
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

PROTOCOLS FOR STORE-AND-FORWARD
MESSAGE SWITCHING VIA MICROSA TELLITES

J. W. Ward
Surrey Satellite Technology Ltd.

Centre for Satellite Engineering Research
University of Surrey, Guildford, Surrey GU2 5XH, UK

H. E. Price
Quadron Service Corporation

133 E. De La Guerra # 10
Santa Barbara, CA 9310 1

Abstract

The authors have developed a suite of protocols specifically optimized for use on store-and
forward microsatellite communications missions. The protocols support networks in which
user terminals directly access the store-and-forward satellite to transfer electronic mail.
The authors' PACSAT Protocol Suite includes a message format standard, a virtual-circuit
directory and file transfer service, and a datagram based point-to-multipoint "broadcast"
protocol.

An implementation of this suite has been operating on the UoSAT-3 PACSAT
Communications Experiment (PCE) for twelve months and on the AMSAT Microsats for
seven months. During this period, hundreds of small and medium-sized ground terminals
in all parts of the world have accessed the satellites.

On-board software monitors network activity closely, and usage statistics for UoSAT-3 are
gathered regularly at the UoSAT Command Station. Based on this data and the reported
experiences of regular system users, we compare the effectiveness of the various protocols.
From these comparisons we make some recommendations which are generally applicable to
store-and- forward microsatellite missions.

This paper describes the design of the PACSAT Protocol Suite and the UoSAT-3 and
Microsat implementations. It summarizes the in-orbit performance results, and concludes
with recommendations for future store-and-forward microsatellite missions.

Introduction

The authors have been working on the problem of store and forward communication via
small low-earth orbiting satellites within a world-wide heterogeneous user base since
December of 1984. Since that time, experience has been gained on the following space
craft:

UoSAT-2
UoSAT-3
PACSAT
LUSAT
UoSAT-5

(UO-11)
(UO-14)
(AO-16)
(LO-19)
(UO-22)

Launched March 1984 by De1ta l74.
Launched January 1990 by Ariane V35.
Launched January 1990 by Ariane V35.
Launched January 1990 by Ariane V35.
Launched July 1991 by Ariane V44.

1

The UoSAT spacecraft were designed by the University of Surrey, UoSAT-3 and UoSAT-S
were funded through Surrey Satellite Technology Ltd. PACSAT and LUSAT are Microsat
spacecraft designed by the Radio Amateur Satellite Corporation (AMSAT-NA), PAC SAT
was funded by AMSAT-NA, LUSAT was funded by AMSAT-Argentina.

All of these spacecraft are currently on orbit and active. UO-ll contains a rudimentary
protocol system. The particular system described in this paper has accumulated 26 orbit
months of use on UoSAT-3, PAC SAT, and LUSAT. The most recent user, UoSAT-S,
launched just a few days ago, was broadcasting files using the protocols discussed here
within 48 hours of launch. Two additional satellites with confirmed launch slots will em
ploy these protocols, and several more are in the planning stages.

In their message passing role, these satellites are generically referred to as P ACSATs, for
Packet Radio Satellite, and the protocols are called "The P ACSA T Protocol Suite".

The target user community is made up of numerous portable and fixed ground terminals
without centralized control. These stations make up ever shifting ad hoc groups of similar
interest. All stations use NBFM voice-grade RF gear with an Amateur Radio Service stan
dard RF modem called a Terminal Node Controller (TNC). The largest portion the ground
terminals are based on IBM PC-class computers running DOS, some use Apple Macintosh
or Amiga, a few are UNIX based. There are currently 366 active amateur radio stations
that access the satellites directly, and an unknown number of stations that use the facilities
of the satellites via gateways and message relays, or that only receive the broadcast data.

Two non-amateur user groups will be~in accessing the UoSAT-3 and UoSAT-S spacecraft
(using frequencies allocated in a serVIce other than the Amateur Radio Service) later this
year.

As will be discussed below, the unit of information transfer is a "file", wrapped in a stan
dard "envelope". Files contain messages, telemetry, digitized voice, digitized images
(uploaded from the ground, or generated with an on-board CCD camera), programs, or
anything else commonly found on terrestrial computer networks.

The average file size is less than 9k, although some messages are more than 300k. In many
cases, messages are combined and compressed, usually using the popular ZIP program, be
fore being sent to the spacecraft. An early draft of this paper, along with Lotus 1-2-3
spreadsheet data files, was sent from the UK to California with a delay of less than 12
hours, and downloaded in less than one 14 minute pass; the compressed file size was
105,000 bytes, an un compressed size of 249,000 bytes.

The main body of this paper will discuss the various design goals and constraints which
guided the design of the protocols. We will also discuss the implementation methods, the
hardware used, and provide some on-orbit results.

Design Drivers

We wanted to provide a space-based store and forward messaging system that fit in well
with the existing terrestrial Amateur Radio Service packet networks. The problem was that
the ground network is constantly changing, it is an ad hoc collection of OSI Stack and
TCP /lP family protocols. It includes large multi-user systems and portable lap-tops. It in
cludes 56kb UHF links and intercontinental 300 baud HF links. Routing protocols and
conventions change frequently, and there is a high turn over rate in network routing nodes,

2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

hosts, users, and applications. It is, in other words, a standard general purpose wide area
net, and not a specialized application.

