
points (e.g., 3,000) could reduce the estimated error by more than 20% over the current
method of using the standard deviation. That reduction isfairly consistent with current
estimates of the error from repeated measurements. Further reduction in the estimated
error would reguire more work to reduce the signal noiseitself. The collector current
has been identified as the dominate error responsible for the unphysical error bars seen
in the experimental data. The error has been traced to a background uncertainty in the
Keithley 619 signal that couples with the Conrad gun’ sinability to output sufficient
beam current at beam energies below 500 eV. The cause of the background noise
could result from the voltage bias circuitry, where the problem can be tracked down
through difficult but straightforward analysis, or the noise could result in the
unshielded cabling inside the UHV chamber, which is a more difficult problem to
solve. Another solution would be to improve the beam current performance of the
Conrad gun below 500 eV. The Conrad gun is presently capable of beam currents near
20 nA that have been shown to reduce the collector current error to roughly 1%, which

is comparable to the uncertainty in the beam current of the Conrad gun. Trying to
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improve the Conrad gun performance is more uncertain work than the signd analysis
proposed above. A potential avenue to pursue would be to expand the voltage ranges
of the einzel lenses, which currently have almost no effect on the beam, in an effort to
focus more of the beam down the beam line and improve the gun’s efficiency.
Expanding the voltage ranges of the einzel lenses entails replacing the three resistance
divider circuits for E1-E3 with asingle resistance bridge (see Fig. 3.11 for schematic of
Conrad gun power supply). The rewiring draws more current across the
potentiometers, which means the gun will not be able to operate above 2.5 keV;
however, the gun is presently limited to 1 keV due to charging anyway. If the
expanded voltage ranges for the einze lenses do not improve the gun’s efficiency, then
the dramatic reduction in beam current shown in Fig. 4.3 might be due to space charge
limiting within the cathode housing. In any case, dismantling the Conrad gun is
strongly discouraged and may result in the loss of the electron gun because of its
fragileinner parts. Oncethe fractional error in the collector current is comparableto
1% uncertainty in the Conrad gun beam current, then the noise in the currents that
comprise the beam current measurement (see Table 4.1) can be improved through
rigoroussignal analysis.

Another advancement in the system would be the addition of sample heating
capabilities. Electron bombardment heating appears to be the easiest method of
heating dl the samplesin the carousel. The heater would hang down from the disc

above the sample stage that holds the cable in place. An optical pyrometer has been
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suggested for monitoring the temperature, but the transmission through the chamber’s
viewports and outside air make this a complicated option. A sample module with a
thermocouple could be used to calibrate the electron current with the heating of agiven
sample, but generalizing to other samples might be difficult. Mounting athermocouple
to awobble stick seems to be a more practical, athough expensive solution.

The HGRFA used for the present study is the first generation of the instrument
and works remarkably well given the complexity of the design and construction. The
detector could be better characterized if the SE and BSE yields were measured for the
two different sizes of sample slugs made out of identical material. The contribution of
reflected BSE’ s to the sample surface that creates unwanted emission could then be
assessed. The assumption is that the smaller samples suffer less from the
contaminating signal and would therefore have the more reliable yields, but there may
not be a measurable difference. Before any modifications are made to the HGRFA, a
straightforward experiment should definitely be conducted to provide internal validity
to the correction factors discussed in Section 4.B and detailed in Appendix C. The
suppression grid current is measured for diagnostic purposes, but is kept separate from
the collector current. The opacity of the suppression grid prevents emitted electrons
from reaching the collector, an effect accounted for in the theoretical correction factors.
By adding the measured suppression grid current to the collector current, the
suppression grid and collector surfaces can be viewed as the effective collection

surface. Thistechniqueis commonly used in other SE detectors that use a suppression
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grid system (Sternglass, 1953b; Thomas and Pattinson, 1969; Miller and Brandes,
1997). Including the suppression grid in the collecting surface avoids the problem of
compensating for the grid opacity and worries about differencesin effective
transmission due to focusing when the grid is biased. Being able to avoid these
problemsis balanced by the additional problem of compensating for the total yied
emission from the 304 stainless steel grid wires, which now would represent a current
loss from the expanded collection surface. The theoretica correction factorsin
Appendix C would have to berevised. Thisexerciseisan ideal opportunity to test the
assumptions and methodology used to derive the correction factors. Changing the
experimental method and revising the theoretical correction factors should still give the
sameresults as before. Thisinternal check on the vdidity of the theoretical correction
factors could substantiate the higher yields discussed in Section 4.B. Including the
suppresson grid in the collection surface would have the added bonus of more closely
matching experimental methods in the literature, which also benefits future
comparisons like those in Section 4.B, although the inner grid is still a unique feature.
There are also more invasve improvements that are not recommended unless a
complete characterization of the HGRFA has been done and the viability of the
HGRFA itself iswilling to berisked. One relatively easy change would be to remove
theinner grid. The benefits are the HGRFA would then be more consistent with other
instruments in the literature, resulting in possibly better agreement, and the

transmisson of theinner grid could be experimentally verified by comparison with
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previous results. Once these two benefits were realized, the inner grid could be
returned and the low energy SE or the incident electron beam would not be affected by
high potentials on the suppression grid, necessary for the study of high energy BSE. A
radical change would be to include the faceplate in the collection surface. This change
would require that the faceplate be grounded to the collector and isolated from the
sample stage, which are presently connected by the pin that keeps the HGRFA at the
correct distance and orientation from the stage. The inclusion of the faceplate in the
collecting surface would also require the suppression grid be extended across the
faceplate to the edges of the sample, in order to eliminate unwanted SE emission from
the faceplate. Theinner grid would have to be removed and the supporting structures
for the suppression grid on the face would have to be wdl shielded from the interior of
the HRGFA, as was done with the supporting bolt and washer assemblies of the current
suppression grid (Frederickson and Matthewson, 1971). The complexity of the
modification would effectively mean the construction of a completdy new HGRFA,
which is not warranted by the present performance of the HGRFA.

Given the experience derived from building the instrumentation, some
comments on the ided detection system should be addressed. Following Sternglass
(1953b), Whetten (1965), Thomas and Pattinson (1969), and Miller and Brandes
(1997), aspherical detector seemsidea. Theinner grid' sfield free region would be
sacrificed and the suppression grid would be included in the collecting surface. The

advantage is that BSE scattering off the collector surface would most likely miss a
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small sample and return to the collector, which means there is no lost current or
unwanted production of SE’s at the sample. The disadvantage isthat SE’s are created
on the suppression grid and are propelled towards the sample during the suppression
mode when the sample has a positive potential with respect to the grid. As mentioned,
Sternglass (1953a; 1953b) does an excellent job of correcting for this effect. The main
complication with a spherical detector isthat the need for asmall sample surface
makes the study of a number of samples under the same experimental conditions very
difficult. Oneway to avoid thisisto use a cube for the sample stage at the end of a
rotatable arm. The electron beam isintroduced at aright angle to the rotatable arm so
that four faces of the cube, with three samples and a Faraday cup, can be individually
exposed to the beam by rotating the cube faces. The complexity of mounting three
samples and a Faraday cup on a suitably small cube should not be underestimated. The
collecting surface might have to be expanded to compensate, as was done in the work
by Thomas and Pattinson, rather than try to squeeze the samples onto a small cube.
The use of a spherical detector also complicates the use of multiple sources, which
were necessary for thisinvestigation. Any number of sources could be used in the
plane perpendicular to the rotatable arm, but holes would haveto be drilled through the

collecting surface and suppression grid for each source beam.

Section D. Suggestions for Future Research
The results of this dissertation raise questions about the electron interaction

mechanismsinvolved in the SE emission of small bandgap semiconductors. Theidea
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of athreshold energy for the bandgap to play arole in SE emission, as suggested in
Section 2.B, must now give way to a more complicated picture involving the
probability of electron-electron scattering near the conduction band minimum.
Theoretical development must be advanced beyond the simple energy band diagrams
discussed in Section 2.B. The semiempirical models outlined in Section 2.A were
sufficient for gauging the important parameters responsible for the increased SE yield,
so perhaps providing a better theoretical understanding of those semiempirical
parametersis the place to begin. For example, what is an appropriate relationship
between the SE mean free path and the bandgap?

The opportunity for comparative study provided by the amorphous g-C sample
along with the microcrystalline graphites raises the question of whether this same type
of study could be conducted with other semiconductor materials. The graphitic
carbons had the advantage of being rdatively inert to adsorbed surface contamination.
Other factors that may plague similar semiconductor studies are the effects of defect
scattering and bandbending. The prospect of conducting a similar study in other
semiconductors may be worth the difficulty for a better understanding of the important
materid propertiesin SE emission, regardless of whether bandgap can be successfully
isolated.

