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ABSTRACT 

\ 
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Abaza, Mohamed M. 10; 1936; Streaming Current and Streaming Potential 
Induced by Water Flow Through Porous Media; Department of Civil 
Engineering; Dr. Calvin G. Clyde, major professor. 

This study was conducted to investigate analytically and experi-

mentally the relationship between the rate of flow of water through 

porous material and the streaming current and streaming potential in-

duced by this flow. The effect of dissolved salts in the permeating 

solution and the size of the soil particles was also investigated. 

Results and conclusions of this study are summarized as follows: 

1. A modified procedure using the appropriate delay to .insure 

stead state conditions was used for the measurements of both stream-

ing current and streaming potential. 

2. The flow-pressure relationship was the same irrespective of 

the counter electro-osmosis (resulting from the streaming potential) 

and the change in salt concentration. Flows through the samples 

tested thus followed Darcy's Law. 

3. The rate of flow (at a constant salt concentration and soil 

particle diameter) is directly proportional to the induced streaming 

current and streaming potential. Emperical equations in the form of 

I = Cl q and E = C2 q are suggested. 

4. A decrease in both streaming current and streaming potential 

was observed with increase of salt concentrate in the permeating 

solution. Comparable results were obtained for simulated natural 



waters and NaCl and KCl solutions, provided that the conductance of 

the solution was taken as a parameter. 

50 A decrease in current and potential was observed with in-

crease of soil particle diameter. 

6. a 
Relationships ~f the form ol= bN and ~= Clog N + dare 

suggested to express the effects of particle size and salt concen-

tration on the streaming current and the streaming potential induced 

by the flow. 

7. Induced streaming potential was found to increase with the 

decrease in temperature. 

8. The analytical relationships developed together with the 

experimental work could probably be used as the basis of a method for 

measuring the rate of flow through porous material. 
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CHAPTER I 

INTRODUCTION 

The problem of developing sufficient water supplies for in

dustry, agriculture and domestic use is rapidly growing more serious 

and may well become of basic worldwide concern if the present rate 

of population growth and economic development is maintained. 

In developing ground water supplies there is often a need for 

detailed information concerning the rate and direction of ground 

water movement in order to evaluate the ultimate safe yield of ground 

water reservoirs. Measurements of the velocity of fluid flow throu.gh 

porous media have been of concern to the hydrologist, soil mechani

cian, petroleum engineer and sanitary engineer for more than half a 

century. Seepage through earth dams, leakage from irrigation canals 

and the intrusion of sea water into fresh water aquifer are some 

examples of situations where a more thorough understanding of rate 

variation of fluid movement through permeable media would be desir

able. 

The rate of fluid movement varies with many factors, such as 

length of the path, grain size, effective grain size, driving force, 

grain shape, orientation of particles, packing of the grains, tem

perature of the permeant fluid and its composition and concentrations. 

Major velocity (and rate of flow) variations occurring during the 

movement of fluids through a complex system of voids in natura.lly 

formed porous strata are particularly dependent on the anistropic 
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and heterogeneous characteristics of the medium. 

Most equations relating head to discharge, time, space and 

hydrologic properties have been derived through application of 

Darcy's law to the continuity equation. Thus, determination of the 

hydraulic constants of an aquifer requires not only measurement of 

the head distribution in space and time but also measurements of dis

charge from or recharge to the aquifer at the same location where 

the shape of the flow-field boundary is knowno Thus, at most loca

tions in an aquifer, it is not practical to obtain by direct measure~ 

ments the data needed for application of the available analytic 

equations. 

If some method for measuring ground water velocity can be found, 

the utility of the tests to determine the hydraulic constants of the 

aquifer can be greatly extendedo The obvious approach is to include, 

in the testing and the analysis, the observation of variables that 

are directly dependent on the velocity of the flow. Therefore, new 

approaches to the measurement problems appear desirable to supple

ment knowledge of these variables, especially if thereby certain 

quantities become measurable which are beyond the reach of present 

methods. 

Some idea of the rate of flow of water from one place to another 

may be gained by the use of dyes and other flow detectors. However) 

the use of tracers, whether they be dyes, salts, or radioactive 

materials, is unsatisfactory in some respects because the general 

direction of flow must be known before such methods are used. Also, 

the chemical and physical effects to which the tracer material will 

be subjected underground are not completely known. 
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The simultaneous transfer of heat and the flow of water under~ 

ground result in head and temperature distributions which can be ex

pressed by differential equations. Some of these qualitative rela

tions have been published. Some quantitative experiments relating 

temperature and velocity changes have yet to be conducted before 

valid conclusions can be derived. Therefore, a new approach is sug

gested in this work. That is to utilize electrokinetic phenomena, 

known and extensively used in colloidal and biological science, for 

the evaluation of discharge and velocity for flow of fluids through 

porous materials. 

When a solid comes in contact with liquid, an electric pot,ential 

difference between the two comes into existance at the interface. 

Consequently, the liquid will be charged opposite to the solid (wall). 

Ions of the liquid accumulate near the solid surface and cause .an 

electrical double layer at the solid-liquid interface to ariseo Thus 

when the liquid is forced to flow through a capillary tube, the liquid 

stream carries with it part of the mobile part of that electrical 

double layer near the walls of the capillary. The convection of 

electrical charges having density p with local velocity v results 

in a "streaming current" having density vp. As a consequence of the 

streaming current a potential difference will be set up between the 

ends of the capillary which in turn generates a conductive current 

opposite in sense with the streaming current. At steady state, 'tv-hen 

the two currents equal each other, the potential difference induced 

will be the "streaming potential." This streaming current and poten~ 

tial have been shown to be related to the pressure forcing the liquid 
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to flow. This phenomena is now well understood for uniform capil~ 

1aries and has been shown also to exist when flow occurs through 

porous plugs and diaphragms (see Abramson, 1934; Kraemer, 1942; 

G1asstone, 1946; Overbeek and Wigga, 1946; Partington, 1949; Butler, 

1951; Overbeek, 1953a and b; Rutgers, 1954; Bikerrnan, 1958; Bier, 

1959; Mysels, 1959; Adamson, 1960; Schulman and Parriera, 1963; and 

Davies and Ridea1, 1963). Many measurements of streaming potential 

have been utilized in studying the structural and electrochemi.cal 

properties of solid surfaces in contact with liquids (Neale and 

Peters, 1945; Buchanan and Heyman, 1948 and 1949a and b; Goring and 

Mason, 1950; Dulin and Elton, 1952 and 1953; Fuerstenau, 1953; Gaudin 

and Fuerstenau, 1955; Biefer and Mason, 1959; Martinez, 1960; Par

riera and Schulman, 1961). 

It is well known that, when liquid flows through porous materi

als, the velocity of the flow (if no other flows are operating) is 

related to the applied pressure that forced the flow (e.g. Darcyqs 

law). If this relationship is tied together with the previous re

lationships, relating streaming current, I, and streamin.g potential, 

E, to the pressure, a new relationship will be established between 

the velocity (and the rate of flow) and the streaming potential and 

current. So, measurements of E and I induced through porous media 

where water is flowing could be used to evaluate the rate of that 

flow. Experimental procedures, instruments and apparatus with relj~ 

able precision must be available before such phenomena can be fully 

utilized. 

In order to establish these relationships and to produce the 
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needed experimental procedures, this study has been undertaken. 

Experimental procedures developed and equipment used in this work 

have proved to be reliable enough to investigate the approach sug

gested. Analytical relationships developed together with the experi

mental work could probably be used as the basis of a reliable method 

for measuring the rate of flow through porous materials. 

Objectives 

The objectives of this study are: 

1. To develop the analytical relationship between the rate of 

flow of fluid through porous material and streaming current, I, and 

streaming potential, E, induced by this flow. 

2. To establish a reliable experimental procedure for the me.a

surement of E and I developed by flow of water through porous materi

al. 

3. To investigate experimentally the relationships between E, 

I? and the flow in connection with the analytical approach. 

4. To investigate the effects of dissolved salts in the perme~ 

ating solution and the size of the soil particles upon developed 

potentials and the rate of the flow through porous material. 



CHAPTER II 

ELECTROKINETIC PHENOMENA 

Historical 

Electrokinetic phenomena were observed as far back as the begin

ning of the 19th century. In 1808 Reuss discovered that flow through 

a capillary element can be induced by the application of an electric 

field. About half a century later, in 1852, Wiedmann performed a 

number of quantitative. experiments and promulgated one of the funda

mental theories of electrokinetics. His theory, which has been veri

fied many times, states that the volumetric flow transported through 

porous material by galvanic current is directly proportional to the 

intensity of the applied current. In 1859 Quinke discovered the 

phenomena of streaming potential which is the converse of electro·· 

osmosis. His experiments showed that when fluid was forced through 

a diaphragm, the voltage developed across the diaphragm was propor

tional to the pressure differential causing the flow. In every case 

of this experiment an electric current flowed in the same direction 

as that in which the liquid moved. 

In 1873 Zollner (cited by Abramson, 1934) attempted to explain 

the origin of the earth I s current by a similar mechanism and ivat; th2 

first investigator to demonstrate streaming potential in capillaries. 

Those previous findings together with development of the hydrodynamic 

and electric theories, led to the basic theoretical treatment by 

Helmoholtz and what is known in Colloidal Science as Helmoholtz theory. 
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In 1879 Helmoholtz developed the double layer theory which re

lated analytically the electrical and fluid flow parameters of elec

trokinetic transport. Although subsequently modified, his develop

ment stood the test of time and still represents an acceptable formu

lation of the electroosmosis phenomena in most capillary material. 

Actuated by an interest in the nature of stability of suspensions~ 

Smoluchowski (1921) reinvestigated the theory of Helmoholtz. F:reund

lich (1909) published and discussed the results of some prior compre

hensive experiments performed by other investigators. His demonstra~ 

tion--based on Saxen's experimental results (1892)~showed that if 

both electroosmosis and streaming potential are measured in the same 

system, then the proportionality constant in electroosmosis relating 

volumetric flow to electric current was identical with that relating 

streaming potential and applied pressure. From that time on thE: field 

of electrokinetics received contributions from many scientists and 

research workers, especially those in the field of Colloidal Science 

who gave valuable information on the electrochemical double layer 

(Abramson, 1934; Biekerman, 1940; Butler, 1951; Kruyt, 1952; Adam

son, 1960; and Davis and Ridel, 1963). 

A comprehensive review and treatment of the classical theories 

of the phenomena is available in two monographs on electrokinetics 

by the University of Michigan (1953) and in a recently published 

report by Burgreen and Nakachi (1963 and 1964). 
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Recent Theories and Modifications to Helmoho1tz 

He1moholtz theory 

The basic premise of Helmoholtz development is that when a 

liquid and solid come into contact, there is usually an accumulation 

of ions of the liquid near the surface of the solid to produce a 

double layer. Helmoho1tz envisaged the double layer as two parallel 

planes of oppositely charged ions. The fixed layer adheres to the 

surface and a neutralizing counter ion layer that exists in a single 

plane parallel to the surface at a distance x into the liquid. He 

considered the mutual action between the ions to be negligible. 

Gouy theory 

In 1910 Gouy introduced a more realistic concept of the poten

tial and charge distribution in the fluid adjacent to the solid wall. 

He assumed a mutual action on the charged ions between the electric 

forces which are responsible for the existance of the double layer 

and the osmotic forces which tend to maintain homogenity. He postu

lated nothing in regards to the inner adsorbed layer which was de

scribed by Helmoholtz as fixed to the surface. On this account there 

will be no sudden change in the concentration of any kind of ions in 

the vicinity of the double layer, but merely a gradual increase of 

concentration of ions of one sign and refraction of ions of the 

other. Gouy showed that the electrical density of the ionic atmos

phere fell off according to an exponential law (rather than to the 

linear law of Helmoholtz), and that the electrical center of gravity 

exists at a distance~ d, where d is a function of the salt valence, 

Z, and salt concentration, c. 



Stern theory 

In 1924 Stern suggested a type of double layer which is a com

bination of the simple Helmoholtz fixed layer with the Gouy diffuse 

layer. Roughly the potential is assumed to vary with distance as 

shown in Figure I. In Stern's picture of the double layer, he con

sidered the possibility of specific adsorption of ions and assumed 

that these ions were also located in the plane x. This layer of 

adsorbed ions is called the Stern layer. The total potential drop 

is accordingly divided into a potential drop over the diffuse part 

of the double layer and that over the molecular condenser. 

Present theory 

9 

With all these modifications the theory now reaches acceptable 

status that could be summarized as follows: The charge on the solid 

wall (of the particle) attracts counter ions and repels similar ions. 