The type and size of messages sent by the users changes as ground equipment prices drop
and sophistication rises. For example, one user community has recently taken to digitizing
photos of themselves and placing them on the spacecraft, the average size of these files is
80k.

It was clear that if we were to avoid constant upgrading of the satellite software, and if we
wanted to avoid complex schemes for the updating of routing tables for a network node
that was moving at 17,000 mph, we would have to do two things:

1) Design the spacecraft software so that there was one generic data entity that it
knew how to deal with and deal with well, and

2) Leave all routing decisions to the ground segment.

To these ends, we developed an encapsulation specification. Anything relayed via the
satellite would be placed in a file. The file would have sufficient information added to the
front to describe the file contents such that consenting ground stations could determine how
to deal with the file, where it came from, and where It was going to. The satellite is a mere
carrier of the data, and plays no active role in determining where the data is to be sent. It
does not handle files differently based on their contents.

The encapsulation is implemented by using a standardized header which is placed at the
front of all data sent to the satellite. The only function the satellite must perform is re
ceiving files, allowing files to be downloaded on request, and allowing ground stations to
search the headers to determine which, if any, files It wants to download. Files are given
unique identifiers by the satellite, which are used in all transactions. Any other identifier of
interest to the ground stations is placed in the header. The header specification is discussed
in detail later in this paper.

We would also have to make a concession to the major difference between a LEO satellite
and a terrestrial network resource. A LEO satellite is accessible for a short period of time
several times a day. The system must allow for a file upload or download to be terminated
at any point in the process, and the process must be able to be continued from that point
without requiring retransmission of data heard once before. While protocols such as
TCP lIP would allow a session to remain open until the next time the satellite was in view,
keeping session state for a large number of users for an indeterminate length of time was
thought to be impractical. The only state we elected to maintain is file state, that is, is the
file complete, and if not, what was the last byte received. Ground stations preserve similar
state information for files being downloaded.

We also chose to take advantage of another attribute of LEO spacecraft -- they are inher
ently a broadcast medium. There are many potential users of the spacecraft in view at any
one time, and these users may be interested in accessing the same files. A point to multi
point facility is then in order.

Finally, we designed with the assumption that the minimum ground terminal would have at
least ,~n IBM-P~ class computer providing intelligence. In our network, the ground stations
"poll the satellIte. The same hardware and software support systems could also support
another model, where the satellite polls ground stations, such as small weather stations,
data gathering buoys, etc., but we chose to interface with the existing network as described.

3

Our store-and-forward message passing suite of protocols contains three major elements:

1) The encapsulation protocol (P ACSAT File Header)

2) The point to multipoint protocol for downloading (Broadcast Protocol)

I
I
I

3) The point to point protocol used for uploading, downloading, and for getting lists I
of files. (FILO protocol)

Protocols

The protocols are summarized in this section. The protocols are completely described in
[1]. In the description of these protocols, "server" refers to the process in the satellite that
implements the store-and-forward facility, "client" refers to the ground station process that
uses this facility. Groundstation software provides the human interface to the network.
Ground terminals communicate with the satellite using computer-to-computer protocols.

The Amateur Radio Service standard link layer protocol AX.25 [2] is used as the low level
data transmission standard. The protocols described here function above the AX.25 proto
col. The AX.25 sliding-window ARQ "virtual circuit" mode is used to provide error-free,
correctly-sequenced data streams. The AX.25 VI frame is used as a standard datagram
format. Other protocols providing virtual circuits and datagrams could also be used below
the P ACSAT Protocol Suite, but the existing user base uses AX.25 as the lowest common
denominator.

Above AX.25 the Suite diverges into two distinct protocols: the PACSAT Broadcast
Protocol (PBP) employs datagrams to transfer messages from the satellite to the groundsta
tions, correcting errors by selective-repeat ARQ. The File Transfer Level 0 (FILO)
Protocol uses virtual circuits to provide a message directory search service, message up
loading and message downloading. Both of these protocols are implemented using a client
server model; the satellite computer executes a server process, which acts upon requests
made by the client process running on the groundstation computer.

Above these transfer protocols, a common message format -- a protocol for standard mes
sage encapsulation -- unites PBP and FILO. The encapsulation protocol is called the
PACSA T File Header (PFH). The PFH is the protocol header for the entire satellite-based
store-and-forward network; it is added when the originator places data into the network
and removed before the data is finally delivered to the destination.

The following figures illustrate the PACSAT Protocol Suite hierarchy, which is clarified in
the following sections.

Point to Point

Higher layer
.&

Lower Layer

PFH Encapsulation Protocol

FILO File Transfer Protocol

AX25 Virtual Circuit Service

HDLCframes

4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Point to Multi-Point

Higher layer
... PFH Encapsulation Protocol

PBP Broadcast Protocol

AX25 Datagram Service

HDLC frames
Lower Layer

Ground Terminal

~ PAC SAT L-' Client

PAC SA T File Header Specification.

