
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Spaceborne Application Multiprocessor
Operating System

A Paper Presented To The

5th Annual AlAA/Utah State University Conference
On Small Satellites
August 26-29, 1991

Gary S Grisbeck, Control Data Corporation, EMS Division
Minneapolis, Minnesota

Wesley D. Webber, Control Data Corporation, EMS Division
Minneapolis, Minnesota

G. S GRlSBECK and W. D. WEBBER
Proceedings. Fifth Annual AIAA/Utah State University Conference on Small Satellites

Spacebome Application
Multiprocessor Operating System

Gary S Grisbeck
Control Data Corporation, Minneapolis, Minnesota

55425

and

Wesley D. Webber
Control Data Corporation, Minneapolis, Minnesota

55425

Introduction

Control Data Corporation, as part of a joint develop
ment program with the Boeing Electronics Company,
built a nine node, three active module multiprocessor
called SPA·l or Spaceborne Processor Array-I.
(SPA was the processing system concept proposed
as the heart of a multi-mission autonomous surveil-
lance satellite in a paper 1 presented at the 4th Annual
AIAAlUtah State Small Satellite Conference in
1990).

Since then, an operating system called the
Operational Kernel, or OK, has been completed, test
ed, and functionally validated in a demonstration
using the SPA-l. This demo featured fully au
tonomous on-board control of data movement, fault
detection, fault isolation, hardware reconfiguration,
application re-start, and load balancing/redistribution.
The demo application consisted of ephemeris calcula
tions being performed for two satellites, in each of
three independent processors at different nodes on
the SPA-I; this data (and SPA-l health status) was
sent via a serial I/O (input/output) channel to a host
machine for display. With the demo software run
ning in the three active processing nodes, observers
were invited to cause random nodal interconnect or
processing hardware elements to fail by selection of
switches on a fault injection panel. SPA-I, under the
aegis of the OK, detected that a failure had occurred,
isolated it, reconfigured around it, redistributed the
processing load (to the two or one remaining active
processors) and continued with the application pro
cessing, all without operator intervention of any sort.

The OK is written in Ada. Support of the execution
of Ada programs is provided for by the Ada Run
Time System (RTS), provided by the Ada compila-

2

tion system. The RTS provides very basic services
such as tasking and memory management, and ex
ception handling. The OK consists of Ada packages
that are run on top of the RTS. This collection of
packages include lower level services that involve
message buffering, interrupt handling, and individual
configuration commands. Operational high level ser
vices include: a block I/O facility that uses protocols
to ensure the integrity of data transfers between mod·
ules at different nodes on the SPA network; a config
uration facility that provides a high level set of opera
tions to configure the network; and a health check fa
cility to support application controlled detection and
isolation of failed SPA elements.

The SPA hardware, with processing elements operat
ing essentially asynchronously at each node on the
network, supports many concurrent activities. The
OK handles this with Ada tasks. The number of
tasks is application dependent. Approximately sixty
tasks were employed in the SPA-l demo.

SPA Overview

The SPA is a modular collection of processing and
external I/O resources. The modules are intercon
nected by the MIN (modular interconnect network),
which is the heart of the SPA system. The MIN has
high bandwidth, is reconfigurable under software
control, and is fault tolerant. The SPA allows a het
erogeneous mix of module types, achieving greater
optimization than could be obtained with the use of
universal modules. Every module contains process
ing resources, instruction and data memory, and an
interface to the MIN.

The MIN is the heart of the SPA system; it distributes
both power and data. The MIN uses software con
figurable data paths to form logical data path struc
tures on the interconnect that is a two dimensional
physical mesh. The modules form a plane with each
processor having connections only to its four nearest
neighbors, thus forming a Manhattan geometry (or
thogonal interconnect). The physical implementation
of this scheme allows the plane of processors to be
topologically equivalent to a toroid. This minimizes
the longest data path, which maximizes overall sys
tem operating speed and overhead.

The MIN is a fully distributed system. The element
of the MIN residing in each node is the configurable
network unit (CNU). The CNUs in each node are
identical. Each CNU has two data path (edge) con
nections to each of its four nearest neighbors, for 3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

G. S GRlSBECK and W. D. WEBBER
Proceedings ~ Fifth Annual AIAAJUtah Swe University Conference on Small Satellites

total of eight connections. Each of these eight con
nections is called an edge connector. Each edge con
nector can be programmed to be an input or an out
put: but not both simultaneously. Within the CNU
there are four internal data paths between the edge
connectors, and a system of multiplexers. The multi
plexers allow any edge connector to provide an input
to any of the internal data paths. Also, any edge con
nector that is programmed to be an output can take its
data from any (or all) of the four internal paths. The
CNU connectivity is illustrated in Figure 1.