Some of the counter ions may be immobilized in Stern layer, while 

the rest of the ions form a diffuse Gouy layer. The decay of the 

potential within this double layer is measured by its thickness ll whi.ch 

is very sensitive to the concentration and valence of the counter 

ions. The surface charge density is also very sensitive to those 

factors. Potential at two points in the double layer are of special 

importance: ~o at the surface of the wall and C = ~d at the hydro

dynamic plane of shear (Figure 1). 

Streaming potential and streaming current 

If the double layer discussed before at a solid-liquid inter

face is disturbed by the application of external forces, the static 
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equilibrium conditions are destroyed and a series of electrokinetic 

effects may be observed. Each may be distinguished primarily by the 

nature of the disturbing force, which may be mechanical or electrical. 

One of these effects is the streaming potential. In this case the 

disturbing force is mechanical movement which creates an electric 

current. When the liquid is forced to flow through the charged 

capillary~ current flows with the liquid and is known as the stream-

ing current (see Chapter IV). This current can build up a potential 

difference between two electrodes situated at the ends of the cap il-

lary known as streaming potential. 

Factors Affecting Streaming Potential 
in Porous Media 

As may be seen~ the streaming potential is dependent upon three 

majo!" factors: the composition of the liquid phase (permeant solu-

tion)~ the material of the solid phase or p1ug~ and the size and 

shape of the solid particles. Each may affect the potential 

separately or in interaction with the other factors. One major vari-

able on which streaming potential is dependent an.d which reflects the 

effects of both solid and liquid phases is the C potential. 

Effect of the soli4 phase 

The solid phase efiects are due to the nature of its charge and 

its density. The vast majority of solids tested in contact with 

dilute aqueous ,solution of inert electrolytes are charged negatively. 

Positively charged solid surfaces are much less numerous (Biekerman~ 

1958). With Ottowa sand the surface charge is negative with sand in 
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contact with pure water or dilute solutions. This charge arises 

either from the adsorption of hydroxyl ions (or dissociation of H+ 

ions) or the adsorption of negative ions from electrolyte solutions. 

For example, with potassium or sodium chloride solutions tested, the 

negative potential of sand could be as shown in Figure 1, Appendix. 

Effect of the composition of liquid phase 

The effect of the composition of the liquid is detected in the 

electrokinetic behavior of streaming potential for liquids contain-

ing dissolved electrolyte. That effect will be recognized through 

its effect on the double layer thickness and the conductivity of the 

system. The nature of the electrolyte is as important as its concen-

tration. The results found for the influence of ions on , potential 

(consequently on streaming potential) may be summarized as: 

1. The nature of the counter ions is more effective than that 

adsorbed on the soil surface. 

2. Ions of higher valency are more effective than those of 

lower valency. 

Utilization of Streaming Potential for the 
Determination of Flow Parameters 

Although this phenomena was first observed about a century ago, 

it was not until recently that some thoughts have been given to its 

utilization in obtaining some flow parameters and other phenomenon 

involved with the flow. 

Bocquet and associates (1956) were the first to report that 

turbulence in pipe flow will develop an instantaneous fluctuation of 
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streaming potential. Investigations of the relation between turbu

lence and streaming potential with an objective being the use of 

e1ectrokinetics as a tool for turbulence measurements in pipe flow 

have been conducted (Cermak and Baldwin, 1963). The research accom

plished by Binder (1960) showed that streaming potential might be a 

valuable tool in the study of turbulence and unsteady water flows. 

Chaung and Duckstein (1962) (cited by Cermak and Baldwin, 1963) suc~ 

ceeded in adapting the electrokinetic electrode to the study of fully 

developed pipe flow (see also Binder and Cermak, 1963). Some thoughts 

have been given also by Bocquet (1952) at the University of Michigan 

regarding the measurement of blood flow in veins by streaming poten

tial techniques. 

In the field of soils (porous media), not much work has been 

done on the usage of streaming potential for fluid flow measurements 

although many investigators suggested it would be possible. Al,=x

ander (1946) reported that such a study, including particularly the 

effect of electrolyte concentration, would be of great value 

especially with drilling wells. Also, Scott (1962) and Jumkis (1962) 

advocated that a measurement of the streaming potential developed in 

a soil through which flow is taking place could be correlated with 

the flow quantity. 

In connection with flow through saturated soils, one should note 

here the work done by Michaels and Lin (1955) and by H. W. Olsen 

(1961) investigating streaming potential in Kaolinite and its ef

fects on the flow. Their work aimed to determine if the e1ectro

osmotic flow induced by the developed streaming potential could 
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account for the non-Darcy behavior of flow through Kaolinite. Olsen 

(1966) conducted an experimental investigation to study values of 

the induced hydraulic and potential difference across Kaolinite sam

ple as affected by the form of the externally imposed inducing force. 

These forces were in the form of liquid flow, current and NaCl con

centration difference across the sample. 

The research work reported in here, however, is intended to 

develop an analytical relationship between streaming potential and 

streaming current induced through sand beds by flowing solutions and 

the rate of flow of these solutions. The experimental investigations 

were conducted to test this analytical relationship; also to deter

mine how this relationship will be affected by electrolyte concen

tration in the percolating solutions and the size of the particles 

forming those beds. These relationships are then discussed in order 

to determine the possibility of their use as a new method to evalu

ate quantitatively the rate of flow through porous materials. 



CHAPTER III 

DERIVATION OF THE ANALYTICAL EQUATIONS 

Streaming Current 

Assume that Poiseull's theory for velocity distribution (para-

bolic velocity distribution) in a capillary is valid for each infini-

tesimal length of the flow channels. Then in a length oL of the 

flow channel of average radius a, the axial velocity of flow of liquid 

(of viscos ity 11) at a point any dis tance from the center under a d if-

ferential pressure 0 p (where Op = a h as the flow channels are 

horizontal with oz = 0). 

=~ V(r) 4110 L 

2 2 
(a - r ) (1) 

According to Poisson's law of electrostatics, the electrostatic po-

tential. (the positive charge in this case) in a solution in the 

neighborhood of a charged solid wall is held near the wall by the 

negative charge of the wall. The distribution is given by 

-~ 
D 

(2) 

wherep is the volume electric charge density (electric charge per 

cm
3
), D is the dielectric constant of the fluid, and 92 is laplacian 

operator. 

For an infinitesimal length of the flow channel, the wall can 

be assumed flat and 4TTP 
D 

from which 
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p (3) 

If, as is usually the case, the ionic atmosphere at the wall 

(the diffuse double layer) is extremely thin in comparison with the 

pore diameter, then the gradient of the velocity, :;, can be assumed 

to be constant inside the layer, and the velocity, v(x) at any dis

tance, x(x = a-r), from the wall is given by 

x 
S 

dv 
v(x) (dx) x=o dx (4) 

0 

as 

dv ~ 
(dx)x=o 2'T)L 

(5) 

therefore x 

v(x) = I (dv) dx 
pax 

o dx x=o 2T}L 
(6) 

The motion of the electrically charged liquid near the wall is 

accompanied by an electric current (convective current), i . By str 

definition, i t (charges carried per second by the liquid per unit 
s r 

surface length) is 

i str 

a 

S pV(x) dx 
x=xo 

Substituting from (3) and (6) into (7a) 

i str 

Integrating by parts gives 

pax dx 
2TJL 

r
a 

d
2

'j! 
-J dx2 x dx 
x=xo 

(7a) 

(7b) 
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r-a 

i _paD [ (xd'f)x=a I d'i' dx ] 
str - 81)rrL dx X=Xo dx x=xo 

-~ [ 
(xd'!')x=a <,)x=a ] 

- 8rrTlL dx X=Xo x=xo 

when x = a d'i' - 0 crx- and ~ = 0 

when x = Xo (xo is relatively very small) '!' , ( , zeta poten-
tial) 

So, 

and then the total streaming current crossing the cross section of 

the tube in unit time is 

I -~ p 
str - S\"r¥ s 

(8) 

where P is the total perimeter of liquid - solid interface in the 
s 

cross section of the bed. 

The previous formulas have been derived assuming a small por-

tion of the solid boundary to be flat (see also derivations by Rut-

gers, 1940 and 1954; Neale, 1946; Wood, 1946b; and Gibbings and 

Hignett, 1966). However, the same equation could have been deri.ved 

for a circular surface. In this case we use r, ~ and Z (cylindri-

cal) coordinates. In this coordinate, the Laplacian will be 

+ (9) 

a'!' a2,!, 
But ~= 0; axial symmetry, and oz2 0; linear potential gradient 

along the Z-axis, so 

1 d (r d'i') 
dr dr (10) 

r 

and consequently equation (5) becomes 
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~ = 
D 

1 
r 

d (r d'f) 
dr dr 

( 11) 

The other changes will be that, instead of integrating with respect 

to x from x = x to x = a, we shall now integrate fromr = 0 to 
o 

r = r where r corresponds to the radius of shear (Figure 1). Now 
o 0 

we repeat the previous derivation which would lead to the same re-

suIts provided that r = r • 
o 

Multiplying and dividing the right hand side part of equation (8) 

by A , where A is the cross sectional area perpendicular to the 
o 0 

direction of the flow, gives 

_ !L. (a Ps ) 
A p 

I 
0 

-Sfi L str 111 ;;;;;- . (12) 

but 
a P area of pores s ~ 

A 
cross sectional area 

0 

= effective area of pores m superficial porosity 

then 

-~ 
A P 

I 
o' 

m str - 8TTTl L (13) 

where f is the hydraulic slope. 

The quantity of flow (also called the quantity of seepage, dis-

charge quantity or discharge) is q m A v where v is the seepage 
o 

velocity which is equal to Y where v is the discharge velocity (also 
m 

called supervicial velocity). 

From Darcy's Law 

v - K .5!E. - dL 

where K is the coefficient of permeability 

for uniform packing of homogeneous media 1 :::: t 



then 

..E. v 
L - K 

Kozeny's formula (cited by Leibenzon, 1947) gives 

K (1-·0') 2 

where cr is the porosity, d is the effective diameter (d lO )' 

18 

(14) 

the viscosity of the fluid and l is Kozeny's coefficient considered 

to be constant for water. However, Zermin (cited by Polubarinova-

Kochina, 1962) proposed for a the expression 

therefore 

~ 8.40 (1.275 - 1.50' )2 

I _!!L. rnA v 
str - 8nTl 0 

, 2 
I} (1-0',;) 

i d2 : ~3 

as the average value of m; superficial velocity is equal to a 

volumetric porosity (Harr, 1962) 

I - ~ A 
str - 8TT 0 V 

- Q( q 
- 811" 

(1-0' )2 

~d2 'ri~ 

-~ 
- 8n . q 

For a certain porous bed, ~,d, and ~ are constants, and 

for a certain solid-liquid interface, and D are constant. 

Therefore 

I str constant x q ..•.•.• 

(15a) 

(lSb) 
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Streaming Potential 

This streaming current (convective current) is responsible for 

the streaming potential E t. As a consequence of the streaming curs r 

rent, a potential difference will be set up between the ends of the 

bed which in turn will cause an electric conduction current I oppo
c 

site in sense with the streaming current. At steady state, I str 

will be balanced by I and the potential difference, "streaming 
c 

potential," will remain steady as 

I - I c str 

and the total current will be 

I + I = 0 c str 

The conducting of the charge back will be through the liquid and 

solid surface so, 

(16) 

IE. (pore area). K + E . (Interface surface). K 
c str L B str L s 

P x a P 
E • (..-.;.s __ ) K E s 
str L B + str· L K 

s 

P .a 
= E _s_ 

str L 

K 

(Ka +-;!-) 

where KB and Ks the specific bulk and surface conductivity 

I 
c 

E • k str 

where k is the total conductance which equals to 

pore area ( ) L KB + perimeter Ks 

(17) 

The resistance of the electrolyte in the plug could be used for 

1 
the total conductance (as R = k) of the plug in the previous equa-

tion, considering the surface conductance of the mineral could be 

neglected. However, experimental results (see for example Rutger, 
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1940; Jones and Wood, 1945; Gaudin and Feurestenau, 1955) showed that 

the contribution of surface conductance to the conductance of the 

electrolyte in the plug could be appreciable. This contribution is 

usually compensated by the use of a cell constant. In such case 

k = ~, where R is the no-flow resistance between electrodes and C is 

the cell constant and 

So, 

I str 

E str 

I 
c 

C 
E x
str R 

R 
I str x C 

~ 
= 8TT 

(l-ct).' 
2 

~d 2 tr-. 
R 

(18a) C . q 

R 
under the previously mentioned conditions and as C is constant, then 

E = Constant • q = C2 q str 
(18b) 

Equations (15) and (18) are valid only if the following conditions 

are fulfilled: 

(a) The width of the pores 2a must considerably exceed the 

thickness of the electrical double layer 0 (i.e. Ola «1). Other-

wise the condition V = 0 at r = a will not be satisfied and the 

streaming current or potential will be anomalously different. 

