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ABSTRACT 

Finite Difference Solution for Drainage of 

Heterogeneous Sloping Land s 

by 

Fahd S. Natur, Doctor of Philosophy 

Utah State University, 1974 

Major Professor: Dr. Larry G. King 
Department: Civil Engineering 

xiii 

The two-dimensional problem of tile drainage on sloping hetero-

geneous lands was considered. The land surface and the impermeable 

boundaries of the problem were of a general shape. The flow in both the 

saturated and unsaturated zones was considered and the system was 

treated as one composite system. The problem was solved by a finite 

difference numerical method using the successive over-relaxation 

iterative (SOR) method for the steady state case with no local recharge, 

and a combined Newton inner iteration and successive over- relaxation 

outer iteration for the transient state case with local recharge. Both 

the rising water table and the falling water table cases were simulated. 

A computer program was written in Fortrain IV Language for this pur-

pose, and a UNIVAC 1108 computer system was used. The results of 

two runs for a hypothetical problem and one run for a field testing pro-

blem are presented. The results were compared with some approxi'mate 

mathematical solutions for the falling water table. 

( 180 pages) 



INTRODUC TION 

Background 

Artificial drainage, simply defined, is the artificial removal of 

excp.ss unwanted water from a locality of interest. It has a wide range 

of application in the field of engineering. It is very important in soil 

engineering, foundation works, earth works, earth fill dams, highways, 

railroads I airports, in stabilization of slopes and wherever it is desired 

to protect against excessive soil pore pressure, or against frost damage 

or where it is desired to increase the shearing resistance of the soil. 

(See Terzaghi and Peck, 1968, and Sherard et ale 1963 for more on non

agricultural drainage.) 

Probably more drainage work is done for agricultural lands than 

for all of the above fields put together. This research is concerned with 

drainage of agricultural lands and for the rest of the paper the word 

"drainage" will mean drainage of agricultural lands unless otherwise 

qualified. 

The purpose of agricultural land drainage is the removal of excess 

moisture from the plant root zone to provide an optimum environment for 

the plant roots for optimum production and to maintain a favorable salt 

balance in the root zone so that economic and good production is sustained 

perpetually. 
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The beginnings of the art of drainage are lost in pre-history, but 

probably man practiced drainage not very long after he practiced agri

culture itself. Remnants of very old drainage works can still be found 

at the seats of very old civilizations. In recorded history, the Greek 

historian Hirodotus, as early as 400 B. C., mentioned the drainage 

networks in the Nile Valley (Ayres and Scoates, 1939; Framji and 

Mahajan, 1969). 

The importance of land drainage cannot be overemphasized. A 

significant volume of research confirmed the detrimental effects of a 

high water table on crop production. Vast areas of present world deserts 

were one e very productive lands, but they deteriorated because of exces sive 

accumulation of salts due to lack of drainage. It is now recognized that 

drainage is an effective means of managing river-basin salt balance, 

that it is very important in maintaining a successful irrigated agriculture 

for long periods and that, except for some very rare localities where 

natural drainage is adequate, irrigation and drainage developments are 

complimentary. 

Some statistics may add to this emphasis on the importance of 

drainage. Framji and Mahajan (1969) reported that there were 247 

million acres of land in the world provided with artificial drainage. The 

United States of America (USA) Water Resources Council (1968) estimated 

that up to 1959 a total of 131 million acres of land had been drained for 

agricultural purposes in the USA, and that 189,000 miles of open ditches 

and 58, 000 miles of tile drains had been constructed. In 1966 alone, the 
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United States Department of Agriculture (USDA) Soil Cons ervation 

Service assisted in design and construction of 12,720 miles of open 

drains and 25,553 miles of tile drains (USA Water Resources Council, 

1968). Luthin (1966) estimated that 20 percent of the land in the major 

corn belt states was drained mostly by tile drains. 

Although drainage development had been undertaken for centuries, 

still vast areas of land in the world are in need of improved drainage. 

Gulhati (1955) estimated that 150 to 200 million acres of irrigated crop 

land in the world needed improved drainage. Nearly 84 million acres of 

crop and pasture land in the USA need some drainage improvement (USA 

Water Resources Council, 1968). With the increasing recognition of the 

importance of drainage, construction of drainage works is being under

taken at an ever-increasing pace. 

The costs involved in drainage developments are not insignificant. 

Luthin (1966) estimated that the cost of tile drains installed in the state 

of Iowa alone was more than the cost of the Panama Canal. The cost of 

the irrigation projects that depend on proper drainage for their success 

is many folds greater. This makes it very important to have good 

drainage design. No design can be any better than the theory on which 

it is based and our understanding of the physical processes. 

Until about three decades ago the des ign and construction of 

drainage works were just an art that depended solely on the experience 

and judgment of the designer. In fact there were no scientific bases 

for the design nor any theory until about a century ago, that is, until 



Henry Darcy discovered his famous linear law of flow of water through 

porous materials in 1856. Probably the first drainage problem to be 

investigated scientifically was the famous Boussinesq problem towards 

the turn of the century. Hooghoudt is accredited by Luthin (1966) to be 
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the first to pres ent a complete rational analysis of the drainage problem. 

Since that time, and especially in the last three decades,much research 

with rewarding results went into the science and engineering of drainage. 

Nevertheless, drainage science is still not an exact science at the present 

day. This is due to the complexity of the physical problem and the com

plexity of the factors that enter into it. 

The greater part of the research was on steady state problems .. 

The greater percentage was for homogeneous soils with or without a 

horizontal impermeable barrier. Most of the drain s pacing formulas 

were developed for these cases. Most design procedures are based either 

on empirical information or on analysis incorporating simplifications 

the validity of which is at best difficult to prove (Hedstrom, Corey,and 

Duke, 1971). Many solutions assume no flow above the water table 

(Hedstrom, Corey, and Duke, 1971) which in most cases introduces gross 

errors. Some of the solutions that attempted to account for the flow 

above the water table did so only by increasing the cross sectional area 

of the saturated flow which is in most cases inadequate repres entation of 

the flow system (Childs,1945). Many of the unsteady state solutions 

consider only the saturated flow and as sume instantaneous "and complete 

desaturation of the soil above the water table (Jensen and Hanks, 1967). 



It is well demonstrated now that this is not the case. These simplified 

solutions, suffering as they do from restrictions and asswnptions, 

are nevertheless great steps in increasing our knowledge and under

standing of the complex problem of drainage. 

5 

The steady state condition cannot exist practically for any 

apprec iable time. Heterogeneity of the soil is the rule rather than the 

exception in nature. More often than not, the land surface is not flat 

and the impermeable barrier is not horizontal. In humid and subhwnid 

areas it is very important to provide drainage on hillside forested or 

pasture lands and to protect adjacent crop lands from seepage from the 

hillside. In many arid and semi-arid areas the increase in population 

and the resulting increase in demand for new crop land is forcing develop

ment and irrigation of sloping areas. This is enhanc ed further by the 

development and spreading use of sprinkler irrigation systems. This 

creates the need for drainage of sloping lands. Robinson (1959) estimated 

that about 90 percent of the drain installations in Colorado are of 

the interceptor type. 

Although there has been a large volume of literature written on 

the drainage problem in recent years, not very much is found on drainage 

of sloping lands. This served as a motivation for this study. It was 

decided to include the effects of slope, heterogeneity and unsaturation 

in the solution. For this last consideration, the whole s oil- water system 

comprising the saturated and the unsaturated regions is treated as one 

system. 
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The resulting partial differential equations of flow are non-linear 

and, to the knowledge of the writer, no analytical method of solution of 

these equations is available. Recourse is therefore made to a numerical 

solution. 

Objectives of the Study 

The following two objectives were set at the start of the study. 

1. To use the finite difference numerical method to solve the 

general two- dimensional unsteady state drainage problem in a hetero

geneous sloping soil with a general geometry of the ground surface, 

impermeable barrier and drain placemenL The solution would be general 

enough to be used at many different locations. The solution would treat 

the saturated and the unsaturated parts of the medium as one system 

since it is already recognized that the same governing equations (Darcy's 

and the continuity) hold for both parts, and that the two parts form a 

phys ical and mathematical continuity. 

conditions will be simulated. 

Both infiltration and drainage 

2. To test the solution with data already available in the litera-

ture for the actual performance of some field drainage systems. 
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REVIEW OF LITERATURE 

Drainage of Sloping Lands 

Seepage in sloping lands 

Seepage and drainage on sloping lands are so intimately inter

related that a brief review of this subject is warranted. Seepage studies, 

whether their purpose be drainage (Kirkham, 1947). erosion control and 

slope stability (Whisler, 1969) or hydrology (Jeppson, l,969b) give us a 

better understanding of the drainage problem. 

The classical view (Since Dupuit, Forchheirner and Boussinesq) 

was that the flow in steady state seepage on sloping lands was parallel to 

the sloping impermeable layer. While this may be characteristic of many 

areas and situations, it is not universal. Kirkham' (1947) studying piezo

metric surfaces in' a hillside sloping farm in the Iowan glacial drift area 

found that water moved approximately vertically downward at the top of 

the slope, horizontally outward in the middle slope and approximately 

vertically upward near the bottom of the slope. Bornstein, Bartlett,and 

Howard (1965), ~tudying piezometric data in a sloping area underlain by 

a fragipan layer, concluded that water moved generally parallel to the 

ground surface although the impermeable layer had protrusions and 

depressions and no continuous slope. 

Klute, Scott, and Whisler (1965) using analytical solutions for 
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seepage in a saturated inclined rectangular homogeneous soil slab 

confirmed, in a general qualitative sense, Kirkharnis (1947) findings. 
! 

Whisler (1969),using an electric resistance network analog to simulate 

the above mentioned inclined soil slab,confirmed the analytical results 

and found that the minimum rate of recharge necessary to keep the slab 

saturated increased as the slope angle was increased. He concluded 

that long slabs acted like pipes with soil at both ends. 

Powers, Kirkham, and Snowden (1967), and SeHm and Kirkham 

(1972a, 1972b) presented analytical solutions for the problem of seepage 

through sloping saturated homogeneous soils overlying horizontal im-

permeable layers such as found in systems of drainage by bedding 

(See Luthin, 1966, pp. 232- 239, for drainage by bedding). Their results 

confirmed those of Whisler (1969) and in addition showed that increasing 

the depth of the soil increas ed the magnitude of interflow and the per-

centage of the total recharge that goes into interflow. Warrick (1970), 

and Morin and Warrick (1973) us ed conformal mapping to solve a similar 

problem with infinite depth and obtained similar general results. 

Jeppson (1969b) used a finite difference numerical method to solve 

the flow equation for infiltration of water on a waters hed of heterogeneous 

soil and any prescribed shape of bed and soil surface. He formulated the 

problem in the invers e plane of the potential function and the stream 

function. 

Youngs (1971) pres ented a mathematical solution of the flow of a 

free surface aquifer resting on an impermeable layer of any shape with 
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no limitation to small slopes. This solution however needs a prior 

knowledge of the pressure distribution along the impermeable boundary. 

Drainage of sloping lands 

General 

Bouwer (1955a, 1955b) using mathematical reasoning and a sand 

tank model found that alignment of tile drains longitudinally with the slope 

or transvers ely ac roe s the slope did not affect the drainage capacity of 

the drains. Kirkham (1947) reported that in some seep areas on the slope, 

drains were not effective even at a spacing as small as 50 feet. This was 

es pecially true in the artesian areas near the bottom of the slope. 

Bornstein (1964), Benoit, Fisher and Bornstein (1967), Bornstein, Thiel 

and Benoit (1967), Bornstein and Benoit (1967) and Benoit and Bornstein 

(1972) reported the results of a long term field experiment on sloping land 

underlain by a fragipan layer. Their results showed that shallow (20 inches) 

surface diversion ditches were not effective in draining the slope and that 

most of the drainage was done by deep subsurface drains. They also 

concluded that random drains or a single cutoff drain were not sufficient 

and recommended a system of parallel drains. Thiel and Bornstein (1965) 

confirmed thes e results with an electric resistance network analog and 

showed that a backfill over the drains with high conductivity was highly 

effective. Willardson (l968) recommended a backfill of high conductivity 

to cut off the flow above and below the tile drain on slopes. 
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I 

Solutions to the drainage problem 

Steady state with no surface recharge. The differential equation 

of steady state, saturated, free surface flow in homogeneous soil resting 

on a sloping impermeable bed with no local surface replenishment was 

solved by direct integration by many investigators. Bear (1972) attributed 

the solution to Dupuit in 1863 and to Pavlovski in 1931. Bear, Zaslavsky 

and Irmay (1968) presented the solution and called the problem "Pavlovski's 

problem. '.' Solutions in one or another of the horizontal- vertical, the 

longitudinal-vertical and the longitudinal-normal sets of coordinates were 

given by Jaeger (1957), Po1ubarinova-Kochina (1962), Werner (1957), 

Glover according to Donnan (1959) and Todd and Bear (1959). (Here 

longitudinal axis means the axis along the slope and normal axis means 

the axis normal to the slope .),All of the above solutions used one or the 

other of two approximations used originally by Boussinesq. According to 

Wooding and Chapman (1966), Boussinesq in 1877 extended the Dupuit-

Forchheimer assumptions (called D-F assumptions hereafter) to flow 

systems on sloping barriers so that the streamlines are taken parallel 

to the sloping bed, and in 1904 he used the original D-F assumptions 

(horizontal streamlines) for the same problem. Consequently all of 

these solutions are limited to small slopes. A solution by the method 

of functional analysis and which does not utilize the D- F assumptions 

(based on the hydrodynamic theory) was given by Po1ubarinova-Kochina 

(1962). This solution would not be limited to small slopes. Child s 

(1971) using the first of Boussinesq IS formulations (stream lines parallel 
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to slope) and a more accurate expression for the hydraulic gradient 

obtained a more accurate solution that was claimed to be not limited to 

I 
small slopes only. 

Childs (1946) used electric conductor sheet analogs to investigate 

the problem of drainage of foreign water by open ditches or tile drains on 

sloping lands. 

According to Childs (1946), Hopf and Trefftz (1921) obtained 

solutions to restricted cases of seepage to an open ditch on sloping lands 

by conformal mapping. (For more on conformal mapping see Vallentine 

1967 or Bieberbach,1964;.) Polubarinova-Kochina (1962) used conformal 

mapping to solve the case of drainage to a horizontal slit drain in sloping 

land. A.ccording to Maasland (1959), conformal mapping was used by 

Gustaffson (1946) for the solution of this problem. Conformal mapping 

was used in a qualitative manner by Brooks (1959) and Nelson (1960) for 

the same problem. 

Many of the solutions cited above assumed that the source of 

foreign water was at an infinite distance from the drain. Keller and 

Robinson (1959) using dimensional analysis and the results of a sand 

tank model, modified Glover's equation (Donn.an, 1959) to apply to cases 

where the source of seepage was at a finite distance from the drain. 

This case would be encou~tered when an intercepter is us ed to intercept 

seepage from a higher unlined canal. For such a case Willardson, Boles 

and Bouwer (1971) applied the electric resistance network analog method 
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and investigated effects of distance and depth of the interceptor relative 

to the canal on seepage and interc eption. 

The solutions mentioned above give the shape of the water table 

upstream of a drain and asswne that the water table downstream of the 

drain will be parallel to the sloping bed starting from the water level in 

the drain. However it was pointed out by Brooks (1959), Nelson (1960) 

and, for some cases, by Polubarinova-Kochina (1962) that the water 

table downstream of the drain would rise to a level higher than the level 

of the water in the drain. 

Steady state with surface recharge. This problem was investi-

gated 1es s extensively than the previous one. Werner (1957) used the 

Boussinesq 1877 formulation and solved the approximate linearized 

differential equation by Laplac e transformations (operational calculas) 

for a steady recharge rate with and without foreign seepage water. (For 

more on the Laplace transforms see Spiege1,1965). Sclunid and Luthin 
I 
I 

(1964) used the Boussinesq 1904 formulation and solved the linearized 

differential equation for the case of drainage ditches penetrating to the 

sloping imperm.eable boundary neglecting seepage surfac es. As design 

aids they presented curves of ~ vs. ~ for slopes from zero to 70 

percent, where q is the rate of replenishment, K i.s the hydraulic . 

conductivity of the soil, H is the maximum height of the water table 

above the bed between two drains and L is the spacing of the drains. 