The next step in continuing this area of research is to anned the g-C sample and
study the relationship between bandgap and the maximum SE yield as established here

by varying the bandgap within essentially the same material. The g-C should be
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evaporated straight onto a molybdenum substrate to avoid the blistering noted in
Subsection 6.A.5 due to trapped water. The complete reduction of the bandgap may
require temperatures beyond the available vacuum oven’s capacity of 1050° C
(Rouzaud et al., 1983). Thereisafull discussion of annealing the g-C samplein
Subsection 5.A.5. After annealing the samples, the bandgap can be characterized using
optical absorption measurements and applying the Tauc equation (Elliot, 1990). In
addition to the Tauc gap, there is another method for characterizing the bandgap called
the E,, gap at which the absorption coefficient equals 10¢ cmr®. The annealing and
bandgap characterization might need to be iterated to find the important annealing
temperatures. Similar annealing and bandgap research has been done by Ferrari et al.
(1999) with tetrahedral amorphous carbon, but the material is so different from g-C
that only the methods of the research would be applicable. Although annealing studies
of the Raman spectra of amorphous carbons have been done (Wadaet al., 1980;
Rouzaud et al., 1983; Dillon et al., 1984; Dallas, 1996), there are no published works
relating the bandgap of g-C with annealing temperature, which would also be a
noteworthy contribution. Measuring other material properties of the annealed g-C
samples might also be of interest, both in general and to better evaluate the assertions
in this dissertation. Measuring the resistivity with afour-point probe and the density
with a gravimetric method are the two most important factors identified from the
present study. Care must be taken using afour-point probe with the thin and brittle

annealed g-C samples.
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The annealed g-C samples would then be introduced into the vacuum chamber
along with unannealed g-C, HOPG and Aquadag™ samples for areplication study.
Cleaning the samples in situ would require some type of low temperature heating as
described in Section 7.B. Sputtering with ions should be avoided to ensure aflat
surface that is free of defects, but a careful study of the effects of sputtering would be
of interest to compare with the available studies (Wintucky ez al., 1981; Goto and
Takeichi, 1996; Caron et al., 1998). The study would definitely benefit from not
having oxidation or hydrogenation — resulting from the vacuum contamination due to
venting, for example — as confounding variables like the present study. The
temperature necessary for the desorption of hydrocarbons is assumed to occur below
the 800° C needed to change the structure of the g-C, but no references were found
during the review for this study. A careful study of the yields of the already annealed
g-C as afunction of sample heating would solve the dispute and might also provide
interesting results.

M easurements of the photoemission onset would also be necessary to
characterize the vacuum level of the samples. Instead of measuring the sample current,
as was done to get the photoyield, the HSA could be used to get high precision
measurements. The benefit of higher resolution with the HSA is counterbalanced by
the lack of knowledge about the absolute photoyield due to the use of an dectron
multiplier, which amplifies the current by an unpredictable amount. The absolute

photoyield is not important in characterizing the vacuum level, which requires only a
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comparison of therelative photoyield onset energies. The HSA energy measurements
can be precisdy calibrated from the Fermi level usng a distinctive peak in the SE
energy distribution of HOPG or Aquadag™ (Oelhafen and Freeouf, 1983).

The straightforward question of future work is to verify thereis acorrelation
between the bandgap and maximum SE yied. The present work suggests this should
be the case. If the bandgap varies, but the yield remains unchanged, then the higher
yield is probably due to a surface contamination effect. The photoyield results of the
present study make this result unlikely. Secondary to the verification of the influence
of the bandgap on SE yield isthe way in which the gap closes. There could be a
gradual reduction in the amorphous structure or a dramatic shift over asmall
temperature range. Either case would be of interest, not just in the investigation of SE
yield, but to the community of researchers interesting in characterizing amorphous
carbon materials aswell. The larger question for future research is a theoreticd
description of the nature of the rdationship. An equation like Eq. 2.15 that can rlate
the bandgap, or at least the MFP, to the maximum SE yield could be the basis for a
theoretical fit that would pin down fitting parameters can be assumed to be constantsin
0-C, like the SE escape probability B or the stopping power coefficient 4 for the
incident beam. Being able to quantify the relationship between the bandgap and the
maximum SE yield would bring the theory of bandgap in semiconductors from the
gualitative arguments presented in Section 2.2 into the realm of quantitative science.

The main question of this section is to decide whether the proposed study above
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could be conducted with the present equipment. Assuming the full 0.5
electrong/electron variation in the SE yield between g-C and HOPG or Aquadag™ (see
Table 6.1) can be spanned by the anneding process, then the present 0.04
electrons/electron error (see Table 6.1) leadsto roughly five measurably distinct points
within the gap. Again, the question of the reliability of the absolute yield values does
not pertain to this future work. Reducing the error can now be seen as being of vital
importance in increasing the resol ution of the relationship between bandgap and SE
yield. The capacity of the available vacuum furnace is a major weakness to the future
study. Thefull variation in the SE yield measured here would most likely not be
spanned by annealing g-C at 1050° C. Thereduction in the error is all the more
important. With the roughly 20% reduction in the error anticipated above, there could
possibly be 10 distinct data points over the full variation in maximum SE yield. Given
the success with the variable stopping power model, further reduction in the error bars
might also trandlate into better estimates of the maximum SE yield as afitting
parameter. Although individual measurements might not be distinguishable, the fitted
curves could still be measurably different. The bandgap also should not be assumed to
vary linearly with annealing temperature, so predicting the ability of future work to
measure changes in yield is all the more complicated. Repeated study of the
phenomenon might be the only way to lend credibility to the results.

The outcome is not certain, but even modest estimates for the anticipated

performance of the apparatus make the future study of the reationship of bandgap to
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the SE emission properties of g-C, and the ancillary works mentioned above, too
appealing to be avoided for fear of not discerning the results. Take the success of the

present study in the face of the uncertainty that presented itself at the onset as the

necessary encouragement.
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APPENDIX A: VACUUM CHAMBER DETAILS

This appendix includes details about the vacuum chamber, including a
description of the ports at the lower surface anadysis level of the chamber and
measurements of the magnetic fields inside the chamber.

Table A.1 containsalist of all the flanges located at the lower level of focal
pointsin the UHV chamber. There are two separate focal pointsin the lower level
plane, not including the center line (CL). Onefocal point (X=2.084", Y=1.203",
Z=6.125" where coordinates are specified in Table A.1) is for use with the HEED gun
as the source and the other (0.979",2.198", 6.125") isfor use with the UV light source
and the HSA. The items mounted on the ports are the configuration used for this
dissertation research. Refer to Section 3.A and Fig. 3.2 for further details.

The magnetic field inside the UHV chamber was measured shortly after the
magnetic shielding was inserted. The magnetic field was measured with a gaussmeter
using both transverse and axial probes (Bell model 640). Figure A.1 shows a set of
magnetic field measurements determined by dropping the gaussmeter down into the
chamber at alocation near the HEED gun focal point (FP1in Table A.1). The flux of
magnetic field lines through the gaussmeter was varied from north-to-south, east-to-
west, and through the z-axis itself by holding the gaussmeter perpendicular to those
directions or varying the type of probe tip used by the meter. The total magnitude of

the magnetic field was computed by adding the three measurements in quadrature.
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Figure A.2 shows asimilar set of measurements at alocation near the turbomolecular
pump flange (L13 in Table A.1), opposite the HEED gun focal point. A set of
measurements from the HEED gun location is included on the east-to-west gragph as a
reference for the fidd’ s decrease in size.

The average magnetic field in the chamber is roughly 60 milligauss.
Subsequent rough measurements revealed the 100-150 milligauss magnetic fields in
the chamber were emanating from instruments that protruded into the chamber. Figure
A.3 shows amore detailed study of the magnetic fields near the HEED gun focal point.
The PHI ion gun was dso studied, but was later moved to its recent location givenin
Table A.1. The hemispherical analzyer (HSA) isnow at the previous location of the
PHI ion gun when the magnetic field measurements were conducted, so similar fields
can be expected due to the tip of the HSA. An angular study was conducted by moving
the probe in an arc at afixed distance from the HEED gun tip. The angle was then
measured with respect to the direction the HEED gun points. Figure A.4isasimilar
detailed study, but islocated at the tip of the cylindrical mirror analyzer (CMA) in the

upper level of the chamber.
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FIG. A.1: Magnetic field measurements along z-axis near HEED gun focal point.
There are two sets of dataand a mean. The magnitude of the magnetic field is
computed and shown in the graph at lower right. The graphs are labeled LEED and
HEED to correspond to the upper and lower levels of the vacuum chamber.
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FIG. A.2: Magnetic field measurements along z-axis near the turbomolecular pump
flange. There are two sets of dataand amean. The magnitude of the magnetic fieldis
computed and shown in the graph at lower right. The graphs are labeled LEED and
HEED to correspond to the upper and lower levels of the vacuum chamber.

M easurements from the HEED gun focal point are included on the east-to-west graph
as areference for the decrease in the magnetic field.
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FIG. A.3: Magnetic field measurements at the HEED gun focal point. Thetop graph is
an angular study conducted by varying the angle of the probe with respect to the
direction of the HEED gun tip at afixed distance. The remaining graphs are more
detailed studies, similar to thosein Figs. A.1 and A.2, at the HEED and ion gun focal
points that are labeled HEED on the plots. The position of the lon gun at the time of
the measurements is presently that of the HSA.
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FIG. A.4 Magnetic field measurements near the CMA focal point. Thetop graphisan
angular study conducted by varying the angle of the probe with respect to the direction
of the CMA tip at afixed distance. The remaining graphs are a detailed study of the
magnetic fields, similar to those in Figs. A.1 and A.2, near the CMA focal point that is
labeled LEED on the plots.
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APPENDIX B: FARADAY CUPTESTS

This appendix details the experiments that establish the Faraday cup, discussed
in Subsection 3.C.1, as an accurate measure of the beam current. A Faraday cup (FC)
typically has a 10:1 ratio of aperture diameter to depth. The 10:1 ratio ensures the
solid angle of the gperture, as seen from the bottom of the FC, is < 3% of the emitted
distribution of SE and BSE that result from the incident beam bombarding the FC.
Conforming to this standard, the 25 mm depth of the sample stage module limits the
diameter of aFC to <2.5mm. A holewasdrilled at the top of each module to act asa
simple FC with a2 mm diameter and a> 20 mm depth. A larger FC was needed for
characterization of the HEED and Conrad gun beam currents and spot size.