... --FTLO-- ..

... --PBP-..

Sate 11 ite

PAC SAT File
Server System

Server

The store-and-forward satellite exists to transfer messages from one ground terminal to one
or more other terminals. End-to-end message transfer is implemented by a number of
software processes in ground terminals and on the satellite. In order for these processes to
exchange messages, there must be a definition of what constitutes a valid message.

The PACSAT File header provides a standard transfer unit for all information passed
though the sate1lite. Except for realtime engineering telemetry, all data generated on
board by these satellites is also stored using this specification; this includes stored teleme
try, data ~enerated by on-board experiments such as charged particle detectors and dosime
ters, and Images generated by the UoSAT-5 CCD camera.

Each file sent to the satellite has a prepended PFH. As sent, stored, and later downloaded,
a file looks like this:

PAC SAT File Header

Message Body

The message body is what one user wishes to transfer to other users. The PACSA T
Protocol Suite will transparently relay any binary message body.

The header contains fields which define the contents of the file, and provide information
on addressing and routing. The syntax unambiguously separates the PFH from the message

5

hody and permits significant future expansion of the number of header items -- both on a
system-wide basis and by any user group.

The PFH offers the following features:

• Places no restrictions on the content or format of the message body.

• Provides for a large number header fields.

I
I
I
I

• Provides a structure that can be easily searched by server protocols to select files of I
interest based on the contents of the header.

The PFH syntax is generic, and equally suitable for satellite and terrestrial applications; the I
currently defined header items clearly reflect the satellite-based nature of the network.

PFH Item Syntax I
PACSAT File Header Items employ the full range of 8-bit binary characters. The ground-
station software converts between a human-interpretable representation of the header, and I
the more efficient PFH syntax.

The PFH Item syntax is illustrated below

<-byte->

PFH Item Syntax
I
I

Identifier The Identifier is a 16 bit integer, providing a range of 65536 possible different I
PFH Items.

Length. Length is an 8-bit integer, which tells how many data bytes there are in the Item.
I terns longer than 256 bytes can be spread over a sequence of Identifiers. I
Data. The Data fie1d is the information content of the Item.

The PACSAT Header Specification strives to separate the mechanics of storing the file on I
the server from the actual form of the data on the client. For example, the server is con-
strained to use the file naming conventions of the underlying operating system. To avoid I
conflicts between a client system's file name conventions and the server's conventions, and
also to avoid duplication of names among clients and among other on-board users of the
satellite file system, the satellite file server assigns a unique file number to each file. The
actual name of the file as view by the client is kept in a different Item. I

6

I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

PACSA T File Header Item Definitions

Identifier Interpretation Required Field

1 file serial number assigned by satellite required
2 file name in server file system required
3 file name extension in server file system required
4 file size, including PFH and body required

11 length of PFH, in bytes required
8 message body type required
7 single-event upset severity flag required
9 additive checksum of body bytes required

10 additive checksum of header bytes required
5 time of file creation required
6 time of last file modification required

18 time at which upload was completed required
22 time at which message was last downloaded
23 time at which message becomes outdated
17 AX.25 link address of message uploader
21 AX.25 link address of message downloader
19 number of message downloads
16 network address of message source
20 network address of message destination
24 priority of the message
33 message title
34 key words describing the message
37 File name from message originator's file

system
25 compression applied to message body
36 ASCII description of non-standard

compression technique applied to body
32 message \\type" for PBBS gateway messages
35 ASCII description of non-standard body
0 last item in PFH required

Other features of the header fields:

• File Tracing -- timestamps track a file's movement through the system.

• Message Addressing -- the PFH allows user addresses to be anything up to 256
bytes long, with no constraint on the address interpretation or presentation. The
"!LO Protocol's Directory Search capability can be used by groundstation clients
to search for messages regardless of the address format chosen.

• Message Identification -- files can carry a title, key words, and other descriptors
defining the content and format of a file.

The PFH provides a well-defined method for joining an arbitrary binary message body to
standard envelope and header items. The standard syntax provides both uniformity and
flexibility, and the system-wide item definitions are specifically tailored to the store-and
forward satellite environment.

7

The FTLO Protocol

"File Transfer Level 0", or "FTLO" is the name of the PACSAT protocol which uses the
AX.25 virtual circuit mode.1 Clients use FTLO to upload and download messages, and to
obtain directories of messages on the server. These activities embody store-and-forward
communications. FTLO plays the central role of data transfer in the P ACSAT Protocol
Suite.

There are many existing protocols for computer file transfer. Some of these (e.g. Kermit,
FTP) are suitable for connecting heterogeneous networks of microcomputers, and it might
have been possible to adopt one of these protocols for the satellite store-and-forward net
work. Proponents of this approach argued that it would save the effort otherwise spent on
protocol specification and groundstation software implementation.

The characteristics of the LEO satellite communications link and the particular set of ser
vices required from the store-and-forward server made existing protocols unsuitable. The
server should provide simultaneous file uploading and downloading to take advantage of
limited pass time, and also allow a flexible directory search facility. The end of a satellite
pass, though predictable, can interrupt communications during any phase of a client/server
transaction. Interrupted transactions must be continued and not simply abandoned.
Furthermore, these features should not consume unreasonable amounts of memory or
computing time in the server or client computers. No existing protocol was seen to possess
all of these trai ts.