Guitjens (1964) and Guitjens and Luthin (1965) checked the solution of 

Schmid and Luthin (1964) with a Hele .... Slaw viscous flow model for slopes 
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from zero to 80 percent. They found that the model showed the existance 

of significant seepage surfaces and that the horizontal streaITl lines of the 

D-F assumptions introduced an error in Schmid and Luthinrs (1964) re

BUltS and that this error increased with increasing slope for a fixed 'k 
ratio and with incr~asing i ratio for a fixed slope. Wooding and Chap

man (1966) compared the solutions of Werner (1957) and Schmid and 

Luthin (1964) with an exact solution by conformal ITlapping. They found 

good agreement between Werner's (1957) solution and the conformal 

mapping solution, but a discrepancy that increased with increasing slope 

when Schmid and Luthin1s (1964) solution was compared wi th the COffi-

formal mapping solution. They pres ented design curves similar to thos e 

of Schmid and Luthin (1964) but based on Werner1s (1957) solution. 

Wooding (1966) showed excellent agreement between ·Werner's (1957) 

solution and conformal mapping for some other p articular cases of flow 

in sloping lands. Childs (1971) extended his refined expression of the 

hydraulic gradient to the case of steady recharge and obtained a solution 

which was claimed to be not limited to small slopes. An analytical solu-

tion to this case was also obtained by Henderson and Wooding (1964). 

Mein and Turner (1968) using an electric resistance network 

analog to study drainage on slopes of sand dunes for up to 10 percent slope 

recommended that for slopes up to this value either Schmid and Luthinrs 

(1964) (curves or Wooding and Chapman's (1966) curves could be used 

for design. 

Luthin and Taylor (1966a, 1966b) used a digital computer to 
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solve the more exact Laplace equation by the finite difference nwnerical 

method for a homogeneous, sloping soil with steady replenishment rate 

and open drains penetrating to the barrier. 

Ziegler (1972) studied drainage on sloping land with steady re-

charge us ing a sand tank nlodel and concluded that drainage on sloping 

lands had many aspects similar to drainage in flat lands. Carlson (1971) 

using a sand tank model compared the results of the model with results 

calculated by formulas developed for flat lands and concluded that spacing 

formulas developed for flat lands could be used for s pacing of mid- slope 

drains. 

Unsteady state. This problem has been investigated the least. Werner 

(1957) gave an analytical solution for the cases of a sudden change in the 

elevat ion of the tail water (drain water in drainage), a sudden change in 

the rate of replenislunent and a uniformly increasing rate of replenish-

mente Henderson and Wooding (1964) gave a solution for the build-up of 

the water table under constant recharge. 

Luthin and Guitjens (1967) used a Hele-Shaw viscous flow model 

to study the case of a falling water table after cessation of a steady 

recharge. They wrote: 

It appears that flat land drainage theory can be applied to sloping 
land without much error if the drainage facility reaches the im
permeable layer. (Luthin and Guitjens, 1967, p. 50) 

Chauhan (1967) and Chauhan, Schwab and Hamdy (1968) studied the case 

of the falling water table and compared the results of an analytical solu-

tion of the linearized Boussinesq equation and the results of an analog 
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computer finite difference solution of the nonlinear equation with the 

reBults of a I-Jele .. Shaw viscous flow model. They found that the three 

methods had good agreement up to 8 percent slope, but the two approxi

mate methods (analytical and analog) deviated from the model at higher 

slopes. They also confirmed the results of Luthin and Guitjens (1967) 

that the rate of the fall of the water table at its highest point for the 

moderately sloping case was the same as that for flat lands. 

Heterogeneous soils. All of the drainage studies cited above 

were for homogeneous soils. To the extent of my knowledge the only 

paper that dealt with drainage of heterogeneous sloping land was that of 

Nelson (1961) who presented theory and a graphical method for trans

forming a heterogeneous soil into a homogeneous one, applying the 

homogeneous drainage theory, then transforming the soil back to the 

original heterogeneous condition. 

Numerical Solutions 

General 

There are many problems in physical sciences and engineering 

for which the differential equations governing the phenomena under study 

can be formulated, yet the analytical solutions of these equations are 

beyond the reach of pure mathematics as it stands at the present. The 

partial differential equations of flow in porous media are almost always 

in this class, (unless they are much simplified by sometimes valid and 

sometimes totally unrealistic asswnptions). In such cases the nwnerical 
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methods of solving these equations are among the most powerful tools to 

deal with the problem. 

There are several numerical methods of solving partial differen-

tial equations, but the most general, the most versatile and the most 

widely used method is the method of finite differences. In Lawrenson1s 

words: 

There are several numerical techniques that can be used .•. , 
but the one which is still supreme, and which can be applied 
equally to linear and non-linear problems, to steady- state 
and transient ones without limits as to boundary shapes and 
conditions, is the method of finite differences. (Lawrenson, 
1966, p. 102) 

The calculus of finite differences is an old branch of calculus that 

started not very many years after the invention of the differential 

(infinitismal or continuous) calculus, to deal with discontinuous functions 

and discrete observations. (It was sometimes called the calculus of 

observations). According to Jordan (1960), it was started by Brook 

Taylor in 1717, and its theory was laid down by Jacob Sterling in 1730. 

Before the 'IWentieth Century, the main application of this calculus was 

for evaluation of terms and sums of series (Boole, 1860), and in mathe-

matical statistics (Jordan, 1960). 

A very close analogy between the calculus of finite differences 

and the differential calculus was recognized from the beginning (Boole, 

1860; Spiegel 1971), but it seems that this analogy was mostly used to 

carry the theory and methods of solution of differential equations over 

to difference equations. Although Luthin and Scott (1952) stated that the 
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use of numerical methods for the solution of differential equations was 

as old as Newton, it is widely accepted that Richardson (1910), was the 

first to solve a differential equation by the method of finite differenc es, 

(Thom and Apelt, 1961; Remson, Hornberger, and Molz, 1971). Thorn 

and Apelt (1961) mentioned that both Boltzman in 1892 and Runge in 1908 

gave the finite difference operator for the Laplace equation. Southwell 

(1940, 1946) used finite differences and his relaxation method in solving 

cliffe rential equations. Few other investigators us ed the method with 

v desk-type computations. With the advent of high speed computers, 

nwnerous investigators used this method for a large number of problems 

in many fields of application. 

The theory of the discretization of a differential equation by the 

method of finite differences as given by Forsythe and Wasow (1960) could 

be described by the following. If we have a partial differential equation 

defined on an open connected domain R of the independant variables (x, y, •.• ) 

with a solution u(x, y, ••. ) defined on R, we replace the domain R (infinite 

number of points) with a set S which has a finite (but relatively large) num

ber N of elements P. The solution u(x, y, •.• ) is replaced with a function 

U(P) defined on S. U(P) is then found by solving a system of simultaneous 

algebraic equations. Usually each element P of the set S is taken as a 

point in or near the set R = RUe, where e is the boundary of R. Nor-

mally these points are taken as the grid points of a regular mesh 

dividing R. 

The mechanics of the method consist of dividing the domain of 
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the proulelll by a regular nlesh (most usually a square mesh), then re L 

placing the derivatives in the differential equation with differences of 

the values of the dependant and the independant variables at the grid 

points (nodes). This done at each node, gives a system of simultaI?-eous 

algebraic equations. The method of evaluating the derivatives in terms 

of differences by use of expansion of functions into Taylor's series is 

given by Remson, Hornberger and Molz (1971) and Carnahan, Luther, 

and Wilkes (1969). There are other methods of obtaining the difference 

equations from a differential equation, such as the methods of the calculus 

of variation discussed by Forsythe and Wasow (1960), and RelTIson, Horn

berger, and Molz (1971). Usually there is also a choice of several 

schemes for representing a derivative in terms of finite differences. 

(See Davis and Polonsky, 1964; Richtmyer, 1957). The choice usually 

depends on the problem, the domain geometry, the requirements im

posed on the solution and the individual solving the problem. 

Once differencing is done, we need to solve the resulting system 

of simultaneous algebraic equations (which is usually a large systelTI). 

Methods for solving such systems can be grouped into the direct methods 

and the iterative methods. Iterative methods are usuallypreferre.d 

for large systems (Forsythe,and Waso\v, 1960; Lawrenson, 1966; Thorn 

and Apelt, 1961; Carnahan, Luther, and Wilkes, 1969; Remson, Horn

berger, and Molz, 1971). Direct methods, however, may be practical 

and advantageous in certain cases (J eppson, 1968b). Iterative methods, 

starting from given or assumed values of the unknown at the nodes of the 
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mesh, seek to improve these values in successive iterations until the 

changes in thefH~ values with more iterations are made less than a small 

error prescribed by the solver. 

One iterative method that offers an optimwn combination of 

simplicity, flexibility and high speed is the method of "Successive Over 

Relaxation" (referred to as SOR hereafter) (Lawrenson, 1966). In this 

method the improved value of the unknown at a node is taken as the swn 

of the starting value of the unknown at the node plus the product of a 

relaxation parameter and the difference between the computed and the 

starting values at the node. Furthermore, this improved value is used 

directly after it is computed in all subsequent calculations in the iteration. 

The value of the relaxation parameter ranges from zero to two. Usually 

an optimum value between one and two exists for this parameter to give 

the quickest convergence (although in some problems a value less than 

unity- underrelaxation may be needed for the stability of the solution). 

In any cas e the optim'lllll value of this parameter heavily depends on the 

type of the differential equation, the geometry of the domain, and the 

type of the boundary conditions (Forsythe, and Was ow, 1960), and on the 

difference scheme, (Jeppson, 1968»). 

Relaxation methods were used by Gauss in 1823 and by Seidel in 

1874 (Forsythe and Wasow 1960), and by Southwell (1940, 1946). 

According to Forsythe and Wasow (1960), olver-relaxation was used by 

Fox in 1948 and its theory was given for limited types of systems by 

Frankel (1950) and Young (1954). Later investigators successfully 
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extended the use of SOB to systems outside the limitations of Young (1954) 

and Frankel (1950). For more on the theory of iterative methods and the 

SOR see Forsythe and Wasow (1960), Varga (1962),and Wachspress 

(1966). 

The equation of flow in porous media under unsaturated conditions 

is a nonlinear partial differential equation. Finite differenc e nuxnerical 

solutions were obtained 'for a number of non-linear partial differential 

equations although the theory of such solutions is very scant (Forsythe 

and Wasow 1960). According to Forsythe and Wasow (1960), the only 

nonlinear parabolic partial differential equation for which an approximate 

differenc e has been studied systematically was of the form: 

au a2
u au 

at - a o (x,t) ax 2 + al(x,t) ax + d (x,t,u) 

where the nonlinearity is in the last term only and not associated with 

any of the derivatives. Jeppson (1972) stated that the schemes used for 

nonlinear equations were principally extensions of methods that worked 

with linear equation~, without a developed theory for the nonlinear equa-

tions. He pointed out that this was no guaranteeior convergence, stability 

or repres entation of the solution and that the scheme of differencing and 

the method of solution were of extreme importance in dealing with non-

linear equations. He also pointed out that each of the many types of 

nonlinearities introduces its own pecularities and diffi.culties in the 

problem. (For more on solution of partial differential equations by the 
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method of finite differences see Richttnyer, 1957; Forsythe and Wasow, 

1960; Thorn and Apelt, 1961; Carnahan, Luther and Wilkes, 1969.) 

Finite difference solutions in porous 
media flow problems 

Even before the development of high speed computers some in-

vestigators used the method of finite differences with relaxation schemes 

suited to desk calculators to solve problems in porous media flow 

(Southwell, 1946; Luthin and Gaskell, 1950; Kirkham and Gaskell, 1950; 

Day and Luthin, 1956). With the development and widely spread use of 

high speed computers, a large number of more complex porous media 

flow problems were solved using this method. The volume of literature 

on this subject has become so large that a complete review of it is be-

yond the scope of this stUdy. Freeze. (1969) reviewed a number of one-

dimensional problems solved by this method, and Remson, Hornberger 

and Mo1z (1971) gave a large nwnber of references on this subject. To 

set a background, some articles will be mentioned here with no claim 

that the list is exhaustive or comprehensive. 

This method was used in almost all areas of the field of flow in 

porous media, such as underground hydrology (Hornberger, Ebert and 

Remson, 1970; Lin, 1972, 1973), seepage through earth dams (Jeppson 

1968b; Freeze, 1971), seepage from earth canals (Jeppson, 1968a; 

1968c; Burejev and Burejeva, 1966, Jeppson and Nelson, 1970), infiltra-

tion (Brutsaert, 1971; Jeppson, 1972; Hanks, K1ute,and Bresler, 1969; 

Ibrahim and Brutsaert, 1968; Selim and Kirkham, 1973), trickle irrigation 



(Brandt et ale J 1971), flow towards wells (Luthin, and Scott, 1952; 

Taylor and Luthin, 1969; Brutsaert, Breitenbach, and Sunada, 1971; 

Cooley, 1971), soil colwnn drainage (Watson, 1967, Brooks et ale , 

1971) and land drainage, which will be reviewed in a later section .. 
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The problems solved represent a variety of combinations of 

equation form (hydrodynamic or Boussinesq), flow dimensions (one, two 

or three- dimensional), flow states (steady or unsteady), flow conditions 

(saturated, unsaturated or a composite of both) and medium characteris

tics (homogeneous or heterogeneous). Reference to these solutions is 

given by the following. 

Boussinesq's equation: Moody (1966), Terzidis (1968), Hornberger, 

Ebert and Remson (1970), Lin (1972) and Zucker et al. (1973). 

One-dimensional, unsteady flow in homogeneous, unsaturated media: 

Wang, Hassan and Franzini (1964), Whisler and Klute (1965), Remson 

et ale (1965), Remson, Resnicoff and Scott (1974), Remson,Fungaroli 

and Hornberger (1967), and Whisler and Watson (1969). 

One-dimensional, unsteady; homogeneous, composite: Whisler and 

Klute (1967). 

One-dimensional, unsteady; heterogeneous, unsaturated: Ashcroft et al. 

(1962), Hanks and Bowers (1962), Day and Luthin (1956), Rubin and 

Steinhardt (1963), Klut~, Whisler and Scott (1965), Whisler and Klute 

(1966), Rubin (1966), Kobayashi (1966), Jensen and Hanks (1967), Klute 

and Bresler (1969) and Jeppson (1970b). 
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One-dimensional, unsteady, heterogeneous, composite; Freeze (1969). 

Two-dimensional, steady, homogeneous, composite: Jeppson (1968a, 

1968b). 

Two-dimensional, steady, heterogeneous, saturated: Freeze and Wither

spoon (1966) and Jeppson (l969a). 

Two-dimensional, steady, heterogeneous, composite: Sewell and van 

Schilfgaarde (1963.) and Jepps~n (1968c, 1969b). 

Two-dimensional, unsteady, homogeneous, saturated: Isherwood (1959), 

Todsen (1971) and Tseng and Ragan (1973). 

Two-dimensional, unsteady, homogeneous, composite: Rubin (1968). 

Two-dimensional, unsteady, heter'ogeneous, saturated: Burejev and 

Burejeva (1966), and Taylor and Luthin (1969). 

Two-dimensional, unsteady, heterogeneous, unstaurated: Brandt et al. 

(1971) and Green, Dabiri and Weinang (1970). 

Two-dimensional, unsteady, heterogeneous, composite: Brutsaert, 

Breitenbach and Sunada (1971), Freeze (19?la) Hornberger, Remson and 

Fungarolli (1969), and Brutsaert (1971). 

Three-dimensional, steady, heterogeneous, composite: Nelson (1962), 

Reisenauer (1963) and Reisenauer, Nelson and Knudsen (1963). 

Three-dimensional, unsteady, heterogeneous, composite: Freeze 

(197lb). 

Three-dimensional, axisym.metric: (these problems collapse to two

dimensional ones). Jeppson (1968d, 1970a) and Wei (1971). 
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Various methods of differencing the transient equation were used. 

The explicit difff~rcnce scheme was used by Kobayashi (1966). The 

implicit scheme was used by Brutsaest (1971), Btrutsaert et al. (1971) 

and Freeze (1969, 1971a, 1971 b) among others. The Crank-Nicolson 

Scheme was used by Ashcroft et al. (1962), Hanks and Bowers (1962), 

Hanks, Klute and Bresler (1969), Jensen and Hanks (1967), Klute 

Whisler and Scott (1965), Rubin (1966), Whisler and Klute (1965), Brandt 

et al. (1971) and Jeppson (1972). 