(b) The length of the flow channel must considerably exceed 

the "characteristic flow length of the liquid" given by vD/4TT k, 

where v is seepage velocity and k is the specific conductance of 

solution. 

(c) The flow must be laminar. If pressure and rates of flo~v 

are so high as to lead to turbulent flow, the streaming potential 
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(or current) increases nonlinearly with p. While this effect is 

not important for aqueous solutions under practical conditions, it is 

significant for non-aqueous solutions where the ionic double layer 

is much more diffuse and may extend into the region of turbulent 

flow. 

(d) Darcy Law is valid and the media is homogeneous and iso-

tropic. 

Limitations and Assumptions 

The previous conditions are to be satisfied for the validity of 

equations (15) and (18). The following is a discussion for those 

limitations in general and degree of approximation in cases where 

any of these conditions is no longer satisfied. 

Laminar flow condition. The condition that the flow of the 

liquid must be laminar is easily fulfilled in practice. At high flow 

rates (Reynolds number -
pVd 
~ >1), the flow becomes turbulent through 

a core constituting most of the pore space in which the velocity is 

nearly constant but the flow may remain laminar in a thin sublayer 

next to the solid boundary. The thickness of that layer is shown to 

be proportional to Reynolds number and pore diameter (space). The 

velocity gradient in the laminar sublayer during turbulent flow is 

much higher than that in equation (5), since most of the velocity 

gradient occurs in that region. Stewart and Street (1961) found 

measured indications of change in the ~ slope (where E is the induced 
p 

streaming potential and p the applied pressure) in pyrex glass capil-

laries when Reynolds number approached 2000. Those previous findings 

contrasted with those of Bocquet, Sliepcevich and Bohr (1956) who 
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concluded no effect in their work. However, Rutger, Desmet and Myer 

(1957) established such an effect for diffuse double layer (as in the 

case of benzene in contact with glass) in capillaries and were able 

to develop a relationship between streaming current and the average 

velocity V (V = discharge/cross sectional area) for turbulent flow 

as follows: 

I -~ 
s tr - 20 v 

where I ,D", are as defined before, 0 is the thickness of dif
str 

fuse part of double layer and a is the radius of the capillary. 

Similar equations were obtained by Davis and Ridel (1963). Bournans 

(cited by Davies and Rideal, 1963) developed the analysis for the 

case where some of the ions from the ionic sphere near the wall will 

extend into the turbulent core. His terms should be added to either 

Rutger or Davis equation to get the total streaming current. 

The condition that the capillary radius should be large compared 

with the thickness of the double layer would appear, from practical 

point of view, not very restrictive. Only in very dilute solution 

and in very fine pores might this condition be questionable. White 

and his associates (1932, 1941) have shown that this assumption is 

valid in capillaries of diameter greater than 10 microns. However, 

a complete line of studies has been made to consider cases where the 

vurvature of the solid wall and capillary size were taken into ac-

count. Komogata (1934) (cited by Oldham and associates, 1962) solve.d 

for the streaming potential taking capillary size and wall curvature 

into account. Oldham, Young and Osterie (1962) gave an analytical 

derivation for cases where the capillary radius is not comparat:tveiy 
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large with respect to the thickness of the double layer. Burgreen 

and Nakache (1964) developed another analytical solution for the case 

of the ultrafine slit. Rice and Whitehead (1965) developed a solu-

tion for the case of fine cylindrical capillaries. In both it was 

shown that the electrokinetic potential is dependent upon electro-

kinetic radius which is directly proportional to the capillary radius. 

They ~uggested that their function be used in the case of ultrafine 

pores instead of the classical Helmoholtz equations in which the 

potential is considered to be independent of the capillary (pore) 

size. 

Dielectric constant D and dynamic viscosity, lJ. factors. In 

the previous derivation, the dielectric constant, D, and the dynamic 

viscosity, ~,of the liquid in the double layer were taken, as usual, 

the same as for bulk solutions. Some authors have pointed out that 

this assumption may be in error, especially in connection with di-

electric constant. Gurney (1953) indicated that the presence of a 

concentration, c, of ions affects the viscosity, ~,by a factor 

dependent upon the mobility of the ions and its concentration and 

absolute temperature. However, for low concentration levels obtained 

in streaming current flow, Hignett (1963) and Hignett and Gibbins 

(1965) showed that this effect of concentration upon the viscosity is 

insignificant. To account for the difference, in cases of higher 

concentrations and applied potential field where D and TI might vary, 

Overbeek (1953a) and Davies~~nd Rideal (1963) substituted for ~- in 

their equations the term J ~dV. Biekerman (1940) also sho~7ed 
o lll.l 

how correction could be made for cases of alternating current. The 

electrical field around a charged particle is also expected to 
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influence both ~ and D. However, comparison of theoretical results 

with experiment showed that both effects are rather small under most 

conditions (Hunter, 1966). Chattoraj and Bull (1959) and Hoydon 

(1960) have previously shown that .for liquid surface having adsorbed 

films giving charge densities less than 30,000 esu/cm
2

, a good agree-

ment with the true potential may be obtained by assuming a bulk value 

for D and .~ in the double layer. 

Surface charge densities are calculated from , potential by 

means of Gouy theory, for uni-univalent electrolyte at 250 C it is 

(Parriera and Schulman, 1961) 

c~ ""I __ 

v :::: 134 

, 
Sinh 51.5 (19) 

where cr' is the electrokinetic charge, in electron charge/angstrom, 

c is the salt concentration in mole/litre, and , is zeta potential 

in millivolt. 

In our case in here,' varies between 200 and 20 millivolt with 

salt concentration from 10-4 to 10- 2 normal. Thus cr' is far below 

that specific value and no correction is necessary for assuming D and 

~ to have bulk values. However, D, dielectric constant, depression 

in water caused by the addition of electrolyte could be considered. 

Investigations on that depression were first made by Haggis, Hasted 

and Buchman (1952). They investigated the previously published data 

by Hasted, Robinson and Collie (1948), for dielectric properties of 

aqueous ionic solutions. A reduction in D proportional to salt con-

centration c in moles/litre has been concluded by Glueckauf (1964). 

Another variation in D with temperature has been conducted 
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experimentally using resonance method and Linton and Maoss have formu-

1ated those results as 

D = 79.80 [1 - 4.28 x 10-
3 

(t - 25) + 2.12 x 10- 5 (t - 25)2 

- 4.1 x 10- 7 (t - 25)3 ] 

Partington (1954) has developed the following formula 

D = 78.54 [1 - .0046 (t - 25) + 88 x 10- 5 (t - 25)2 J 

He also reported measured values for water at 25 0 C to be 80.37 and 

7902. Buchman and Heymann (1949c) reported D = 85.5, 80.8 and 76.5 

o for 6, 18 and 30 C respectively. 

Our experiments were conducted in the constant temperature room 

where the temperatures were kept at a fairly constant temperature of 

80 ! .50 F. At such controlled temperature, the temperature of water 

and solutions was generally kept at 25
0

C ! .20 C. So, D values in 

our calculation will be taken as an average value of 80 for purl= 

water, NaC1, and KC1 solutions. 

The condition that Darcy's Law is applicable 

Darcy's Law is applicable provided that the following condi-

tions are satisfied (Olsen, 1961): 

The soil particles are approximately (a) uniform, (b) larger 

than one micron, (c) small enough so that the liquid flow is lWlinar, 

(d) flow channels are uniform in size. 

These four previously mentioned assumptions are satisfied with 

our samples and so Darcy's Law is applicable. 



Thermodynamics of Irreversible Processes 

Streaming current and streaming 
potentials 
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Since all electrokinetic processes are irreversible, the thermo-

dynamics of irreversible (non-equilibrium) processes can be applied 

to derive general relationships between different electrokinetic 

processes including streaming potential and streaming current 

(Staverman, 1952; DeGroot, Mazur and Overbeek, 1952; Overbeek, 

1953b; Guggenheim, 1957; Taylor, 1960, 1963 and 1964; Zaslavsky and 

Ravina, 1965). 

When transport of liquid and transport of electric charge take 

place by simultaneous electrical and hydrodynamic processes, the 

electrical and viscous flows interfere with each other giving rise 

to irreversible processes (coupling phenomena) known as electro~ 

kinetic phenomena. 

For saturated soil in absence of a composition gradient and salt 

concentration difference, in its linear region, the general relation 

between the "flows" q and I and forces "p" and "E" will be (Taylor, 

1963) 

where 

Flow rate = J w = q = Lll P + L12 E 

Current flow rate = J = I 
e 

• (20a) 

{20b) 

I = electric current through the system, q = volume rate of 

fluid flow through the system, E = electrical potential difference 

across the system, p = pressure difference across the system, L"'l 
1 

represents hydrodynamic conductance, L22 represents the electrical 
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conductance, L2l represents electrohydraulic conductance, and L12 

represents the hydroelectric conductance or in view of Onsager rela-

tions, both are water-electric interaction coefficients and equal 

each other. 

Using another form of phenomenological coefficients we can write 

q J L + LI I (21a) 
w p 

I = J L q + L E (:2 
e q e 

As we have salt moving in the system, we should include another equa-

tion and another factor in each equation. In dilute solution, how-

ever, such as we used, it has been shown that the flow of salts may 

have negligible influence on water flow (Michaeli and Kedem, 1961). 

The coefficients in equations (21) are related to those in equa-

tion (20) as follows 

L L22 -
L12 L2l 

L22 (l-Lc ) e Lll 

L 
L2l 

and LI 
L12 

q - Lll L22 

Electrokinetic coupling 

Electrokinetic coupling is the effect of the linkage between 

electrokinetic potential and the rate of water flow, .. i.e •. the coef-

ficient L12 in equation (20a). This is sometimes referred to as 

electrokinetic blocking, since it may oppose the flow of water 
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caused by a hydraulic pressure difference. 

Hydraulic flow rates, q, through the sand permeant bed can be 

expressed as equation (20a) or (2la). The term LI(I) or L12 (E) is 

the contribution of electrokinetic coupling to the flow. It will be 

convenient, in order to visualize that effect, to express it as re-

lated to the contribution of the hydraulic pressure to the flow 

rate. This can be done as follows: 

If q is the rate of flow that would exist in the absence of 
p 

coupling, then from equation (20a) qp = Lll P, and 

qp - q _ L 12 ] 

qp - Lll P 
(22) 

which, under 

L12L2l 

condition of no electrical current (I = 0) will be equal 

to L L by 
11 22 LI 

equal to L 
p 

as L , which 
c 

equation (20b). From equations (21) it will also be 

L12L2l 
This term L L has been referred to previously 

11 22 

I 
p 

is another form of electrokinetic coupling. 

So, in order to evaluate any form of electrokinetic coupling, 

one should determine the three phenomenological coefficients 

(L12 = L
2l

, Lll and L22). After having determined those coefficients 

from experimental results the influence of electrokinetic coupling 

on hydraulic flow rate may then be evaluated from equation (22). 

Assumptions and conditions 

In applying the phenomenological relationships and analysis 

herein to our system, several assumptions and conditions should be 

met. Assumptions inherent in the derivations and the proof of the 

theory of irreversible processes have been discussed in detail by 

Overbeek (1953). The following two conditions are discussed in here 
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because of their particular concern with the system under study: 

(a) Fluxes are linearly related to driving forces; if they are 

not, then equations (20), (21) and (22) need to be expanded to the non-

linear case. 

(b) Only hydraulic and electrical gradients cause flows; if 

other forms are acting, then additional terms must be included in 

the above derivations. 

The requirements that the forces and fluxes be linear were 

checked for each run and substantiated (Figures 25, 26 and 27). In 

each case the relation between the discharge q and pressure was 

shown to be linear the same as for the discharge and streaming poten-

tia1. 

The requirement that only hydraulic and electrical gradients 

cause the flow was met by the experimental conditions. The two side 

chambers were kept at equal temperature (the apparatus was placed 

and the whole procedure was run in the constant temperature room). 

The chambers also had equal ionic concentrations as there was no 

significant difference in conductivity of water samples taken from 

the two chambers,. (see Derjaguin and Duckin, 1960). Thus, there were 

only electric and hydraulic gradients across the system. 