FTLO is the result of a custom protocol design. The services provided are those specifically
required by a satellite store and forward mission with the design goals as preVIously dis
cussed. The client/server transactions can be interrupted at any phase. Interrupted trans
actions are continued during later sate11ite passes, and consume no memory while sus
pended.

FTLO uses the AX.25 connected-mode virtual circuit to provide an error-free communica
tions channel between the ground terminal client and the satellite server. Adhering to the
layered protocol model, the FTLO processes view the channel as an ordered byte stream,
wIth no visible link-layer frame boundaries. The downlink stream is logically separate from
the uplink stream, and the two can operate simultaneously.

FTLO offers the following features:

• Simultaneous bi-directional transfer over a single virtual circuit.

• Recovers from Loss of Signal at any point in a transfer with no data loss. The
server is responsible for upload continue offsets, the client is responsible for
download continue offsets.

• Directory Search service. Allows for arbitrary select criteria, search for files with
headers the meet the criteria, and download of selected headers or files.

The FTLO protocol contains very little overhead. A client or server using 256-byte FTLO
information packets experiences 0.8% overhead on a file transfer. FTLO relies on the

1 The somewhat confusing "Level 0" portion of this name was added when several levels of
service were under consideration. It does not refer to any OSI level or layer.

8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

AX.25 link layer protocol to provide protection from data corruption and notification of
any link failures.

Using FTLO

To initiate communications using FTLO, a link-layer virtual circuit is established between
the client and the server. The client then initIates any uploads, downloads, directory
searches or message directory transfers which it requires. The client or the server may ter
~i~~te the virtual circuit upon encountering a protocol error or completing the desired ac
tivIties.

Directory Search Service

The FTLO directory search service identifies a subset of the messages on the server which
are of interest to a particular client. A network devoted wholly to person-to-person mes
sages would require only a vestigial directory search service to scan the destination Items in
the PFH for the current client's address. Clients in a more open network -- e.g. a bulletin
board or conferencing network -- require more powerful directory searches. Users may
wish to identify messages about a certain subject, messages uploaded after a particular
time, etc. Since the P ACSAT Protocols serve the needs of many types of users, they in
clude a directory search facility which permits the client to select messages using search
equations involving the contents of any set of PFH Items.

Following the design goal that the satellite not "know" anything about the meaning of the
contents of the header, the directory search specifies a
selection equation which specifies PHF Item numbers, constants, and comparison operators.
For example, a user may want "all messages stored since 0930 on the 15th of July which
have the word "measles" in their Title or Keyword fields, but not messages over 200,000
bytes long". This translates to a symbolic Boolean equation such as:

(UPLOAD_TIME> 15/7/9109:30:00) AND «KEYWORD="*measles*") OR
(TITLE = "*measles*")) AND (FILE_LENGTH < 200000)

Each term of this equation contains four elements: a PFH Item identifier, a relational oper
ator, a comparison type (numeric or string), and a constant value. The flexibility of the
PFH Item syntax described above now becomes apparent, files can be placed in the satel
lite file system, and without any explicit knowledge of field definitions, the satellite soft
ware can select files for download based on a arbitrarily complex selection criteria. The
knowledge of the field types and formats, complex parsers and human interfaces, and even
different National Language conversions are kept on the ground.

9

The ground client software translates a selection request to postfix notation, the above
equation is presented to the satellite as:

numeric >
UPLOAD TIME 15/7/9109:30:00
string = -
KEYWORD "*measles*"
string =
TITLE "*measles*"
OR
AND
numeric <
FILE LENGTH 200000
AND-

The server processes the equation and determines if the message being evaluated meets the
client's selection criteria. By evaluating the selection equation for every message in its file
system, the server builds a list of selected messages for which the equation is true. The
client can then request the satellite to send a directory listing of the selected messages or to
begin downloading them.

PACSA T Broadcast Protocol

The downlink of a store-and-forward satellite is a broadcast channel, in the sense that all
ground terminals in the footprint can receive all transmitted frames (aside from local re
ception errors). This characteristic can be exploited when a message on the satellite is to be
delivered to more than one ground terminal in the same footprint. To make the most effi
cient use of the downlink bandwidth, a message should be transmitted only once for all
ground terminals which need that message, not once for each terminal. This is particularly
useful in electronic conferencing and news dissemination, where most messages will be of
interest to more than one client. The PAC SAT Broadcast Protocol (PBP) was designed to
provide this service.

PBP is a selective repeat, automatic repeat request (SR-ARQ) protocol which uses AX.25
datagrams instead of virtual circuits. The protocol consists of a packet format and a num
ber of procedures. The packet format allows each information packet transmitted by the
satellite to be used by all clients in the footprint. The PBP procedures allow stations to ini
tiate broadcasts and send selective repeat requests. PBP does not rely on the lower layer
protocol to provide data integrity, PBP provides its own SR-ARQ facility for replacing lost
datagrams.