Methods of solution of the resulting system of algebric equations 

were also nwnerous. The relaxation method was used by Day and Luthin 

(1956), Isherwood (1959), Luthin and Gaskell (1950), Kirkham and Gaskell 

(1950) and Luthin and Scott (1952)0 The SOR was used by Nelson (1962), 

Reisenauer (1963), Reisenauer, Nelson and Knudsen (1963), Taylor and 

Luthin (1963), Freeze and Witherspoon (1966), Jeppson (1968a, 1968b 

1968c) and Tseng and Ragan (1973). The line successive over-relaxation 

(LS.OR) method was used by Freeze (197la, b). The alternating direction 

implicit (ADI) method was used by Rubin (1968) and Lin (1972, 1973). 

The Newton Iterative method was used by Jeppson (1968d, 1972) and 

Brutsaert (1971). The Newton-SOR (Newton inner iteration and SOR 

outer iteration) was used by Jeppson and Nelson (1970) and Wei (1971). 

The Newton-LSOR was used by Brutsaert, Breitenbach and Sunada (1971)0 

The Newton-ADI was used by Brandt et al. 1971. 



Fini1p diffcrpncc solutions 
of drainage problems 
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Although drainage problems were anlong the earliest porous media 

flow problems solved numerically by the method of finite differences, very 

little is found in the literature on this subject. Luthin and Gaskell (1950) 

and Taylor and Luthin (1963) used the method of finite differences to study 

steady state drainage to tile lines in layered soils with a ponded soil sur-

face. Kirkham and Gaskell (1950) used the method to study the transient 

case of the falling water table in homogeneous soils drained by tiles or 

open ditches. Finite differences and the method of Kirkham and Gaske1 

(1950) were used by Isherwood (1959) to study the effect of tile depth, 

tile spacing, barrier depth, hydraulic conductivity and drainable porosity 

on the rate of fall of the water table between tile drains. The same 

methods were used by Todsen (1971) to study the transient behavior of 

the water table between ditch drains in the presence of local accretion. 

Sewell and van Schilfgaarde (1963) used finite differences to study steady 

drainage to tile drains in a composite saturated-unsaturated system, and 

Rubin (1968) investigated the case of the fallingw'ater table in a com-

posite system using finite differences. Luthin and Taylor (1966) studied 

steady drainage to open ditches on sloping homogeneous lands with 

accretion using finite differences. Remson, Hornberger and Molz (1971) 

gave a finite difference solution to the Boussinesq's transient equation 

for tile lines lying on the impermeable layer. Moody (1966) solved the 

Boussinesq's transient equation for the. falling wa ter table between tiles 

above the impermeable barrier, using finite differences. 
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Composite 'Saturated- Unsaturated Systems 

General 

Until very rec ently the saturated and the unsaturated regions of 

water flow in soils were treated separately; the first by groundwater 

hydrologists neglecting the unsaturated flow and the second by soil 

physicists with no consideration of the saturated flow (Freeze 1969). In 

most solutions of drainage problems the unsaturated flow above the water 

table was either neglected or an equivalent saturated fringe thickness was 

added to the saturated flow c ros s sec tion to compensate for it. The 

validity of this method of compensation, especially in flows which are 

not predominantly horizontal, was never confirmed (Hedstrom, Corey and 

Duke, 1971) .. 

Neglect of the unsaturated flow above the water table may lead, 

in many cases, to serious errors (Jensen and Hanks, 1967; Brutsaert, 

Breitenbach and Sunada, 1971; Hedstrom, Corey and Duke, 1971).. The 

importance of including the unsaturated flow was emphasized by Bouwer 

(1959, 1964), Kraijenhoff Van de Leur (1962), Reisenauer (1963) and 

Freeze and Harlan (1969). Bird and McCorquodale (1971) stUdying per

formance of tile drains reported that the seepage in the unsaturated zone 

was very significant. Luthin and Day' (1955) showed experimentally and 

by a numerical solution that the volwne of unsaturated flow can exceed 

that of saturated flow in some problems in certain cases. Freeze (1971a) 
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showed that the inclusion of the unsaturated flow was not a matter of 

trivial consequences on the results. 

Many of the solutions of the transient drainage problem (especially 

the case of the falling water table) were obtained as a succession in time 

of steady state solutions, where, starting from an initial water table 

position, a new water table position, after a time increment, is calculated 

by some equation, then the steady state equation of flow is solved for the 

new saturated region and the procedure is repeated for new time steps. 

(See for example Kirkham and Gaskell, 1950; Isherwood, 1959; Burejev 

and Burejeva, 1966; Todsen, 1971; Ts eng and Ragan, 1973). In addition 

to neglecting the flow in the unsaturated zone, most of these solutions 

assume instantaneous and complete desaturation of the medium at a 

point as soon as the water table falls beyond that point. They assume 

furthermore that the drainable porosity or specific yield is a constant 

quantity independent of time or position above the water table. These 

assumptions were criticized as inaccurate by Childs (1960), Kraijenhoff 

Van de Leur (1962), Jensen and Hanks (1967), Rubin (1968) and Freeze 

(1971 b), all emphasizing the fact that drainable porosity was a dynamic 

quantity that depended on time as well as position above the water table. 

Hewlett and Hibbert (1963), in a sloping soil tank experiment, reported 

that they were still getting measurable amounts of drainage outflow from 

a 10.85 cubic meters volume of soil (38,3 cubic feet) 145 days after the 

soil mass was desaturated. 

Treatment of the problem in a composite saturated-unsaturated 
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syHteln (~liJ:ninates the inaccuracies mentioned above. Two contrasting 

t.heories exist in the literature concerning compoHite systenls. These 

theories were reviewed by Fujioka and Kitamura (1964) and by Hornberger 

and Freeze (1970). The first theory, although admitting the physical 

continuity of flow between the saturated and the unsaturated zones, 

claims that there are differences between the flows in the two zones in 

that the water in the unsaturated zone possesses relative compressibility 

and that the curve of moisture content versus pressure head exhibits a 

first derivative discontinuity at saturation. The results of an experiment 

conducted by Fujioka and Kitamura (1964) to test this theory did not 

support it. The second theory claims that there is physical and mathe

matical continuity of flow in both the saturated and the unsaturated zones, 

and that the distinction between the two zones is only an arbitrary dis

tinction of definition. This second theory is more widely accepted by 

workers in the field than the first (Rubin, 1968; Freeze and Harlan, 1969; 

Freeze, 1969, 1971a, 1971 b; Hornberger, Remson and Fungaroli, 1971; 

Brutsaert, Breitenbach and Sunada, 1971). 

In solving transient free- surface problems in porous media, the 

cOlTIposite system treatment has another great advantage. It eliminates 

the need for calculating the position of the water table a priori, leaving 

this to emerge as part of the solution (Freeze, 1971 b). 

The advantages of treating a composite system were recognized 

early by many researchers, but the task of solving such a system 

analytically was (and still is) formidable if not impossible. This 
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treatment was made feasible only through the availability of high speed 

computers and the wide spread use of numerical methods in solution. 

This probably explains why this trend is only very recent. Some of the 

works that treated composite systems were referenced previously in 

this review under headings with the adjective "composite. " 

Treatment of a composite system would only be possible through 

the extension of the flow equation to the unsaturated zone.. This would 

necessitate the extension of Darcy's Law to unsaturated flow and the 

consideration of variable medium hydraulic conductivity and water con-

tent (or saturation) as functions of the pore pressure head; it being under-

stood that the mass continuity equation is universally true in any medium 

(at least for the velocities we consider in porous media flow). 

Extension of Darcy's law 
to unsaturated media 

In 1856, Henry Darcy published his famous experimental law that 

stated that flow through saturated sand was directly proportional to the 

head loss and inversely proportional to the length of path of flow. This 

law which gave a linear relation between flow and hydraulic gradient 

(which is the loss in hydraulic head divided by the length of the flow path), 

was originally found for vertical downward flow through saturated homo ... 

geneous sand columns. It has been since shown to be independant of the 

direction of flow (van Schilfgaarde.. 1970) and it has been extended to 

two and three dimensions by many investigators, first heuristically and 

then by planned experiments and success in application (Bear, 1972). 
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It has als 0 been obtained theoretically by various worker s by statistical 

averaging of the Navier-Stokes equations (neglecting inertial terms) over 

the flow sec tion, and by various c onc eptual mod els of the porous med ium 

to which the hydrodynamic theory was applied. (See Hall, 1956; DeWiest, 

1969; Rumer, 1969; Bear, 1972). This showed that Darcy's law reflected 

the macroscopic statistical average of the hydrodynamic behavior of water 

flow through the multitude of the tortuous flow paths in a porous medium. 

Buckingham (1907), investigating capillary flow of s oil moisture 

and utilizing analogies of this flow to heat flow (Fourier's law) and to 

electric current flow (Ohm's law), suggested a law for unsaturated 

moisture flow in soils which was in actuality an extension of Darcy's law 

for saturated flow. Although Buckingham did not mention Darcy's law, 

the analogy between saturated and unsaturated flows would have been as 

close (if not closer) as that of the unsaturated flow to heat and electric 

current flows (Swartzendruber, 1969). Buckingham's law was accepted 

and recognized as an extension of Darcy's law to unsaturated media by 

Israelsen (1927), Richards (1928, 1931) and Gardner (1936). This ex-

tension of Darcy's Law was verified experimentally by Childs and 

Collis-George (1950) and analytically by Hall (1956). This is now 

universally accepted except maybe at very low moisture contents (Swartz

endruber, 1963; Churayev, and Gorokhov, 1970). Using this law and the 

continuity equation, Richards (1931) derived the general equation of flow 

in is othermal unsaturated media. 



Soil water content and hydraulic 
conductivity as functions of 
capillary pressure 

Buckingham (1907) and later investigators (Richards, 1931; 
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Gardner, 1936) recognized that the water content and the hydraulic con-

ductivity of unsaturated media were functions of capillary pore pres sure. 

In the last two decades much work has been done to investigate these 

relations hips both in the field of petroleum engineering (Ros e, 1949; 

Fatt and Dykstra, 1961; Burdine, 1953) and in the field of soil water 

(Gardner, 1958; King 1965). 

It is well established now that the conductivity-water content 

relation is unique with no hysterisis, Water content-capillary pressure 

relation is hysteritic and (consequently) the conductivity-capillary 

pressure relation is also hysteritic (Childs, 1969; Bear, Zaslavskyand 

Irmay, 1968; van Bavel, 1969 among others). Although some authors 

mentioned dependence of some or all of these relationships on the water 

content gradient (Gardner and Gardner, 1950) or on the hydraulic gradient 

(Churayev and Gorokhov, 1970; Rogers and Klute, 1971), yet according 

to Bear (1972) no definite conclusion has been reached on this matter. 

Researchers using numerical solutions for problems of unsaturated 

flow dealt with these relationships in three different ways. One group of 

researchers used tables of corresponding values of water content, con-

ductivity and capillary pres sure for their particular media (Day and 

Luthin, 1956; Hanks and Bowers, 1967; Jensen and Hanks, 1967; 

Whisler and Klute, 1967; Whisler and Watson, 1969; Hanks, Klute and 
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Bresler, 1969; Freeze, 1969; Green, Dabiri and Weinang" 1970; Watson 

and Whisler, 1972). Another group of researchers fitted their particular 

data with special functions (Brandt et al., 1971, used cubic spines, and 

Selitn and Kirkham, 1973 used exponential fits). A third group used 

some general equations developed for these relationships. The equations 

given in the literature are many and their origins are various. Some 

were based on empirical fitting of data (Gardner, 1958; King, 1965) and 

some were based on conceptual idealized models of porous media (bundles 

of capillary tubes) coupled with empirical fitting (Burdine, 1953; Brooks 

and COI'ey, 1964). In reviewing some of these equations here, the 

symbols of some authors will be changed to conform to a single set of 

s ym.bols and to avoid confusion es pecially between negative values of 

pressure (P, H) and positive values of pressure (P , h). 
c 

Water content-pressure relations. Swartzendruber (1969) used 

an approximate linear relation of the form: 

9 = n - bh (1 ) 

where 

e = volumetric water content 

n = soil porosity 

h -H=-
P 

suction head = Pg = 

H P 
pressure head = ---Pg 

b = a soil parameter 



This was a gross simplification. Taylor and Luthin (1969) used an 

equation of the form 

where 

e = water content at saturation 
o 

A = a s oil parameter 

( 2) 
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Brooks and Corey (1964) studied a large number of experimental data 

and suggested the equation: 

w'here 

s = 
e 

1 
5 =----

e (i-) ~ 

s-s 

for P > P
b c-

___ r_ = effective saturation 
I -5 

r 

(3) 

s = e 
11 

= saturation = ratio of volume of water to volume of 

voids 

5 = residual saturation (irreducible saturation) 
r 

= saturation when the water phase becomes discontinuous and 

conductivity becomes practically zero 

p = - P = suction 
c 

P = pressure 

P
b 

= bubling pressure, a positive soil parameter with units as Pc 
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A = pore size distribution index, a dimensionless soil parameter 

(For definition and methods of finding P
b

, A, S r see Brooks and Corey, 

1964). Brutsaert (1968) suggested a more general form: 

5 = e 
A 

b 
A + h 

(4) 

Where A and b are parameters. A similar form was used by Cooley 

(1971). Wei (1971) following Brutsaert (1968) used the form 

(5) 

where A, band P
b 

are parameters. 

More complicated equations were suggested by King (1965), Rubin, 

Steinhardt,and Reiniger (1964), Visser (1969), Rogowski (1971) and 

White et al. (1970). 

Conductivity-water content relation. Irmay (1954) suggested a 

relation of the form: 

3 
K = K S 

o e 

which could be written as 

where 

K = S 3 
r e 

K = unsaturated hydraulic conductivity 

(6) 



K = saturated hydraulic conductivity 
o 

K = relative hydraulic conductivity 
r 

= : by definition 
o 

Bruch and Street (1967) used the same form. Wang, Hassan, and 

Franzini (1964), Singh and Franzini (1967) and Brutsaert (1968) used 
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the same form but with a general parameter exponent for S instead of 
e 

three. Brooks and Corey (1964) using Burdine (1953) theory and their 

saturation-pressure relation (Equation 3) suggested the relation: 

K = (S ) 
r e 

Conductivity-pressure relation. Richards(193l) used an equation 

of the form: 

K = aH + b (8) 

where a and b are parameters. This linear relation was us ed becaus e 

it was helpful in some analytical solutions. Gardner (1958) reviewed 

previous equations and from a study of available data at the time sugges-

ted the following equation: 

(9) 

where a, band n are parameters. Taylor and Luthin (1969) used the 

following form: 
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K 

K= a (10) 

Ah
3 + 1 

where A is a parameter. Sewell and Van Schilfgaarde (1963) used the 

following equation: 

m 
K =----

r p n+m 
c 

Wesselling and Wit (1966) used the equation: 

(11 ) 

K = ah-b 
(12) 

where a and bare paramete rs. It s hould be noted that Equation s (10), (11) 

and(l2)are actually special versions of Gardner's Equation (9). Raats 

(1971) used the form 

K = b e
aH 

(13) 

where a and b are parameters. Burdine (1953), starting with a concep-

tual model of the porous medium (a bundle of capillary tubes) and using 

empirical fitting of data to evaluate tortousity suggested the equation: 

1~ 5 - 5 -2 

K -I r 1 r - 1 - Sr 

p2 
o c 

f
l~ 

p2 
c 

·0 

which could be written (Brooks and Corey, 1964) as 

( 14) 
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p2 

(S )2 
o c 

K = II (15) r e dS 
e 

p2 
c 

Obviously, to evaluate the integrals in Equation (14) or Equation (15) one 

needs to know the S-P relationship. Brooks and Corey (1964) used their 
c 

suggested relationship (Equation 3) to evaluate the Burdine integrals in 

Equation (15) to get 

K = 
1 

for Pc > Ph r 

(*)7 
(16 ) 

7 = 2 + 3X. (1 7) 

Where 7 is a positive parameter. Equation (16) gives good fits with 

experimental data except for values of Pc very near to Ph. Because of 

the nature of their derivation, Equations (15) and (16) are more repre-

sentative of the drainage branch of the 9 - P relation. King (1965) noted 

that Gardner's (1958) equation (Equation 9) is dimensionally inconsiste.nt, 

and suggested modifying it to the dimensionally consiste.nt form 

K = 
r 

1 
P 7 

(P: ) + b 
(18 ) 

where PI is a positive soil parameter of dimensions similar to those of 

P , and band 7 are positive dimensionless soil parameters. This 
c 
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equation gave a very good fit to imbibition as well as drainage data. 