The solution wasto use a limited ratio of 2.75:1, whose solid angle is roughly
11% of thefull field of view. We made up for the potentid loss of BSE and SE with
three solutions: Machining an angle into the base of the hole to diffusely scater BSE
(Miller 1966), coating the cup with a colloidal graphite called Aquadag™ to reduce the
SE and BSE yields (Sternglass, 1953b; Ruzic et al., 1982), and biasing the cup to
positive voltage to retain the SE produced on the inside of the cup. The final design of
the FC, which will be referred to as the FatMan FC for the purposes here, and tertiary
aperture inside a sample module are shown in Fig. 3.9 of Subsection 3.C.1.

To find the positive voltage of the FatMan FC that results in the measured

beam current being equivalent to that measured by an FC with a 10:1 ratio of aperture
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diameter to depth, the following experiment was purposed: The beam current as
measured with the 2-mm diameter hole in the module would be compared with the
current measured with the FatMan FC as a function of increasing positive voltage. The
positive voltage needed to make the current measured by the two FC's equivalent was
presumed to be < 25 volts because the SE energy distribution is peaked at much lower
energy (e.g. see Fig. 4.1). The BSE slost by the larger aperture ratio cannot be
expected to be recaptured, but the Aquadag™ coating ensures that thislossis < 7% and
the angle at the base also decreases the loss by diffusdy scattering the BSE. Thetime
between the two measurements must be kept to a minimum to ensure there has been
little change in the actual beam current from the eectron gun.

The HEED gun was chosen for the experiment because its beam spot can be
focused to < 2 mm for the module' s FC and has been shown to have a very stable beam
efficiency (defined as the ratio of beam current to emission current) for several
minutes. Initial investigations also proved large beam currents were necessary for the
el ectrometer to adequatdy discern the small difference between the beam currents
measured by thetwo FC's. A beam current of roughly 80 nA was used for the final set
of experiments. Before the experiment was carried out, a beam profile was measured
using the edge of the FatMan FC to ensure that the beam would fit entirely into the
module FC. The current to the aperture of the FatMan FC, or the tertiary current, could
also be measured and isindicative of the focus of the beam spot entering the FC. The

tertiary current was measured to be < 0.1% of the beam current and shows the entire



187

beam enters into the FatMan FC. Initial test also revealed the offsets encountered
using two separate electrometers for the module and FatMan FC were on the order of
the difference in the currents being measured. The solution was to use asingle, high
precision electometer (Keithley 616) and simply switch cables between the two
measurements. A beam energy of 4.5 keV was used to maximize the SE yield and
produce as many SE as possible so the results would more closely match the situation
faced by the Conrad gun at lower energies where the SE yield is higher.

The results of these experiments are presented in Fig. B.1. Notice the
efficiency of the HEED gun is plotted on the y-axis and hagppens to be negative because
of the conflicting signs of the beam and emission currents. The two measurements of
the efficiency by the module and FatMan FC are shown as solid linesin Fig. B.1. The

data points are the efficiency measured by the FatMan FC with increasing positive bias
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FIG. B.1: Percentage efficiency of the HEED gun as measured by the module FC and
the FatMan FC as a function of positive voltage bias.
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of the FC. Thereisacurve corresponding to one set of measurementstaken to a
maximum of +10 volts and another to +25 volts. Notice that the curves have two
characteristic slopes. Below +6-7 volts the current is collected more rapidly than at
higher levels of positive bias, where the current increases linearly. The low voltage
collection of current is characteristic of recapturing low energy SE emitted by the FC
surfaces. In fact, calculating the derivative of the curvesin Fig. B.1 leadsto a crude SE
energy distribution curve. The fact that the slope changes just after the collected
current begins to agree with the current measured with the module FC is not a
coincidence and is further proof the majority of lost current by the FatMan FC are low
energy SE's. Comparing the performance of the two FC’ s with the estimated
performance based on geometry gives an estimate of the percentage of SE’s escaping
the FatMan FC. Again, the 10:1 ratio of the module FC retains 97% of the SE and the
2.75:1 ratio of the Fatman FC retains 89% of the SE just due to geometry. Assuming
the asymptotic behavior of the voltage bias curve in Fig. B.1 relates to roughly 100%
of the SE being retained, then the 1.5% differencein efficiency between the FC's
means roughly 80% of the SE expected to escape the FatMan FC based on geometry
are being retained by the voltage bias.

A value of +10 volts was chosen as the positive bias for the FatMan FC asa
compromise between ensuring most of the SE are recaptured and disagreement with
the Module FC. At +10 volts, the FatMan and module FC' s disagree by < 0.3%.

Subsequent experiments at beam energies up to 14 keV showed that the two FC’ s agree
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to within the same precision. The result of these experimentsis that all measurements
of the beam current in this dissertation were taken with the FatMan FC, biased to +10

volts, and an absolute uncertainty in the beam current of < 0.5%.
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- APPENDIX C: THEORETICAL CALCULATION OF
SYSTEMATIC CORRECTIONS FOR SE AND BSE YIELDS

“NOTE: The following derivations are a printout from a Mathcad™ document that
uses variable and function definitions (e.g. x = 10-c: ) to actively compute the

correction factors outlined below. The font, text spacing, and pagination will vary in
this Appendix due to the Mathcad™ format.

'With an ideal collector, the yields for a sample "s" are calculated from the measured currents in the following way:

. where
Total yield o= 1.(0-V) Collector current in "collection”
Iy , -mode (grid is grounded).
: 1(-50V) © . 5. . -
BSEyield 1 .= c I.( 50-V) Co]']ector'cu_r_rent in "suppression
s Iy mode (grid based to -50 volts).
. 1,(0-V) - 1.(-50-V)
SE yield 8§ =0 -Mg= : IFN Electron gun beam current that

Iy ’ actually hits the sample.

The point here is the collector curent during either of the two modes is altered via currents lost or created by the
grid wires and geometry of the detector. There are also errors due to mis-measurement of the beam current that
hits the sample 1y, but that issue is largely related o the Faraday cup and the electron guns and not the internal

geometry of the detector.
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Consider the collector current measured during the "collection” mode I c(O-'V). This measurement suffers from

psuedo-source terms from unwanted scatter, and loss terms due to electrons not reaching the collector :

1,(0-V)=lyog— T1oss + L source .

These source or loss terms scale with the current reflected from the sample, so we can write them as fractions of
the beam current: :

1.(0-V)=Iyo s'(1 ~Floss + fsource)
where the currents, I, have been replaced with a fraction { of the beam current. The total yield is then,
1.(0-V)
o= :
Ib’(l ~fross * fsomce)

where  f1555=f surfaces + fo+rfp

Corrected total yield

Electrons from the sample that hit surfaces before reaching the collector (Ist &

" fsurfaces N
2nd order corrections).
fe Electrons that backscatter off the collector (2nd order corrections).
fh Electrons lost out the beam pipe (2nd order corrections).

where  fsource™f2xBSE * fse

foyggp  Temms invol'v:ing muhjple BSE scattering that get back to collector (higher
order correction).

Current measured at the collector due to SE produced on surfaces other

f
SE
than the sample (higher order correction).
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Proceeding in this way, we find these terms depend on the relative size of the SE and BSE populations that
make up the total yield. Since the measured BSE yield will have to be addressed separately, let's consider that
measurement now. Following the same logic as before, we find: .

o 1 (-50V)
S
1b-(1 — {BSE g5 + BSE some)

Corrected BSE yield

ATl the above definitions still apply (with fBSE instead of f). We need to make the following assumptions:

ASSUMPTIONS:
1. The SE and BSE energies are sufficiently distinct as to be treated as separate populations.
2. The bias grid effectively screens out the SE's created at the sample from reaching the collector.
Solid assumption, backed up by experimental results.

Admittedly, the situation is still complicated and we need a few more assumptions.

ASSUMPTIONS:

3. Electron trajectories are dominated by their emission angle, regardless of their energy.

Error caused by focusing to or away from gri‘d wires is not considered. This assumption is reasonable
for all but the lowest energy electrons.

4. Electrons with < 50eV (SE) that hit any surface do not produce electrons.

Based on yield curves for materials used in this calculation (e.g. see Section V.B), this assumption is
reasonable. Yields atroughly 10 eV, where most SE are found (see Fig IV.1), are typically << 10%

of the maximum yleld.

With these two assumptions, we can use the opacity of the detector surfaces just due to detector’s geormetry and’
the emission angles of the electrons to calculate all the loss terms above. This effective opacity is also important -
since the "lost” electrons that hit surfaces f gyrfaces (and the backscatter off the collector BSE() are ultimately

the source current that creates the unwanted SE and BSE I f ;e WE begin by calculating the fraction of the

“total solid angle (hemisphere) that 2 surface subtends; however, we also weight the angles by the distribution of
the SE and BSE emission angles from the sample. The SE population is inchided i this section for later use.
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Surface's fraction of total solid angle weighted by the apgular
distribution of the BSE or SE emitted from the sample.