PBP is a synthesis of customization and backward compatibility. By using the AX.2S data
gram protocol PBP remains compatible with the existing Amateur Radio Service installed
base of ground terminal AX.25 TNCs. By moving the ARQ process into a higher layer pro
tocol, the ARQ can be modified to suit the LEO satellite downlink. The protocol fully ex
ploits the broadcast nature of the downlink without requiring additional equipment in the
ground terminals.

The PBP Datagram

Generally, messages (files) will not fit into a single datagram, but will have to be broken
into several. If each message fragment transmitted by the PBP server is to be useful in iso-

10

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

lation, each must indicate what message it is part of, and where in the message the data
should be placed. The main elements of the PBP datagram format are illustrated below:

Simplified PBP Server Datagram Format

The File Identification Number is the same number used by the PFH and FILO protocols.
Byte Offset indicates where in the file the Data belongs.

Clients transmit their requests to the PBP server using another datagram format. This
datagram contains the File Identification Number, a block size telling the server how many
data bytes to put in each datagram, and one of the following commands:

Start broadcast transmission
End broadcast transmission
Selective repeat request
Start permanent broadcast

Retransmission Requests

Selective repeat ARQ, in which the transmitting station retransmits only those data frames
actually missed by the receiving station, is the most efficient form of pure ARQ. Unlike
sliding window schemes, no correctly-received frames are wasted. Unlike stop-and-wait
ARQ, the transmitting station can send data at full link speed. Experience with SR-ARQ
on UoSAT-2 showed that it was very efficient for file transfer to and from LEO satellites,
where a combination of short error bursts and long fades plagued other schemes.

Our earliest implementation of a satellite store and forward protocol, the UoSAT-2 MSG2
protocol [3], used fixed length datagrams and bitmaps for retransmission requests. As the
management of bitmaps is cumbersome with variable size PBP datagrams, we now use a
hole list concept. A hole is defined by a starting byte number and a length describing a gap
in the received file. A hole list can be viewed as a table of hole locations and sizes.

PBP Procedures

PBP procedures are less strictly defined than those for a go-back-n or stop-and-wait ARQ
protocol. The server responds only to requests from the client; there is no stream of ac
knowledgments from client to server or timeout timer after which the server retransmits
outstanding packets. Every datagram transmitted by the server has been requested by one
client or another, so little downlink bandwidth is wasted.

Once a client has identified a message which it requires (using the FILO directory service),
it sends a broadcast request to the server. This request includes a suggested number of data
bytes for each datagram, which allows the client to tailor the broadcast to prevailing link
quality.

The PBP client will receive some or all of the datagrams from its request. Upon receiving
these (or other) datagrams, the client places them at the indicated byte offset in the appro
priate file. The most efficient client software will capture all datagrams on the downlink,

11

even if they are not for a file specifically requested. The stored datagrams can then be used
to build files which the user may desire later. Thus, the client gradually builds messages -
some complete, and some with missing datagrams.

When a client wishes to have the server retransmit missing datagrams, the client composes
and transmits a repeat request datagram. If some of the desired datagrams are not re
ceived, then the chent sends the request again. The client repeats this process until the
message is complete.

Receive-only ground terminals can also gather messages from the satellite downlink using
PBP. Such simple clients cannot request repeats or specific messages, but they will receive
complete messages as a consequence of other clients' activity. The server can also transmit
important news bulletins repeatedly to increase the chances of reception by receive-only
stations.

PBP brings the network highly efficient ARQ downlinking. It eliminates the waste inherent
in other ARQ schemes, and makes each transmitted frame potentially useful for all clients.
It is also takes up little memory in the server for procedures or data structures. The level
two protocol is virtually null, and the PBP itself requires only data structures to store cur
rent hole lists. In contrast, an FTLO transaction requires a complete AX.25 level-two im
plementation, plus data structures to accumulate FTLO packets which may be spread over
several AX.25 frames.

Implementation Details

The PACSAT Protocols require both server (satellite) software and client (ground) soft
ware. One of us (Ward) has implemented the server on UoSAT-3 and UoSAT-5 satellites,
and the other (Price) has ported this software to the AO-16 and LO-19 satellites. Ward has
also written client software for the IBM-PC family of computers. Other implementations
of the client software have been written hy independent third parties, these run on Apple
Macintosh and UNIX systems, and well as IBM PC class systems.

There are many design choices in the server that are not unduly constrained hy the proto
cols themselves. The various limitations imposed by the target hardware (the UoSAT OBC
or the Microsat CPU) greatly affect the implementation of the server software. These in
clude the total number of directory entries available in the satellite file system, the numher
of simultaneous connections permitted, the number of simultaneous broadcast files, the
depth of the stack for FTLO Selection Equations, the processing power available for direc
tory searches, checksumming, Single Event Upset corrections, etc.

Security

The hasic FTLO protocol includes no explicit data security mechanisms. There is no user
authentication system and no message encryption. In a fast changing network using non-se
cure radio uplinks and a broadcast downlink, implementation of complete security mea
sures would have significantly increased the complexity the protocol specification. server
and client implementation, and network administration.