For K to have a value of unity at saturation, the parameter b in Equation 
r 

(18) would be held equal to 1 at saturation (King, 1965). Wei (1971) used 

a generalized form of Equation 18 which was given as: 

b 
K = T r p 

(P: ) + b 
( 19) 

The relationship between the parameters T and A given by Brooks and 

Corey (1964) (Equation 1 7) is supported by many sets of data (King, 

1973, in a verbal communication). More on other equations for K 
r 

could be found in Smith (1966) and Raats and Gardner (1971). 
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THE PHYSICAL PROBLEM 

A.1though the drainage problem in nature is a transient three 

dimensional flow problem, it will be reduced to a two dimensional 

transient one by assuming that all conditions along the horizontal axis 

normal to the general direction of flow are sim.ilar. This assumption 

was used by the majority of investigators in the drainage field and in 

m.ost drainage problems it is quite reasonable and gives no serious 

errors. A general two dim.ensional geometry is envisaged as s.hown in 

Figure 1, with a general shape and slope of the land surface and the 

imperm.eable boundary. The land receives foreign water seeping from 

higher lands and local accretion from. irrigation or rainfall. Tile 

drains are assumed at specified depths and spacings and of sufficient 

diameter to be able to carry away all the water that seeps into them 

with no back pressure in the tile lines. 

A complete irrigation cycle will be simulated, where irrigation 

water is applied for some time, followed by a period of a few days of 

no irrigation. This will encompass the cases of water table build-up 

and water table recession. The effects of evapotranspiration during the 

\ 

cycle will be neglected. It is assum.ed that the effects of evapotrans-

piration on the position of the water table are normally small, unles s 

the water table is very close to the land surface. This is supported 
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by the facts that evaporation is a soil- surface phenomenon and that its 

effects decrease rapidly with depth (Remson, Fungarolli, and Hornberger, 

1967), and that root extraction for transpiration is limited to the zone 

above the water table. Evaporation (if its magnitude is known a priori) 

could be included in the model as a specified negative flux at the land 

surface, but the problem is not as simple as this statement implies and 

its investigation is not considered in this dissertation. 

The soil is treated as a heterogeneous med iurn with res pect to 

the saturated conductivity. King's (1974) definition of heterogeneity 

with respect to a property is adopted; namely that the value of the satu

rated conductivity at a point varies with the position in space of that 

point. The soil is assumed homogeneous with respect to the other soil 

parameters that enter into the soil characteristic relationships (K- 9-Pl. 

While this might not be strictly true, yet the inclusion of heterogeneity 

in thea e parameters is not warranted by the scant amount of data one 

can find about them in the literature for field soils. Evaluation of these 

parameters is not yet a routine part of land drainage investigations and 

it is highly improbable (at the present) that a drainage engineer will 

find enough available data on these parameters to characterize hetero

geneity with respect to them. In fact, other than a forthcoming paper 

by Jeppson, the writer is not aware of any work that dealt with hetero

geneity of these parameters. The soil will also be assumed isotropic. 

It is suggested by King (1974, p. 12) that "most field materials could 
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b~ described as heterogeneous rather than anisotropic, provided the 

Rcale of resolution of conductivity measurement is sufficiently small. " 

Saturated and unsaturated zones of the domain are treated as one 

composite flow system. This eliminates many of the weaknesses of 

treating the two zones separately. The position of the water table 

emerges as part of the solution as the zero pressure isobar. 

No hysterisis in the soil characteristics relationships is considered, 

and the drainage envelop curves of these relationships are used to 

characterise the soil. It is true that during some parts of the irrigation

drainage cycle (for example at the start of irrigation) parts of the soil 

mass will be desaturating while other parts will be increasing in satura

tion, yet it is contemplated that hysterisis, although important in detailed 

studies of some fine phenomena, will not have a large effect on the gros s 

hydrologic phenomenon of water table fluctuation. It is also important 

to note that during the greater part of the cycle, the soil mass will be 

desaturating. 
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THE MA THEMA TICAL MODEL 

The mathematical model consists of the partial differential 

equations of flow together with the boundary and initial conditions. The 

assumptions in the mathematical formulation are also included since it 

is believed, after Nelson (1962), that the capabilities and limitations 

of any formulation are best understood by a careful examination of the 

underlying assUInptions. 

The Differential Equations 

The classical method of derivation given by many textbooks on 

porous media flow is followed here. Starting with Darcy1s Law in vector 

form: 

and the differential form of the mass continuity equation: 

n - () 
V' (P V) = - - (P9) at 

and substituting Equation (20) into Equation (21) we get: 

() 
V· [PK\l<t>J = at (P9) 

(20) 

(21 ) 

(22) 



Considering P to be constant gives: 

where: 

V' [KV<t>J = 

-

80 
at 

V = The Darcian velocity vector. 

(23) 

K = K K (H) = The hydraulic conductivity at any pressure 
o r 

head (H). 

K = The saturated hydraulic conductivity. 
o 

K (H) = The relative hydraulic conductivity = The ratio of the 
r 

hydraulic conductivity at any pressure head (H) to the 

saturated hydraulic conductivity. 

<p = y + H = Hyd raulic head or total potential energy on a unit 

weight basis. 

y = Position head above datum.. 

P 
H = pg = Pressure head (negative in unsaturated 

m.edia). 

44 

P = Soil pore water pressure (negative in unsaturated m.edia). 

P = Dens ity of water. 

g = Gravity acceleration 

8 = Soil water content on a volwnetric basis 

t = Tim.e 

v = The del operator 
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In two-dimensional Cartesian coordinates Equation (23) c'an be 

written as: 

o !1.. 0 !1.. 08 
ox (K ox) + oy (K oy) = at (24) 

Setting K = K K (H) and e = 'fI S(H) by definition and expanding Equation 
o r 

(24) gives 

where: 

+ K 0 o Y 

oK (H) 
r 

'fI = Soil porosity 

oK 
~ + K (H) . _0_. ~ ox r ox ox 

oK 
~ + K (H). _0. ~ - 'fI oS(H) 
oy r oy oy - ot (25) 

S = Soil saturation = Ratio of volume of water to volum.e of voids 

in a soil elemental volume. 

Using the chain rule of differentiation on the terms that involve 

space derivatives of K (H) and time derivative of S(H) in Equation (25), 
r 

and dropping the functional notation of K and S, Equation (25) can be 
r 

written as: 

KK 
o r 

oK 
o + K . 

r oy 

2 
. (~) 

ox 

as !1.. 
'fl. oh . at ( 26) 
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Since the intermediate terms in the chain are :~ = - 1 and :: = 1. 

where: 

h = - H = - P = suction head (positive in unsaturated media). 
Pg 

w'here: 

The following relationships for K , 8 and h are used: 
r 

K = I 
r 

8 = C 

e (\t + D 

8 = 1 
e 

S-S 
S 

r 
= 

e 1-8 
r 

for h > Z 

for h < Z 

for h> Z 

for h< Z 

A, B, C, D, T, A: are dimensionless soil parameters 

\' Z: are soil parameters with units as those of h. 

S = effective saturation as defined in Equation (31) 
e 

S = residual saturation. 
r 

(27) 

(28) 

(29) 

(30) 

(31 ) 

These relationships are of similar form to most of the equations 

cited in the section on review of literature and are general enough to 

allow a certain amount of freedom to the program user in fitting his 
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data. By special choices of the parameters A, B, C, D and Z, Equation 

(27) can revert to King's (1965) modification of Gardner's (1958) equation 

(Equation (18)), to Brooks and Corey's (1964) equation (Equation (16)), or 

to Equation (19), used by Wei (1971). Equation (29) can revert to Brooks 

and Corey's (1964) relationship (Equation (3)), to Brutsaert's (1968) 

relationship (Equation (4))or to Wei's (1971) equation (Equation (5»). The 

disadvantage of having two many unrelated parameters on the other hand 

is that more experimental data are needed to evaluate the parameters, 

(Jeppson 1973, in a verbal discussion). 

From Equations(27), (29), and (31) we get: 

= - G 1 • K 2. (h) 7-1 
r 

(32) 

as oSe 2 X. 
-= (1 -S ) - = - (1- S ) • G2 • S • (h) -1 (33) 
oh r ah r e 

where: 

T 
Gl = ----

A(l,) T 

K usually varies with depth rather than with the y - c,oordinate, 
o 

and since T = Y - y, we get 
o 

oK oK 
o 0 

oy oT (34) 



where: 

T = depth. 

y = y - coordinate of the soil surface. 
o 
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Substituting Equations (32), (33) and (34) into Equation (26), and 

dividing by K K gives: 
o r 

U
2 ~2 ~2 a a 2 u ) Hth + F 1 ( Oth) a 2 + a 2 + Fl • (ax + F2 • Tx- ~ 
x y 

where: 

-F3 • ~ = G3 • F13 · ~ 
8y at 

F 1 = G 1 • K • (h) T-l 
r 

1 oKo 
F2 = K· oX 

o 

1 oKo 
F3 = K· oT 

o 

F13=_1_. S 2. (h)X.-l 
K K e 

o r 

G3 = Y1 • G 2· (1 -S ) 
r 

(35) 

Equation (35) is the equation of unsteady unsaturated flow. In 

the case of saturated flow in both the steady and the unsteady states, 

aKr oS 
8h = 0, and ah = 0, giving Fl = OJ and F13 = 0, and Equation (35) 

becomes: 



2 2 
~+!..] +F2~ 

2 2 ax ax 8y 

F3~ = 0 
8y 

(36) 
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8S 
In case of steady state unsaturated flow, 8h = 0, giving Fl3 = 0, and 

Eq uation (35) bec omes : 

8
2

th 8
2

rh 8th 2 arl~ 8th 2 8th 
..:-.:t. + ~ + Fl • (~) + F 2 • -:...:t.. + Fl · (.::..J.:-) - F3 • ....:.:t-. = O. (37) 
8x2 ay2. ax ax 8y ay 

Equation (3 5) i:s of the nonlinear parabolic type, E'quation (36) is of the 

linear elliptic type, while Equation (37) is of the nonlinear elliptic type 

(although the clas sification of a nonlinear partial differential equation is 

usually given at a point for a particular solution as it depends on the 

coordinates of the point and the solution). For classification of partial 

differential equations see Petrovsky (l950) or Garabedian (1964). 

Assum.ptions in the Formulation 

In the above derivation the following assumptions are made: 

1. Darcy's law applies in both the saturated and the unsaturated 

zones. In drainage problems, the low flow velocities and the range of 

unsaturation are usually within the range of applicability of Darcy's 

law. 

2. The water is continuously connected throughout the system. 

This is true for the range of unsaturation encountered in drainage 

problems. 

3. The flow of air in the porous medium takes place instantaneously 
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and under very small gradients (due to the low viscosity of air) such that 

the energy dissipated in this flow is negligible. The air in the unsaturated 

zone is assumed to exist at atmospheric pressure always. Despite some 

cases reported in the literature where air pressure build-ups and signifi

cant effects on the flow did occur during infiltration (Grlob and Radha

krishna, 1958; Van Phuc and Morel-Seytoux, 1972; Linden and Dixon, 

1973), it is believed that it is reasonable and safe to assume that air will 

rnove freely into and out of the unsaturated zone in drainage problems. 

Entrapped air will tend to be removed by the permeating water (Swartz

endruber, 1969). Experiments by Bloomsberg and Corey (1964) showed 

that entrapped air is removed through solution and difusion even in 

stagnant water. 

This asswnption simplifies the problem to a one- phase flow 

problem. 

4. The flow is asswned isothermal. For shallow water tables the 

temperature variations in the system are usually small. 

5. The flow of the liquid phase of water only is considered. 

Water vapor flow is negligible compared to the liquid flow. 

6. There are no osmotic gradients that affect the flow. 

7. There are no interactions between the water and the porous 

medium that affect the flow. 

8. There are no biological effects that affect the flow. 

9. The water is treated as a continuum. Strictly speaking the 

water is composed of discrete molecular entities, but the dimensions 
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of drainage problems are so large compared to the dimensions of these 

entities or their mean free paths that assumption of a continuum is 

jus tified. 

10. The water is homogeneous in nature at all points in the 

system. 

11. The water is incompressible (P = constant). 

12. The porous medium exhibits no swelling, shrinkage or 

consolidation and the solid particles do not move as the flow takes plac e. 

13. The functions that describe the flow are assumed continuous 

with continuous derivatives (Jeppson, 1972). 

The Boundary and Initial Conditions 

The boundaries are shown in Figure 1 with circled numbers to 

indicate the different segments with different boundary conditions. 

Boundary (1) - (2) 

. 2 C 2 
<P = y Sln ct + Y 1 os ct (38) 

Where Y
l 

and ct are as indicated in Figure l, ct being the general angle 

of slope of the bed. For the derivation of Equation (38) see Appendix B. 

The assumptions on this boundary are: 

a. Uniform flow across this boundary with equipotential lines 

normal to the general slope of the bed. This implies that the flow 

across the boundary is not affected by the drain. 
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b. Steady flow across the boundary. This implies that the flow 

across this boundary is not affected by recharge or discharge down-

stream. 

Theoretically both of these as sum.ptions may be true only at an 

infinite distance from the drain and recharge point, but for all practical 

purposes, the local effects of the drain or recharge can be considered 

insignificant if this boundary is kept at a reasonable distance from the 

drain, (which distance is inversely proportional to the slope of the bed). 

Boundary (2) - (3) 

~ = 0 (39) 
dn 

This is a zero flux boundary. Point (3) is sufficiently removed 

from point (2) such that any recharge beyond point (3) will not affect the 

boundary condition set for (l) - (2). 

Boundary (3) - (4) 

~_ 1 
dn - K K • q(x, t) • Cos 8 (40) 

o r 

or 

cj> =y (41) 

where: 

q(x,t) = Specified flux at the surface 

8 = Angle of surface with the horizontal 



Equation (40) comes from Darcy's law: 

-K K ~ = -q(x,t)· Cos e 
o r dn 

where the minus sign preceeding q(x, t) is because this quantity is by 
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definition measured opposite to the direction of the outward normal -;. 

Cos e enters the equation because q(x, t) is normally measured as a 

vertical flux (normal to the projection of the surface on the horizontal 

plane). The program will use condition (40) unless the specified flux 

cannot be accomodated with the existing hydraulic gradients in the 

system, whence the surface becomes saturated and ponding starts 

after which condition (41) is used. In Equation (41), Ii is assumed equal 

to zero which means that ponding is only of negligible thicknes s and any 

excess water is removed by surface drainage. 

Boundary (4) - (5) 

~-o 
dn - (42) 

The same conditions as in boundary (2) - (3) apply here. Point 

(4) is sufficiently far from point (5) so that recharge between points (3) 

and (4) will not affect the boundary condition on (5) - (6). 

Boundary (5) - (6) 

<t> = Y2 (43 ) 

Where Y2 is as indicated in Figure 1. The potential (<t» on this boundary 
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is assumed in static equilibrium with the water table at point. (6). Y2 is 

not known a priori, but emerges as part of the solution on boundary (6) - (7). 

Boundary (6) - (7) 

~; = - Sin Q! • Cos a (44) 

For the derivation of Equation (44) see Appendix B. It is assumed 

that this boundary is sufficiently rem.oved downstream. of the drain such 

that uniform. flow is re- established along this boundary" 

Boundary (7) - (1) 

~-o 
dn - (45) 

This boundary is a streamline along the impermeable bed, with 

equipotential lines normal to the bed. 

The initial condition 

The initial condition for the transient problem is taken as the 

steady state solution with no local recharge. This is a reasonable 

starting condition as it reflects conditions in the field at the start of 

an irrigation season after a prolonged period (say six m.onths) of no 

irrigation and no (or negligible) rainfall. This is the prevailing condi-

tion in many arid and semi-arid irrigated areas. This will enable us 

to model a com.plete cycle of water table build-up with irrigation and 

water table recession with drainage. After the transient solution is 
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started it could be terminated and picked up again at any time step to 

continue the modeling if this is desired, the previous time step solution 

serving as an initial condition to the new time steps. 
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SOLUTION 

Treatment of the Problem Domain 

The domain shown in Figure 1 is enclosed in a rectangle with the 

sides in the x and y directions and the two vertical sid es along boundaries 

(1) - (2) and (5) - (7). This rectangle is then divided by a rectangular grid 

mesh, thus creating nodes inside the domain and nodes outside it. A 

square mesh is known to give faster convergence, but in drainage pro

blems which are usually long and shallow the rectangular mesh may be 

the optimum compromise. The dimensions of the rectangles of the 

mesh (& and Ay) could be chosen at will by specifying the number of 

rows and number of columns of the two dimensional grid. Motivated by 

the belief that, for numerical solutions, reporting failures is as impor

tant as reporting successes, I should report that when the rectangles 

were chosen with (Ax) much larger than (Ay) divergence was experienced 

mainly at the irregular boundaries. 