We first need to determine the relevant angles, measured from the sample normal (0 deg) to the faceplate (90
_ deg), for the beam pipe, tantalum ring and the edge of the inner grid.

o, The angle subtended by the beam pipe's hole (to ID).
TInner diameter of beam pipe: 1D pipe = 0.198-in

The distance from the beam pipe to the sample is complicated:

Length of beam pipe, minus holder width: L pipe = (1.011 - 0.135)-in
(Fatman vol I, pg. 045 yellow) o

Back of cover to sample: D o= 1.972-n
(Autocad "cover2.dwg")

Distance from sample to beam pipe face: R topipe = DL pipe
The angle is then: : o, = atan(—ﬁrf-———l———
. ' 2 R topipe
o, = 5.16-deg
o Theangleto the beam pipe's OD.

Outer diameter of beam pipe: OD pipe = 0.240-in (ésﬁ.mate based on assumption the pipe
. C fits in the 1/4” hole SDL machined in the

beam pipe holder)
9] JE :
The angle is then: L= atan( pipe 1
. . o . 2 R topipe

a, = 6.25-deg
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o 3 The angle to ID of tantalum ring

(rough estimate from video log

Tnner diameter of tantalumring:  ID 35 = 0.32-in
: A at 8 min 14 secs)

Distance from sample to
tantalum ring: "R totring (1.232)in  (Autocad file "asmdtct2.dwg”)
. . D tring 1
The angle is then: Oy = asin o
R totring
o, =7.46-deg

a, The angle to OD of tantalum ring

" Outer diameter of tantalumring: OD tring = 0.45-in- (rough estimate from video log
' " at 8 min 14 secs)

: OD o -
tri 1
The angle is then: a, = asin i
' 2 Riotring
a, = 10.52-deg

as The angle where collector becomesAb]o‘cked by inner grid ring

o = 85.73.-deg (derived from inner grid rings’ ID and
thickness on AutoCAD drawing
o masmbdict2.dwg”)
Let:  o:=0-deg og= 90-deg
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Now we wish to integrate over the discrete angles, but weight by the angular distribution of the SE
or BSE emitted from the sample. '

SE angular distribution: SE éng(“) = cos{at) [Jonker 1951]
onciac "~ the ona-fam i 1 1 . d R f.h : di j .
miBSC?a":'bN)i?]: fCl gn 2};3_ cos’(’oc])’,) pistribution is a Screened Rutherford distribution:
where b is the screening parameter for the sample (using the

~ value for Au b := 0.251 from Davies [1999])

Better models for the BSE angular distribution are derived with Monte Carlo simulations, for which there
is ;o analytical function; however, we can use a fourth order cosine series as a model [Davies 1999]. -

BSE angular distribution based on 4th order cosine series:
BSE ang(ot) =0.884- (cos(cc)4) +-1.17- (cos(a)'?') + 0742-(cos_(a)2) + 0.097-cos(a)- .

We graph these functions for comparison: 0:=0,1-deg..90-deg

1A

0.5

; - . -1 1] | ¥}
0 15 30 45 60 75

) Angle (degs)

*°~ SE cosine distribution
— Scireened Rutherford
— = BSE cosine series (4th order)

~ Notice the sc-r'eeﬁe.d Ruilierford distribution is non-zero at 90 degrees, which is unphysical and wﬂlmrpact ihe.
subsequent analysis. Using the fourth order cosine series with the coefficients that were experimeritally

Qeﬁved for Au is justified because we are only interested in the shape, which should not be dramatically
-sample dependenﬁ (polycrystalline or amorphous samples).
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We can calculate norma]izaﬁohs for the distributions:

90-deg
SE horm = J SE ang( o)-sin(a) da
' 0

) 90-deg
BSE orm = J BSE ang(a)-sin(a) da
-0

Here are the discrete weighting factors, where the SE cosine distribution and the BSE cosine series are used
to weight the six solid angles subtended by portions of the hemisphere outlined above:

where - 1:=0..5

%

1 ' e A Unweighted:
SE angw, i el SE ang(oz) sin(a") do |
T o } ‘ : %1
Ang gy, = sin(a’) do’
3
- %t : 7%
— "N, oF ¥ '
BSE angw, ~ BSE BSE ang(“) sin{a’) do
norm |-
1
The percentages of SE and BSE throﬁgh the various angular regions:
‘SE“angwi-loo BSE angwi'loo Ang Uwi-lOO
0. lost out the beam pipe: - 1081 128 - 041
1. hitting end of beam pipe: 038 - 10.59 0.19
2. passing through the gap: 0.5 0.78 0.25
3. hiding the el ing: 165 2.51 . [0
- going through both grids: 96.11 94.41 [90.87
5. hitting the inner gnd rng:
. 0.55 044 7.45

The weighted distributions see more electrons lost at-'thé near normal angles:- A]so‘noticé the mﬁw’eighted--: -
distribution Ang 13, predicts an unphysical amount of electrons 16st at oblique angles (83-90 degrees).
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Recall the goal for the 1st & 2nd order BSE corrections from the beginning:

Lost BSE current in suppression mode

fBSE 105s=BSE gurfaces + IBSE ¢+ fBSE 1,

where ,
fBSE yrfaces BSE fromthe sample that hit surfaces before reachin I:4 the collector (1st & 2nd order
corrections).
fBSE . BSE that backscatter off the collector, while the SE population is retained by a 50
volt potential difference between the collector and the bias grid (2nd order
correction).
fBSE 4, BSE that are Jost out the beam pipe (2nd order correction).

The fraction of the BSE yield lost out the beam pipe

BSE = BSE angyy,

fBSE},=1.28-%
We can now look at the fraction of electrons that hit surfaces before reaching the collector.

BSE gurfaces=1BSE cbp + 1BSE g + fBSE g + BSE s

where

fBSE ¢bp BSE thathit the end of the beam pipe (2nd order correction). .
fBSE ;,  BSE that hit the tantalum ring (2nd order co-rrecﬁon)
fBSE ibg BSE that hit either the inner or bias grid wires (Ist arder correction).

1BSE igr BSE that hit the inner grid ring (2nd order correction).

Again, assuining trajectories are unaffected, the above: 2nd order-quantities.can be deﬁned as the surface’s -~ --
fraction of the hemisphere’s solid angle. :

BSE g, = BSE angw,  fBSE g, =0.59 %
{BSE i := BSE angyy, fBSE ;. =2.51-%

BSE jgr = BSE gy, fBSE ;5 =0.44-%
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The only exception is the BSE that hit either of the grid wires fBSE ibg Since a large part of this ti)eoreﬁcal :

correction was anticipated to come from the opacify of the grid wires, an experiment was done to measure the
transmission of the grid wires exacily as they are mounted in the detector. :

Experimental measurement of both grids ransmission:  t7orjgg *= 70.16-%

Although the measurement of the two grid transmission has an accuracy of better than 0.5%, the
effective grid transmission as measured with photoclectrons differed by 3%, which translates directly
into the same uncertainty in the corrective factor derived below.

Opacity of both grids: P 2prids = 1- t2gn‘d§
The fraction of BSE lost to either grid W].I"eS isthen:  fBSE jbg =P Zgﬁds'BSE angw,

Weighted by BSE angular distribution vs. unweighted
fBSE ibg =28.17"% . P 2grids'Ang Uw, =2712-%

Intotal, we bave:  BSE yrpaces = {BSE b *+ fBSE g + {BSE o + BSE jor

fBSE gyrfaces =31-71%

fBSE . BSE that backscatter off the collector (the SE population is retained by a 50 volt
potential difference between the collector and the bias grid).

With the effective surface opacity, we can define an effective transmission for BSE to the collector tBSE c
and derive the fraction of the BSE created at the sample that reach the collector and backscatter off.

Effective transmission for BSE to collector ~ 1BSE ;= 1~ (BSE ang,,* {BSE smfaces_)

- Notice the BSE lost out the hole BSE L subtracted from the transmission as well.

EWo .
The fraction of BSE that subsequently leave the colle7*or . ho '
depends on the BSE yield of Aquadag: 7 aquadag = 7% from Stemglass [19532]

There is also a fraction that return to the collector without going through grid wires. These ‘BSE are enutted at
oblique angles and travel through the gap between the collector surface and the_suppression grid, back to the . .
collector.

‘We estimate this fraction'js roughly: ' vf return = 12°%
Fraction of BSE not collected:  1BSE ¢ = 1BSE ¢ yquadag (1~ Fretum)
| | {BSE ,=413'%
+ Now, sunming all the terins together again, we find:  {BSE o = {BSE @aces +1BSE . +1BSEy,
| fBSE 1o =37-11+% '

Notice that scattering off the grid wires (Ist order comection) ~ 1BSF ibg 75 015
- - ]

accounts a majority of all scattering corrections: BSE10es
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Unwanted SE and BSE current in suppression mode .

The terms of unwanted electron current to the collector during the suppression mode (higher order corrections):

fsource=f2xBSE T fSE
where

foypsg  Terms involving multiple BSE scattering that get back to collector
fsp Current measured at the collector due to SE produced on surfaces other
: than the sample.

We treat the second term f SE first because it is the easiest to approximate. In the suppression mode, thé electric

field between the inner grid and bias grid is assumed to repel all the SE, even if they are created there by
subsequent BSE scatter. The termis then confined to SE produced by BSE that impact the bias grid. We make
an assumption,

ASSUMPTION:

The field penetration of the attractive potential (from the collector) through the bias grid is insufficient to
attract SE produced on the sample side of the bias grid back toward the collector.

ASSUMPTION:
With this assumption, the term is limited to SE produced by backscatter off the collector {BSE  hitting the bias
grid and creating SE.