Two of the four internal data paths have address
recognition logic. These are called network: interface
units (NIUs) and will extract any word of data that is
addressed to them, sending it to the processor associ
ated with that node on the MIN. The NIUs (or
ports) also can place data in any unused data slot in
the data path. When a pon removes a data word, it
can also place (output) a new data word into the same
slot for transmission down the MIN.

The other two internal data paths merely pass data
through the CNU and to the next node in the MIN.
These internal "passthrough" data paths are are called
vias. A port can act as a via by putting the same data
word back on the data path and sending it down
stream to the next mcxle.

Present MIN hardware has information transferred at
a rate of up to 8 million data words per second. The
52 bit data words are comprised of 32 bits of data, an
8 bit destination code, and other control information.
Each data word has its own destination address; this
allows data from different sources going to different
destinations to be interleaved on any given physical
data path on a word by word basis. Thus a data path
does not have to be reserved for exclusive use by any
given module, which greatly reduces latency.
Funhennore, each data word carrying its own desti
nation code means that no channel request protocol is
required to send data. Data is queued for transfer
and goes onto the data path whenever room is avail
able.

Generic fault avoidance, fault detection, and fault tol
erance techniques implemented at the module and
SPA system level are discussed in great detail in the
paper referred to at the beginning of this article.

S PA·l Hardware

SPA-I, a three by three, nine node SPA system, was
fabricated, tested, and delivered as part of the joint

3

development program between Control Data
Corporation and Boeing Electronics. The SPA-! in
terconnect is graphically represented in Figure 2. A
physical implementation of the whole SPA-! system
is shown in Figure 3.

The SPA-I was connected to a portable test set (FTS)
with a Micro VAX host that was used to develop and
debug software. During the demo, all of the applica
tion and fault isolation, reconfiguration, and load
shifting were accomplished by software running at
nodes on the SPA-I; the PTS was used for status,
command. and graphics display purposes only.

Only three of the nine nodes in SP A-I had proces
sors, and these were in locations 1, 3, and 8 (refer to
Figure 2). Two of these processors, at locations 1
and 3, were modules with serial I/O hardware (called
PIMs) and were attached to the PTS; and the other
was a basic processor module or PM. The proces-
sors were Control Data's 444R 2, a (currently space
qualified) MIL-STD-I7S0A ISA processor. The
other six nodes on the MIN were "stubs" that elec
tronically terminated the MIN elements to allow the
network to function with no processor attached to the
CNU s at any of these nodes.

S PA-l Operating System Overview:
The Operational Kernel (OK)

The OK, or Operational Kernel, is written in Ada.
Suppon of the execution of Ada programs is provid
ed for by the Ada Run Time System (RTS). The
RIS provides very basic services such as tasking and
memory management, and exception handling. The
RIS is included in every active processor module in
the SPA. The services of the RTS are not directly in
voked by calls to the RTS, but are accessed through
the use of standard Ada language statements. For
this reason, a detailed treatment of the RTS is not in
cluded in this paper.

The OK consists of Ada packages that are run on top
of the RTS. and which provide services not available
from the RTS. This collection of packages include
lower level services that involve message buffering,
interrupt handling, and individual configuration com
mands. It also includes higher level services such as:

• MINIO - a block I/O facility for the MIN
using protocols to ensure the integrity
of data transfers between modules

G. S GRISBECK and W. D. WEBBER
Proceedings - Fifth Annual AIAA/Utah Stale Universily Conference on Small Satellites

I North I
LJ c:::J

r=J c=J
I South I

Typical Interconnection

Nort" ~
(2) ~

Port 0

East ~
(2)
~

Port 1
South ~

(2) ~ Via 0

We.t
(2) ~ Via 1

Conflgurable Network Unit
• 1 Per Module
• Provides 4

Independent
Data Paths aetween
8 Connectors

• 2 Paths Interface
With Module

• Electrically
Reconflgurable

Module
Logic

Module
Logic

North
(2)

East
(2)

South
(2)

West
(2)

Figure 1. CNU Connectivity

4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

G. S GRISBECK and W. D. WEBBER
Proceedings. Fifth Annual AIAAlUtah State University Conference on Small Satellites

Serial I/O

Host
(MicroVAX)