The two irregular boundaries (2) - (5) and (7) - (1) were simplified 

by making them linear segments that go through nodes by running them 

only along horizontal sides or along diagonals of the rectangles. When 

the actual boundary intersected a vertical column of the mesh the point 

of inters ection is moved up or down to the nearest node in that column. 

This gave a domain which was composed of complete rectangles and 



57 

half rectangles (right angle triangles). This method of simplification is 

not serious at the impermeable bed which, under most field conditions, 

is never known precisely and in most cases is more or less a diffused 

boundary. On the land surface accurate surveys are possible, but it is 

believed that the effect of the above simplification is small and only local. 

Drains were simulated at specified nodes by specifying a zero 

pressure head (H) at these nodes. To identify the different types of nodes 

in the mesh a two dimensional array of integer code numbers was com-

puted and stored to correspond to the nodes of the mesh. Points exterior 

to the domain were assigned a code number of one, interior points a code 

number of two, drain nodes a code number of three and points on boun-

daries (2) - (5) and (7) - (1) were labeled with code numbers from four 

to 15, as illustrated in Table 1. 

Finite Difference Operators 

In the following discus sion the nodes will be identified by the 

subscript (i) for pos~tion along the x-axis, the subscript (j) for position 

along the y-axis and the superscript (n) for position along the time axis. 

lhe steady state 

The steady state condition was solved to provide an initial condi

tion for the transient solution. Central differences for the space 

variables and the five point scheme were used, thus resulting in a 

second order truncation error [0(&)2 + 0(.6.y)2]. This procedure applied 

to Equation (36) gives: 



Table 1. Calculation codes 

Code number 

1 

2 

3 

4 

5 

6 

7 

** Node type 

Exterior node 

Interior node 

Drain 

• " .. .. II 

• " ... 

" 

" 

~
. 

It • e 
... It 

• " 

58 

• • 

** Circled nodes are the imaginary nodes (exterior) that are needed in 
the five-point scheme for the central node (i, j). 



Table 1. (Continued) 

** Code number Node type 

8 o • x 

If If 

,. 

9 

10 • 

11 

12 

** Circled nodes are the imaginary nodes (exterior) that are needed 
in the five-point scheme for the central node (i, j). 
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Table 1. (Continued) 

Code number 

13 

14 

15 

A 

** Node type 
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Circled nodes are the imaginary nodes (exterior) that are needed 
in the five-point scheme for the central node (i, j). 



1 2 [ep. 1 . - 2cp. . + <p. 1 .] + _1 2 rep. . 1- 2cp. . + ep. . 1] 
(Ax) 1+ ,j 1,j 1- ,j (~y) ll,J+ 1,J 1,J-

= 0 ( 46) 

With algebraic manipulation this gives an explicit linear equation of 

<1> •. in terms of the four surrounding nodes: 
1, J 

<1>. . = G4 [F7. . <1>. 1 . + F8. . <1>. 1 . + F9. . <1>. . 1 I,J 1,J 1+ ,J 1,J 1-,J I,J 1,J+ 

·.vhere: 

+ FlO. . <1>. . 1] 1,J 1,J-

G4 = · 5 

F7 = 1 + ~ F2 

F8 = 1 - Llx F2 
2 

F9 = (: ) 2 _ 

FlO=! : t + 

(Ax) 
2 

F3 
'lAy 

2 
~F3 
'lAy 

( 47) 
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Similar differencing applied to Equation (37) gives: 

I [ '1 1 [ --2- <t> . , - 2<p. . + <t>. I ,+ --2 <t> . , I - 2<t>, ,+ <t>, , 1] 
(.L\x) 1+I,J 1,J, 1- ,J (~y) 1,J+ 1,J 1,J-, 

F2, , 
1, J 

+ ?Ax 

+ Fl. , 
1, J 

_ + Fl 1+ ,J 1-, J 
[ ] [

<I>, 1 ,-<I>. 1 'J 
,CP i+l , j <I> i-I, j, i, j lAx , 

2 

C'i/ j+~~ <l>id- 1 1 = 0 

which gives: 

2 

(4S) 

<1>. ,= G4 [F7. ·4>'+1 . + FS .. ,. I . + F9 .. cp .. 1 + FlO .. cp .. 1 1,J 1,J 1.J I,J l-,J 1,J 1,J+ 1,J 1,J" 

+Fll. ·(<t>'+1 ,-cpo 1 .J 2 + F12 .. (cp. '+1-<1>· . 1) 2J (49) 1,J 1 ,J 1- ,J 1,J 1,J 1,J-

w'here: 

Fll 
Fl 

= 4 

2 

Fl2 = Ax FI 
Ay 4 

The unsteady state 
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For the transient case the Crank-Nicolson method of differencing 

was chosen. This method evaluates the space derivatives centrally in 

time as well as in space, by taking the average of the space differences 

at time (n) and at time (n+1). This results in a second order approxi-

mation in space and time with a truncation error of the order of 
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[
- 2 2 2

J O(~) + O(6y) + O(~) . This is an advantage over the first order 

approximation of the implicit method which gives a truncation error of 

2 2 
the order of [O(~) + O(~y) + 0(6t)J. For linear problems the Crank-

Nicolson method gives faster convergence and larger time steps can be 

used due to the smaller truncation error. It is believed by workers in 

the field of nwnerical solutions to partial differential equations that thes e 

properties of the method hold also for non linear problems. The method 

is unconditionally stable for linear problems. Nothing comparable to 

this can be said about nonlinear problems. 

It is interesting to note that in the literature there are two ways 

reported for implementing the Crank-Nicolson scheme in nonlinear 

problems. The first method multiplies the average of the nonlinear 

coefficient evaluated at (n) and (n+l) time levels, by the average of the 

differences at (n) and (n+l) time levels (Forsythe and Wasow, 1960; 

Douglas, 1961; Remson, Hornberger and Molz, 1971). The second 

method takes the average of the two products of the nonlinear coefficient 

evaluated at (n) time level multiplied by differences at (n) time level and 

the nonlinear coefficient evaluated at (n+l) time level multiplied by 

differences at (n+1) time level (Richtmyer, 1957; Jeppson, 1972). 

An example may best illustrate the difference. Suppose we want the 

Crank- Nicolson sc heme for the expres s ion: 

au 
a(x, y, t, u) ax 

Obviously we seek an approximation to: 



where: 

1 

au)n+l lax 
n+!- n+!- n+!-

a 2 = a (x, y, t 2, U 2) 

The first method gives: 

[ 

n n+ll [ 1 u~ 1 .- u~ l' U~+ll. - U~+ll .)] 
A +2A .!.\ 1~~ 1- .J + 1+ ~ 1- .J 

The second method gives 

n n 
U. 1 . - U. 1 . 1+ ,J 1-, J 

2Ax 

un
+

l 
_ U

n
+

1 
] 

i+1,~ i-l,j 
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To test which of the two expressions is a better approximation, and at 

the suggestion of Dr. Roland W. Jeppson and Dr. James D. Watson 

(Professor of Mathematics at Utah State University), both expressions 

were expanded in Taylor's series. Both were found to be second order 

approximations to: 

1 au )n4 
A nit l -ax-

The second method (J eppson, 1972) was chosen for this study as it is 

easier in computation. It is important to note that when the nonlinear 

coefficient is associated with the time derivative, the first method is 

used always (see Jeppson, 1972). 



65 

Applying the Crank-Nicolson scheme to Equation (35) gives: 

F 7. .' <p. 1 . + F 8 . . <t>. I . + F 9 . . <p. . +1 + F I O. . <1>. . 1 
1,J 1+,J 1,J 1-,J 1,J 1,J 1,J 1,J-

-2 [1 +(~x)2]<I> .. +Fl1 .. {<t>'+l .-<1>. 1.)2 
I..).y 1,J 1,J 1 ,J 1- ,J 

2 
+ F12 .. (<p. '+1- <t> .. 1) 1,J 1,J 1,J-

where: 

n+1 n = G 3. E5 (F 1 3 1 + F 13 2) (cp. . - cp. . ) 
1,J 1,J 

2 
E5 = (Ax) 

~t 

F13
n

+ i = i [F 131 + F 132] 

F 131 = {F13)n 

F 132 = (F13 )nt1 

n 
B .. = F7 .. <P'+1 .+ F8 .. <t>. 1 .+ F9 .. <t>i,j+l 

1,J 1,J 1 ,J 1,J 1-,J 1,J 

+ F10 .. <p •. 1 -2 [1 + (~x)2]cp .. 
1,J 1,J- I..).y 1,J 

n+l 

n 
+B .. 

1, J 

( 50) 

2 . 2 
+ F11. ·(<t>·+l . -cpo 1 .) + F12 .. (cp. '+1 -cpo . 1) 1,J 1,J 1- ,J 1,J 1,J 1,J-

For saturated flow, Fll, F12, Fl3 and B~ . are all zero and Equation 
1, J 

(50) becomes similar to Equation (47). 

n 
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Treatment of the Boundary Conditions 

Boundary (1) - (2) 

The values of cj> at nodes along this boundary were evaluated 

using Equation (38) where Yl is read as part of the data. These values 

are then left static for the remainder of the solution o 

Boundaries (5) - (6) and (6) - (7) 

A central differencing is used for equation (44) resulting in: 

<p. +1 . == <p. 1 . - ~x· Sina • Cos a 
1 , J 1-, J 

(51) 

A column of imaginary nodes is created at (i+l) position where 

(i) is the boundary, and values of <p at these imaginary nodes are com-

puted using equation (51). The boundary nodes are then treated as 

interior nodes. Solution for <\> at this boundary is started at the bottom 

node and worked up through the colwnn of nodes. H is computed from 

cj> at each node and when H is found negative for a node the values of cj> 

for all the nodes above it are made equal to the value of cj> at the node. 

This corresponds to the static equilibrium condition of boundary (5) - (6). 

Boundaries (2) - (5) and (7) - (1) 

These are the normal flux boundaries. Imaginary nodes are 

created as shown in Table 1 for each type of boundary geometry. Values 

of <\> at these imaginary nodes are computed from <\> values at neighboring 

real nodes according to the equations in Table 2. For the derivation of 
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thea e equations see A,ppendix C. The boundary nodes are then treated 

as internal nodes. One more constraint was imposed on nodes along 

boundary (3) - (4) where the flux is not zero. Whenever the value of H 

at these nodes exceeded zero the value of <p was readjusted to give an H 

equal to zero. This simulates saturation but no ponding at the surface. 

Treatment of Heterogeneity 

As discussed before, only heterogeneity in the saturated hydraulic 

conductivity is considered in this study. There are methods of calculating 

the distribution of values of K from measurements of the distribution of 
o 

<t> values in a saturated heterogeneous domain of interest, (see King, 

1974 and the references therein). These methods utilize the method of 

characteristics in partial differential equations to calculate K at any 
o 

point along a streamline (or stream tube) from measurements of <p 

gradients and K at few base points in the domain. These methods are 
o 

not yet of widely spread use and there are still some complications in 

applying them to field situations (King, 1974). For the general drain-

age design problem (and for the present study as well) it is not expected 

that there will. be enough available data (es pecially on the distribution of 

<t» to allow application of the above methods. Characterization of 

heterogeneity will, rather be made by the conventional method of taking 

measurements of K at different points in a field. 
o 

For the present study K will be assumed to vary linearly with 
o 

x and with depth (T) according to the relation: 



Table 2. Equations for normal flux boundaries. 

Code num.ber 

Upper boundary 

<1>. '+1 = I,J 
4 

<1>. '+1 1, J = 
5 

<1>'+1 ' = 1 , J 

<1>. . +1 = I,J 

6 

<1>'+1 . = I , J 

cp. . +1 = 1, J 

7 

<I> • 1 . = 1- ,J 

<1>. '+1 = 1, J 

8 

<1>. 1 . = I- ,J 

cp. '+1 = 1, J 

CP'+1 . = 1 , J 
9 

<1> . 1 . = l- , J 

>.'c* 
Equations 

q. 
1 

<1>. , 1 +E3-
1, J- K 

q. 
1 

<p. , 1 +E3-
1, J- K 

q, 
1 

E 10 <p. +1 . 1 + E 9 <1>. . 1 + E 8 K 1 ,J- 1,J-

q. 
1 

E10<l> .. +E9<1>. 1 .+ E8 T 1, J 1- ,J 

q. 
E 10 <1>. +1 . 1 + E 9 cp. . 1 + E8 _I_ 

1 ,J- I,J- K 

q. 
1 

cp. '1+,E3 T 1, J-

q. 
1 

E10 <1>. 1 . 1 + E9 cp. 0 1 + E8 -
1- ,J- 1,J- K 

q. 
1 

E10 cp. 0+ E9 $'+1 . + E8 K I,J 1 ,J 

q. 
E 10 <1>. 1 . 1 + E 9 cp. 0 1 + E 8 

1 --
1- ,J- 1,J- K 

q. 
1 

<1> .. 1 + E3 T 1, J-

q. 
E10<1>. 1 0 1+ E9 <1> •• 1 + E8.......!..-

1+ .J- 1,J- K 

q. 

E 1 0 <1>. 1 0 1 + E 9 <1>. 0 1 + E8 _1_ 
1- ,J- 1,J- K 

68 



Table 2. (Continued) 

Code number 

Lower boundary 

10 

II 

12 

13 

14 

15 

** Equations 

cpo . I = <1>. '+1 I,J- 1,J 

cp. , I = tp. '+1 1,J- 1,J 

<1>i+l,j = EIO<1>i+l,j+1 + E9 <P i ,j+l 

<1>. , 1 = <p. '+1 1,J- 1, J 

<p. 1 ' = E10<l>, I' I+ E9 <1>. '1 1- , J 1- ,J+ 1,J+ 

cp. , I = cp. '+1 1,J- 1,J 

CPi+l,j = EIOCPi+l,j+l+ E9 CPi,j+l 

<p. 1 ' = EI0 <p. 1 '+1 + E9 <p. '+1 
1- , J 1- ,J 1,J 

<p, 1 . = E 10 <1>. 1 . +1 + E 9 cP, , I 1- . , J 1- ,J I,J+ 

<p. , 1 = E10<p .. + E9cp. 1 ' 
I,J- I,J 1+ ,J 

CP'+1 ' = EIOcp'l ' 1 + E9cj> .. I 1 , J 1+ ,J+ I,J+ 
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Table 2. (Continued) 

Code nwnber 

15 

** E3 = 26,y 

** E8 Ay = 

*>:< = (~)2 E9 Ax 

** Equations 

cpo . 1 = E 10 cpo . + E 9 cp. 1 . 
1,3- 1,3 1- ,J 

K = Cl + C2x + C3T 
o 

(52) 

The coeffec ients C 1, C 2 and C3 are found by fitting the actual K 
o 

measurements to Equation (52) by a least squares method. (For least 

sqares method see Kreider et aI, 1966.) The matrix equation that 
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results in the least squares treatment has a symmetric positive definite 

matrix (see Appendix D). The equation is solved by two subroutines 

(Decompose and Solve) adapted from Weaver (1967). Once the coeff-

cients of Equation (52) are known the values of K at the nodes are cal
o 

culated and stored in a two-dimensional array that corresponds to the 

mesh nodes. Since Equation (52), especially in extrapolation of data, 

may give values that may be too high or too low, two constraints K max 
o 

and K min are imposed on the values calculated by Equation (52). Also 
o 

aK 
o 

and 8T are calculated. 
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Method of Solution 

The steady state 

Equations (47) and (49) for the saturated and the unsaturated 

zones respectively, when applied at the nodes of the mesh, result in a 

system of simultaneous algebraic equations. This system is solved by 

the SOR iterative procedure. The solution in each iteration proceeds 

systematically from the leftmost column of nodes to the right and from 

the bottom node up in each colwnn. Exterior nodes and drain nodes are 

skipped. At each of the interior and boundary nodes, H is evaluated 

and if the node is found saturated Equation (47) is applied. If the node 

is found unsaturated Equation (49) is applied. Saturation is arbitrarily 

defined by the user as a node is considered saturated if H at the node is 

equal or larger .than Z of Equation (27) where Z is specified by the user. 

