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Complementary Responses to Radiation

Modified Joblonski diagram “cs |

Esr
Intersystem Crossings
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high energy incident electron radiation.

« They relax into shallow trap (ST) £

states, then thermalize into Ilower

available long-lived ST.
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recombination into VB holes. Valence Band
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What Is Radiation Induced Conductivity (RIC)?
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Presenter
Presentation Notes
As materials are bombarded with a flux of high energy radiation, the large energy is shared with many bound (valence) electrons within the material, that are excited into higher energy levels (black dots) – thereby facilitating their mobility.  The conductivity of the material is therefore enhanced by the radiation energy, rather than by direct charge deposition.  



RIC Depends on Power Deposited

e The RIC versus radiation dose W=
rate for polyethylene terephthalate | . I
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Curve Segment Type of Radiation Energy Dose Rate Mode
1 X-rays 250 keV 0.13 rad/s steady state
2 X-rays 15 to 30 keV 1 to 400 rad/s steady state
3 y-rays 1.17 and 1.33 MeV 200 to 3500 rad/s steady state
4 pulse reactor
neutrons and y-rays mixed 6.5 X 10°t0 3.8 X 10° R/s 13 ms pulses
5 electrons 30 MeV S X 107to 7 X 10% rad/s
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Dose Rate

DOSE RATE is the deposited power per unit mass is:

Ep Jp11 —n(Ep)] X{ [1/L] ; R(Ey) <L
e Pm [1/R(E,)] ; R(Ep) > L

D(/biEb) —

which is proportional to incident electron absorption:

« Incident areal power density, (J,- E,)/d,

« Energy-dependant correction for unabsorbed guasielastic
backscattered electrons, [1-n(E,)]

 For biased samples, or when excess charge is stored in the trap states,
a surface voltage V.
results and E, is replaced everywhere by the landing energy, [E, -q. - V
]

 Absorbing mass, m_ .., = P - (Beam Area - Penetration Depth)

 Only a fraction of the incident power, [L / R(E,)], when range exceeds
sample thickness

S
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RIC Is Time Dependant
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Presenter
Presentation Notes
In reality, when the radiation is turned on, a finite period is required for the measured conductivity to approach the equilibrium radiation induced conductivity.
Similarly, when the radiation is turned off, the measured conductivity also takes a finite amount of time to decay to the material’s initial (zero dose rate) conductivity.



RIC Is Depth Dependant
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RIC Dependence on Temperature
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RIC Dependence on Temperature

Luminescent intensity, |, scales with incident current density J,,
beam energy E,, temperature T, and photon wavelength A as

D+ Dsat (k T

which is proportional to:

« Number of electrons in ST, thermalized from CB electrons
» Trapping rates proportional to number of electrons excited in to CB
which is proportional to dose rate
> Retention rates leads to saturation at high charge, related to dose
and T-dependant D, from RIC [5]

* Number of available DT states, dependant on space charge and T

« Emitted photon absorption
» Proportional to A; , the optical absorption coefficient of the coating
> Enhanced by a factor [1+ R, (1)] | to account for reflection from the

metallic layer
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dependent behavior observed in the SLR images.
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Sample Square Holder Assembly Diagram
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RIC Measurements
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RIC Results

Resistivity (ohm-ocm)
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Ending with a Bang!!!
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B
Conclusions

RIC in Thin Film Disordered SiO, Is:

. Proportional (nearly) to Dose Rate

.  Weakly (and roughly linearly) T-dependant

Ill. Complementary with cathodoluminescence

V. RIC has rapid time dependance

V. Suggests a nearly linear density of localized
states (shallow traps)


Presenter
Presentation Notes
Recent USU studies related to several specific missions have highlighted the operational effects of such environment-induced changes on material properties and ultimately on spacecraft charging.  For example, studies of surface coatings for the 2005 concept of the Solar Probe Mission found that absolute and differential surface charging depended strongly on increased conductivity from higher temperatures and on radiation flux through enhanced charge accumulation and radiation induced conductivity; interplay between these effects led to the prediction of a maximum in charging at intermediate distances over the Probe’s orbital range spanning from Jovian distances to within 4 solar radii of the Sun.  Extreme demands dictated by the science objectives of the James Webb Space Telescope have placed particularly stringent requirements on materials and have potentially increased risks from spacecraft charging: low temperatures lead to low charge transport and dissipation rates; long mission duration, prolonged eclipse conditions, and inaccessibility for maintenance lead to extremely long charge accumulation times; large, unusually exposed surface areas lead to larger charge accumulation and increased probability of discharge; and very sensitive electronics and optics lead to low tolerance for charging, electrostatic discharge, and electron and photon emission.  Extreme radiation dose rates and fluences for potential polar and Jovian missions have been found to substantially modify electron transport and to affect other properties such as reflectivity, emissivity and electrostatic discharge. 