2

5 6

9

Nodes 1,3, and 8 have 1750A Processor Modules
Nodes 1 and 3 have Serial 10 CoMCCtcd to the Host Micro V AX

Figure 2. SPA-l Interconnect

MiclDYAX Ir

OAY·11W OAV·11W

PTS
Adaptor

PTS
AdIIptor Hardware Configuration

SPA-,

Figure 3. SPA-l Configuration

5

I
G. S GRISBECK and W. D. WEBBER

Proceedings • Fifth Annual AlAAlUtah State University Conference on Small Satellites I
HEAR1BEAT - a healthcheck facility to action. Note that the OK controls access to the I/O •
support application controlled fault detection devices (serial I/O units or SIOUs and the NIUs or I
and isolation on the MIN ports).
CONFIGURATION - a configmation facility •
that provides a high level set of operations to Note also that the RTS is included in the diagram but
configure and re-configure the MIN has no direct connection to the OK or the application I

tasks. The application tasks interact with the OK
All, some, or none of these higher level OK services through procedure calls. The called entry points are
can reside in each processor. dictated by the OK service requested by the applica- I

tion. Most of the services provided can result in the
OK • Theory of Operation suspension oftbe caller; this is to allow the hardware

to complete the service requested. To avoid blockin&
The OK supports applications in both a development the promss of the axwlication. it is typical that the I
environment and an operational environment (in the aRRlication will define tasks to service such I/O calls
case of SPA-I. the demo). These environments dif- to the OK. This is the situation illustrated in Figure
fer basically only in their reliance on a host computer. 4. As with any task, the control and synchronization I
The operational environment communicates with a of these application defmed tasks are taken care of by
host (a MicroVAX. in the case of SPA-I) over a seri- the RTS. (The request for RTS services occurs at the
al I/O (in the case of SPA-I). or over a downlink in Ada level as task elaborations and processing. They I
the case of a spaceborne application. come from the Ada ACCEPT and ENTRY-CALL

statements, which. when paired. make up the Ada
All communication in SPA-I consists of software in rendezvous providing for synchronizing and passing
one module passing messages and data to software in data between tasks). I
a second module. The code involved need not be
concerned with the physical aspects of communica- A logical I/O Channel is defmed by a starting point,
tions; the interface between the communicating ele- an ending point, and the data path between the two I
ments remains the same. The logical to physical points. The starting point refers to a module and its
mapping can be updated (via modification of a table) NIU to be used for the communication. The ending
to change the physical path of any data channel. but point refers to a module's destination code (the CNU
the application code need not change. port id of the destined module). The "data path" I

refers to the physical path traversed by the data from
Communications between a SPA module's applica- the starting module to the destined module. For NIU
tion code and the OK occurs through application calls communication the path involves the MIN configura- I
to OK procedures. These calls reference communi- tion and the modules and CNUs between the starting
cation paths logically. The logical to physical map- processor module and the destined one.
ping defines a unique physical hardware path from I
the source module to the destination. For output re- Obviously, the definition of the logical I/O Channels
quests, the OK packages the output items and trans- and the MIN configmation are closely coupled. Each
mits them across the appropriate hardware paths as logical I/O Channel must be pre-defmed by the appli-
specified by the logical I/O defmition. For input re- cation for use by the OK in order for the communica - I
quests, the OK processes the interrupts from the I/O tion to be successful. OK services are then obtained
devices, matching them to outstanding requests. by calls to OK procedures associated with the func-

tion to be performed. The logical I/O Channel is pro-
When an I/O activity passes some hardware recog- vided as one of each OK procedure's input pararne-
nized event, control is transferred to an OK task. ters; specific channel information is indicated by a
The OK task determines the nature of the event by Channel Index, that is passed with each OK service
decoding hardware status registers. This OK task request Logical I/O Channels operate in a logically
communicates such events to the OK procedure, independent manner, in that I/O on one logical va
thereby notifying the application software. Channel is not blocked by I/O on another logical va

Channel. This imponant fact means that mulriDle
All communication with the SPA consists of applica- lQlUcal UP channels Can share a siniile physical data
tion code in a send module passing messages to the WUh.
application code in a receive module. Figure 4 illus
trates the software configuration at this level of inter-

6

Logical I/O channels are used for all types of trans

I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

G. S GRISBECK and W. D. WEBBER
Proceedings - Fifth Annual AIAAlUtah State University Conference on Small Satellites

PM
GP16

PIM
GP16

ARTE R

R

"MainW AppI Task

R R

R R

OK Softw ...