In this study Z was taken to be zero. Starting from an initial educated 

guess for the values of ct> at the nodes each sweep through the nodes 

(one iteration) will improve the values of <p at the nodes toward the 

solution. This procedure is iterated until the sum of the absolute values 

of the improvements at all the nodes is less than a specified small value. 

This value was specified at O. 001 foot for this study; The solution 

should converge starting from practically any initial guess, but a close 

initial guess greatly cuts down the time needed for convergence. A 

close initial guess can be obtained using anyone of the approximate 

steady state equatioI\~ referrai to in the review of literature (for example 
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Keller and Robinson, 1959). In the present study convergence was 

obtained from an initial guess of the position of the water table much 

above the solution and from one below the final solution. 

Equation (49) gives rise to a system of nonlinear algebraic 

equations because of the depend ence of Fil. . and F12. . on <1>. .• 
1,J I,J I,J 

These equations are linearized by evaluating Fil. . and F12. . from 
1, J I, J 

known values of <1> .. at the previous iteration. Thus if we introduce the 
1, J 

iteration index m, Equation (49) at the advanced iteration will be: 

cp. . F7 ..• CP'+l . + F .. • cp. 1 . + F9. ,. cp. '+1 m+l= G4 [ m 8 m+l m 
1,J 1,J 1 ,J I,J 1-,J 1,J 1,J 

m+l m m m+l 2 
+ FlO .. • cp. , 1 + Fll. ,(CP'+l .-cp. 1 .) 

I,J I.J- I,J 1 ,J 1- ,J 

m m m+l 2J + F12 .. (cp. '+1 - cp .. I) I,J l,J 1,J-
(53) 

With the iteration index, Equation (47) will look like Equation (53) with-

out the terms containing Fil. . and F12. .• 
1, J I, J 

After the value ofcp:n:-
l 

is found by Equation (53) it is over-
1, J 

relaxed according to Equation (54) below. 

m+l m m+l m 
cp .. =cp. ,+W(cp .. -<I> .. ) 

I,J I,J I,J 1,J 
(54) 

m+l . m+l 
Where <1>. • 1S the over- relaxed value of <1>. , and W is an over-

I, J I, J 

relaxation factor. As mentioned before, there are methods of calculating 

an optimum value of W for linear problems with certain simple 
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geometries (a square or a rectangle). These optimum values give the 

fastest convergence to the solution. For nonlinear problems with 

irregular geometries there are no such methods. Even in the linear 

cases with simple geometries, sometimes the computer time spent in 

calculating an optimum value of W is more than the computer time saved 

by its use (Forsythe and Wasow,l960). For the present study few values 

of W were tried and the number of iterations and time required for 

convergence were observed. This resulted in a choice of W = 1. 5 for 

the saturated nodes and W = 1. 0 for the unsaturated nodes 0 

The uns t eady state 

The same SOR iterative procedure and the same method of 

linearization which worked for the steady state were tried for the 

unsteady state Equation (50) (which is nonlinear in the unsaturated zone). 

This procedure did not converge and showed undamped oscillation at the 

upper flux boundary. The reason for that was, most understandably, 

the method of linearization. At one iteration the value of <I>~. is very 
1, J 

low, K is very small, the normal gradient needed to effect the specified 
r 

flux must necessarily be very large resulting in a very high value of cp at 

h ·· d d d m+l t e Imag1nary no es an a saturate cpo . • 
1,J 

h 
. . m+l 

In t e next Iterahon cpo . 
1, J 

is saturated, K = K which allows the specified flux at a small normal 
r 0 

gradient a:pd the resulting cp~:2 is too small. This kept oscillating. 
1, J 

Becaus e of the above difficulty the method was changed to a 

scheme of two nested iterations. The inner iteration is a Newton 
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iteration to solve the nonlinear equation at a node with the neighboring 

nodes fixed, and the outer iteration is the usual SOR iteration. 

The Newton iteration could be described by: 

where: 

FN 
FNP 

K = The iteration index of the Newton iteration 

FN = f ( n+l r <p. . 
1, J 

FNP ( 
8FN r = 8 n+l <p. . 

1, J 

From Equation (50) we get: 

(55) 

n+1 n+1 n+1 n+l 
FN = F7 ..• CP'+l . + FB . .• <p. 1 . + F9 .. <p. '+1+ FlO ..• <p •. 1 

1,J 1 ,J 1,J 1- ,J 1,J I,J I,J 1,J-

2 
n+1 + F1l n. +.1 n+l n+l - (2 + 2 E2 + G 5) <p. . (<p. +1 . - <p. 1 .) 
1,J 1,J 1 ,J 1-,J 

2 
n+l n+l n+l n n 

+ F12 .. (<p. '+1 - <p •. 1) + G5 <p •. + B .. = 0 
1,J 1,J 1,J- 1,J 1,J 

(56 ) 

FNP = F7 ... F17 + FB . . FIB + F9 .. F19 + FlO .. F20- F25 <p~+.1 
1,J 1,J 1,J 1,J 1,J 
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- (2 + 2E2 + G5) + 2Fll. . <1>'+1 . -cp. 1 ' (Fl7- FIB) n+l ( n+l n+l) 
1, J 1 , J 1-, J 

2 

(
n+l n+l 1 n+l ( n+l n+l) + F21 cpo 1 . - cpo l' + 2F12. , cP' '+1 - <1>. , 1 (F19 - F20) l+,J l-,J 1,J 1,J l,J-

n+l n+l n 

1 

2 
+ F22 (cp, , 1- cp. '1 + F25 cp. , 

1,J+ 1,J- 1,J 

where: 

. 2 

E2 = (~; 1 

1 

G 5 = G 3 • E5 • F 1 3 n + 2" = G 3 • E5 (F 1 31 + F 1 3 2) 

a 
F17 = ~ (CP'+1 .) 

't'" 1 , J 
1, J 

a 
F19 = a,... (cp. '+1) 

't'., 1, J 
1, J 

a 
F20 = 8"" (<I>. '-1) 

'Y" 1,J 
1, J 

a 
F21 = -a-(Fl1 .. ) cp.. 1,J 

1,J 

a 
F22 = -a-(FI2 .. ) 

cp.. 1, J 
1,J 

F25 = 8G5 
8cp. . 

1,J 

(57) 
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In all of the above expressions the variables are taken at the (n+~ time 

level. Table 3, where, 

shows the values of F17, FIB, F19 and F20 for the different calculation 

code numbers_ These values are derived from the equations in Table 2. 

The other derivatives indicated are: 

Gl • q. 
F = ____ 1 (h)'T-l 

K 
o 

F2l 
Gl = __ 0 

4 
Kr a (h)7-2[Glo K 

r 

'T 
• (h) + 1 -7] 

F22 = E2 a F2l 

F25 = 
G3 • E5 

K 
Se 2 a_. 
K 

r 

A-2 7' 
(h) [ 2G 2· Se • (h) - Gl- K • (h) +1- ~ 

r 
o 

This method of solution also did not work, especially at the upper 

flux boundary. This brought into focus the warnings of Douglas (1961) and 

Remson, Hornberger and Molz (1971) about the unworkability of using Crank-

Nicolson averaging process at a boundary with a normal derivative boun-

dary condition. For such cases both authors suggested differencing the 

boundary condition completely at the advanced time level. 

The implicit differencing scheme was then used for the nodes at 

the normal derivative boundaries and the Crank-Nicolson scheme was 

retained for the interior nodes. This worked well in the solution, but 
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Table 3. Derivatives for Newton iteration 

Code nwnber Fl7 FIB F19 F20 

2 0 0 0 0 

4 0 0 F. E3 0 

5 F. E8 0 F. E3 0 

6 F. E8 0 E10 + F. E8 0 

7 0 F. E8 F. E3 0 

8 0 F. E8 E10 + F. E8 0 

9 F. E8 F. E8 F. E3 0 

10 0 0 0 0 

11 0 0 0 0 

12 0 0 a 0 

13 a a 0 0 

14 0 a 0 E10 

15 0 a 0 E10 

doubt is shed on the order of the global truncation error now, and 

whether the method as such would retain the second order truncation 

error (in time) of the Crank-Nicolson scheme, (Jeppson, 1974, verbal 

discussion). 

The implicit operator can be obtained by differencing Equation 

(35) completely at the advanced time level, or from Equation (50) by 

setting B~ . = 0, F13 = F132 and G5 = G3 • E5· F132. The 'expressions 
1, J 

for FN and FNP are similar to Equations (56) and (57) respectively, 

with B~ . = 0, F13 = F132 and G5 as described above. The derivatives 
1, J 

indicated for the Crank-Nicolson are not changed. 
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Since the values of cpo 0 computed in a Newton iteration are not 
1, J 

final values, this iteration is not carried to a high degree of improve-

mente The iterations are terminated after three iterations or when the 

improvement in any iteration is les s than O. 01 whichever comes first. 

The program however is flexible in these indeces as they are read as 

data. 

For the saturated nodes Equation (35) simplifies to the linear 

Eq uation (36) and the us ual SOR iteration (outer iteration only) is us ed 

with Equation (47). 



THE COMPUTER PRCXiRAM 

Description 

The program is written in Fortran N language. A listing of the 

program is shown in Appendix A. It consists of the following four main 

bloc ks and two subroutines. 

1. Setting the problem 

Data for the geometry of the problem and elevations of the land 

surface and the bed at different points are read. The geometry of the 

problem is set, divided by a mesh with pre- specified numbers of nodes 

in the x-direction and the y-direction, and calculation codes are com-

puted and stored for each node. 

2. Setting the heterogeneous 
saturated conductivity 

Point data of coupled values of x, T and K are read for several 
o 

measured points. The program sets the matrix equation for the coeffi-

cients of Eq'uation (52) and the matrix equation is solved by the two sub-

routines Decompose and Solve, as described in Appendix D. There is an 

option of by- pas sing this block for homogeneous soils, as the program was 

constructed to handle both cases. This is done by reading in a code for 

heterogeneity (KCODE) as a data input. If KCODE = 0, the domain is 
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8K oK 

o 0 
specified as homogeneous, Ko is read and ax and aT are set equal to 

zero and the block is by-passed. 

3. The steady state solution 

The initial guess of the distribution of cp at the nodes, a one dimen-

sional array of the values of q. (i = l, 2 nUlllber of columns of the mesh) 
1 

and values for the over-relaxation parameters WI and W2 are read. The 

solution then proceeds as described before in the section on m.ethod of 

solution. 

4. The unsteady state solution 

The over-relaxation parameters W3 and W4 and the number of 

time steps are read. For each time step the following data are read: 

1. Magnitude of the time step 

2. An extrapolation code nUlllber: 

0: No extrapolation of the results of the previous tim.e 

step into the pres ent step. 

1: Extrapolate. 

3. A printing code nurnber. 

0: No printing required, 1: Print 

4. A code for the flux q: 

0: q. = 0 is set for zero flux 
1 

I: q. is read 
1 

The solution then proceeds as described earlier. 
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The output of the program consists of the calculation code array, 

K array, the coefficients of the equation of heterogeneity, and for the 
o 

steady state and each time step the values of <j> and H at each node. The 

position of the water table is then easily drawn by interpolation (or 

extrapolation) from the values of H at the nodes. 

Results and Discus sion 

A hypothetical drainage problem on sloping land was us ed in 

developing the program. The geometry of this problem is shown in 

Figure 2, where the broken lines are the actual land surface and im-

permeable bed boundaries while the stepped boundaries are these same 

boundaries as simplified by the computer. The soil was assumed 

heterogeneous and hypothetical hydraulic conductivity data were supplied. 

These data when fitted by the least squares method gave: 

K = 0.32111- 0.00001 x-D. 011 09T 
o 

o. 02 < K < O. 5 
0-

(58) 

Where K is in feet per hour and x and T are in feet. the constraints on 
o 

K are used because the least squares method may give minus values or 
o 

unreasonably high values for K when the data are extrapolated. 
o 

The soil parameters required in Equations (27), (29), and (31) 

were arbitrarily (but reasonably) set as follows: 
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A = 1. 0, B = 1. 0, C = 1. 0, 

hb = 1. 5 ft, T = 6. 5, A. = 1. 5, 

.,., = o. 3 5 , Z = 0 ft 

D = 1.0 

s = o. 15 
r 

The general slope of the impermeable bed was about 19 percent. 
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Two runs with two different rates of recharge were run for this 

problem. One run had a very high flux rate to impose a severe condi-

tion on the program. The other run was more in conformity with the 

usual sprinkler irrigation practice as far as the application rate was 

concerned. Table 4 shows the rates and total amounts of recharge. 

Water was applied for five hours. 

Table 4. Rates of recharge for the hypothetical problem 

Node column Run 1 Run 2 

Rate Total Rate Total 
ft/hour ft ft/hour ft 

1 - 6 0 0 0 ° 
7 0.05 0. 2·5, o. en 0.05 

8 0.08 0.40 0.016 0.08 

9 - 41 0.10 0.50 0.02 0.10 

42 0.09 0.45 0.018 0.09 

43 0.08 0.40 O. 016 0.08 

44 0.05 O. 25 O. 01 0.05 

45 - 50 0 0 0 0 
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Figure 3a shows the water table buildup for run 1. The water 

table mounds and depressions seem exaggerated because of the distorted 

(enlarged) vertical scale. It is interesting to notice in this figure that 

the water table in some parts of the region (from x~l30 to x,,145) did 

not rise much while in others it was raised greatlyo The probable 

reason for this is that in this region, having the maximum unsaturated 

thickness above the water table, most of the recharge is still in transient 

storage in the unsaturated zone at five hours. Figure 3b shows the water 

table recession for run 1. The water table is receding in some parts, 

but is still building up in the region x .. 130 to x,.,,145 even at 39.45 hours 

after recharge stopped. This could be explained by the fact that this 

region is receiving water from the transient storage plus water from 

higher lands upslope after the recharge stops. 

Figures 4a and 4b show the water table build-up and recession 

respectively for the run with one fifth the rate of recharge (run 2). 

Figure 5 shows the water table build- up and part of the 

recession for the point midway between the two drains, for both run 1 

and run 2. Curves A and B are for run 1. The difference between the 

two curves is that in curve A the position of the water table is found 

by linear interpolation between the uppermost saturated node and the 

lowest unsaturated node, while in curve B the position is found by linear 

extrapolation from the uppermost saturated node to zero H using :: -- -1. 

Obviously, both methods are only approximations, as the distribution of 

H is not linear especially when there is infiltration and more so across 
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a wetting front. Due to the large mesh size and because interpolation 

would raise the water table instantaneously when the upper unsaturated 

node is wetted (which is not physically the case), the water position for 

all the other figures was found by extrapolation as described above. 

Figure 5 shows that for both runs, and for a certain period, the rate of 

ris c of the water table is muc h larger than the rate of ris e before or 

after that period. This period was from t = 2. 25 hours to t = 3. 0 hour s 

for run 1 and from t = 3. 0 hours to t = 3. 5 hours for run 2. This can be 

explained by assuming that this was the time when extra seepage from 

upslope reached the midpoint. The saturated thickness of flow is quickly 

built up to pass that extra seepage. This is supported by the lag of 0.75 

hours in run 2 for this to happen, and by noticing that the magnitude of 

the buildup for this seepage was smaller in run 2 than in run l, which is 

to be expected physically. In both runs the very early response of the 

water table to recharge is due to the large mesh size. 

Figure 6 shows the water table recession with time at the mid-

point between the two drains. Time is started from t = 5. 0 hours for 

run 2 but from t = 5. 25 hours for run 1 because in this case the land 

surface at the midpoint was saturated at t = 5. 0 hours. The curves are 

plotted on semilogartlnnic paper with the two dimensionless parameters 

VB. 
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Where: 

y = Height of the water table at the midpoint above the straight 

line joining the two drains. 

y = y at time zero 
o 

2 
~ = A parameter with dimentions ft /hour 

f3 = 1 ft
2

/hour in thes e curves. 