Acknowledgements

Support & Collaborations

Air Force Research Lab

NASA/JWST (GSFC)

National Research Council

B42 Amberly E. Jensen
Dependence of Electron Beam Induced Luminescence of SiO, Optical
Coatings on Energy, Flux, Temperature and Thickness

B4 4 JR Dennison
Comparison of Radiation Induced Conductivities at Low Temperature

B4 7 Greg Wilson
Power and Charge Deposition in Multilayer Dielectrics undergoing
Monoenergetic Electron Bombardment

D1 40 Allen Anderson
Electrostatic Discharge Properties of Fused Silica Coatings

9/24/12 LANL Seminar 21



Supplemental Slides

9/24/12 LANL Seminar 22



P h aS e Vl ) UtahState .

11/2/2012 USU JWST: Fused Silica and ESD 23



Phase VI. AFRL Bell Jar Chamber Cut Away Diagram

Faraday Cup Z Translation Stage
High Energy Electron Gun USU Closed Cycle He Cryostat

Gate Valve to Pumping System AFRL Bell Jar Chamber
Faraday Cup Assembly
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New Sample Square Holder g

New sample holder
Slips over existing multiple
Sample holder
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New Sample Square Holder

New Sample Mount-
Au/Kapton Sample



New Sample Square Holder
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New Sample Square Holder Assembly Diagram
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USU Experimental Capabilities

Absolute Yields

 SEE, BSE, emission |
spectra, (<20 eV to 30 keV)

*Angle resolved electron
emission spectra

e Photoyield (~160 nm to
1200 nm)

* lon yield (He, Ne, Ar, K,
Xe; <100 eV to 5 keV)

e Conductivity (<1022 [ohm-cm]1)

e Cathodoluminescence e Surface Charge (<1 V to >15 kV)
(200 nm to 5000 nm) « ESD (low T, long duration)
* Radiation Induced Conductivity (RIC)
« No-charge “Intrinsic” « Multilayers, contamination, surface modification
Yields * Radiation damage

« Sample Characterization
* T (<40 K to >400 K)
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11th SCTC Sessions devoted to this
Test facilities devoted to this
USU Posters devoted to this

Rather, let me describe some studies done at USU where …
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Fig. 2. Qualitative two-band model of occupied densities of state (DOS) as a function of temperature during cathodoluminescence. (a) Modified Joblonski
diagram for electron-induced phosphorescence. Shown are the extended state valence (VB) and conduction (CB) bands, shallow trap (ST) states at &sr within
~ksT below the CB edge, and two deep trap (DT) distributions centered at &pr=€.; and epr=€ue. Energy depths are exaggerated for clarity. (b) At T=0 K, the
deeper DT band is filled, so that there is no blue photon emission if €,ue<gcs. (€) At low T, electrons in deeper DT band are thermally excited to create a partially
filled upper DT band (decreasing the available DOS for red photon emission) and a partially empty lower DT band (increasing the available DOS for blue photon
emission) (d) At higher T, enhanced thermal excitations further decrease red photon emission and increase blue photon emission. Radiation induced
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Fig. 3.Range and dose rate of disordered SiO, as a function of incident
energy using calculation methods and the continuous slow-down
approximation described in [5].
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Fig. 1. Optical measurements of luminescent thin film disordered SiO, samples. (a) Three luminescence UV/VIS spectra at decreasing sample temperature. Four
peaks are identified: red (~645 nm), green (~500 nm), blue (~455 nm) and UV (275 nm). (b) Peak amplitudes as a function of sample temperature, with baseline
subtracted and normalized to maximum amplitudes. (c) Peak wavelength shift as a function of sample temperature. (d) Total luminescent radiance versus
beam current at fixed incident energy fit by (1). (e) Total luminescent radiance versus beam energy at fixed incident flux fit by (1). (f) Total luminescent
radiance versus beam energy at fixed 10 nA/cm? incident flux for epoxy-resin M55J carbon composite (red; linear fit), SiO, coated mirror (green; fit with (1)), and
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Fused Silica--Cryo ESD Breakdown Sites

FS 4 Post-Breakdown FS 4 Breakdown Site CIose-uA
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