OK Softw ...

R R

R R

* R .,. Rendezvous

Figure 4. OK/Application Multi-Module Tasking Environment

7

G. S GRISBECK and W. D. WEBBER I
Proceedings - Fifth Annual AIAMJtah State University Conference on Small Satellites

fers: messages; data; external I/O commands; and
CNU commands. The Channel Index is used to
index the I/O Channel Table to determine the specific
physical path for the transfer at hand

For message transfers, the I/O Channel Table is used
by the sending modules to determine which NIU.
MIN destination code, and destination module's
channel index to be used for the transfer. The desti
nation module's channel index is part of the message
packet. When received by the destination module,
this channel index is used to route the message data
to the appropriate application task. The I/O Channel
Tables in the two modules can point to each other
(that is, its destination code of one corresponds to the
the other's channel index), giving the effect of a bidi
rectionallogical I/O communication path for message
transfers.

Unlike message transfers, block transfers pass only
data to the destination module. Without wrapping a
"message transfer communication protocol" around a
block transfer (which is what MINIO does), block
transfers are strictly unidirectional. There is no in
herent infonnation to tie two communicating logical
I/O Channels together.

Figure 5 illustrates the interfaces to the OK from the
application. The I/O Channel Table is the data struc
ture of the I/O Channels used by the OK and its ap
plication~. The OK Driver provides asynchronous,
unchecked I/O. MINIO provides handshake
synchronized and verified I/O. Configuration pro
vides hardware initial configuration and reconfigura
tion suppon. Heartbeat provides a SPA health moni
toring suppon.

The functions provided by OK services are accessed
by a high level interface (procedure calls). These
functions are summarized as follows:

I/O Channel Table

This data structure is made up of I/O Channel
records. The I/O Channel record structure is illus
trated in Figure 5. Each record contains the infonna
tion necessary for point to point communication
using the OK Driver services. The application coder
builds this array of records based on the require
ments of an application.

OK Driver

The OK Driver perfonns the low level hardware ma-

8

nipulations required to send message, data. and hard- I
ware command packets (XIO and c~ru commands)
between processor modules within a SPA and be- I
tween a processor module and the host. The OK
Driver function also implements the logical I/O chan-
nel concept. The OK Driver provides low level ac- I
cess to SIOU and NIU devices, and to the MIN
(CNU) hardware, both in the executing module and
in other modules of the SPA. The OK Driver is
required in all modules of a SPA. Figure 5 lists the I
procedures to the OK Driver service.

MINIO

This service provides verified I/O transfer
functions.lt implements a data block transfer protocol
between two SPA modules. The protocol includes
verifying that the transferred data arrives at the re
ceiver correctly and returns a status to the application
indicating whether the data transfer was successful or
not. Figure 51ists the procedures to the MINIO ser
vice.

Heanbeat

This service provides a health monitOring function
for the application program. Once initiated, the
heartbeat function creates MIN traffic by sending
heartbeat messages at user defmed time intervals
and/or monitors incoming heartbeat messages verify
ing that received messages occur within user defined
time limits. Heartbeat returns status to the applica
tion program. when a missing heartbeat message is
detected. Figure 5 lists the procedures to the
Heartbeat service.

Configuration

This service supports the application in its effons to
initially configure or to reconfigure the SPA. Figure
5 lists the procedures to the Configuration service.

In a spaceborne environment, the need to suspend
application software operation. reconfigure the array,
and resume application software operation may anse.
One method by which the need to reconfigure IS

made known to the application software is the faded
heartbeat return function provided by the 0 K
Heanbeat service. Typically, a "pecking order" IS ~,,
tablished in the application processors that de[erm:~~
which processor is to assume control for the l"ec('n·
figuration activity. This decision can be based pn : ~ C'

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

G. S GRlSBECK and W. D. WEBBER
Proceedings - Fifth Annual AIAA/Utah State University Conference on Small Satellites

MINIO

PUT BLOCK
GET BLOCK

HEARTBEAT

ACTIVATE HEARTBEAT
TERMINATE HEARTBEAT

APPUCATION

GET MISSED HEARBEAT UST

¥

CONfiGURATION

I

I

SET MODULE DISCRETE
CLEAR MODULE DISCRETE
SET CNU MODE
CLEAR CNU MODE "'
CONfIGURE EDGE CONNECTOR
CONfIGURE DATA PATH
SET PORT 10
READ CNU REGISTERS

'II

I/O CHANNEL TABLE
C7IAJ(/IEL _

ut.v AN .Nt Ih, ER
liflJ&r • 'or.