These curves are presented in this form for a later comparison with 

some approximate mathematical solutions for the falling water table in 

flat lands. In curves lA and 2A in this figure the datum for y and y 
o 

is the midpoint of the straight line joining the two drains. In curves IB & 2B 

the datum was taken as the position of the water table at the midpoint in 

the case of steady state with no local recharge. Two things to note about 

these curves are that they are very flat and that the curves for run 2 

(lower volume and rate of recharge) are higher than the curves for run 1. 

The flatness of these curves is, most probably, due to the fact that a 

part of the recharge was still in transit through the unsaturated zone at 

the time of termination of recharge. The percolation of this water to 

the saturated zone below will slow down the water table recession. In 

fact this percolation in run 2, from t = 0 to t = O. 25 hours after stopping 

the recharge, was so great tha t it produced a rise in the water table 

instead of a recession. This effect was more pronounced in run 2 be-

cause more of the recharge was in transit in the unsaturated zone 

(thicker unsaturated zone) in this run than in run 1. This gave a flatter 

and higher curve for run 2. Another factor in the flatness of the curves 



91 

is the slope. These factors will be discussed in more detail in a later 

section when the nUInerical solution is compared with some approximate 

mathematical solutions. 

Tes ting of the Program. 

For proper testing of the program., the best thing would be a con

troled field experiment designed and executed for that purpose. This 

however would be too costly and time consuming. Available data were 

searched for something suitable for a test of the program. No suitable 

data were found for the rising water table where very frequent measure

ments of the water table elevations are required during the rise. Some 

good data for the falling water table were available for the Hullinger 

farm near Vernal, Utah. The data are those of Khalil- Ur- Rehm.an 

(1971) who recorded measurements of the water table depths daily for 

six days with hourly measurements in the early phases of the water 

table recession. Fortunately, data on the saturated hydraulic conductivity, 

other soil parameters and depths to the impermeable layer were also 

available for this farm. 

Figure 7 shows the domain of the testing problem (with the 

vertical scale greatly enlarged). This is a section across drains 6 and 

5 in the Hullinger farm. Again, the broken lines give the actual boqndaries 

while the stepped boundaries are the computer boundaries. Data for the 

saturated hydraulic conductivity and elevations of land surface and im

permeable layer were taken from unpublished data by Dr. Larry G. King. 
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Da.ta. on water table positions shown in Table 6 in Appendix E were taken 

from Table 22 of Khalil- Ur-Rehman (1971). Table 7 in Appendix E 

shows the relationship of K, 9 and H. This table is a reproduction of 

Table 51 of King and Hanks (1973) which is based on laboratory results 

by Andrade (1971). 

The soil is a two-layered system as shown in Figure 7. The 

program however changes it into a one-layered heterogeneous system 

with 

K = 0.09846 + 0.00011 x + 0.30020 T 
o 

1. 33 < K < 8. 75 
0-

(59) 

Where K is in feet per hour and x, T are in feet. The general slope of 
o 

the bed is about 2 percent. 

From Table 7 in Appendix E, 11 is found, and using the methods 

of Brooks and Corey (l964), Sr, Pb, and Tare found. With these values 

known, fitting of the data to Equations (27) and (29) gave the values of 

A, B, C, D, and 7 in these equations. The following values of these 

parameters were found for the Hullinger farm soil: 

A = 1.0 B = 1.0 C = 4.0 D = 4.0 

hb = O. 46 ft 7 = 2. 81 A = O. 527 Sr = O. 13 

= 0.48 Z = 0 ft. 

The above values of 7 and A. are not any nx>re related to each other by the 

Brooks-Corey (1964) relationship (Equation 17). However, to check the 
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data they were fitted to Brooks-Corey (1964) equations (Equations 3, and 

16) and the resulting values of T and ~ were in excellent agreement with 

Equation (17), (~= 0.28 and T= 2.81). This gave confidence in the data. 

Figures 8 and 9 show the data of Table 7 and the predictiGlns of e.quations 

(27) and (29) with the above values of the soil parameters. In both 

figures the divergence of the table data from the predictions at high 

suction heads was disregarded because the data in this range were only 

extrapolations of Andrade1s (1971) laboratory results. A second reason 

for the neglect of this divergence is the fact that in the drainage problem 

we are not likely to deal with such large suction heads (the divergence 

was for heads of 40 meters and above or 131 feet and above). A third 

reason for neglecting the divergence in the effective saturation curve 

(Figure 9) was the recommendation of Brooks and Corey (1964) to neglect 

this divergence at high heads as the value of S becomes very sensitive 
e 

to the c hoic e of the value of S at high heads. 
. r 

The falling water table case on the Hullinger farm was solved 

by the program starting from an initial condition very close to the initial 

condition of Khalil- Ur-Rehman (1971). Differences in the two conditions, 

however, were inevitable because of the changes the computer program 

introduces on the geometry of the problem and because the initial distri-

bution of values of cp at the nodes could only be gros sly approximated 

from our knowledge of the initial water table position. The fall of the 

water table was simulated for a period of 349.55 hours (14.55 days). 

Figures 10 and 11 show the results of the nurn.erical solution together 
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with Khalil- Ur-Relunan's (1971) field results for the recession of the 

water table at the mid point between the drains. Both curves in Figure 

L 0 were plotted with P :: 1 ft
2

/hour. In Figure 11 ~ was calculated 
KD 

o e 
separately for each curve from f3 s For the numerical solution 

the following values were used: 

K :: S. 08 ft/hour (average K ) 
o 0 

D :: 29. 29 ft. 
e 

S :: YJ - S :: 0.35 
r 

Khalil- Ur-Relunan (1971) used the following values for his experiment: 

K = 1.339 ft/hour 
o 

n :: 19. 08 ft 
c 

S :: O. 26 

Figure 10 shows that the recession of the water table in the 

numerical solution was much slower than the results of the field experi-

mente This difference could be due to a combination of the following 

factors: 

model. 

a. Inaccurate characterization of K and heterogeneity in the 
o 

b. The presence of natural drainage in the third dimension. 

This was obs erved by previous investigations on the Hullinger farm 

(King, in a verbal communication). This, of course, will give faster 

actual recession than the model will predict. 

c. Effects of heterogeneity in, or inaccurate characterization 

of the soil parameters for the unsaturated flow. 



100 

d. Differences between the two initial conditions as discus sed 

above. y for the model was 3. 025 ft. While in Khalil- Ur-Rehman's 
o 

(1971) experiment y was 2. 29 fto 
o 

Limitations of the Program 

In addition to the limitations dictated by the as sumptions in the 

formulation of the model as the one- phase assumption and the neglect of 

air pressure buildup in the medium and other assumptions which were 

discussed earlier in this dissertation, the program has another important 

limitation. This is that the model cannot simulate the phenomenon of 

infiltration as accurately as it should be. This limitation is introduced by 

the large size of the mesh which is dictated by the usually large size of 

the drainage problem. While infiltration simulation may need a mesh 

size of one inch or less, such a small size is neither needed nor econ-

omically possible for the rest of the domain of the drainage problem 

which may be several hundred feet in length. 
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COMPARISON OF THE RESULTS WITH SOME 

A,PPROXIMA TE THEORY 

Some researchers (Durnm,1954, 1968; Brooks, 1961; Jenab, 

Bishop, and Peterson, 1969; van Schillfgaarde, 1963, 1965; Moody, 

1966) investigated the transient case of the falling water table in flat 

lands by solving the linearized form of the Boussinesq equation: 

Where: 

a ah ah 
-(K h-)::: s-ax 0 ax at ( 60) 

h = Thickness of saturated flow 

x = Horizontal coordinate. h and x are shown in Figure 12. 

K = Saturated Hydraulic Conductivity 
o 

S ::: Drainable porosity or specific yield. 

t ::: Time 

By considering only homogeneous soils (K = constant) and by 
o 

approximating the variable h in the brackets of the left hand side of 

Equation (60) by a constant average value of h called D , Equation (60) 
e 

is linearized into: 

aZh ah 
K D --= S 

o e ax2 at (61) 
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Figure 12. Definition of drainaQe parameters. 



Where: 

D = The average depth of flow 
e 

Yo Yo 
= d + -2- or de + -2-

d = Depth below drains to the barrier 
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d = Depth below drains as modified by Hooghoudt1s effective 
e 

depth theory 

Y = Height of the water table at the midpoint between the drains 
o 

above the line joining the two drains at time zero. 

Some of these solutions for the falling water table were reviewed by 

Khalil- Ur-Rehman (1971) and Sabti (1974). Many of these solutions were 

presented as recession curves of the water table at the midpoint plotted 

on semi-logarithmic paper with the two dimensionless parameters -L 
Yo 

and ~ _t_ 
L2 

Where: 

y = Height of the water table at the midpoint above the drains 

at time t 

L = Spacing of the drains 

KD 
o e 
S 

Figure 13 shows some of these theoretical curves. This figure was 

taken from Sabti (1974). 

Although the approach of the above theory is quite different from 
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the approach of the model in the present study, it was felt that a quali'

tative comparison of the results of the two may give an insight into the 

applicability of this theory to drains in sloping heterogeneous lands. 

The formulation in the present model is closer to the physical process 

of drainage than the above theory and it may be desirable to indicate the 

differences between the two at this point. Firstly, the theory treats 

homogeneous soils only while the present model treats both the homo

geneous and the heterogeneous cases. In nature, heterogeneity of the 

soil is the rule. Secondly, the theory is based on the Dupuit-Forch

heimer assumptions which are not used in the present model. The 

model uses the more accurate hydrodynamic theory. Thirdly, the 

theory was developed for flat lands while the present model was developed 

for sloping lands. Fourthly, the theory considers saturated flow only 

and asswnes instantaneous and complete desaturation as the water table 

falls beyond a point. The present model is' closer to the natural process 

as it considers both the saturated and the unsaturated flows and the time 

variability of desaturation. 

Khalil- Ur-Rebman's (1971) field results on the Hullinger farm 

did not agree with the theory. His recession curves were flatter than 

the theoritical curves. Sabti (1974) investigating drainage on the same 

farm found different degrees of correlation (from good to none) between 

his field results and the theoretical curves. Both workers mentioned 

slope as a main possible reason for the divergence of the field results 

from the theory. 



In comparing the results of the hypothetical problem with the 
K D 

theory it was impossible to define a value for {3 = o e fl. S or p ottlng 
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. the curves of Figure 6 becaus e K , D and S were all variables. That 
o e 

was the reason for plotting these curves with {3 :. 1 ft2/ hour • Since the 

use of any other value of (3 will only displace the curves horizontally 

without affecting their slopes it is pos sible to compare thes e curves with 

the theoretical curves of Figure 13. It is obvious that the curves of the 

pres ent model are much flatter than the theoretical curves, indicating a 

slower rate of recession. 

Figure 14 shows a comparison of the numerical curve and the 

field curve for the Hullinger farm with some of the theoretical rec es sion 

curves. Again both the numerical prediction and the actual curve were 

flatter than the theoretical curves. The theoretical curves predict a 

much faster rate of recession than the nurn.erical solution. Some of the 

factors that might contribute to this difference are slope, unsaturated 

flow, heterogeneity and method of linearizing the nonlinear Boussinesq 

equation. 

1. Method of linearizing the Boussinesq equation. In getting 

Equation (61) from Equation (60) the depth of flow is assumed constant 

Yo 
and equal to the average of the values of the variable depth (D =d + -2 ). 

e e 

This underestimates the flow depth in the early stages of recession and 

over-estimates this depth for the latter stages. This will result in a 

theoretical rec ession curve which is steeper than the actual. 

2. Effect of the unsaturated flow. Equations (60) and (61) give: 
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( 62) 

Since we are dealing with the falling water table, the right hand side of 

Equation (62) is negative. 

If we include the percolation from the unsaturated region into the 

saturated region in the formulation of the Boussinesq equation, and 

recognize that desaturation is not complete and instantaneous as the 

water table falls, then Equation (60) will becon1.e: 

a ah. ah 
- (K h-)+ l(t) = S -
ax 0 ax 0 at 

Which gives after linearization: 

Where: 

8h 
at= 

KD 
o e 
S 
o 

i(t) = Rate of percolation into the saturated zone 

(63) 

(64) 

S = The fraction of the spec ific yield that is d rained at the 
o 

ons et of desaturation (les s than S) 

Since the second term on the right hand side of Equation (64) is positive, 

it tends to make :~ les s negative which means a slower rate of recession. 

This effect will depend on the magnitudes of i(t) and S , and in run 2 of 
o 

the hypothetical problem between times t = 0 and t = o. 25 hours it must 

have been larger than the absolute value of the negative first term on 
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the right hand side of Equation (64) changing :~ to a positive value and 

resulting in a water table rise. This also could be one of the reasons 

for the difference between the field results of Sabti (1974) and those of 

Khalil- Ur-Rehman for the same farm. Sabti started his measurements 

directly after stopping irrigation (i(t) is still high), while Khalil- Ur-' 

Rehman started his measurements after some time of stopping the irriga-

tion (giving time for i(t) to become small). 

3. Effec t of the slope. A s mentioned earlier the approximate 

theory was developed for flat lands, where the midpoint between the 

drains is a water divide. In sloping lands the midpoint is not a water 

divide. Actually the water divide in sloping lands was observed to be 

close to the upper drain in the steady state with no recharge case, to 

shift downslope as the water table rose and to shift back upslope as the 

water table fell. In all cases the midpoint was downslope of the water 

divide.. This means that the section at the midpoint receives water 

from higher land between it and the upper drain as well as from lands 

farther up beyond the upper drain. This extra flow needs an added 

thickness of flow at the midpoint, thus slowing the water table reces sion 

there. The presence of this seepage, even in the steady state with no 

recharge in some problems (as in the hypothetical problem) makes it 

erroneous to us e the midpoint of the line joining the two d rains as a 

datum for meas uring y and y • 
o 

As seen in Figure 1 2, Limit y is zero 
t-oo 

for flat lands, but may be larger (m in Figure 12) in sloping lands. 



This seepage and this choice of datun1 for y and y will make the 
o 

recession curve flatter. 
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Investigation of the Boussinesq equation for sloping lands may 

shed some light on the behavior of the water table in such cases. This 

equation for sloping lands is: 

a 
ax 

ah ah 
[K h Cos a (-a- + tan a)] = S -n-

O X ut 

which gives after linearization: 

ah 
Cos a • -at 

K D 
o e 
S. 

K 
a 

s 
ah 
ax 

(65) 

(66) 

Where a is the slope angle. It is interesting to note that the presence 

of the second term on the right hand side of Equation (66) can account for 

the lop-sided shape of the water table and the shifting of the water devide 

in sloping lands. ~~ is negative for the part of the water table down-

slope of the water divide and positive for the part upslope of the water 

divide... This results in a water table recession for the down slope part 

which is fas ter than that for the upslope part. Investigating Equation 

ah 
(66) at the m.idpoint between the drains, it is noted that ax is always 

negative there, but its absolute value decreas es with tim.e as the water 

devide shifts upslope. This means a slower recession at the midpoint 

as time passes and a flat recession curve. The magnitude of these 

effects of course depends on the magnitude of the slope angle a. 

It is difficult to compare the predictions of Equation (66) with 
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those of the flat land Equation (62). Whether Equation (66) will give a 

s lower or a faster reces sion at the midpoint will depend on the net 

result of the decrease in the negative value of the first term of the right 

hand side of Equation (66) and the increase in negative value introduced 

by the second term there. 

4. Effect of heterogeneity. If we formulate the Boussinesq 

equation for heterogeneous. soil ( flat land case) and if we assume Ko to 

vary with x and y, y being measured from the impermeable bed upwards, 

then the equation would be 

a [ joY=h(X) 1 8hl ah 
ax ( y=O Ko(x, y)dy ax} = Sat (67) 

Expanding Equation (67), using Leibnitz's rule for differentiation under 

the integral sign, and neglecting the term containing l :: ) 2 we get: 

8h 
-c:: at (68) 

Sine e it is difficult to investigate Equation (68) when K varies 
o 

with both x, y, hetergeneity with one coordinate at a time will be con-

sid ered. 

a. Ko varies with y alone. Say Ko = C
l 

+ C
3 

y. Equation (68) 

becomes 

[( 
1 1 a 2h ) 

C 1 + "2 C3 h h 8x2 



or to put it in a form similar to Equation (62) 

\\here: 

ah 
at = 

K D 
oav e 

S 

112 

(69) 

K = average K for the flow section. It is the average only 
oav 0 

because of the as swned linear relation of K to y. If it 
o 

is a nonlinear relation, then the definite integral of 

Equation (68) should be evaluated. 