" BSE hitting other surfaces in the region of interest (the tantalum ring and beam pipe) would fiicrease this
~ correction, but the percentage of the solid angle from the viewpoint of the collector BSE is assumed to-
be too small to justify the effort. C
We proceed by defining the opacity of the bias grid, which was experimentally measured:

Experimental transmission for bias grid tpg = 84.39-%

_ Error in transmission (just experimental): terry,, = 021-%

Opatity Pppgi= (1-tpg) Ppg =1561'%
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Instead of using this opacity, we will go further to model the difference between the opacity seen by scatter from -
the sample and the opacity seen through the backside of the grid. :
ASSUMPTION: '

" 1. We will assume that scatter from the sample sees the opacity of the grids as experimentally measured;
however, scatter through the backside of the grids falls off as 2 cosine of the normal angle and includes the
weighting of the BSE angular distribution. The cosine weighting is an approximation of the opacity seen by

a point with the grid wire parallel to the surface.

90-deg
BSE ,1,,(6)-cos(6)-sin(8) 0

0
Pobg =1~ tbg ™ 50 aeg | D pbg =41:27-%
J ‘BSE éng(e)-sin(e) @
. .. - . . . Pbbg
Notice that this is more than double the opacity from the forward direction: ——==2.64
: . : | Pog

The source curent to the back of the bias grid would then be, fBSE ;P bbg = 1.7-%

ASSUMPTION: .
The SE yield of 304 SS is a function of energy. We will teke an average of the distribution by 6h1y using.
80% of the maximum SE yield. This approach will be taken for 2l the SE yields.

SE yield of 304 SS: 8 3405 = (12)-80.% 8, at 450 €V from Ruzic [1982]

fsp = 830455 BSE cPhpy  fgp=164%
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The scattered BSE term f 5, pgp is by far the moét complicated. Estimating the term involves theoreticaily
predicting what amount of the original fBSE grfaces = 31.71 -% and the fBSE  =4.13-%return to the

collector surface. To make the problem even marginally tractable, we make the following assumptions:

ASSUMPTION:

1. Again, forward scatter uses the experimentally measured opacity while scatter through the backside will
use the cosine weighted opacity.

2. The sample, module and detector's faceplate (or sample/module/faceplate) are assumed to see a wniform -
distribution of the BSE that scatter from other surfaces.

The second assumption means we can account for the BSE yield of the sample/module/faceplate by defining an
effective yield for the whole surface that is weighted by 2 constituent's. fraction of the whole surface area:

Effective BSE yield of face estimation

Sternglass [1953a] chose a spherical design to avoid this whole question (pg. 22 in Sternglass dissertation).
He assumes he can estimate the error from BSE hitting his target by a ratio of subtended solid angles (pg. 21).

Fredrickson [1971] deals with this problem in detail (see pg. 33), but he connects the collector and detector -
face and therefore only worries about BSE that reach the sample. He makes the point an isotropic flux to the
face may be in error, but assuming diffuse scattering from the grids to the face seems acceptable (given that the
wires are round). Scatter from the collector to the face may be nfluenced by the BSE angular distribution.
There are two main points from Fredrickson's work: 1) He uses the ratio of sample to face areas to estimate

the fraction of BSE retumning that scatter from each and 2) he proposes a simple experiment to actually measure
those currents. - : ' :

ASSUMPTION:

The estimation of the effective BSE yield of the faceplate/module area will proceed with the assumiption
the BSE diffusely scatter in such a way as to uniformly cover the faceplate/module area. The effective

. BSE yield is then given as the surn of the BSE yields of the faceplate (coated with Aquadag) and the
module (OFHC copper), weighted appropriately by their fraction of the total area. The uncertainty m
this assumption versus assuming the BSE undergo spectral scattering is discussed afler the calculation.
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The BSE yield of copper: 7 ¢yy := 0.27 averaged from Sternglass [1953a]

The BSE yield of Aquadag:

Area of the faceplate:
- (from AutoCAD file "FacePlt.dwg)

Inner radius of collector hemisphere:
(from AutoCAD file "cover.dwg")

Area of faceplate exposed to interior of collecior:

Areas covered on faceplate by the grid rings:

(still coated with aquadag)

Area of square hole in face plate:
‘(calculation based on "faceplit3.dwg”)

.Area of module face:
(assuming no sample)

. Gaps between faceplate hole and module: '

more Precise: (gaps at top & boitom only)

Area of centimeter sample insert:

Area of larger sample insert:
Ratios (for interest): -
2Te2 modul aredjog
_—e=]7_35>% __-‘125}‘:4.35-%
area g area 0

7 aquadag = 0-97

(from above)
area ¢ := 12.41-in®
fp
IR = 1.625-in

area fpe =7a-IR .cz

area pop = 0.961-in*
area igr = 0.809-1'r12

area gop = 1.8-in?
area o qule = 1.439-in?

area jog4 = €2 foh ~ area podule

area o5y = 1.5+im(1.24in~ 1.125-in)

area (o= 'n-(O.S-crh)z

area 1 = 7-(0.35-in)’

aréa area g p _
area goo area goo
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Effective BSE yield of face (weighted BSE yields of surfaces)

areca fpc -~ area fph) L (area module

= d + -
M face = N aquadag ( area g MCUN\™ rea oo ) 7 face =0-102

The assumption that the BSE diffusing scatter from surfaces in such a way as to uniformly cover the faceplate
can be challenged with the idea that the BSE undergo spectral scattering from the hemispherical surfaces and
return mainly to the module. Equating the effective BSE yield of the faceplate area to that of copper, when
coupled to the 3% uncertainty in the two grid transmission can be shown to have a 1.5% impact on the
corrective factor derived below.

NOTE: The samples have been neglected because their contribution is small and entangles the quantity of
interest into the corrective factor. : :

arca area 1s

oS 1.47-%

area pr . arca fpc

=4.64-%

- With those assumptions, we proceed by identifying the following terms
f; ofc Scatter off inner grid to the sample/module/faceplate, then back to collector.

- f 5gfc Scatter off the bias grid to sample/module/faceplate, then to collector

f cfe Scatter off collector, then sanwp}e/modu]e/facgp]ate, then back to collector
’ f bgige Scatter off thg bias grid, then the inner grid and back to the collector

f cbge Scatter off collector to the bias grid, then back to collector

f chge Scatt‘er off collector to the inner grid, then back to collector

There are 6bv1'oi_ls}y an infinite number of terms here, but higher order terms are anticipated to be
negligible. : ' :
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f igfe Eiror due to scatter off inner grid, then detector/module/sample face to collector.

This correction involves the BSE blocked by the inner grid,' the inner grid BSE yield (1 394g5g) the
detector/module face BSE yield (7 g, ) and BSE transmission to the collector (tBSE ).

We first need the opacity of the inner grid, which was not measured experimentally, but can be assumed to be
equal to the bias grid opacity:

pig=pbg plg=15.61 -% tigtzl“Pig tig=84.39'%

‘We compare this to the effective surface opacity of the beam pipe edge, inner grid wires, and inner grid ring;
weighted by the BSE angular distribution:

Pies BSE, . -100
- Pj g5, angw,
; 0 - PBSEjg = piggBSE gy
0 0.59
0 . o= -9
Pig 351 . pBSE ig 16.15-%
Pig - 1474
1 . 044
The transmission of the single grid, weighted by {BSE j, = 1- (pBSE_]-'g + BSE angw(‘))
the BSE angular distribution and without the solid ,
angle of the beam pipe: . '
{BSE ;, =82.57-%

The BSE yield of 304SS can be roughly approximated as that of iron (69% of total composition)

M irop = 023 from Sternglass [1953a] ' L

— _ 30488 =M iron

NOTE: Thereisa shght error here, since the end of the beam pipé¢ and the inmer grid ring are both coated
with Aqiiadag, but the difference 1s neglected.
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With the effective opacity of all the surfaces near the inner grid pBSE igand the effective BSE yiefd of the

éample/modu]e/facep]ate M face > We still have to describe the transmission of those BSE. Preﬁously, we had

used the BSE angular distribution since the BSE were created from a small spot on the sample. Given the
assumption the sample/module/faceplate see a uniform distribution of 2xBSE, we should no longer include the

BSE angular distribution.

We define an effective transmission from the sample/module/faceplate to the collector by using the unweighted
fraction of the solid angle seen from the sample Angjy, t0 approximate the space occupied by the various

surfaces:

t =

C.

1 t . -Angyjy, -100
0 0 b} 1
0 .
O .
1
0 0.25 teff , ==t ~ANg
0
' 2grids : . :
s EINEENT B teff,=6401-%  vs.  (BSE =67.02'%
_ 0 - ,

NOTE: Here we see some inconsistencies in the assumptions and approximation above. The inner grid
ring, as seen from the sample, is Ang(jy, =7.45-%of the solid angle; however, we are including the area
: . 5 .

of the faceplate beyond the inner grid radius, which would never be influenced by the ring upon
re-scattering. ' ' : _ .
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‘With the last piece, we can calculate the fraction of the BSE yield that scatters from surfaces near the inner grid,
to the module/faceplate surface, and returns to the collector:

figfc = M 30455 (PBSE ig) M faceteflc figp, =024-%

fhgfe Error due to scatter off the bias grid, to face and then to collector

‘We include the tantalum ring (and approximate its BSE yield as that of 304SS) in the opacity of the blas '
grid, which is already down by the transmission through the inner grid:

- . o= -0
(Ppg + fBSE 1) tBSE 3, =14.97-% P big = Pbbg

Here, as with scatter off the backside of the bias grid, we will use an
effective transmission of the backside of the immer grid p big

‘Hence, frgfe = [ M 3048s’ (P bg + IBSE h') “tBSE lg] ( pbig)"“ face teff ¢

Fgre=013%
f bgige " Error due to scatter off the bias'grid, then the iriner grid and back to the collector: »
The rest is left as an exercise for the reader.
Thgige = [ [ 30455"(P bg * 1BSE 1) BSE 55 ]-(n 30455°P big) [{ 1 - (P + BSE )]

Fhgige =027%
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Now consider correction due to BSE created on the collector that scatter again off the grids back to the
collector: :

f Scatter off collector, then bias grid, back to collector " .

cbge
f ebge = M 304557 (BSE ¢)-(Phivg) |
f cbge = 039-%
f c.igc Scatter off co]iector, then imner grid, back to collector
This correction is the same as above, but down by the transmission through the backside of the
bias grid. ' .
feige = [T‘ 30488'[ (fBSE c)'(l - pbbg)]'? big]'t’bg
vfcig.c:o'w %
fofe Scatter off collector, then module face, then back to collector

fofe = IBSE ptpgtipm face teff ¢

fofe =0.19%

The total of BSE that scatter back to the collector: .