"!i, N I~ ~I"

S' ~ER

RlA I A,CR
ISIOU ~" !r.;D!: 4 ;1(

S!OU' 1.0 ;\j lCA,CR

A

'II

-"'" OK DRIVER ~

.... SIOU INITIAUZE
NIU INITIALIZE

.... WRITE MESSAGE
WRITE COMMAND
READ MESSAGE
RESERVE INPUT BUFFER
RESET INPUT BUfFER
RELEASE INPUT BUFFER
WRITE BLOCK
WAIT fOR END Of BLOCK
READ BLOCK
EXCHANGE ERROR LOG
WRITE ERROR LOG

Figure 5. OK/Application Interfaces

9

Y

G. S GRISBECK and W. D. WEBBER
Proceedings • Fifth Annual AIAA/Utah State University Conference on Small Satellites

data provided by the Heartbeat service. The control
ling processor uses the OK Configuration services to
repair the array and resume operation. Repair can be
effected by powering on an additional processor,
changing MIN paths, or both. The approach taken
with the SPA-I demo was to have this entire activity
be the responsibility of the application programmer,
by using the services of the OK.

SPA Concept Validation Demo

The purpose of the demo was to demonstrate the
functionality of the main features of the OK software
in the SPA-I multiprocessor environment An orbital
ephemeris application written in Ada showed how
the RTS handles tasking, memory management, and
interrupt processing. MINIO was used to transfer
the results of the ephemeris calculations to other pro
cessors on the SPA-I system. Heartbeat was re
sponsible for finding faults injected by the user dur
ing the demo, and the Configuration package was
used to configure the CNU at all involved nodes to
build a new path around the failed node.

The demo application consisted of ephemeris calcula
tions being performed for two satellites, in each of
three independent processors at different nodes on
the SPA-I; this data (and SPA-I health status) was
sent around the path (ring) connecting the three active
processing modules and ultimately out of the SPA-!
via a serial I/O (input/output) channel to a host ma
chine (MicroVAX) for display. With the demo soft
ware running in the three active processing nodes,
observers were invited to cause random nodal inter
connect or processing hardware elements to fail by
selection of switches on a fault injection panel.
SPA-I, under the aegis of the OK. detected that a
failure had occurred, isolated it, reconfigured around
it. redistributed the processing load (to the two or
one remaining active processors) and continued with
the application processing, all without qperator inter
vention of any sort

The main features of the SPA concept validated by
the SPA-I demo were:

On-Board Control -

All data movement, fault detection, isolation and re
covery was performed on the SPA-I. The host was
used for display of status and of graphics showing
the ephemeris calculations.

Data Movement -

10

Data generated by the ephemeris calculations in the
active processor modules on the SPA-I was moved
around the data path to the master processor module
(one of the two with serial I/O hardware connected
two the host) and then sent to the host All such data
movement was done using OK facilities.

Fault Detection-

Faults were detected by means of the heartbeat soft
ware. Every active processor module periodically
(twice per second) sent messages to other proces
sors. Both of the processors connected to the host
monitored the heartbeat messages, and when four in
a row were missing, a fault condition was declared.

Fault Isolation -

From the pattern of missing heanbeats, the failed
module or CNU was determined. This required that
the monitor processor modules know the path con
figuration between the modules being used in the
demo. The configuration was passed from the mas
ter monitor to the backup as part of the re-start after a
reconfiguration.

Fault Recovery -

Fault recovery involved data path reconfiguration,
application re-start, and load balancing. The rings
were reconfigured by the master node following a
fault, unless the fault was injected so as to remove
the master processor (or its CNU), in which case the
secondary/backup node began the reconfiguration,
after waiting for a certain time period for the master
to reconfigure. The backup then became the master,
and all data communications were switched to the
new master.

As part of the reconfiguration, all nodes except the
master were reset (and thus put in the reset configu
ration shown at the top of Figure 1.) The heartbeats
and application programs were then restarted in other
nodes with a series of synchronizing messages.

When the demo began, each of three active processor
modules was computing the positions of two satel
lites. After the first injected failure that involved the
loss of anyone of these processing modules, the
failed processor's load was reassigned and shared by
the other two remaining processors, each of which
determined the ephemeris for three satellites. After
the injection of an error which took out one of the

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I G. S GRISBECK and W. D. WEBBER
Proceedings - Fifth Annual AlAMJtah State University Conference on Small Satellites

I two remaining satellites, the entire load of six orbit
calculations was given to the remaining processor
module. At this point, any failure which removed

I this single remaining processor (or all paths to it)
ended the demo.