Evaluation of the phenomenological 
coefficients 

Phenomenological coefficients of equation (20) are evaluated by 

relating them to the experimental results as shown in Appendix. The)!fCi"; 

in equation (21) could be evaluated either by comparing them to the 

former ones or by relating them to the experimental results. However J 
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one of these two could be used as a check on calculations. Tables 

2 and 3 show a summary of these coefficients with their calculated 

values and their dimensions. Conversion factors between experimental 

results and the quantities required for computations of these coef

ficients are shown in Table 1. 



CHAPTER IV 

EXPERIMENTAL APPARATUS AND PROCEDURE 

Apparatus 

The experimental apparatus is shown in Figures 2 and 3. 

Details of different parts are shown in Figures 4 and 5. The ap~ 

paratus consists of three main parts: streaming cells, flow system 

and pressure manometers and the electrical circuit and electronic 

equipment for measurement and recording of the streaming potential. 

Streaming cell 

Two identical streaming cells were used, one fitted with silver-

silver chloride electrodes and the other with platinized platinum 

electrodes. Each consisted of a lucite tube of 8.85 cm inside 

2 
diameter with a cross sectional area of 61.48 cm. The porous plug 

column 7.70 cm long, through which flow took place, was confined be-

tween two identical porous plates 6.2 mm in thickness and 90 mm in 

diameter sealed to the two side solution compartments each 10.16 cm 

long. The plates were kept in full contact with the porous sample 

by screwing in the two side compartments into a rubber "0" ring at 

the edges of the cell. The whole streaming cell unit was held to-

gether with brass bolts which were inserted through corresponding 

holes. Two electrodes (platinum or silver silver chloride) were 

fitted to the end of the porous plug and coupled with the electronic 

circuit as shown in Figure 6. 
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Flow system 

Deionized (conductance) water and salt solutions were stored in 

an elevated pyrex reservoir. The liquid then flowed to the side 

tank which was kept at a desired constant position on the stand by 

bolting its support into the corresponding holes at equal distances 

into the stand. To keep the head constant in the tank, the flow was 

approximately controlled by the screw clamp and the outflow was 

wasted through an outflow system near the top of the tank. The tanks 

have provisions so that thermometers and conductivity cell electrodes 

can be fixed through the top of the tank. The flow connections are 

also arranged such as to allow for spot samples to be drawn during 

flow into or out of those tanks. Spot samples could be obtained also 

from the outflow system. Solutions from the tank were conveyed to 

the two side compartments (of either cell) through the flow control 

switchboard, which directs the flow to pass under a constant head to 

either cell in either direction, right left or left right as desired 

(see Figure 4). Each side compartment has an opening at the top for 

introducing solutions and is connected from the bottom--just before 

and after the two edges of the cell--to the manometer tubes. The 

difference in head (in inches of H20) was read on graduated scale 

from difference in water rise in the piezometeric tubes. 

Electrical circuit and electronic eguipment 

A Keithly electrometer (model lSOA) was used to measure the 

streaming current and streaming potential simultaneously. It has 

the range from one volt to one microvolt and from one microamper to 

0.10 millimicroamper (10-
10

) full scale on a zero-center meter. The 
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output from the electrometer was fed into the y axis of a time base 

recorder Model HR-96 where the x axis was an adjustable time of 

sweep. The recorder has a range from .05 in/sec to 20 in/sec in 

steps with a chart that provides 7 x 10 inches of plotting area. 

Resistance and conductivity of the porous plug column were 

measured with a general radio impedance bridge (model 16S0-A)e The 

specific resistance and conductivity of the permeant solution were 

measured by dip in a conductivity cell model RC 16B2. 

Details of Procedures 

Preparation of sample water and 
solutes 

Ottowa sand C109 and C190, grain size distribution curves shown 

in Figure 42, was leached repeatedly in boiling concentrated hydro-

ch10ric acid until no discoloration of the acid was observed. The 

sand was then washed with distilled water until the filtrate was free 

of chloride ion. This was achieved when the supernatant gave no 

coloration on the addition of drops of dilute silver nitrate solution. 

The material was then washed and stored under double distilled water 

-6 which had specific conductance of less than 10 mhos. 

Deionized water (conductance water) and distilled water were 

used for pure water measurements and conductance water was used for 

preparation of all salt solutions. Conductivity of the deionized 

-6 -1 -1 
water varied from 1.5 - 100 x 10 ohm cm . The water was de-

aerated in the lab by warming it to a sooe and then boiling under 

reduced pressure then left to cool under vacuum. Deaeration will 

prevent air in the solutions from being entrapped in the soil sample 
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through the porous plate. Also, no trace of air would be formed on 

the electrode which might cause change in the electrode potential. 

Very few workers (Goring and Mason, 1950) concerned themselves with 

the deaeration of water, yet proper deaeration is essential in ob

taining reproducible results and its importance cannot be too strongly 

emphasized. Chemical reagents used were purified crystal reagents. 

Electrodes 

Silver-silver chloride electrode. Silver-silver chloride elec

trodes were prepared from a perforated light platinum disc two 

inches in diameter and one millimeter thick. The disc had 144 per

forations per square inch, each .032 inch in size. The face of the 

disc was covered with 80 mesh platinum gauze spot welded to it. A 

platinum wire was electrically spot welded to the back of the per

forated disc. Electrical contact with the external circuit was made 

from a brass terminal and copper wire which was soldered (thermal 

free solder) to the platinum wire. The electrodes were boiled in 

concentrated nitric acid then washed for two hours under running 

water. Directly before silver plating, the electrodes were cleaned 

by anodizing in concentrated nitric acid for one hour with a current 

of 1 milliampere. The electrode was then washed with distilled 

water. For silver plating, two 250 ml beakers were used as anode 

and cathode compartments. An inverted U shaped tube was used as tht"' 

salt bridge. The cathode compartment was mechanically stirred witb 

a magnetic stirrer and platinum wire served as anode in the circuit, 

Potassium cyanide solution was used for silver plating. The cancer:," 

tration of the solution used (Ives and Janz, 1961) was approximately 
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10 gm (K Ag (CN)2) potassium silver cyanide per litre. The salt was 

prepared after the procedure of Basset and Corbette: add 41 gm of 

silver cyanide to an aqueous solution of 20 gm potassium cyanide. 

When the silver plating solution was used for more than one time, it 

was freed from the free cyanide by adding dilute silver nitrate solu-

tion until no discoloration was observed. Silver deposition was coo-

2 tinued for six hours at (004 rna cm ) 81 rna. When the plating was 

finished, the electrodes were soaked in concentrated ammonium hydrox-

ide (NH
4

0H) for three hours and washed with water for two days. The 

same cell vessels were used in chloridizing the electrode with the 

electrode as anode in the circuit and electrodeposition. This process 

was performed in the dark by turning the light off and covering the 

anode vessel with black. 
2 

The current density was the same (.4 m.a/em ) 

for about 30 minutes using 0.1 N hydrochloric acid (HCI) as electro-

lyte solution. The electrodes were then washed in conductance water 

(deionized water) for two days. The color of the fresh electrode 

was sepia, yet after washing period the color changed to a pink shade. 

When the electrodes were fixed into the cell they gave a potential 

difference of 0.94 m.v. in 10- 3 N KCl. This potential is sometimes 

referred to as no flow potential (Zuker t 1959; Korpi, 1960) or asym-

metry potential and was isolated from measurements of the true valUES 

which were recorded. 

Platinized platinum electrode. Platinized platinum electrodes 

were prepared from an 80 mesh platinum gauze two inches in diametcI 

Platinum wire was welded to the back of the gauze and electrical con'" 

tact with the circuit was made as before (see Ag-AgCl electrode). 
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The gauze was briefly immersed in a dilute aqua regia (cleaning mix-

ture made of three volumes of 12 N Hel, one volume of 16 N nitric 

acid and four volumes of water). The electrode was then treated with 

warm concentrated nitric acid and washed in conductance water. Im-

mediately before platinization, the electrodes were cathodically 

electrolized in dilute (0.01 N) sulfuric acid for 10 minutes and 30 

m.a. The electrodes were then washed with double distilled water 

and then platinized in the previously discussed electric cell filled 

with a two per cent solution of commercial platinum chloride in 2 N 

hydrochloric acid. The current density was 300 m.a. (~15 ma/cm
2

) 

for 15 minutes. The whole procedure was then repeated while the 

electrometer was positioned to the current measurement. The deposi-

tion was hardly visible grey and the no flow potential was about 2 

m.v. in conductance water. 

Measurements of streaming potential and 
streaming current 

The elevated pyrex reservoir 18 litre capacity was filled with 

the desired solution (distilled water, conductance water, salt at 

different concentrations or simulated natural waters). The head con-

tainer was fixed on the stand to give the desired constant pressure 

head. The pressure head was kept constant by controlling the flow 

in and out of it by the screw clamps. The electrometer was then 

switched to the voltage measurements and its output connected to the 

time base recorder. The electrometer range was positioned toget~er 

with the recorder attenuator control to give the desired sensitivity 

for the expected values. The sensitivity was then further adjusted 
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and the chart calibrated by adjusting the vernier control located in 

the center of the attenuator control. The multiple pole multiple 

throw electric switch was then switched to the desired cell (Ag-AgCI 

and platinum electrode cells) simultaneously. The flow switch board 

was then switched to let the solution flow from right to left through 

the sample. The streaming potential recorded continuously on the 

recorder chart. When the steady state condition for both the poten·" 

tial and pressure head was reached the manometer readings were re~ 

corded and the flow stopped. The flow was then reversed to flow 

from left to right and the previous process repeated. This whole 

procedure was then repeated at six to eight different pressures 

yielding several sets of data at different values of streaming poten-

tial. In the first preliminary runs the cell resistance was measured 

for each pressure and found to be fairly constant over the period 

during which the set of measurements was obtained and measurement at 

an intermediate pressure was sufficient. A potential difference was 

then applied to the porous plug under zero pressure and the corre-

sponding current was recorded. Sample example of the recorded data 

is shown in Figures 7 and 8. 

Measurements of discharge (flux) and 
other flow parameters 

In the preliminary runs the fluid velocity was measured by i~-

troducing an air bubble into the outflow capillary tubes connected 

to the solution s ide chambers. The capillary tube was cal ibra ted J-c, 

give the discharge directly from the air bubble velocity of sweep. 

,However, it was found that the flow was relatively high (ranging from 
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3 4.0 to 13 cm /sec) and the bubbles moved relatively fast to be f01-

lowed especially at high discharges. So it was decided to measure 

the flow by collecting and measuring the value of the outflow--at 

the steady state--in a graduated cylinder for a certain time inter-

val. Dividing the value of the outflow by the time interval gives 

discharge in cm
3
/sec. The other items of the flow parameters were 

obtained by calculation. 

Measurements of the cell constant 

In the initial experiments the cell constant was determined 

with 0.1 N potassium chloride after the method of Briggs and subse-

quent workers (Briggs, 1928; Bull and Gortner, 1931; Jones and Wood, 

1944; Korpi, 1961; Zuker, 1959; and Feurestenau, 1956). It is sup-

posed that at about 0.1 N concentration, the surface conductance 

ceases to influence the bulk conductance of the pore liquid e How-

ever, Parriera and Schulman (1961) used 0.02 N KCl solution, Goring 

and Mason (1950) used .05 N KCl solutions for the determination of 

the cell constant. In order to obtain a reliable concentration to 

be used in our experiments, a series of experiments were conducted 

to determine the optimum concentration of electrolyte necessary to 

eliminate surface conductance effects in connection with Ottowa sand. 

Progressively stronger solutions of potassium chloride, KC1, in dis= 

tilled water were used as the permeant liquid in the plugs and the 

normality of each solution was predetermined. The conductivity of 

the effluent liquid was determined using a dip in conductivity eel" 

The variation of the plug cell constant, C, with concentration 

of potassium chloride is summarized in Tables 5 and 6 and shc)'wn in 
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Figure 43. For distilled water and diluted solutions of KCl, the 

specific conductivity of the plug was compared to that of the bulk 

liquid thus indicating a large surface conductance. With increasing 

concentration of electrolyte, surface conductance effect becomes less 

and the greater part of the conductivity becomes due to bulk liquide 

The cell constant, C, (C = conductivity of the liquid x bulk 

resistance of the plug) therefore decreased until the normality 

reached such a value that surface conductance was no longer signifi-

cant; C then remained almost constant. From Figure 43 it is evident 

that, for the plug, the cell constant, C, is effectively constant 

-5 -2 for the range of normality = 5 x 10 through 2 x 10 • So a value 

for C = 0.85 was taken as a representative constant for the first 

sample 1 and C = 0.510 for sample 2. 