£2xBSE = figfe + fogfe * fofet Fogige * fcbgc +fige

szBSE =142-%
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I;l the end, we have: BSE gource = fSE + f2xBSE
" {BSE source =3.05%
Given that we started with  BSE ;15065 =31.71 % and fBSE . =4.13-%

the result seems jmprobable; however, remember that BSE ¢ 1, Stll has to backscatier and most of the
surfaces are 304SS grid wire, so the stray currents emitted from surfaces that could return to the collector
(worst case):

fBSE surfaces'Tl 304ss T IBSE  =11.42-%
Almost none of this backscatter can retumn to the collector without passing through at least one, if not both of
the grids:
(fBSB surfaces " 304SS + fBSE )'t2gn' ds =8.01-%

The above numbers assume all the BSE return to the co]]ector without hitting the sample/module/faceplate,
which is by far the largest surface area in view of the collector. Assuming half of the scatter interacts with the

faceplate (it is a herisphere after all):
T (fBSE surfaces ™ 3048 + BSE 'c>'t 2grids
2

(147 face) =441%

- Now we see, with three reasonable assumptions, the fraction of the beam re’nnnmg 1o the collector is within
30%. Our more complicated derivation is probably an underestimation because we assumed every BSE must
scatter twice to return to the collector. A happy medium can probab]y be found by assuming BSE that scatter
off near-normal surfaces all return to the face, while some fraction of the BSE that scatter off oblique surfaces
return to the collector through the grid wires. The deviation of the crude analysis from the full derivation shows
oore Kiberal assumptions lead to larger uncertainty in the corrective factor than the propagated error in the
constituent measurements behing the full derivation.

In summary,—. ' : i

: 1.(-50-V) . 1
Corrected BSE yield M= : . ‘
| To (1 ~ IBSE jo55 + 1BSE source)

where .
fBSE 1555 =37.11-%
fBSE ( urce =3-05°% -
BSE coirection fattor: b e gs165e%

1~ BSE 1065 + 1BSE soirce
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SE yield Correction

Now we tum to the correction factor needed when using the difference between collector currems during the
suppressxon and "collection" modes as the SE current. .

15(0-V) =1 (-50-V)

Measured SE yield 5 SO - M= ;
b
where
1.(0-V) . Collector current in "collection”
mode (grid is grounded). .

1,(-50-V) Collector current in "suppression”
. -mode (grid biased to -50 volis).

Iy Electron gum beam curent that
actually hits the sample.

Again, there are source and loss terms during the "suppression” and "collection” modes:

Io(-50-V) -1(0-V)= (I bS5~ Toss +1 source) - (I b ~ IBSE s + IBSE s‘ource)

ASSUMPTIONS:
The assumption is made that, dunng the suppression mode, the hi gh energy backscattered e]ech"on current to
the collector is the same as that during the collection mode:
~ Isthere any reason for the two BSE currents to'be different?

The +/- 50 volt bias could make a difference to the relatively lower energy BSE. There mught be
focusing of the BSE during the suppression mode as they pass through the bias grid at -50 volts,
‘which would make the open area effectively higher (avoiding the grid wires). Modeling with Simlon
is one way to get a handle on the effect. We could also predlct the grid current and correct by
experimental results. .

‘ The ¢ coxrection to the BSE current due to SE's produced on the bias grids might differ. '
With these as’sﬁﬁxpﬁons, the BSE yield and correction factors cancel and we have:

1o(-50-V) = 1 (0-V)=I 18 s - ISE 105 + ISE gorce

where ISEj,¢s  SE prodiced on the sainple that never reach the collector (1st & 2nd
ofder corrections).

ISE source SE ‘that reach the co]]ector that are not produced by the original beam (highet order
corrections). .
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Now we discuss each term:

ISE 1055 SE produceci on the sample that never reach the collector. Since the original source of the current is
the SE produced at the sample, we can write these terms as fractions of the SE yield from the sample.

ISE 105510 5" (fSE surfaces + ISE h)

_ISE loss _
o fSEjoes™ 15 =1SE surfaces ¥ SE 1
b%s

where
fSE surfaces iraction of SE from the sample that hit surfaces before reaching the collector.
fSE4 fraction of SE lost out the beam pipe.

Referring to the BSE yield endr, we can write an integral over the full solid angle of the collector, weighted by the
~ SE angular distribution and the opacity in each region. These SE are assumed to be lost (recall the BSE yield of
SE's is assumed to be negli gible so that 2xSE scatter is neglected).

There is an additional concern about the ambient electrostatic fields in the region before the bias grid (after which
there is an assisting field to the collector) that might repel very low energy SE from the collector face. This
correction is expected to be small and modeling with Simlon seems to be the best approach to this (if we can

re-create the detector geometry with any accuracy).

We can define an opacity for each angular region seen by SE produced on the sam].ﬂe: P SE, =

0. Lost out the beam pipe:

1. Hitting end of beam pipe: |
2. Passing through the gap:
3. Hitting the tantalum ring:
4. Hitting either grid:

5. Hitting the rmer grid ring:

—t | D] e

g
N
=8
&

" The fraction of SE lost before reaching the collector,
_ BEjoss =P SE"SE angw _
Weighted with the SE cosine angular distribution: Unweighted:
£SE 1o =32.07 % vs. b gp-ANE Uy =35.99°%
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ISE source SE that reach the collector that are not produced by the original beam.

Since the incident beam is assumed to impinge only on the sample, these sovrce terms are due to
BSE from the sample that create SE on other surfaces in the detector. All subsequent terms will
scale with the sample’s BSE current. Beginning with the most naive approach, we have

ISE souree=Ib M s (fSE face T SE jg + ISE bg)
where

fSE g,ce fraction of BSE scatter retumning to the sample/module/faceplate and creating SE that
reach collector. :

fSE ie fraction of BSE scatter hitting the inmer grid and creating SE that reach collector.

fSE bg " fraction of BSE scatter hitting the bias grid and creating SE that reach collector.
The first term fSE g, is not difficult to estimate based on the amount of BSE scatter returning to the
sample/module/faceplate that was considered in our BSE analysis. Recall there were three terms:
f; ofc Scatter off inner grid to the sample/module/faceplate, then baqk to collector.
Figf = 1 30455 (PBSE ig) M face teff ¢ figfe =0.24:%
f ngc Scatter off the bias grid to sample/module/faceplate, then to collector
Fogte = |7 30455 (P b + 1BSE ) tBSE ig) (1~ Pbig) M pace teffc  Tpgre =013-%

f Scatter off collector, then sample/module/faceplate, then back to collector

cfc’

fofe = IBSE o tpotiom paeettefl fofo =0.19°%
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‘We will need to replace the effective BSE yield of the samp]e/medu] e/faceplate with aﬂ effective SE yie]d‘ 8 face

where the SE yield are defined by 80% of their maxima (an 5 = (1)-80-%
average value). Data from CRC [Lide 1990} aquadag ) °

8 oy = (13)-80-%

Effective SE yield of area o . — area area
module/faceplate: 8 face = O aquadag’ fpe fh) s module
‘ area o area e

5 face = 0-81

As with the effective BSE yield of the faceplate/module area, the assumption is the BSE scatter diffusely and are
therefore distributed across the area uniformly. 1f the BSE scatter spectrally, the effective SE yield would be
dominated by the copper module. Estimating the uncertainty between the two assumption can be done by sn:np]y
using the SE yield of copper.

" The fraction of the BSE yield from the face that gets counted as SE yield during the collection mode.

’ fSE face = | 1 30488’ [pBSE ig* [(p bg* fBSE tr)'(BSE ig]’(l -P big)] |8 face'teffc
+{BSE tbg ig .

£SE fooe =448°%
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The next two source terms are more complicated:

fSE ig fraction of BSE scatter that hit the inner grid and creating SE that reach collector.

fSEy,,  fraction of BSE scatter that hit the bias grid and creating SE that reach collector.

The complication arises from esﬁmaﬁng what portion of the SE produced on the grids is due to BSE yield from
the sample or due to subsequent scatter, then determining whether those two populations of SE actually retun

to the collector.

ASSUMPTIONS:

1. We know the SE created on the grids by BSE straight from the sample scatter mostly in a forward
direction (see SEM pictures of a grid [Creekside SAM manual]); however, the cosine distribution of SE
emission angles is not as tight as the BSE distribution, so the assumption that NONE of these SE reach
the collector is definitely an underestimate of these correction terms. Having said that, we have no easy
way of estimating this error, so we make the later assumption for simplicity alone.