I It should be reiterated that the host or Micro V AX was
used only to start the demo and to display health sta
tus/injected fault, and the orbits being calculated by I the processor modules on the SPA-I.

Validation Software Implementation

I The major software elements and their location are
shown in Figure 6. The software in the SPA-l drove
the demo, while that in the MicroVAX kept its dis-

I plays updated by repeatedly requesting satellite posi
tion update information from the SPA-l, and display
ing the responses.

I
I
I
I
I
I
I
I
I
I
I
I

The SPA-l software was distributed in nodes 1,3,
and 8. Node 1 was initially the master; node 3 was
the backup master (the only other node that had serial
I/O hardware that could communicate with the host),
and had a copy of the same software as the processor
in node 1. Both nodes 1 and 3 kept checking that the
ring was intact by using the heartbeat facility. In the
event of a failure, node 3 would not reconfigure the
SPA unless node 1 failed to do so in a predetermined
time. Node 8 was always a slave node; it had no re
sponsibility for fault detection/isolation (except in
sending heartbeat messages as the specified inter
vals).

The master processor (whether it resided in node 1 or
node 3) had three demo specific functions: to re
spond to the host's requests for satellite orbit data; to
monitor heartbeat responses for ring or processor
failures; and, to reconfigure the SPA-l after a failure
was detected and isolated. The slave module at node
8 had only a subset of the software in nodes 1 and 3.

(Re)Configuration

Once the failed module or MIN element was deter
mined, reconfiguration was determined by a table
look-up scheme. Table 1 shows the sequence of
configurations used, the order of which is dependent
upon the order of the failure occurrences.
Configuration 0 is the initial configuration, and is
shown in Figure 7. Other configuration examples
are shown in Figures 8 through 10. Based on which
element fails, the next configuration to be implement
ed is read from the table. If there is no entry, or if

11

the reconfiguration is unsuccessful, then the "fall
back" configuration will be attempted.

Summary
An operating system called the Operational Kernel,
or OK. has been completed, tested, and functionally
validated in a demonstration using the SPA-I. This
demo featured fully autonomous on-board control
of data movement, fault detection, fault isolation,
hardware reconfiguration, application re-start, and
load balancing/redistribution.

With the demo software running in the three active
processing nodes, observers were invited to cause
random nodal interconnect or processing hardware
elements to fail by selection of switches on a fault in
jection panel. SPA-I. under the ae~s of the OK. de
tected that a failure had occurred. isolated it. recon
fi&ured around it. redistributed the processing load
(to the two or one remaining active processors) and
continued with the application processing, all without
OJ)mltor intervention of anY sort.

It should be pointed out that the orbital ephemeris ap
plication code was the only SPA ,based software writ
ten specifically for this demonstration. The other
components were standard OK packa~es and sup:
pOrOni elements: heartbeat; MINIO; configuration
(and package Ring_Builder); and OK Driver, used
by all of the above to do message and data transfers,
and to manage buffers. This demonstration effected
autonomy and fault tolerance using an approach
whereby the application was very closely coupled
with the systems suppon; indeed, the structure of the
application (or this demo was built around use of the
standard OK elements as a basic part of the applica
tion itself.

References

1 Grisbeck, G. S, Doleman, J.G., and Reed,
R.G., "Autonomous Surveillance Satellite", 4th
Annual AlAA/Utah State University Conference on
Small Satellites, Logan, Utah, August 1990.

Details of the Operational Kernel and the SPA-1
Demonstration Software may be found in the follow
ing:

• "Software User's Guide for the Operational
Kernel", #11920588, Control Data Corporation,
Minneapolis, Minnesota, Feb. 1991.

• "SPA-! Demonstration Software User's

G. S GRISBECK and W. D. WEBBER
Proceedings - Fifth Annual AIAA/Utah Scate University Conference on Sma11 Satellites

Host

SPA-l

Orbital Ephemeris
ApplJcalion

System Status
Application

Application
Ring Control
. Ring Builder

VAX Output
OK 1

4

7

PTS
Software

HOSTIO

lOA Channels

2

5

Application
OK

8

1

B
Applicalion

Ring Control
Ring Builder
VAX Output

OK 3

6

9

Figure 6. Major Software Packages Residency

12

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

No.