Ultimately, data security is the responsihility of the user, just as message routing and data
compression is. Since the PACSAT server is a transparent data channel, end users are free

12

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

to devise end-to-end encryption schemes which suit their needs.2 Only the PFH must be left
unencrypted. Thus, the PACSAT Suite does not force a particular level of security on the
user. Smce many user groups are not communicating sensitive information, and others
might require very tight secuflty, this solution seemed best for a general-purpose network}

A secure handshake is supplied for the spacecraft command and control functions and for
some server functions (file delete, for example), but this is not a function of the file transfer
features of the spacecraft, and is not "file security".

The secure handshake is based on a method described by Newland [4] for verifying user
identity in a "party-line" or broadcast environment. The server supplies a password which
must be properly encrypted and returned with the next command, authoflzed clients will
have a password and an encryption algorithm not available to other clients. This protects
against direct access, and also against attack by retransmission of a previous command,
which is no longer valid because the string to be encrypted and returned changes with each
transaction.

The lack of a general user authentication service has an adverse effect on the management
of file space, although the resulting code simplification more than makes up for this.
Because it implements no user authentication, the FILO server cannot provide conclusive
confirmation that a message has reached its intended destination. The client to client noti
fication task is appropriately and easily handled above FILO. When a message reaches its
destination, the destination station composes a very short return message (perhaps just
PFH with no body), which verifies delivery. Of course, to be certain, the ground stations
must have their own authentication scheme. Without the satellite participating in this
scheme however, messages can never be safely deleted based on delivery. The servers al
ways delete files when file space is needed, oldest file first. Clients can never request file
deletion.

File security, User Authentication, and similar topics have been given a great deal of
thought in study projects for commercial use of the PACSAT Protocols, but these are be
yond the scope of this paper.

Satellite CPU Hardware.

The current server implementation runs on two different hardware platforms (by virtue of
a common operating system). The basics of each system are:

UoSAT-3
UoSAT-5
Microsat

CPU Type

8 MHz 80c186
8 MHz 80c186
4 MHz NECV40

I/O ports Program Space File Space

2 @ 9600bps 256k
2@)9600bps 512k
6 @ 1200pbs 256k

4MB
13MB
8MB

2 Amateur Radio Service users are, in fact, constrained not to encrypt their messages!
3 For many purposes, shareware programs such as PKZIP.EXE can provide both encryp
tion and data compression at no additional "expense" to the user. A data file ready for
transmission would be passed through the encryption utility, have a PFH added and then be
uploaded. When received by the destination, the PFH would be stripped off and the file
decrypted. These operations can he automated using the PC's hatch processing commands.

13

Full descriptions of the U oSAT CPU hardware can be found in [5], Microsat in [6].

Satellite Operating System.

Concurrent with the development of more sophisticated data handling protocols than had
previously flown on amateur spacecraft came a requirement for a more sophisticated oper
ating system and associated ground simulator environment. Previous digital missions had
relied on 1802 and Z-80 microprocessors with small program memories. All software was
coded in assembler. Ground support was minimal, with generally unsophisticated devel
opment environments. Better ground equipment may have existed, but was in general be
yond the budget of the low cost missions.

The latest satellites used microprocessors that were instruction compatible with the Intel
80xx family used in IBM PCs. One of us (Price) is a principal at Quadron Service
Corporation where he and others develop a real time operating system for this class of de
vice. This operating system, called qCF, and the associated development tools allow pro
grams to be written using Microsoft C; a well known language and compiler. In addition,
the qCF system allows for several separate tasks to run in a multi-tasking environment,
which lends itself well to the independent development of different aspects of the total
spacecraft software load. Through a memorandum of understanding between Surrey
Satellite Technology and Quadron, the qCF operating system was tailored to the UoSAT-3
PCE (as well as to the AMSAT-NA V-40 onboard computer).

The UoSAT-5 spacecraft carries the following major software programs, each running as an
separate task (though several exchange data using qCF message passing facilities):

FTLO -- file transfer protocol server.

HIT -- Telemetry task, reads data from the telemetry system, stores for re
trieval via PBP. For historical reasons, this module also contains the PBP
server.

TDE -- reads data from the total radiation dose experiment

SSTE -- reads data from the advanced solar cell technology experiment

ADCS -- Attitude control system, reads data from navigation magnetome
ters and controls magnetorquing. Uses the standard Microsoft C floating
point library.

CCD -- communicates with the transputers in the CCD camera module
over a 9600 bps serial bus. Gathers processed image data from this mod
ule and stores it for retrieval via the PBP.

MFILE -- uses 13MB mass memory to emulate a RAM disk, supplies file
system services to all other tasks.

qAX25 -- provide link layer services for all other tasks.

Using a commercially available 80186 co-processor adapter card in the PC bus, the space
craft CPU can be simulated with reasonahly high fidelity. The several different student
and staff researchers that developed the UoSAT-5 software could debug using off-the
shelve software and hardware. Including the cost of an IBM PC clone, the adapter card,

14

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

and all required software, an entire UoSAT CPU simulator/development ~ork station.can
be purchased for less than $7000, matching the overall budget of a hghtsat project.
Programmers skilled in the C language and IBM DOS are also more readily available than
those skilled in 1802 assembler.