Flow (asymmetry) potential 

The change in streaming potential is usually confused by the 

presence of another potential difference which usually persists even 

when the liquid flow is stopped. Much of the disagreement among 

streaming potential workers appears to be due to this other potential 

which was referred to as "asymmetry potential" by Hunter and Alexander 

(1962) and as "flow potential" by Modi (1957), Li H. C. (1958), Zuker 

(1959) and Korpi (1960). 

This extraneous potential was observed by many investigators 

and was thoroughly investigated by Zucker as the primary subject of 

his Doctoral dissertation. He concluded that this "flow potentJ .. a.l lv 

is not a function of the plug material electrolyte, electrical t~u' 

mentation or cell construction, but it was found to be associated 
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with the electrodes. He also concluded that this extraneous potential 

is made up of two phenomenons, one associated with the flow and the 

other with polarization. However, polarization could be in turn con-

nected to the flow conditions. The fact that polarization potential 

may stay constant during flow but may change once flow has stopped 

indicates that connection. Thus one can conclude that the electrode 

contributes an arbitrary EMF to the streaming potential which con-

tinues for a period after the flow has stopped. 

Previous methods of obtaining streaming 
potential 

Although electrode potentials (flow, polarization) had been 

noticed some time ago, it was not until recently (Zuker, 1959; Korpi, 

1960) that thorough investigations have been made. Most of the pre-

vious workers tried to eliminate the electrode effects or render 

them insignificant--in order to obtain the true streaming potential--

by one or more of the following methods: 

(a) Limit salt concentrations ( <10-
4 

N) and use freshly plated 

reversible electrodes to decrease polarization effects especially in 

connection with platinum electrodes. 

(b) Use a very high pressure (rate of flow) to make that effect 

relatively small. In these cases the assumption that the flow should 

be laminar may be violated and the flow might sometimes be turbutenL" 

Also, the flow effects (which were not understood until later afrer 

_~) were also affected by the flow. 

(c) Feurestenau and subsequent workers (Modi, 1957; Li, 1958 

used a procedure in which solutions flowed first in one direction 
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under a known almost constant pressure and the streaming potential 

was read, then the flow was stopped and readings were taken after 

sixty seconds. Next with the flow in the opposite direction the 

streaming potential was measured. The no flow potential (reading 

after sixty seconds from the flow stoppage) was added or subtracted 

as correction to the reading depending on the direction of the flow~ 

This procedure produced a straight line relationship between 

E and the pressure, P, for solutions of very low concentrations. 
str 

Yet it produced anomalous curves for solutions with concentration 

-3 greater than 10 N. Also, the corrected streaming potentials in 

both directions do not seem to agree and produce two separate lines 

for E-P relationships not passing through the origin, a case which 

is not supported by the electrokinetic phenomena. 

Korpi used a procedure--which was the primary object of his 

thesis--in which he tried to eliminate the arbitrariness of the po-

tential corrections after the flow stopped by continuously recording 

the streaming potential on a recorder. Using the same principle, 

Parriera (1965) developed an automatic recording apparatus for mea-

surements of the streaming potentials. Korpi's procedure will be 

discussed together with suggested modifications in the following 

sections. 

The steady state condition 

Two factors have been overlooked by the previously mentioned 

investigators. The first is the fact that experimentally, when th:~ 

liquid flow commences, the streaming potential will increase tlntiL 

the steady state. It is only at this steady state (stationary) 
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condition that the convection current, It' is balanced by the cons r 

duction current (counter current), Ie' and then the total flow of 

electricity will be zero; I str + Ie = O. It is when this condition 

prevails that one should stop or start the flow and record the read-

ings which will be the actual streaming potential. 

Secondly, the electrode contribution to the streaming potential 

is embodied in the streaming potential readings and prevails for a 

period after the flow is stopped (Zuker, 1959). That contribution 

is related to the flow and proved to be directional. So when the 

flow is suddenly stopped or started, the sudden increasing or de-

creasing ordinate is not only the streaming potential but will also 

be the flow potential added or subtracted to the streaming potential 

depending on the flow direction. 

Modifications in the recommended procedure 

In the procedure used in this investigation the streaming poten-

tial was recorded simultaneously with the streaming current for the 

same constant pressure and discharge on a time base recorder. An 

example of these recordings given in Figures 7 and 8 shows the actual 

form in which the data was obtained from the recorder. Referring 

now to Figure 9, at a, the solution starts flowing from right to left 

through the plug. When the steady state was reached--under constant 

head and rate of flow-at b, the flow was stopped. The potential 

is the sum of the streaming potential E ,the flow potential (elec"" 
st 

trode potential) E(el) and the polarization potential E(Pol)$ 

the polarization potential at steady state for no flow, so we can 

b. Also, (E - E ) - E - E f h - st: 



= a. The actual streaming potential will then be a ; b. Korpi's 

method when used will give an erroneous value either (Eb E ) or c 
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(E
f 

- E
g
). Those two values will algebraically include, rather than 

the electrode potential, the effect of the response of the recorder. 

This factor was observed by Korpi and suggested as a source of error 

in his recorded values. As it could be seen from Figures 10 and 11~ 

-4 -3 
for 10 N KGl and 10 N KGl if Korpi's method were used, then 

streaming potential in one direction will be 25 per cent to 100 per 

cent more than that in the other direction (compare ordinate 1 and 2 

of the figures). The efficiency of our procedure is appreciated for 

the cases of relatively high concentration and low pressure (rate of 

flow). In these cases the error effect using the Korpi method may 

be more than the actual readings, and the ordinate considered by 

Korpi may give negative values. 



CHAPTER V 

RESULTS AND DISCUSSIONS 

Reliability of Experimental Data 

There are some sources of test errors that could affect the 

measured data, namely streaming potential, streaming current and 

flow and pressure measurements. 

With the method used in this study, the results were observed 

from Ag-AgCl electrode cell and platinized platinum electrode cell. 

The two cells were identical in size, length and shape. The solu-

tion and system were also the same (see the procedure). Typical 

values of streaming potential and streaming current obtained from 

the two electrodes for conductivity water and NaCl solution are 

E 
shown in Figures 12, 13 and 14. Figure 15 shows a , where Cit = -

q 

in m.V. sec vs normality of KC1 solution permeating through S, for 
cm3 

Ag-AgCl and Pt-Pt1 cells. From these figures it can be seen that the 

results obtained from Ag/AgC1 electrodes are identical to those ob-

tained from the platinum electrodes for streaming potential and 

streaming current for both sizes of sand used. 

The significance of this reproducibility is that the platinum 

electrodes fitted in a separate cell and with electrode potential 

completely different gave almost the same results as did Ag-AgCI 

electrodes fitted into another separate identical cell. This indi~ 

cates that despite the difference in behavior of the two electrodes, 

it was possible to obtain similar values for streaming potential and 
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streaming current induced due to the same differential pressure head. 

Most of the results obtained produced a straight line relation

ship between both E and I and the effective differential pressure or 

discharge. These lines passed by the origin in agreement with the 

electrokinetic phenomena and the analytical developments. 

Flow and pressure measurements were found to be sufficiently 

consistent for repeated runs at steady state conditions. Errors 

from these sources, if any, are within the precision of the test 

measurements. 

Experimental Results 

8unnnary of the complete resul ts from the experimental investi·

gations is given in Figures 25 to 41. Only concluding results are 

presented here which illustrate the principal features of the stream

ing current, streaming potential, rate of flow and effective pressure 

relationships. 

Electrolyte solutions used were primarily conductance water, 

distilled water, NaCl and KCl solution at different salt concentra

tions. In reporting the results 81 will denote sand plug with 0.23 

millimeter of effective diameter and effective porosity of 31 per 

cent. Also 82 will appreviate sand plug with effective diameter of 

0.575 millimeter and effective porosity of 28 per cent. 

Typical results on an actual recording chart are shown in 

Figures 7 and 8. Procedure for interpretation and obtaining the 

actual streaming potential and current following our modified pro~· 

cedure are shown in Figure 9. 
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Experimental results are presented here under the following 

headings: (a) Plug resistance, (b) Rate of flow and applied differ-

ential pressure, (c) Phenomenological coefficients and electrokinetic 

couplings, (d) Rate of flow and developed streaming potential and 

streaming current, (e) Salt concentration and particle size effects, 

(f) Temperature effects, (g) Zeta potential, (h) Practical considera-

tions. 

Plug resistance 

The plug resistance of the cell was measured for each run and 

results are shown in Figure 16. In this figure log plug resistance 

is plotted against log electrolyte concentration (normality) in the 

permeating solution are tabulated. From the graph it can be seen 

that all resistances are below 105 ohms for concentrations greater 

than 10-4 N. 

Measurements of resistance were made by both general radio 

impedance bridge and by a lab made impedance bridge. Similar values 

were obtained all the time and values reported are the average of 

the two readings, one on each apparatus for each setting of the 

flow. 

E 
As we know, ohms law, R = I does not hold for transport current, 

but did hold for conductance current at zero flow. Figure 16 shows 

values of resistance measured by the bridge and (~) values. Fronl 
q=o 

the figure there is no significant difference between the two read~ 

ings. 
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Rate of flow and applied differential pressure 

3 
Flow rate means flow rate per unit time, i.e. ern per second. 

For calculation of seepage velocity in ern/sec, it must be divided by 

a factor equal to the cross-sectional area multiplied by the porosity. 

For Sl this factor will be equal to 19.06 and for S2 it is equal to 

17.20. The applied differential pressure here is the pressure be-

tween the ends of the sample in centimeters of water, for pressure 

per unit length it has to be divided by 7.70. Each point on the 

graphs shown is the average of two readings, one with solutions flow-

ing left to right and the other with solutions passing right to left 

through the plug for all values measured. 

Values for the rate of flow in cm
3
/sec are plotted as a function 

of applied pressure in ern of water on Figures 25, 26 and 27 for con-

ductance water, sodium chloride and potassium chloride solutions 

respectively. Values shown are both while measuring streaming cur-

rent and streaming potential. An increase in applied differential 

pressure resulted in an increase in the rate of flow and a straight 

line relationship was obtained between the rate of flow, q, and the 

pressure p. For all cases this line passed through the origin. 

This indicates a linear relationship between p and q with a constant 

coefficient of proportionality (coefficient of permeability). From 

the Kozeny formula, the coefficient of permeability K is given by 

K 

And from Darcy's law, v KR. 
L 
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The discharge rate q will then be 

P A q = K"L. 

ld2 3 
a 

A .E. 
T (I-a )2 

. . 
L 

(23) 

d 0.023 centimeters, a = 31% and \3 = 5.50, and 

d 0.0575 centimeters, a = 28% and e = 6.12 

and 

(.9..) for Sl 
p = 0.20 
(~) for S2 

From the previous experimental results reported in this study (Fig-

ures 25, 26 and 27), * for Sl is on the average = 0.485, and for 

S2 = 2.20. 

then 

0.485 
= 2.20 

0.22 

which is in agreement with the expected value of 0.20. This suggests 

that Kozeny formula could fit the experimental data. This is in 

agreement with the conclusion given by Wylie and Spangler (1952), 

that is for the ranges of the coarse sand, in a range similar to thf-'. 

one in this study, Kozeny formula will fit the flow data with S 

taken usually as 5.0. To detect the effect of countere1ectro-

osmosis--due to the developed streaming potential--on the flow, 

values for q are plotted versus p while measuring streaming current, 

and while measuring the streaming potential. From the figures it is 
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clear that there was no significant difference in the p vs q rela-

. h' d ttl t . Th1's means that (~) t10ns 1p ue 0 coun ere ec ro-osmOS1S. 
q E=o 

will 

be the same as (g) 
q 1=0 

The effect of salt concentration of the pore 

fluid on the rate of flow showed in general that there was no effect 

on the pressure discharge relationship due to change in electrolyte 

concentration for both samples and solutions tested. 

Phenomenological coefficients and electrokinetic 
couplings 

Phenomenological coefficients were determined from experimental 

results together with equations (20) and (21) and calculated values 

are summarized in Tables 2 and 3. As these equations involved both 

electrical and mechanical units it was necessary to convert the ex-

perimental results into cgs units. These required conversion factors 

are tabulated in Table 1. After having determined those coefficients, 

the influence of electrokinetic coupling on the hydraulic flow rate 

was computed using equation (22). This was done for all runs and the 

calculated results are given in Tables 2 and 3, which express in per 

cent the amount by which the flow rates were reduced due to electro-

kinetic couplings, relative to the flow rate that would exist in the 

absence of coupling. As seen from these results, these values were 

of negligible amount and could be ignored. 