2. In contrast, we assume that ALL the SE's created on the grids due to BSE that hit the backside of the
grids (facing collector) are directed towards the co]]ector in the same fashion as SE that were originally
created on the sample.

With these assumptions, we only have to worry about BSE to the backside of the inner grid. Remember the
correction due to SE.created on the backside of the bias grid returning to the collector was counted in the
BSE correction. To find the BSE current to the backs:de of the inner grid, return to terms for 2xBSE scatter
ﬁ'om the previous analysis:

f bgige Scatter off the bias grid, then the inner grid and back to the collector:

Fhgige = || 1 30455"(P bg * BSE i) BSE s |-(m 30455°P big) [{ 1 - (Pbg * BSE )]
. fbglgc = 027-%

fg gc Scatter off collector, then inner grid, back to collector

féige=|m 304557 (BSE o) (1 - Pobg) | Pvig) g f oo =0.19-%
cige ~ V70

Adding the two sourte together and using the average SE yield for 304SS, we ha&e:'

52 ig = [[[ 30455 (P og + BSE 1) BSE 1] + [ (BSE o) (1 - Pg) ] (5 30455 P 1ig) | (te)
| | ISE ;; =1.96"%
fhe fraction of the BSE yield that gets counted as SE yield during the collection modé:
£SE source = ISE face + fSE ig

source = 6-44-%

ISE
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Returning to the original goal:

Io(-50-v)-1 (0V)=I8 s~ ISE 1655 + ISE spce

where ISEjos SE produced on the sample that never reach the collector

ISE gguree SE that reach the collector that are not produced by the original beam.

Again, the source and loss terms are fractions of two different currents. Substitution yields,

T (0V) - T (-50-V)=1},8 s - I4y8 o fSE loss * Iyn ¢ fSE

source
1 (0V) -1 (-50V) ' :
' Ty —=8 -8 g fSE 555+ M s,'fSE source

Comected SEyidd 8 | S0 2 50V n ASE !
~orrecied Sk yie = “MsgEgource | 77 7an . Y

‘ . s Iy ’ (l - SE 1oss)

: 1
where S ——=1472"%
1= £SE joss
Cmd  SE o =644%
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Bias Grid current

To verify éur theory, we extend the previous results and ny to predict the current that wﬂ] be registered ornt-the
bias grid during the suppression mode. The bias grid current during suppression mode is a tractable problem
because only the BSE are assumed to be able to reach the bias grid and all of the SE produced there are

rejected.
Current measured on bias grid ’ Cepvet. o ' 7
during "suppression” mode: Tpg(-50-V)=lpym s [_fbgsource (1 c 30488)]
where ‘ » )
fbgsome (p bg + {BSE ) BSE jg + {BSE ¢P bbg Fraction of BSE currents hitting the bias grid

and (p bt fBSE tr)-tBSE ig * Opacity of bias grid and tantalum ring, down by
o transmission through the inner grid.

{BSE .p bbg BSE scatter off collector that hits the back of bias grid.

There are other terms in besource’ however, they are higher order terms and are assuméd 1o add little.

Since the detector geometry and surface materials are fixed, we will want to calculate the ratio of the currents
measured on the collector and bias grid wires. Notice:

Current measured on bias grid_ I bg(' 50-V)=Iym s-[f bgsource'(l ~-C 30485)]
Current measured on collector I1.(-50-V)=Iym s-(l - fBSE j5¢ + IBSE source)

Tpg(- SO'V)_'.fb'gsource'[l - (830485 + 7 30438)]
1,(-50-V) 1- BSE 5 + BBSE cource:

figsource] 1 = (8 30455 + 1 30458) ] _ 48-%
— - - =—4.8"7
1~ BSE Jos5 + IBSE source

The éifferg:nce in sign is due to SE leaving the bias grids (greater than unity) and not returning.

NOTE: Recall that 8 30'4SS‘i§ 80% of the SE yield maximmiuni and 1) 3045 is an average from iron data. The

above result should be seen when using a low energy incident beam (~300 V).

Amnalysis of the ratio of the grid to collector currents from the experimental data réveals a curve that has the
-appearance of a total yield curve, which is expected. Unfortunately, the measured ratio is néarly 15% at 300
eV and reaches a mhaximum of 20% at energies near 900-€V. There is no reasonable source of error that
could account for the factor of four discrepancy between the theoretical prediction and the experimental data:
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APPENDIX D: LABVIEW VIRTUAL INSTRUMENT PROGRAM

The details of the LabView virtual instrument (V1) program used for measuring
the total, SE, and BSE yields are discussed in detail. The actual file discussed here
(Conrad Yield with FC and Total 2.VI) is quite similar to the program used to acquire
the data for this dissertation. The main difference is the current summation method of
measuring the beam current was used in this dissertation and the Faraday cup method
was avoided (see Subsection 4.A.1). The VI discussed here uses the Faraday cup
method, but also displays the sum of the currents within the HGRFA for reference.
Other differences will be noted during the explanation. The figuresin this Appendix
show the front panel and each frame of the program, which will be discussed in turn.

Figure D.1 shows the front panel of the program with al the controls for the
input of vaues and the indicators that show datavaluesto the user. Thereare also
charts for the monitoring of some currentsin real time. Brief descriptions of each step
required of the user are given in boxes along the left Sde of the V1 front panel,
beginning with “ Step #1" in the upper left corner. After assigning an appropriate
filename to the data set, step 1b isto enable the necessary channels and to set the range
of the signal input to the dataacquisition board. Enabled channds are those ready to
accept data, while disabled channels are skipped. The channel information and
controls are in the “DagBoard 200A Setup” box to the right of the Step #1 box.

Step 1c isto calibrate the meters, which depends on whether the meter
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calibration button is pressed. The two options are true (yes) or fdse (no) and are
shown in Fig. D.2. Thefalse case uses standard offset values for each channel
recorded while there was no input to the channels. The true case allows for each
channel to be sampled, displayed on the front panel, and those values used as the meter
offsets for the rest of the data acquisition procedure. The exact method in which each

channel is sampled will discussed along with Figs. F.3 and F.7. Thetrue case

Channel Azsignment DarBood 200A Satu
4 - Collector d B - - - ) :
1-Tettiay  5-Grid SE/BSE Yield f||e||NUTE. Do NOT type the " st extension [added by V]|
%- gmung g-gtagel E Dot o CASave\FatMan Chamber\Data\SEE Data}
o e AI6061HEEDYield#1
Ehable Channels|
=lephls S _
2. Fill in Filename IMeter Calibration during M onitoring m
(e.g. AuI900Eyield0) 2 = [
b. Set Channel A anges NO EN-ERGY Pre-TrlgEger Count]
c. Calibrate meters

d 1000.0
[FC(10V bias, before)|

0.000 0.000

FC offset| |Tertiary offzet| [Collector offzet]
Grid offzet| |Stage offset| |Sample offset

Step #2: Collector] gEll

Flec:oer)the Energy and then with the Beam Sample Collector

i the: Fattdan FC. set the Beam Current 0 000 -18.00-]
PRESS WHEN 0.000 - -17.00-]

DOME SETTIMG BE&M < 5
A Bias Grid| |STAGE| Totall | 1600-
e g
3. HotEtetotheDetector. 0000 H 0000 H |0000 " 15,004

b. Max. Sampletin. Stage with a0

D eflection o d
ol rie s err
fTert FCTertiary rai] | 0.00
Press To poo00 | [poae ][] 0.000 FUHATY A
Measure Yields at O 5 600- 28
SE Yield lshs en f
- 5.400-] .
Step #4: 0 0000 0.0000 BN
Change the grid bias from O to -50 valts 5.200- el
BSE Yield| |Abs en] — 3'4
Step #5: b.0000 e | 2
a. Rotate back to the Fattan FC 0.0000 4.800- 3.3
|and ariginal Deflection setting ) 3,2-
e Total (0V)]  [Total(50v] |12 E:é“i'” 4600+ 314
BEaM RETURNS TOFC] (0.000 0.000 0 4.400—6 Pt -3.0—6 1
S arnple]
12,500+ [5tage]
10,000+~ 15.000-
7.500-] 10.000+
5.000-] £ 00—
2.500-] :
0.000- 0.000
2 500-, , 5.000-% ,
0 50 0 50

FIG. D.1: Front panel of the LabView VI that measures the total, SE, and BSE yields
using the Conrad electron gun.
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FIG. D.2: False and true cases of the meter calibration button. Part of step 1c.
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allows for the compensation of any background currents appearing at the time of the
measurement. Typical offsets for each channel are shown below the Step #1 box.
Returning to the front panel in Fig. D.1, step 2 involves recording the electron
beam energy and monitoring the beam current while adjustments are made, then
recording the beam current. Recall that this VI uses the Faraday cup to determine the
beam current instead of a sum of the currents inside the HGRFA, although the current
summation is later displayed in the “total” indicator for reference. With the Faraday
cup method, the beam current is measured before and after the yield measurements are
made, then an average of the two beam currentsis taken to be the best estimate of the
beam current while the yield measurements were being measured (see Subsection
4.A.1 for details). While the beam current isbeing adjusted, the Faraday cup current is
displayed in the indicator marked “FC(10V bias, before)” and on the graph just below
that indicator. The beam energy isrecorded by hand in the control box just above the
Faraday cup indicator. The slightly modified version of this LabView VI for taking
data with the HEED gun actually measures the el ectron beam energy from the
calibrated 0-5 volt output of the high voltage meter on HEED gun power supply.
Figure D.3 diagrams in detail the monitoring of the Faraday cup current during
the setting of the beam current. The sampling of the enabled channels can now be
discussed in more detail. Beginning from the |eft-hand side of Fig. D.3, al the enabled
channels are sampled by asubVI labeled “adv Anlog in” that refersto the file “ SubV1