In Orbit Experience

Any operational public access bulletin board system will generate copious amounts of usage
statistics. We have just begun to sift through the first years worth of data. Here are some
numbers which serve to illustrate the utility and level of use these systems are attaining.
Most of the fi~ures are based on the UoSAT-3 spacecraft. As this satellite is controlled
from a universIty environment, more man power is available (in theory) to at least acquire
and catalog the data.

Factoids

UoSAT-3 statistics for the most recent 100 days (1/3 of the operational time) show:

177 individual stations active at least once (calls heard)

119 stations regularly active (calls heard in the past 2 weeks)

23 countries are active, with specific concentrations in Europe, Japan,
USA, Australia and New Zealand.

9.7 Mbytes were uploaded.

55 Mhytes were downloaded with FTLO.

32 Mbytes of directories were downloaded.

3.3 Mhytes of data were generated by the Charged Particle Experiment
and downloaded using the PBP. [7][8]

4 Mhytes of data were generated by the server activity log and down
loaded using PBP.

Unfortunately, data on hroadcast requests is not currently logged.

Differences between UoSAT and Microsat Usage.

The Microsats (AO-16 and LO-19) and lJoSAT-3 offer identical user interfaces and facili
ties, the only difference is in the haud rate and modulation format. Microsats use PSK at
1200 hps, lJoSAT-3 uses FSK at 9600 hps. It is somewhat easier to interface the Microsat
modem with a radio, as it connects via the standard microphone and speaker connections.
The 1l0SAT modem, which requires slightly more handwidth and a flatter response curve
than is provided hy the audio ports, requires opening the radio and tapping into the modu
lator and demodulator stages. Otherwise, exactly the same radios, antennas, computers,
and software can he used on both types of spacecraft. All three spacecraft are in the same
orhit, anti have similar transmitter power levels. Both types of ground station modems are

15

available for about the same price ($120), in kit form, or assembled and tested from com·
mercial sources.

The perceived difference in difficultly of interfacing to the radio by the user community is
shown by the difference in the number of users, 177 for UoSAT and 290 for Microsat, 101
users are active on both.

UoSAT users receive a better level of service, if service is measured by total bytes received,
or by the length of time it takes to receive a file of a given length. This is intuitive, based on
the 8:1 difference in data rates. Both types of spacecraft offer very low bit error rates over
an entire pass to even minimally equipped ground stations.

One difference in usage patterns caused by the baud rate differential can be seen by com·
paring the average file size uploaded to each type of spacecraft.

Satellite

UoSAT-3
Microsat

Average Upload
File Size

7500
2800

Average Uploads
per day

26
19

The user communities adjust to the level of service offered by the satellite and expand to
fill the available resources, as is usual in the computer industry. As stated earlier, the
UoSAT-3 users are currently uploading digitized images of themselves, an activity that
takes a few minutes at 9600 baud, but requires more than one pass under normal loads for
Microsat.

Effect of Features on the User Community.

Graph 1 shows the number of upload, download, and directory select transactions per day
over the same time period of time as the above data. The number of broadcast download
requests are not logged. Various server features have been implemented in a phased man
ner, the hole fill feature of the server was not implemented until mid-May. As can be seen
from Graph 1, a smaller number of files were downloaded per day starting in May, even
though the number of uploads and directory searches increased after that point.

We infer from this that users perceive a benefit to using PBP over FfLO to download files.
We have also noticed peer pressure being applied as some users view FfLO downloads as
"wasted" time, since the data can only be used by the FfLO down loader. The activity log
files are visible to any user, and the identity of stations using the FfLO download command
is revealed. FfLO download users have been receiving messages from other users pointing
out the total network efficiencies to be gained from preferential use of the PBP for most
downloading.

The PBP download protocol has been shown to be more efficient than FTLO downloading
in two respects. First, with the low bit error rate afforded by the three to five watt transmit
ters on the spacecraft, an entire pass can be copied with almost no data dropouts. Since the
AX.25 sliding-window ARQ protocol uplinks acknowledgment frames (at least one per
seven downlink frames), there is always some activity on the uplink, with the possibility that
the satellite will miss an acknowledgment and be forced to stop and wait, and then retrans
mit some data which had already been properly received. In a perfect PBP downlink, only
one frame is uplinked -- the original begin request.

16

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Second, multiple ground stations can be served by the multipoint aspect of the broadcast
protocol. In practice, the ground station at the University of Surrey almost never needs to
transmit a "be~in broadcast" request. It is able to eavesdrop on broadcast requests from
other stations In the UK and Europe, and receives most of the files that way. This also
shows the efficacy of receive-only ground stations.

Uptime

While the developers view the satellite systems as research tools and test beds, the users
view them as public utilities expected to be present 100% of the time. Over the last year,
UoSAT-3 hao; been available 93% of the time, over the last six months the figure was 97%.