From the phenomenological analysis (see also Overbeek, 1953b, 

and Henniker, 1952) a conclusion was drawn that the hydrodynamic 

resistance is smaller when short circuited electrodes connect the 

two ends of the sample (while measuring I ) than when no electric 
str 

current is allowed in an outside circuit (while measuring E)ro This 
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Also, as we have salt moving with the system, 

then it is expected that the flux of salt would affect the rate of 

flow (Taylor, 1964). The experimental result, however, has shown 

neither. This is due to the fact that, in case of saturated coarse 

sand, the linkage transfer coefficients are very small with respect 

to the direct ones. Also, in dilute solution such as the ones used, 

it has been shown that (Michaeli and Kedem, 1961) the flow of salts 

has negligible influence. This means that the flow of solution is 

determined only by the effective pressure, and this is what was actu-

ally observed. 

Rate of flow and developed streaming 
potential and streaming current 

The values for streaming potential, E, for different samples 

-6 -3 considered ranged from 30 x 10 to 240 x 10 volts. Streaming cur-

9 -6 rent values varied from 12 x 10- to 1.0 x 10 amperes. Values for 

both E and I were influenced by both the size of the soil particles 

and the salt concentration of the percolating solutions. 

Streaming potential and current values are plotted as a func-

tion of their corresponding rate of flow for pure water (conductance 

and distilled water) and for electrolyte solutions at different salt 

concentrations (Figures 28 to 41). For all solutions and both soil 

samples used, an increase in the rate of flow resulted in a linear 

increase in the developed E and I. This line generally passes t 

the origin irrespective of solutions and sample used. 

Since the charge carried per second (lstr) by the liquid in any 

cross section of the sample is a function of the local velocity ';r 
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and the charge density p 

as I = P
s 
J v P dx str 

(24) 

one would expect it to be influenced by both p and v. Hence, an 

increase in the rate of flow (consequently v) keeping p and 

constant (and the flux is laminar) would increase the speed 

the charge is conveyed and the streaming current will direct 

p 
a 

in-· 

crease with the rate of the flow. As the liquid flow commences a 

potential difference will be set up between the ends of the sample, 

which in turn will cause an electric conduction current opposite in 

sense to the streaming current. This potential will increase until 

the steady state conditions prevail (Figure 9), then it remains fair-

ly steady and the streaming current is balanced by the conduction 

cnrrent0 Thus an increase of the speed of the charge convection is 

expected to increase the rate of change in E. Consequently, if the 

conductivity of the system is kept constant, E would be expected to 

increase linearly with q, as 

(E) ~ (conductivity) = 

I = - I . c st 

I , and at steady state 
c 

This is in agreement with the experimental results reported for a1 

ca.ses and in agreement with the electrokinetic phenomena .. 

Sa.lt concentration and particle size effects 

An increase of soluble salt concentrations (normality of the 

solutions) resulted in a decrease in both E and I. A sharp decreas~ 

is seen in case of streaming potential, whereas a gradual decrease 

is observed for the case of streaming current. When the s 
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a E in millivolt-sec/cm3 was plotted as a function of salt concen
q 

tration N in the percolating fluid a straight line was obtained on a 

log-log scale (Figure 17). In the case of streaming current, a 

straight line relationship was obtained between e '(where e is the 

slope 1. in milliamper-sec/cm
3

) and the log salt cancentr-at on in the 
q 

percolating solutions, N (Figure 18). 8 imilar relationships ItJere 

also obtained for KCl solutions (Figures 19 and 20). Plots of QI 

against salt concentration in the percolating fluid is sho~m in 

Figure 21. In this case, a values are for both KCl and NaCl solu-

ti.ons. It is clear from the values obtained for all salt concentra,· 

ti.ons tested that E and I values-for the same soil sample at a 

specified discharge-are affected by salt concentration, N, and Jess 

affected by' the type of ions in the solutions. 

To show the effect of the size of the sand particles, a compari-

son bet\veen S1 and S2 is shown in Figures 17 and 19 for Ol aga:i.rlst: 

salt concentration N. In these plots a was presented as a function 

of N with the size of sand particles as a parameter. As shown in 

the figures, values of a were always higher for 8
1 

than for 8
2 

for 

hoth NaCl and KCl solutions. Hence, plots of Q' against N on a iog-

log scale are a function of the size of the soil partic1es~ As 

shown in Figures 17 and 19 in the range of the concentration tested 

the two lines for S1 and 8 2 are not parallel but approach each 

as the salt concentration N in the permeant solution increas~~8 ~ 

This suggests a linear relationship between a and N in the form 

log a = a log N + b where b is constant value related to th~ 81. 

of the solid particles and a as a factor related to the s~lt 
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concentration. Similar relationship in the form of S ~ clog N + d 

where d is another constant value for each size and c related also 

to the salt concentration. This could be seen from Figures 18 and 

20. In this case the two lines approach each other in a similar man-

nero 

The conveyance of charges is limited only to the diffuse part 

of the double layer, i.e. to the liquid that can flow with respect 

to the surface. The potential within such layer decreases practical-

ly in exponential manner (see Figure 1). This diffuse double layer 

has no sharply defined end point but slowly becomes negligible. It 

is nevertheless convenient to assign to it a thickness designed 

usually by 6. This thickness changes greatly with the normality of 

the solution. Hence, when the salt concentration in the permeating 

solution increases it suppresses the double layer, especially its 

diffuse part. This compaction of the double layer would shift the 

suppressed diffuse part nearer to the wall where it will be conveyed 

at relatively lower velocity. Potential at the wall, also, cannot 

remain the same but must decay faster (Ham, 1940). The slipping 

plane may be also changed (Kruyt, 1952). Consequently smaller values 

for 'would be expected. 

If, as is usually the case, the thickness of the double layer 

is extremely thin compared to pore diameter, then the gradient of 

the velocity ~: can be assumed to be constant inside this layer, and 

th'e change in i due to lower conveyance would be linear. A str 

straight line was always found when log 'was plotted against log 

salt concentration in the permeating solution. As 1st is affected 
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by both v and' then one would expect it to vary linearly with log 

salt concentration. The reason for more rapid decrease of streaming 

potential E (than streaming current I) due to increase in salt con-

centration may be due to the fact that E is proportional to both I 

and the conductivity of the bulk solution. Hence, rather than being 

proportional only to ~ and the conveyance, it is also affected by 

change in the conductivity. The latter is found also to be propor-

tional to log salt concentration. Therefore, one would expect log 

E 
Ci (Ci= -) to be proportional to log normality of the bulk solution. 

q 

According to classical derivations (He1moho1tz and Smow10wsky) 

the size and shape does not affect streaming potential. The conven~ 

tiona1 equation 

(25) 

where E is the streaming potential, P the applied pressure drop, D 

the dielectric constant, k is the average specific conductance of 

the liquid in the capillary and' is the zeta potential and ~ is 

the dynamic viscosity--gives E as independent of size and shape, a 

conclusion not supported by many experimental results. Debye and 

Huckle criticized that conclusion contending that the constant Zn 
1 

should vary with the capillary's shape and that 4TI is valid only 

for cylindrical tubing. Henry and Mooney (1931) in later analysis 

advocated Huckle's conclusion. Wood (1946b) introduced--in an 

analytical derivation-what he termed the "radius effect" which 

indicates the effect of the size of the capillary on the streaming 

potential. He supported his conclusion by noting some experimental 

results by Bull and Gortner (1932) who investigated particle size 
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effects on the zeta potential. However, it was pointed out later by 

Ghosh, Rakshit and Chattoraj (1953) that Wood's "radius effect" 

counts only for a small portion of the zeta variation with change in 

particle size. They attributed that variation to the change in 

surface conductivity. Similar conclusions have been presented by 

Ghosh, Choudhyry and De (1954) for pyrex glass. 

The problem could be better visualized, however, if it is re-

alized that the streaming potential is affected by the hydrodynamic 

conditions of the system as well as by the surface area of the solid 

liquid interface. E Equation (18a) gives as 
q 

E , D (1-0' )2 R , D 
q . 

8TT 
. 

~d2, 0'2 • 8TT c 

§d
2

0' 
2 

K 
0 (1-0' )2 

R1 R2 
So provided that - .. 

c
l 

c 2 

(!) for 8
1 '1 (KO) 2 Ct'l q 

~ . 
(KO) 1 = 'Ct' 2 

(~) for 82 
C2 

'q 

1 
Ko 

Assume C 1 equal to '2 , then from experimental 

R 
, where c 

results 
(KO) 2 ~ 
(KO) 1 Ct'2 

would be equal to 4.10 and the two lines for 8
1 

and 8
2 

on Figure 18 

would be expected to be parallel, with their ordinates in the ratio 

of 4.10. From the figures, however, the two lines approach each 

other as the salt concentration in the permeating solution increases. 

This change is certainly due to change in C. When' was calcula1h1 

using the procedure of this study, values for S2 were larger than 

C2 
those for Sl in a manner shown in Figure 22. When values for ~ 

were multiplied by 4~10 and calculated ratios (shown in Table 4) 
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were multiplied by ~l and the resulted values were plotted on Figure 

19 together with the experimental results, a close agreement was ob-

tained. The difference between calculated and observed values, how-

Rl R 
thought to be due to the difference between -- and -1 

c
l 

c
2 

ever, is 

This difference was actually about 10 per cent. 

Temperature effects 

By temperature effects it is meant the effects of change in tem"~ 

perature of the sample and the percolating solutions on the result-

ing streaming potential provided that all other factors are kept con-

stant. All the experimental results reported in these have been ob-

tained by keeping the whole apparatus in the constant temperature 

room with the liquid solutions always left in the room until their 

temperature was the same as that of the room, i.e. at 80 t lOF. How-

ever, two special runs were made with the temperature in the room 

kept constant at two different temperatures, namely at 85 + lOF and 

the other at 62 ± lOF. The developed streaming potential E was 

plotted as a function of q with the temperature as a parameter 

(Figure 23). From the graph it is clear that ~ is higher for 620F 
q 

than for the 850F. Th" . d" th t t ld h 1S 1n 1cates a emperature wou ave an ap-

preciable effect on the experimental results if temperature of the 

experimental apparatus was not controlled. This trend needs more 

investigation before any firm conclusions can be made about the de-

tailed nature of the temperature effect. 

Temperature effects on the electrokinetic potential were also 

observed by Buchanan and Heymann (1952). They reported an increa.se 

.,- t "1 . h d" " h de b' . h 1n ~ po ent1a W1t ecreas1ng temperature W1t dT e1ng 1n t e 
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order of -0.20 millivolt/oC. Variations due to temperature effects 

may be related to the increasing thickness of the double layer with 

the increase in temperature. It also could be due to changes in 

dielectric, D, and viscosity ~ with change in temperature. As 

. dD ," 'I shown previously ~n Chapter III, dT ' ~ .30 was reported for conduc-

tance water. 

Zeta potential 

Of paramount importance in the quantitative study represented 

here is the evaluation of the zeta potential , As mentioned be-

fore, C is the potential at the plane of shear (Figure 1), that is 

the potential at the boundary between the solvent adhering to the 

particles at rest and that which moves with respect to it. 

Streaming current is given previously as 

DC 
I = STT q (15a) 

3 If I is measured in ampers, q in cm /sec, d in centimeters and' in 

millivolts and D taken as SO (Guggenheim, 1940; Wood, 1946a; Hunter, 

1961) then we have 

-12 
I = 3.54 x 10 , 

For Sl' 'will be 

1.75 x 109 1 
q 

And for S2' it will be 

S.60 x 109 .!. 
q 

q (26) 

(27) 

(28) 



58 

Calculated values for '1 and '2 for KCl are tabulated in Table 4 

and were plotted as a function of KCl concentrations (Figure 22)_ As 

shown in this figure,' decreased linearly with the logarithm of 

the salt concentrations with' values higher for S2- Two separate 

lines fitted the calculated values for '1 and '2 These two lines 

are not parallel but approach each other as salt concentration de-

creases. 

Helmoholtz-Smowluchowski classical formula is usually used in 

ca.lculating, potential from streaming potential measurements_ This 

equation has been amended by several authors (Briggs, 1928; Rutgers, 

1940) and there is a general agreement now (Buchanan and Heymann, 

1949c) to use the equation 

4JTT} 
, = D 

Ek 
P 

(29) 

where all items as defined before, for the calculation of , denoted 

usually in the literature by 'ae The term k in this equation repre-

sents the effective specific conductivity (total conduction). This 

will include both specific and surface conductance. It is common 

practice now to compute k from the actual resistance R and the cell 

c 
constant c as k = i- The accuracy of such procedure, however, depends 

upon determining the cell constant with sufficient precision in a 

manner which avoids errors due to surface conductance. 