0
1
2
3
4
5
6
7
8
9
10
11

G. S GRISBECK and W. D. WEBBER
Proceedings « Fifth Annual AIAAlUtah State University Conference on Small Satellites

Table 1. Configuration Sequence

Next Confil Based OD Module Failure
ConOg. 1 2 3 4 S 6

Cl2346789 1 2 3 4 0 6
C23689 0 0 0 0 0 10

Cl346789 1 0 3 7 0 7
C12478 0 0 0 9 0 0
Cl23689 1 7 9 0 0 7
Cl346 0 0 0 11 0 11

Cl23478 10 7 9 7 0 0
C13789 10 0 9 0 0 0
Cl23 0 11 0 0 0 0
C1278 0 0 0 0 0 0
C2389 0 0 0 0 0 0
C1379 0 0 0 0 0 0

Configuration ID: 0
IZ?JIf(,73'!

----';3 4 S

i'lf E

-12 Via I
N 0 i

I 2

~ 1 L-J 1
2 ! : 2

Port 0

wi
E I E

Port 1

'11110 VIa 0

VI~ 1
6 ________ 6

VI~ 1
5 i 5

5

7

4
0
0
0
0
0
0
0
0
0
0
S

Figure 7. Configuration Example

13

8 9 Fallback

8 6 C13789
0 0 Cl389
S 0 C13789
0 0 C1278
8 0 Cl23
0 0 C1379
8 0 C13789
11 0 C1379
0 0 Cl346
0 0 C1278
0 0 Cl389
0 S Cl23

6 \......-

1: •

7 '--o '

I
G. S GRISBECK and W. D. WEBBER

Proceedings - Fifth Annual AIAA/Utah State University Conference on Small Satellites I
I

Configuration ID:) I
23~ 8'(I

I 4 S 5 S 5
·3 6 6 :r Port 0: I W Port 1: E E

Via 0 7L I 2 Via 1 7 7
1 N 0 0 N 1 I

;

2 I
1 N 0 0 N 1 1

I 2 7 7 2 2

Port 0: Port 0:

EL W Port 1: E E Port 1: W W Port 1: I Via 0 Via 0 Via 0

3 Via 1 6 6 Via 1 3 3 Via 1 6 .

I 4 S 5 5 S 4 4 S

4 5 6

I 4 S 5
3 6

Port 0: I W Port 1: E E E
Via 0 I 2 Via 1 7 7

1 N 0

7 I
I

Figure 8. Configuration Example

I
14 I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

G. S GRISBECK and W. D. WEBBER
Proceedings - Fifth Annual AIAAlUtah State University Conference on Small Satellites

Configuration ID:

6 r----I 6
5

S s

Port 0:

E E Port 1: w w
Via 0

Via 1 7 1-------1 7 Via 1 2 1------1 2 Via 1
N 0 0 Nil N

2

o N 1 1
1----17 2 1------1 2

Port 0:
w Port 1: E Port 1: W W Port 1:

Via 0 Via 0 Via 0

Via 1 6 ~---t 6 Via 1
S 5 5 S '---+---__,----J

4 5

3 1------1 3 Via 1
4 4 S

~~---.....,--~ 6

3

3
4,-~-.....

w

2
1

8 9

Figure 9. Configuration Example

15

5

I

~r

E

7 o

G. S GRISBECK and W. D. WEBBER
Proceedings. Fifth Annual AIAAlUtah State University Conference on Small SateUites

Configuration ID: I 0

7- :2'1
!

1 ~ I, I
I

4 S 5 ~ s =:A.- _ Ili 14 S
/'6 - 3 6 6 r f--

I", Port 0: Port 0: Port 0:

W Port 1: E E t 1: W W Port 1:i) E

12
Via 0 Vial1) Via 0

Via 1 7 7 ~ia 1 ~
'" 1

Via 1 7 ~
1 N 0 0 N 1 N 0

1 2 , 1

I I

N 0 1 N 0 ! 0 N 1 1 71 l: 7- 7 2 2
Port 0: Port 0: Port 0:

Port 1: E E Port 1: W W Port 1:
EI i

Via 0 Via 0 Via 0

3 Via 1 6 6 Via 1 3 3 Via 1
5

6 1 --
4 S 5 5 S 4 4 S

4
i 5 I 6

I I
4 S 5 1

5 -~ 4_ 4 c:: 5 - 3 6 i 6 ·C -,;:r -oJ) 6 -
Port 0: Port 0: ~o

W Port 1: E E ort 1: W J.- E
Via 0 Via 0 Via 0 " -l21 Via 1 7 7 Via 1 n.. V~ 7 l---.......