FINAL CONCLUSIONS

The protocols are working, and we have a network of meaningful size communicating
me~ningful amounts of data over inexpensive satellites, using inexpensive groundstation
eqUIpment.

Some user terminals are using omnidirectional antennas with near horizon to horizon cov
erage. The most important limiting factor in access is not the link margins, but uplink inter
ference. This can be from stations in the network or from stations which just happen to be
on the frequency. This much is clear: while it is possible to build a satellite sensitive
enough to hear a few hundred milliwatts EIRP, if the network isn't on a clear channel it
can't function efficiently. Differing frequency allocations and levels of adherence to
International Law throughout the world make this a difficult problem. For example, the
UoSAT-3 spacecraft can be placed in a RX to TX audio transfer mode, and it becomes an
effective repeater of Spanish Taxi Cab dispatchers.

The protocols have proven themselves in several ways:

• They are relatively easy to implement (3 full implementations of FTLO now avail
able).

• They are flexible: the network has been used for image transfer, database trans
fers, simple text messaging, sending computer programs, relaying terrestrial BBS
mail, all with one set of protocols.

• The broadcast protocol has been shown to be effective in allowing multipoint de
livery of data, as well as being an efficient transport mechanism for a single station.
It is also simpler to implement than the FTLO protocol.

In the near future, we will perform more monitoring to further characterize the network.

The upload, download, and directory statistics have shown what we feel is a disproportion
ate amount of directory download activity. A large part of the current user community de
sires to perform eye-ball semantic analysis on the titles of files to determine what they want
to download, resulting in "show me all" selection equations. To address this need, we will
enhance the broadcast protocol to include the broadcast of file headers, thus removing the
need for most stations to request individual directory downloads, and freeing up more
downlink time.

17

Activities Per Day
UoSAT-3

soo

o ~~~llW~Wlli~~~~~~~ftW~llW~wwilllwwill-
04/10/91 05/10/91 06/09/91 07/09/91

___ Uploads -+- Downloads -*- Directory Requests

In the coming year, two non-amateur networks will he commissioned. VITA and
SATELLIFE will he bringing field stations on line, mostly in Africa. VITA will share
UoSAT-3 with the amateurs on a roughly equal footing by demand-based satellite transmit
ter frequency' switching. SatelLife, who funded 60% of the lJoSA T-5 mission, will get 60%
of orbit avallahility on a stricter rotation, the transmitter frequency will be switched by a
clock. These two non-amateur networks will probably point up the need for some modifi
cations to groundstation software, and refinement of groundstation software will hecome
the primary evolutionary path for the network.

18

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

UoSAT-5's use of the broadcast protocol for transmission of large (350k) image files has al·
ready pointed out modifications necessary to the broadcast server, primarily in how it man
ages hole fill requests and schedules multiple transmission requests on the downlink.

UoSAT -5's being brought on-line in less than one week after launch was largely due to the
existing base of software and the flexibility of the development tools and communications
protocols. The commissioning process involved collectmg initial data from several on
board experiments, as well as allowing autonomous on·board processes to stabilize the
spacecraft, establish a constant spin rate, and attain and maintain a gravity gradient earth
pointing attitude.

We feel a good base has been laid for continued study into the practical applications of
small low earth orbit store and forward satellites.

References

[1] Harold E. Price and Jeff Ward, PAC SAT Protocol Suite, PACSAT Data
Specification Standards, PACSAT Protocol: File Transfer Level 0, PACSAT
Broadcast Protocol, P ACSAT File Header Definition, Proc. 9th ARRL computer
Networking Conference, London, Ontario Canada, 1990

[2] T. Fox, AX.25 Amateur Packet-Radio Link Layer Protocol, American Radio Relay
League, Newington CT, USA, 1984.

[3] J. W. Ward and H. E. Price, UoSAT-2 Digital Communications Experiment, Journal
of the Institution of Electronic and Radio Engineers, Vol 57, No 5 (Supplement), pp. S163-
S173, September/October 1987.

[4] P. Newland, A Few Thoughts on User Verification Within a Party-Line Network,
Proc 4th ARRL Computer Networking Conference, San Francisco, March 1985.

[5] J. W. Ward, Store-and-Forward Message Relay Using Microsatellites: The
UoSAT-3 PACSAT Communications Payload, Proc. 4th AIAA/USU Conference on
Small Satellites Vol I, Logan, Utah, August 1990.

[6] J. A. King, R. McGwier, H. Price, and F. White, The In-Orbit Performance of Four
Microsat Spacecraft, Proc. 4th AIAA/USU Conference on Small SateHites Vol I, Logan,
Utah, August 1990.

[7] Craig I. Underwood, In-Orbit Radiation Effects Monitoring on the UoSAT
Satellites, Proc. 4th AIAA/USU Conference on Small Satellites Vol II, Logan, Utah,
August 1990.

[8] Craig 1. Underwood, et. al., Space Science and Micro Satellites -- A Case Study:
Observation of the Near Earth Radiation Environment using the Cosmic Ray Effects
and Dosimeter Payload (CREDO) on UoSAT-3, submitted for publication in the 5th
AIAA/USU Conference on Small Satellites, Logan, Utah, August 1991.

19