Another problem with this equation is that, in well conducting 

system, E may be too small for accurate determination.. Therefore it 

was suggested by some workers (Buchanan and Heyman, 1949c; Davis and 

Rideal, 1961) to use the streaming current measurements instead of 

streaming potential for the determination of , . This approach is 
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considered to avoid surface conductance problems. Buchanan and Hey-

man suggested the function 

where all variables as defined before. The equation still includes 

c, which would affect the precision of calculation. The Davis and 

Ridea1 relation is applicable only for capillaries and needs to be 

adjusted to be used for porous materials. 

In our procedure we use 

8TT 
, =")) (30) 

This is believed to constitute a satisfactory method of finding ,. 

Besides avoiding conduction problems, it pOints out the effect of 

both size and shape of the media on ,. Our calculated values for 

~). for 10.4 N KC1 is 190 m.v. This is in close agreement with the 

values given by Rutger and Desmet (1945 and 1947) and by Jones and 

Wood and Wood and Robinson (1945 and 1946a) for jena glass capillaries 

(200 m.v.) and quartz capillaries (177 m.v.). These two values were 

determined using both streaming potential and electro-osmosis methods~ 

Practical considerations 

A main objective of this study is to present an approach for a 

new method to evaluate quantitatively the flow rate through porous 

material. Dissolved salts in the permeant solutions have a remark~· 

able effect upon the interpretation and evaluation of the experi-

mental results obtained with this suggested method. Soluble salts 

found in ground water originate primarily from solution of rock 



material. Sedimentary rocks are more soluble than igneous rocks. 

Because of their high solubility combined with their abundance in 
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the earth's crust, they furnish a major portion of the soluble con

stituents to ground water. Out of the commonly added cations due to 

sediment rocks sodium, Na, and calcium, K, have the highest possibili

ties. Bicarbonates, carbonates and sulfates are the corresponding 

anions. Chloride, CI, also occurs to a certain amount, with sewage. 

connate waters and intruded sea water as its major contributing source 

(Foster, 1942; Todd, 1960). 

For the experimental results reported in this study, two salts 

(NaCl and KGI) were used as solute in the test solutions. For each 

run, one at a time each of the two salts at a specified concentra

tion was used. The normality of the solutions was used to express 

their salt concentrations. Therefore, it was felt necessary to test 

the validity of the procedure used in this study for cases with solu

tions similar to naturally existing percolating ground water. 

For that purpose, solutions were prepared in the lab to simulate 

some selected ground water samples reported in the literature (Doneen, 

1950). These solutions were then used as permeant solutions in our 

experimental apparatus using the same experimental procedure de

scribed before. The chemical analysis for these solutions is given 

in Table 7. Streaming potential and current obtained for these 

solutions were then plotted as a function of their corresponding rate 

of flow (Figures 33, 34, 40 and 41). For all cases, these plots 

produced straight line relationships similar to those obtained be

fore for solutions with one salt as a solute in the percolating 
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solutions. This suggests the feasibility of the use of this proce

dure for naturally existing ground water with dissolved combined 

salts as well as solutions with one soluble salt. 

Considering the difficulties connected with the determination 

of the normality of these natural waters, an alternative method to 

the normality was thought to be used to express the concentration of 

solutions. This is done by measuring the electrical conductance of 

the solutions. When the experimental results (for E, I and q) for 

these simulated natural ground waters were compared to those for NaCl 

and KCl solutions tested before, comparable results were obtained 

provided that conductance of the solutions was taken as a parameter 

(Figure 24). 



CHAPTER VI 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH 

Conclusions 

Analytical derivations and analysis of the experimental inves

tigations, together with the subsequent interpretation and discus

sions of the results from this study, suggest the following conclu

sions with respect to streaming current and streaming potential in

duced by water flow through porous media. 

1. The flow through samples tested followed Darcy's law and 

the ratio of petmeability coefficients of different samples agreed 

with Kozeny-Carreman equation, 

2. There was no significant difference in flow versus pressure 

relationship due to counter~electro-osmosis (electrokinetic coupling) 

or changes in electrolyte concentrations in the ranges of the experi

ments in this study. 

38 A modified procedure is recommended for the measurements of 

both streaming current and streaming potential through pprous 

materials. This recommended modified procedure is important for 

cases of relatively high concentration and low pressures. 

4. Streaming current and streaming potential induced by flow 

through porous material were directly proportional to the rate of 

the flow. An increase in the rate of the flow at a constant salt 

concentration and soil particle diameter resulted in an increase in 

the developed streaming potential and current. Emperical equations 
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in the form of I = Clq and E = c2q are suggested in which CI and C2 

are dependent upon salt concentration and particle size diameter. 

5. Both streaming current, I, and streaming potential, E, were 

affected by salt concentration (normality ~) and less affected by 

the type of ions in the solution. An increase of soluble salt con-

centration resulted in a decrease in both E and I. A sharp decrease 

was observed in case of streaming potential whereas a gradual de-

crease was observed in the case of streaming current. 

6. Increase in soil particles effective diameter, at a con-

stant salt concentration, caused a decrease in both a and S, 

where 
I 

S = - • q 
This decrease was more for dilute solu-

tions. These relationships may be expressed by log a = a long N + b 

and S = c long N + a where a and c related to salt concentration, 

band d related to particle size. 

7. Temperature changes would have an effect on the developed 

streaming potential and current. 

8. The procedures used in this study are suggested to be used 

for naturally existing ground waters with dissolved combined salts 

as well as solutions with one soluble salt in the range tested in 

this study. 
I , 

9. Comparable results w~re obtained for simulated natural 

waters and NCI and KCl solutions, provided that the conductance of 

the solution was taken as a parameter. 

10. Although electrokinetic coupling has but a negligible ef-

fect on the rate of flow samples tested in this study, the phenomeu= 

ologieal coefficients procedure presented seems to be a reliable and 
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easy procedure for cases where such effect is of a significant amount. 

11. Analytical relationships developed together with the experi

mental work could probably be used as the basis of reliable method 

for measuring the rate of flow through porous materials. 

Suggestion for Further Research 

Experimental investigations in this study were limited only to 

sand samples of effective diameters of 0.230 and 0.575 millimeters. 

Permeating solutions tested were conductance water, sodium chloride 

and potassium chloride solutions. Combination of salts as solutes 

in the permeating solutions were tested in order to determine the 

practicality of the proposed procedure for naturally existing waters. 

In view of these experimental limitations complete information on 

the practical aspects of the flow, streaming potential and streaming 

current relationships could not be obtained. On the basis of the 

analytical findings and experimental experience gained in this in

vestigation, it is believed that improvements have been made in the 

experimental procedure especially in connection with streaming cur

rent and streaming potential measurements. From the analytical 

derivations obtained in this study, a basic relationship has been 

evolved which makes a reliable basis for additional experimental 

investigations beyond this study. 

With this in mind, a few suggestions are presented below as 

extensions of this research. It is hoped that these will help to 

encourage some other experimental studies that should be pursued in 

order to present the full picture of the flow, streaming current and 
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streaming potential relationship, as a tool f or eva luating the r ate 

of the flow through porous materials. 

1. Measurements should be made of the s t reaming current and 

potential for flow through finer and coarser sand s ample s . Th i s 

should be done keeping all parameters but t he size of the sand 

particles constants. This will give more tests for the analyt i cal 

r e lationship suggested in this study in connection with the size 

e f fects. 

2. The possibility of replacing the concentration of salt solu-

t i ons wi t h t he conductivity of the solution is worth more investiga

t i on ove r a wider range of salt solutions, with cations different in 

nature and valence. If such substitutions were always possible , it 

paves the way for practical application of the suggested procedure. 

Many simplified procedures now used for determining conductivi t y o f 

pe rme a t i ng solutions in situe wi ll be a helpful tool to our proce

dure. 

3. I t would be useful to check the effect of changes i n tem

perat ur e o f the sample and percolating solutions on the resulted E 

a nd I provided all other factors are kept constant . This should be 

done in a wide range that should include t he freezing t empera t ure 

range . 

4. Attempts should be made t o test the v i ewpo int cons ideri g 

the re tar da t ion of flow due to e lectrokine tic coup l i ng t o be 

respons i ble for non-Dar cy behavior of t he flow through f i ne mat eri

a ls , ' e s pecially clayl y soi ls. Th i s was no t possible in t h i s s tudy 

due t o the fact that t he samples te s t ed were coarse and 



electrokinetic coupling effect was negligible. 

5. Some studies should be devoted to different problems that 

will be encountered in the field use of the suggested procedure, 

Two of these problems will be: 

66 

(a) To develop a reliable procedure for placing electrodes 

in sites without disturbing the media through which rate of flow 

is to be determined; 

(b) To isolate particular strata fitted to these elec

trodes without disturbing the general flow pattern of the flow. 

6. Utilization of the suggested procedure for determining the 

direction of the flow should be experimentally evaluated. This could 

be done by placing similar electrodes at different positions in a 

sample through which liquid is flowing. It is expected that the 

highest induced E or I would be recorded between the two electrodes 

placed perpendicular to the main direction of the flow provided that 

the media is isotropic and homogeneous. 

7. It may be interesting to use an approach to relate E, I and 

rate of .flow through unsaturated soil samples similar to the one 

suggested in here for saturated soil samples. In such case, the 

flow functions governing flow through unsaturated soils should be 

utilized. 
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Evaluation of Phenomenological Coefficients 

The phenomenological coefficients in equations (20) and (21) 

have been evaluated by relating them to the experimental results. 

In each set of these equations we have four experimental quantities--

I, E, q and p--and two equations. So we need a third independent 

equation before we can arrive at a definite relation between two of 

the variables. The third equation generally speciftes that one of 
~ 

the variables held equal to zero. However, in our experimental mea-

surements we measured both streaming potential and streaming current 

for the same run. This gives us an additional information that will 

help us to solve for the four phenomenological coefficients as fo1-

lows. Also, Onsager's relation L21 = L12 was established experi

mentally by Saxen and recently checked for accuracy (Rutger and de 

Smet, 1947). 

Evaluation of L
9

, L11 L21 

As t he two electrodes are short circuited all the convection 

current induced by the f10w--during the measurements of streaming 

current--wi11 return back through the outside circuit (and not con-

ducted back as conduction current through the system). So, no po-

tentia1 difference will be developed across the system and E wil l be 

equal to zero . 

From equation (20b) 

From equa t ion ( 20a) 



77 

q = LllP and Lll = (~) = slope of q vs p relationship 
p E=o 

which is equivalent to Dary's law where Lll is the hydraulic conduc-

tivity or hydrodynamic conductivity of the first kind. 

From equation (2lb) 

I = L q 
q 

, and 

L (1) = q q E=o 
slope of the q vs I straight line relationship 

Compared to our derivations (see previous derivations) equation 

L 
q 

~ (1-0") 2 
will be comparable to 8n and Lll will be comparable to 

~d2 a2 

~d2 
LTl 

L 
-E 

A 
o 

When measurements are made for streaming potential and no cur-

rent is allowed to flow outside the system and the convection cur-

rent is balanced at the steady state by the conduction current, the 

total current, I, would be equal to I t + I d = o. s r con 

From equation (2la), then 

In this case L is the hydrodynamic conductivity of the second kind. 
p 

It is interesting to note that hydrodynamic conductivity in the 

case when E = 0, will be smaller than that when I = o by the correc-

tion factor L . This difference will then be equal to (.9.) 
c p E=o 

(S) which is due to the electrokinetic couplings. 
p 1=0 



L 
e 

From streaming potential measurements E, q and pare experi-

mentally evaluated. At steady state Itotal = 0, and 

L = L S = 1 x S (1) 
e q E q E E 
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L 
Incidentally in this case ~ will be comparable to C2 in equa

e 
tion (18b) (see previous derivation) as 

L 
-S 
L 

e 

R 
c 

Another way of calculating L is by applying potential to the system 
e 

under zero flow conditions and measuring I. So from equation (2b), 

as q 0 

I = Le E and Le = i which is the conductance of the system 

R comparable to -. This seems to be one way of comparing the results. 
c 

L22 is computed directly from equation (20b) as 

I = L2l P + L22 E 

at p = 0 

Dimensions 

If q is measured in cm
3
/sec per cross sectional area per cm 

length of the soil sample, p is measured in dyne per cross sectional 

area per cm length of the soil sample, E is measured in stat volts 

per cm length and I is measured in stat coulomb per cm length of the 

soil sample, then phenomenological coefficients should have the 

following units 
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3 stat coulomb 
Lll 

- cm 
L22 = - volts. dyne sec stat sec. 

coulomb 2 

L12 
cm 

L2l 
stat cm 

- stat volt-sec - dyne. sec. 