N 0 N

i 7 I 8
f

9

Figure 10. Configuration Example

16

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

G. S GRISBECK and W. D. WEBBER
Proceedings - Fifth Annual AIAMTtah State University Conference on Small Satellites

Guide", #SPS-00482, Control Data Corporation,
Minneapolis, Minnesota, Feb.1991.

Brief Overview of Ada Terminology

One of the goals of the Ada language was to make it
possible to write huge programs effectively, pro
grams so large that they could not be easily under
stood in their entirety. Another goal of Ada was to
be able to write general software elements that could
be used in several different programs. Thus, inde
pendently developed parts of Ada programs could be
used as building blocks. The two most important
kind of building blocks are subprograms and pack
ages.

Subprograms are comprised of procedures and func
tions, and are very similar to subprograms in lan
guages like FORTRAN and Pascal. A procedure call
statement can specify parameters whose values are
used, and may change variable values; a function,
which also may have parameters, only returns a
value when it completes its execution. This value is
then substituted in the expression containing the
function call.

A package is a collection of items (such as subpro
grams, variables, exception declarations, etc.) that
are usable by other elements in an Ada program.
Thus the desires for the ability to reuse software
components and the ability to divide a large, compli
cated program into manageable elements are both met
with Ada packages. Packages typically can be un
derstood in isolation from the rest of a large Ada pro
gram.

Programs are often executed sequentially, i.e., the
program's statements are executed in order. Ada pro
grams can be written in this fashion. However, it is
possible to have two or more sequences of actions,
called tasks, to be performed concurrently. Often, a
computer running a multitask program spends a little
time running one task, then switches to another task,
and eventually switches back to where it left off at
some earlier task. This is called interleaved concur
rency. In some environments, like SPA-I where
there are several processors, different processing
modules may be executing different tasks at the same
time. This is called overlapped concurrency, or just
concurrency from here on.

Multitasking programs can greatly increase the speed
at which programs finish their activities. Straight

17

procedure calls are sequential, and their execution is
suspended until necessary data or hardware activity
is available. If tasking is used to effect overlapped
concurrency, overall computations can be finished
much quicker by allowing parts not dependent upon
one another to execute simultaneously on other pro
cessors. Decomposition into different tasks allows
work to proceed in certain areas while work (tasks)
in other areas are waiting for some external event to
occur. I/O operations are a good example of this.
Ada programs have the additional benefit of being
reentranJ. Simply put, this means several tasks may
execute the very same sequence of Ada statements at
the same time.

In an environment like SPA-I, where no assump
tions can be made about the relative progress of one
task relative to another, the tasks are called asyn
chronous. From time to time, however, it is
necessary for tasks to cooperate with one another or
to synchronize their activities.

Tasks synchronize and communicate through a pro
cess called a rendezvous. A task communicates with
another by either accepting a call to one of its own
entries or by calling another task's entry. When one
task calls the entry of another and the second task ac
cepts that call, a rendezvous has taken place.

Concurrent multitask programming in a multiproces
sor environment is much more difficult than sequen
tial processing. One risk is timing, whereby a pro
gram depends implicitly upon the relative execution
rates of several tasks. Another danger is called
deadlock. Deadlock occurs when no task can pro
ceed because each task is awaiting the result of, or
some action by, another waiting task. The Ada pro:
mm used in the SPA-! demo software used approx::
imately 60 tasks. and was a fairly subtle and sii:nifi
cant pTOiUilIDmin& effort.

Glossary

Ada DOD programming language based
on MIL-SID-1815A

CNU Configurable Network Unit

IX)[) Department of Defense

00

ISA

Input/Output

Instruction Set Architecture

MIN

MINIO

OK

PTS

RTS

SIOU

SPA

SPA· 1

1750A

444RR

G. S GRISBECK and W. D. WEBBER
Proceedings. Fifth Annual AIAAlUtah State University Conference on SmaIl Satellites

Module Interconnect Network

MIN I/O

Operational Kernel

Portable Test Set

Run Time System

Serial I/O Unit

Spaceoome Processor Array

SPA Version 1

ISA based on Mll...-STD-1750A

444 Rugged/Reliable. a space-
Ql1alified 1750A processor designed
and built by Control Data Corporation

18

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