Main Unit Adv Analog Input.V1”, which is taken directly from the advanced analog



220

'DDDDDDDDDDDDDDDDDDDDH'|[D__E]tll]l]DDDDDDDDDDDDDDDDDD 4

LT_I* I:IILILT_I+

OooDoooooDooo00pooo oo oo npooo oo oo o0 ool @oooo
FIG. D.3: Monitoring the Faraday cup current before the yield measurements. Firs
part of step 2.

input V1 provided by lotech that has been changed only by using specific default
values and making the VI usable asasubVI. The output of the advanced analog input
subVI isamatrix of all the points sampled from all the enabled channels. Asseenin
the upper right corner of Fig. D.1, the box labeled * acquisition setting during
monitoring” controls the total number of points sampled during this and any
subsequent monitoring processes. The term “N-shot” refers to a one time sampling of

N points, while the pre- and post-trigger count control the number of points sampled



221

before and after the data acquisition board begins recording data. In Fig. D.3, the
matrix from the subV1 is parsed into the 0, 1% and 4" enabled channels that
correspond to the Faraday cup, the tertiary gperture, and the stage current, respectively.
A mean of the sampled pointsis calculated and then a slope and offset are used to
convert the values into nanoamperes. The vaues are displayed by the “FC (10 volt
bias, before)”, “ Tertiary”, and “ Stage” indicators on the front panel in Figure D.1. The
step diagramed in Fig. D.3 goes further to graph the Faraday cup and tertiary currents,
aswell astheir ratio. The graphs can be seen on the front panel in Fig. D.1. The
purpose of graphing the ratio of the Faraday cup current to the tertiary current isthe
value gives some indication of how collimated the beam is upon entering the Faraday
cup. Thelarger the Faraday cup/tertiary ratio, the larger the fraction of the total beam
current being collected by the Faraday cup. The routine shown in Figure D.3
continuously monitors these currents until the “ press when done setting beam” button
inFig. D.1is pressed.

The second routine of step 2, diagramed in Fig. D.4, records the beam current
as measured in the Faraday cup for later use in the calculating the average beam
current. The routine also outputs a matrix of the Faraday cup, tertiary and stage
currents as well as the time at which these currents were taken. The matrix and time
becomes one of the entriesin afile whose name is created by appending “TIME” to the
filenamefor the data set entered in step 1a. The“TIME” fileis created so thetime

dependent behavior of the beam current can be later analyzed if necessary.
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FIG. D.4: Recording the Faraday cup current. Second part of step 2.

Step 3 on thefront panel involves monitoring currents within the HGRFA
while the detector and sample are being positioned in front of the beam. The routine of
the VI isshownin Fig. D.5 and essentially follows the same methodology as the
routine diagramed in Fig. D.3. The collector, suppresson grid, sage and sample
currents are dl monitored and the sum of these currentsis computed. The sum of these
HGRFA currents has been shown to be closely related to the beam current. All five
currents are shown on indicators with the same names, and the sample and stage

currents are graphed separatdy. Noticein Fig. D.5 that the collector current is
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FIG. D.5: Monitoring the collector and sample currents to position the beam. First part
of step 3.

displayed on the graph where the Faraday cup current had been previously displayed.
These currents are monitored continuously while the sample current is maximized by
the user using the electron gun beam deflection in an effort to position the beam
directly down the beam pipe. After the beam has been positioned successfully, the
“press to measure yields at OV” button on the front panel is pressed and the routine
ends.

Step 4 is comprised of five routines that measure the collector current during
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the collection and suppress on modes (see Subsection 4.A.1 for details). Thefirst
routineis shown in Fig. D.6 and is asimple action of setting the variable voltage power
supply to zero volts bias on the suppression grid, which is the collection mode. The
routine waits for 5 seconds to allow the fields within the detector to stabilize and the
electrometers to react.

The next routine of step 4 is shown in Figure D.7 and measures the currents
within the HGRFA during the collection mode. The sampling and measurements in
this routine differs from the monitoring of channels previously described. Instead of a

single mean of alarge number of points, this routine calcul ates the average and

-|:||:||:||:||:||:||:|DDDDDDDDDMDDDE.:DD.DDIE:DDDD :

Total Current Collection
kMode bias

REIZ3E&

s Esl sl islsislslslslslslslslslslslslis] Nslslslsl NsislslelsHelslal=Nals] [u]

FIG. D.6: Setting the suppression grid voltage biasto O volts. First part of step 4.
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FIG. D.7: Measurement of the collector and other currents during the collection mode.
Thisisthe second routine in step 4.

standard deviation of N number of means consisting of 10,000 points. The number of
means N sampled is a numerical control within the VI not shown on the front panel.
The sampling of 10,000 pointsis the default value of the advanced analog input subV|
and is also not controllable from the front panel. The data taken for this dissertation
did not use this exact procedure, but only sampled 10,000 points and computed one
mean value and its standard deviation. The recommended procedure in the future

would be to take 20 means of 3,000 points each as a balance between sampling and
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total collection time. Noticethe standard deviations are shown as ., instead of o, .
Calculating the standard deviation of the mean, by dividing ., by the square root of N,
would be an improvement to this VI because the standard deviation is an overestimate
of the random error by afactor of . The collector and its standard deviation leave
the routine to be used in the calculation of the total and SE yield. Additionally, there
are two matrices recorded. Oneis another entry to the“ TIME” datathat includes the
tertiary and stage current along with thetime. The other matrix is the collector,
suppresion grid, stage, and sample currents along with their error, which makes up the
“dataset filename” RAWO file that refersto the raw data taken during the O volts of bias
on the suppression grid.

There are three other routines to step 4 that are not shown in figures. Thethird
routine involves setting the suppression grid voltage to - 50 volts and is similar to Fig.
D.6. Thefourth routine involves measuring the same currents as are shown in Fig.

D.7. The output of the raw data from the fourth routine is to the “ dataset

filename’ RAWSO file in reference to the raw data taken while the suppression grid was
biasto -50 volts. Thefifth routine returns the suppression grid to O volts biasand is
identical to Fig. D.6.

Step 5 on the front panel in Fig. D.1 involves monitoring the Faraday cup,
tertiary and stage currents while rotating the stage so the Faraday cup properly
intercepts the beam. The two routines are not shown because they are identical to the

routines shown in Fig. D.3 and F.4 of step 2. The only difference is the Faraday cup
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current is now displayed in the “FC (after)” indicator. With the recording of the
Faraday cup current after the yidd measurements, the routines are complete and the
data andysis and file writing commences.

An overview of the data manipulation and file writing procedures are shownin
Fig. D.8. There arefive files written to the directory specified in the upper right corner
of the front panel. The mainfile contains the total, SE, and BSE yields along with their
estimated uncertainties (standard deviations) and the electron beam energy at which the
yields were measured. One row of thefile is appended to the filename each time the
program isrun at adifferent energy. The other four output files add a short suffix to the
main filename and the “TIME”, “RAWO", and “RAWS0" files have been discussed
previously. The only suffix that was not discussed isthe “FC” file, which contains the
beam energy, the Faraday cup currents before and after the yield measurements, the
mean and standard deviation of those two measurements, the sum of the currents inside
the detector during collection and suppression mode, and their mean and standard
deviation. Thefileisintended for the comparison of the two methods of measuring the
beam current.

Focusing in on the upper right quadrant of Fig. D.8, the dataanalysisinvolved in
producing the yield fileis shown in Fig. D.9. The current measurements and matrices
that are the output of all the routines are labeled on the left side of Fig. D.9. Following
the lines, one can track how the total, SE and BSE yields are computed from the

collector current measured during the collection and suppression modes and mean value
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FIG. D.9: More detailed view of the uppér right quadrant of Fig. D.8, showing tnhe aéfa
analysis calculations to determine the total, SE, and BSE yields and the magnitude of
their errors. The outputs of all the routines are labeled dong the left side of the Figure.
of the Faraday cup current measured before and after the yield measurements. Refer to
Subsection 4.1.A for the equations governing the total, SE and BSE yields. As
mentioned, the beam current for this dissertation work was measured using the current
summation method, rather than the Faraday cup method shown here. Since dl the
computed yields involve division of the beam current, the error anaysisissimilar.

The error analysisis propagated with the aid of asubV1 (showninFig. D.9 asa
box with an X, aY, two ¢, and a % sgn) that takesan X and Y value along with their
error and outputs the fractional error in athird vaue Z by summing the fractional X and

Y errorsin quadrature. The fractional error isthen converted into an absolute error by

multiplying by the appropriate value. The only exception in the error analysisisthe SE
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yield, which involves a difference of two currents and so the absolute errors are added
before the error is propagated with the beam current error.

Again, the VI outlined above is not the same VI used to take the dissertation
data, but is composed of all the essential elements and shows the two methods of
determining the beam current as well. Changes that should be made to this VI are
implement the current summation method of computing the beam current, changing the
default number of samples to acquire in the advanced analog input to 20 samples of
3,000 points instead of one mean of 10,000 points, and computing the standard error in

the 20 point mean instead of usng the standard deviation of 10,000 points.
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