3 stat coulomb 
L 

cm 
L - !! 

volts. p dyne. sec e stat sec. 

L 
stat coulomb 

L1 
cm 

- - coulomb q cm stat 



Table 1. Conversion factors 

To convert 
experimental 
results In 

3 -1 
q cm sec 

p cm of H
2
O 

I ampers 

E volts 

2 
.9.. cm 
p sec 

I coulomb 
p cm of H

2
O sec 

I coul. 
q 3 

cm 

I amEers 
E volts 

Into 

-1 
sec 

3 
dyne/cm 

stat coulomb 
sec. cm length 

stat volts 
cm length 

3 cm 
dyne sec 

stat coul. 2 cm 
dyne sec 

stat coul. 
cm 

stat coul. 
stat volts sec. 

MultiEly by 

2.112 x'10- 3 

1.267 x 10
2 

3.90 x 108 

4.364 x 10-4 

1.667 x 10-5 

3.067 x 106 

1.846 x lOll 

8.92 x lOll 
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Table 2. Phenomenological coefficients and electrokinetic couplings (equation 20). 

Lil in L12 in L21 in L22 in 
Elect:rokinet:ic 
coupling 

3 2. stat coul. ~ - q cm em stat coul.cm '1-
Sample Solution Normality dyne sec. s tat vol t-sec dyne -sec .. stat volt sec. ~ 

Cond. Water -6 8. 335xlO 139.5 x 10 -3 
139.5 x 10 -3 4.06 x 10 6 

.0648 

HaCl -4 
-6 -3 -3 -- 7 -4 

5xlO_3 N 8.25 xl0_6 160.5 x 10 160.5 x 10 8.1 x 10 .00383 

S 
10 8.49 x10 140 140 15.9 x 10 .00154 

1 5 x 10-3 
8.20 47.6 47.6 63.3 

10-2 7.98 28.2 28.2 98.1 

KCl 10-4 N -6 -3 125 x 10-3 7 
.0085 8.20 xlO 125 x 10 -3 2.24 x 10 

5 x !~-4 8.38 97.5 x 10 97.5 8.05 .00141 
10 8.42 84.5 84.5 15.1 

5 x 10-3 
8.10 48.0 48 55.5 

10-2 7.80 26.20 26.20 141.0 

Cond. Water 3.60 x 10 -5 203 x 10-3 203 x 10-3 6.15 x 10 6 .0188 

NaCl 10-4 N -5 210 x 10-3 210 x 10-3 7 
.00337 3.74 x 10_5 3.24 x 10 

5 x 10;.;4 3.58 x 10_5 
174 174 9.46 

S2 
10- 3 3.60 x 10_5 152 152 20.1 

5 x 10-3 
3.62 x 10_5 93.8 93.8 66.4 

10-2 3.73 x 10 36.8 36.8 135.0 

KCl 10-4 ! -5 136 x 10-3 136 x 10-3 7 .00198 3.42 x 10_5 2.76 x 10 
5 x 10- 3.33 x 10_5 

114 114 14.0 
10-3 3.33 x 10_5 104.5 104.5 26 

5 x 1~-3 3 .. 60 x 10_5 92.0 92.0 107 
10- 3.84 x 10 73.0 73.0 182 

CD 
t-A 



Table 3. Phenomenological coefficients and electrokinetic couplings (equation 21). 

1 in 1 in 1r in 1 in E1ectro-
p q e kinetic 

3 stat cou1. stat cou1. coupling cm cm 
Sample Solution Concent. dyne sec. cm stat cou1. stat volt sec. q - q 

P % 
qp 

Condo Water 8.35 x 10 -6 22.2 x 10 3 
3.44 x 10 -8 4.10 x 10 6 

.07 

NaCl 5 x 10-4N -6 3 -9 7 .00393 Sl 8.30 x 10_6 20.7 x 103 1.98 x 10_10 8.1 x 10 
10- 3 N 8.50 x 10 15.7 x 10 8.80 x 10_ 11 16.0 .00138 

5 x !~-3N 8.22 7.75 7.55 x 10_ 11 62.5 
10 N 7.92 3.70 2.87 x 10 89.2 

KC1 10-4_~ -6 3 -9 7 .00875 8.20 x 10_ 6 
15.70 x 10 5.60 x 10_

9 
2.28 x 10 

5 x 1~ N 8.31 x 10 11.75 1.21 x 10_ 10 8.25 .00142 
10- 8.35 9.80 5.60 x 10_ 11 15.10 

5 x 10- 3 
7.95 4.07 8.65 x 10_ 11 64.5 

10- 2 7.70 3.51 1.85 x 10 144.0 

Condo Water 3.74 x 10 -5 57.8 x 10 
2 

3.3 x 10 -8 6.18 x 10 6 .019 

NaCl 10-4 -5 2 -9 8 .00372 3.80 x 10 57.2 x 10 6.5 x 10 -9 2.63 x 10 
5 x 10-4 

3.74 48.1 1.74 x 10_ 10 9.8 x 107
7 10- 3 3.80 30.5 7.55 x 10_ 10 20.9 x 107 

S2 5 x 10- 3 
3.58 22.2 1.41 x 10_ 11 64.0 x 10 7 

10- 2 3.68 8.7 2.75 x 10 138.0 x 10 

KC1 10-4 -5 2 -9 7 .00202 3.36 x 10 40.8 x 10 4.93 x 10_ 10 2.94 x 107 5 x 10-4 
3.57 35.0 8.12 x 10 13.8 x 10 

10- 3 3.50 31.5 4.0 x 10-~i1 26.1 
5 x 10- 3 

3.57 26.7 9.15 x 10 98.0 
10- 2 3.68 19.2 4.0 x 10- 11 197.0 00 

N 
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Table 4. Calculated , values for different concentrations of KC1 
for 8

1 
and 8

2
. 

KC1 
C1 C2 

-1 C2 
'2/ C1 --x-

concentration 4.10 '1 

10-4 N 148.50 190 1.275 
1 

3.20 

5 x 10-4 N 112 154 1.37 
1 

3.00 

10- 3 N 93 140 1.51 
1 

2.70 

5 x 10- 3 N 47.50 120 2.52 1 
1.65 

10- 2 N 33 094 2.85 
1 

1.45 



Table 5. Cell constant measurements, Sample 1 

tfJ R = C 
::s s s 
oW Resistance Conductivity Sp. resist- Sp. conduc- Cell constant Average cell tU 

Concentr. l-I of of ance of tance of constant tU C x R 
KC1 

p.. the sample the sample liquid the liquid p.. s s 
:$ 

1 5 -6 4 -6 20.4 x 1.15 1.15 x 10 8.70 x 10 4.9 x 10 20.4 x 10 
Base x 10-1 = 2.34 2.07 

10- 5 N 2 9.0 x 10 
4 

1.11 x 10 -5 4.85 x 10 
4 20.5 x 10 -6 1.845 

1 4 -5 4 -5 1.19 
10-4 N 

3.90 x 10 2.56 x 10 3.29 x 10 3.04 x 10 1.195 4 -5 4 -5 2 3.95 x 10 2.53 x 10 3.3 x 10 3.03 x 10 1.20 

1 4 -5 4 -5 .925 
5 x 10-4N 

1.08 x 10 9.25 x 10 1.175 x 10 8.568 x 10 

2 4 -5 4 -5 .925 
0.925 1.11 x 10 9.02 x 10 1.20 x 10 8.31 x 10 

1 6 x 10
3 -4 3 -4 .854 

10- 3 N 
1.667 x 10 7.0 x 10 1.43 x 10 

2 3 -4 3 -4 .870 
0.862 

5.9 x 10 1.695 x 10 6.95 x 10 1.48 x 10 

1 3 -4 3 -4 .90 
5 x 10- 3N 

1.45 x 10 6.89 x 10 1.6 x 10 6.20 x 10 
3 -4 3 -4 .875 

0.887 
2 1.38 x 10 7.22 x 10 1.575 x 10 6.35 x 10 

10- 2 N 1 2 1.62 x 10-3 7.4 x 102 1.376 x 10- 3 0.845 6.15 x 10 0.855 2 -3 2 -3 2 6.31 x 10 1.582 x 10 7.4 x 10 1.376 x 10 0.865 

2 x 10- 2N 1 2 2.73 x 10- 3 2 2.24 x 10- 3 0.815 3.66 x 10 4.45 x 10 0.818 2 -3 2 -3 2 3.42 x 10 2.93 x 10 4.225 x 10 2.370 x 10 0.821 

5 x 10- 2N 1 1.48 x 102 6.76 x 10- 3 1.825 x 102 5.50 x 10- 3 0.812 0.829 2 6.67 x 10- 3 1.775 x 102 -3 2 1.50 x 10 5.62 x 10' 0.845 

10- 1 N 1 8.4 x 101 1.19 x 10- 2 1.05 x 102 9.36 x 10- 3 0.750 0.751 1 1.39 x 10- 2 0.95 x 102 1.05 x 10- 2 co 
2 7.2 x 10 0.752 .p.. 

(1) Impedence Bridge Radio 1650 A. 
(2) Self made Impedence Bridge 



Table 6. Cell constant measurements, Sample 2 

(J) 

::J 
~ Resistance Conductivity Sp. resist. ttl 

KC1 J..I of of of perm. ttl 
concent. p.. the sample the sample solution p.. 

:a: 

10-4 N 
4 -5 4 1 2.93 x 10 3.41 x 10 2.87 x 10 
4 -5 4 2 2.94 x 10 3.40 x 10 2.82 x 10 

5 x 10-4N 1 
3 -4 4 6.85 x 10 1.46 x 10 1.12 x 10 
3 -4 4 

2 6.89 x 10 1.45 x 10 1.13 x 10 
3 -4 3 

10- 3 1 3.51 x 10 2.86 x 10 6.10 x 10 
3 -4 3 2 3.52 x 10 2.85 x 10 6.10 x 10 

1 2 -3 3 

5 x 10-3 
7.42x10 1.35 x 10 1.32 x 10 

2 -3 3 2 7.62 x 10 1.32 x 10 1.35 x 10 

1 2 -3 2 

10- 2 3.79x10 2.64 x 10 6.60 x 10 
2 -3 2 2 3.82 x 10 2.63 x 10 6.80 x 10 

Sp. condo 
of 

perm. sol. 

3.50 x 10 -5 

3.56 x 10 -5 

8.92 x 10 -5 

8.90 x 10 -5 

1.64 x 10 -4 

1.64 x 10 -4 

7.58x10 -4 

7.55 x 10 -4 

1.52 x 10 -3 

1.51 x 10 -3 

Cell constant 

C x R s s 

1.022 

1.040 

0.612 

0.609 

0.575 

0.577 

0.562 

0.566 

0.575 

0.562 

Average cell 
constant 

1.032 

0.610 

0.576 

0.564 

0.568 

00 
LTI 
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Table 7. Chemical analysis of simulated natural waters. 

EC x 106 Major constituents in Me/1tr Quality 
a 

at 
Symbol 800 F Ca++ Mg++ Na+ RC0

3 
C1 8°4 

c 1assifi-
cation 

W1 255 1.41 0.44 0.89 1.01 1.41 0.48 Good 

W2 770 8.30 0.75 3.96 2.46 2.73 4.47 Permis-
sible 

W3 1200 11.40 5.70 12.90 2.30 2.80 23.00 Doubtful 

aBased on classification in Todd, 1959 
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Figure 1. The structure of the double layer and the cor
responding potentials. ~o is at the wall, ~d is 
at the beginning of the diffuse double layer, , at 
the hydrodynamic plane of shear. In the diffuse 
double layer the potential decays by a factor of 

; over a distance of 6 ~ f for low potentials 

(after Mysels, 1959). 
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Figure 2: Experimental apparatus - general view. 



Figure 3: General view of the instrumentation set up. 

A. Keithly electrometer model 150A. 
B. Multiple connection switch . 
C. Time base recorder model HR-96. 
D. Ag-agcl . electrode cell inside the shield. 
E. PI-pit. electrode cell inside the shield. 
F . General radio impedence bridge 1650A. 
G. Flow switch board . 
H . Manometer board. 
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