If K increases with depth, K increases with time and a steeper 
o oav 

recession curve results. A flat curve results if K decreases with depth. 
o 

In practic e it is believed that the effect of this factor is not significant 

because h varies over a small range compared to its magnitude. 

b. Ko varies with x alone. Say Ko = C 1 + C
2 

x .. 

Equation (68) becomes: 

or 

ah 
at= 

K(x)D 
o e 

S 
ah 
ax (70) 

The second term on the right hand side of Equation (70) will act to change 

the shape of the water table and to shift the water divide even in flat 

lands. If C
2 

is positive (Ko increases with x) the water divide shifts 

b k d ah h 'd' b t' ac an ax at t e ml pOlnt ecomes nega lve. If C 2 is negative (K 0 
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decreafjCS with x) the water divide shifts forward and 
C>h 

at the midax 
point becomes positive. In both cases this second term in Equation (70) 

is negative. Its effect as time passes is difficult to evaluate as its value 

starts from zero ( :: = 0 at the midpoint to start with) and then in-

creases in the negative direction with time and then decreases as the 

water divide shifts farther away in the latter stages of drainage. 

From the results of the numerical solutions presented, the field 

rCAults for the Hullinger farm and the above theoretical discussion it 

can be safely concluded that the approximate analytical solutions deve-

loped for homogeneous flat lands are not applicable to heterogeneous 

sloping land s mainly becaus e of slope, heterogeneity and the unsaturated 

flow. 
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SUMMARY AND CONCLUSION 

The objectives of the present study were to develop a cotnputer 

progratn to solve the transient tile drainage problell1 in heterogeneous 

sloping lands, and to test this prograll1 for an actual problem where data 

were available. The surface of the soil and the impermeable bed were 

to be of a general shape and slope. 

A program was written in Fortran IV language to solve this pro-

blem. Finite difference fortnulation was used with a general rectangular 

mesh specified by input data. The saturated and the unsaturated parts 

of the soil mas s were treated as one integrated cOll1posite system, and 

the flow, whether saturated or unsaturated was considered. The pro-

gram can treat homogeneous or heterogeneous media. Heterogeneity 

with respect to the saturated hydraulic conductivity only was considered. 

This heterogeneity was characterized by specifying, as data, the mea-

sured values of hydraulic conductivity at several points and fitting these 

data to a linear relationship between K , x and depth using the least 
o 

squares method of approximation. 

The program solves the case of steady state with no local re-

charge first, to provide an initial condition for the unsteady stateo The 

steady state solution was obtained using the succes sive over- relaxation 

iterative method. 
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The Crank-Nicolson difference scheme was used for the unsteady 

state exc ept at the normal flux boundaries where the implicit difference 

scheme was us ed. The solution was obtained by using a combined method 

of few Newton inner iterations and the successive over-relaxation outer 

iterations. Both the rising water table with local recharge and the falling 

water tabl0 after the recharge stops were simulated. The results showing 

th(~ wat('r tabl.! response with time for a hypothetical solution are presented. 

Th, progranl was t(!sted with an actual drainage problf'm on the 

Hullingc·r farrn. V('rnal, Utah, for which data on th( soil and water table 

positions for the falling water table case were available. Results of the 

numerical solution of this problem are presented and compared with the 

results of a previous field experiment. The two sets of results did not 

coincide most probably because of differences between the computer 

model and the actual field conditions. 

The results of the numerical solution were compared qualitatively 

with some approximatf~ analytical solutions for the falling water table in 

homogeneous flat lands. The numerical solution gave flatter recession 

curves for the water table at the midpoint between the drains. Some of 

the probable reasons for flat curves were discussed. It was concluded 

that these analytical solutions were not applicable to drainage of hetero-

g en eous s loping land s . 

It is concluded that the finite difference m~thod of numerical solu

tion can be used very effectively in solving the drainage problem in 

sloping hC'terogfmeous lands taking into consideration both the saturated 

and the unsaturated flows. 
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RECOMMENDATIONS FOR FUTURE RESEARCH 

It is recommended that the following areas of res earch be investi-

gated: 

1. The possibility of using the finite difference solutions for 

la ye red soils. 

2. The possibility of using the numerical solutions to develop 

some design criteria for drainage systems on sloping heterogeneous 

lands. 

3. The effects of the heterogeneity of the soil parameters other 

than K on the drainage solutions. 
a 

4. The possibility of using graded mesh sizes with small sizes 

above the drains to simulate the infiltration process more accurately. 
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WRITfIE,lOZ5IFLTO.ELTF 
lC25 FORMATI215x.r10.S" 

WRITfI6.1026' 
102E FORMATflHO.' FL~n 

WRITrI6.102S1FLBO,ELRF 
WRIT"-16.10051 
00 905 I=l,NT 

905 wRITEI6,1006)XTII).ELTIII 
W RTTf 16,10271 

EL T"-" 

FLBF'I 

1['77 FORMATflHO.' XBlIl FLAIII') 
DO 906 I=l.NB 

906 WQITEI6.1006IXBIII.ELBIII 
C ..... CALCULATE Yl!TI=V-COORDINATE OF TMPERMEABLE f>OlJNDAPY A -:- N!1f'f I 
C ••••• V2II)=Y-COORD T NATE OF SlJRFAC"- AT NODE I 

[) ELX=SL INX 1 
DELY=D/NY1 
R ="""L Y/OE L Y 
R2=R.D 
YlIlI=ELBO 
Y2fll=ELTO 
Ytf NX I =EL BF 
Y2INXI=EL TF 
DO 109 I=2.NX1 
x=OELX.FlOATf T-11 
IFIX.LT.XBI11' GO Tf' 110 
IFfX.GT.X9INPII GO TO 111 
[10 112 J=2.N~ 
I""IX.LT.XBIJII GO TO 113 

117 CONTTNUE 
11[ Y1!II=ELBO+X.IELBlll-~LBOl/xrI11 

GO TO 118 
111 Y11I1=ELBINBI+IX-XBINI'II.IEU'F-FL!!I"lSIIII<;L-XSIN811 

GO Tf' IVl 
113 YII II=EUlIJ-IJ+IX-XBIJ-1 It-IELB 1.1 l--fL SI J-1J IIIXSI JI-XPIJ-11) 
118 IrlX.LT.XTlll1 GO TO 114 

IF(X.~T.XTINT1' G~ TO 115 
DO 11 S J=Z, NT 
IFIX.LT.XTI.JI' CO TO 117 

lIb CONTTNU[ 
114 Y21II=ELTO+X.IELTI11-ELTOJ/XTlI1 

1'0 TO 1G9 
115 Y21II=ELTINTI.IX-XTINTJI.IELTF-ELTINTII/ISL- v rlNTII 

GO TO 109 
117 Y2 I I) =EL T 1 J-ll.1 X- XT I J-111' I EL T 1.1 l-EL TI J-1I II I X Tf .I I -XT (J-l I ) 
1 [1') C ONTTNUE 

C ••••• DISPLAY YIII1 AND Y21I1 
WRIH /6,10131 

1013 FORHATl1HC,'Y71I1 A'ID YIITI ') 
WRITElt.101Q'IYZIIJ.I=1,NXI 

lC14 FOP.~ATllSI1X.F7.311 
WPITfI6.10141IY1III,I=I,NX) 

C ..... PUT BOUNOARTE<; AT NODES 
:: 0 11') T =1. NX 
.JSlrl=IY11II/~ELYI·1 
J~(Tl=!V2III/OELYI·1 
YTl=rLOATIJBITI-1)·~FLY 

YT?=FlOATIJTIII-ll.OELY 

IFffY1II,-YTll.LT •• 5'D£LYI GO TO 140 
JBIIl=JBIII +1 

l~C IFfIY2II'-YT71.LT •• 5'OELYI GO TO 119 
JTI II =JT II 1+1 

11'3 CONT!NUE 
DO 9499 T=l,~'X 

JBIII=JBITI+1 
!IIt'!9 JTtI)=JTIII+1 

NY=NY+1 
Nn=NY1+1 
WRITE 16.102!!) 

1023 FOR~ATIIHD.' J NUMBER OF BOUNDARY NODES JTITI AND JBIl)'1 
WRITEI6,102911JTIII.I=1.NX) 
WRITEI6.10291IJBlIltI=1.NXI 

10Z'3 rORMATflSI3X.TS) I 
c ••••••••••••••••••••••••••••••••••••••••••••• ••• ••••••••••••••••••••••••••••••• 
C •••••• SETTING THE CALCULATION CODE 
C ..... REAO ND=NUI'lf>FR OF DRUNS 
C ..... SFT NCAL=l FOR POINTS OUTSIOE THE FLOW REGION 
C ••• "NCAL =2 FOR ALL I NTERTDR POINT S THAT ARE NO T OR AI NS 
C ••••• NCAL=3 FOR DRAIN POINTS 
C •••••• NCAL=90 FOR ALL SURFACE BOUNDARY POINTS 
C .. '''NCAL=100 rOR ALL IHPERHEABLE BOUNDARY pom TS 

REAnls.5021 NO 
502 FORMA T ITS I 

IFIND.£G.OI G~ TO 120 
00 121 K=loND 
R[ADI5.503JIDIK).DDIKI 

S03 FORHATIIS.F1V.SI 
I=IOfKJ 
NOO=OOI KI 10EL Y 
OOT=OELY.FLOATfNDOI 
IFffOOlKI-ODT1.LT.D.5'OELYI GO TO lSr 
JOIKI=.JTIII-NOO-l 
GO TO 121 

15C JOfKI=JTII1-NOO 
121 CONT~NUE 
170 DO 122 I=l.NX 

DO 122 J=l. NY 
IFIJ.LT.JBITII GO Tn 123 
IFIJ.CT • .JTIIII GO TO 123 
IFIJ.r~.JBITll GO TO 124 
IFIJ.ro • .JTIIII GO TO 125 
IFINO.EO.CI Gf' TO 176 
00127 K=l.NO 
IFII.""G.IOIKI.ANO.J.EQ.JOIKJI GO TO 118 

1 7 7 C ONTHIUE 
116 NCALfI.Jl=2 

GO Tt' 122 
128 NCALlI,.J1=3 

Gr Tf' 122 
17~ NCALlI • .J1=1 

CC Tf) 122 
17q NCALII,JJ=10[ 

GO T~ 122 
1:>~ Nr:ALf!.JI=90 
17:' CONT:NUE 

C ..... S["[ CALCULAT:ON CIlOE AT THE P:JUN!H'lIES 
ro 129 I=2,N)(1 
IP=I+1 
!~=r-l 

DO 17'1 .1=1, NY 

..... 
\.oJ 
00 



IFfNCALlT,JI.'"G.H)(l1 GO TO I~D 

IFINCAlII.JI.rJ.9Cl G~ 70 131 
GO TO 129 

130 IFINCAlII~.JI.EG.ICC.AHO.NCALfIP.JI.rG.ICCI GO TO lC 
IFfNCAlII~.JJ.EG.lrr..ANO.N~AlIIP.JI.~~.21 GO TO 1~ 

IFINCAlIIM.JJ.EQ.2.AND.NCAlIIP,JI .... :..IDOI GC TO lr 
IFINCALIIM.JJ.EG.2.AND.NCALlIP,JI.f(l."1 GO TO l r 

IFINCAlfIM,JI.EG.ICr.AND.NCALIIP.JI.rn.11 GO TO 11 
IFINCAlII",JI.EG.I.AND.NCALIIP,JI .... Q.IDOI GO TO 17 
IFINCALII~.JJ.EG.I.AND.NCALIIP,JI.[G.11 GO TO 1~ 

IF(NCALIIM.JI.EQ.I.~NO.NCALIIP.JI.~Q.11 DO TO 1~ 

IFINCALII",JJ.fQ.2.ANO.NCAl(IP,JI.~G.?1 GO TO 15 
Ie NNBIII=10 

GO T' 129 
11 NNE 1'"1=11 

GO Te 129 
12 NNB 1:::1=12 

GO TO 129 
13 NNP.ITI=13 

GO TO 129 
1~ NN81 T I=14 

GO TO 11~ 

15 NNB!!I=15 
GO TO 12~ 

131 IFINCALII~,JI.EQ.9D.AND.N~ALIIP,JI.EG.901 GO TO 4 
IFfNCAl nM.JJ.EG.9C.IIND.NCALI IP.JI.EQ .21 GO TO ~ 
IFfNCIILIIM,JI.EG.2.AND.NCAlIIP,JI.EG.9CI GO TC 4 
IFfNCAlIIM,JI.EG.2.AND.NCAlIIP,JI.rG.?1 CO TO " 
IFfNCAlIIM,JI.EG.90.AND.NCAlIIP,JI.EG.1) GO TO 5 
IFINCAlIIM,JI.EG.2.ANO.NCALIIP.JI.fG.11 GO TO G 
IFINCAllI",JI.EG.I.ANO.NCAlIIP,JI.fO.901 CO TO 7 
IFINCAllr",JI.EQ.1.AND.NCAlIIP,JI.~Q.11 GO TO 8 
IFfllCAL I1M,JI.EQ.1.AND"NCALlIP,JI.f"(~.1l GO TO <J 

" NNT IT 1=4 
GO TO 129 

5 NNTI T I=5 
~f) TO 129 

6 N NT IT 1 =6 
GO Tn 129 

7 NNT IT 1 =7 
GO TO 129 

'1 N NT II 1=8 
GO Til 129 

9 NNT IT 1=9 
129 CONTHIUE 

00 1"2 I=2.NYl 
00 13'5 J=l. NY 
IFINC~LII.JI"Ea.1001 90 TO 13~ 
IFINCAlII,JI.fQ.901 GO TO 134 
CO T(l 135 

11~ NCAlrI,JI=NNBIII 
I?C CONTTNUE 
1,~ NCAlII,JI=NNTIII 
1 ~= CONTTNUE 

c ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C ••••• O I""Pl ~ V CAL CULA TI ON CODE 

W'!JTf IE.101SI 
Ifg FOPMATlIHQ,' CALCULATI(lN rO,)E 'I 

N Z:f1 
12nc "J2=~12+2D 

N1=N2-19 
IFfN7.GT.!l/Xl NZ=NJ( 

WPTTrl6,12011 
l"r .. fORMATl1HC,' CALcuLATION cCDE'1 

('0 136 INDEX=l.NY 
J=NY+I-INOEX 

13E WP.ITcI6,101GIINCALII,JI.I=NI.N21 
1['1(; FOPMATIHI ,2f T SI 

IFIN1.L T.NXI CO TO 1200 
c ••••••••••••••••••••••••••••••••••••••••••• • ••••••••••••••••••••••••••••••••••• 
C ..... PART DISTRIBUTION OF SATURATI'"O HYORAULIc rc NDUCTIVITY 
C ••••• A LEAST SQUARE METHOD IS USE~ ASSUMING LTNEA~ VARTATION OF 
C CONDUCTIVITY WITH X AND DEPTH OF THE FORH K=Cl+C2y+c3D 
C ••••• KCOOE=l HETFROGENEDU~ SOIL 
C ••••• KC I1 OE=D HOMOGENEOUS ~OIl 

REAOI5.9933IKCOOE 
'3933 FORHATIISI 

IF(KCODE.E~.OI GO TO 9930 
c •• ••• 
C ••••• READ DATA/ NPK=NUHBER OF MEASUREMENTS OF CONDUCTIVITY 
C XI':=X COORDINATE OF CONDUCTIVITY I1EASUREHENT~ 

C DK= DEPTH OF CONDUCTIVITY MEASUREMENTS 
READ 15,50'11 NPK 

5a~ FORMATIISI 
00 141 1=103 
8 II 1=0.0 
DO III 2 J=1, 3 

1142 A IJ.JI=O.O 
C ..... DISPlAY DATA 

WRTT[ If; ,1042) 
10142 FORHATI1HO." NPK=') 

WRTT~IG,10"3'NPK 
lr4~ FORHATI5x,ISI 

REAnls.SOSIFKP]N.FKMAX 
WPTTf 16.10441 

1rIJ4 FOP14ATllHO,' FKI1IN 
WP]T"'16.10311,KI1IN.FK14AX 

1031 FORMATI3ISX,t10.51) 
WRITf 16 .10301 

1030 FOPHATllHO,' :1'1< 
00 1'13 1=1, N"K 
REAOIS.SOSJXK,VK,FK 

505 FORMATI3F10.51 
Al1.21=AI1,2).XK 
AI1.31=AI1,31.01< 
AI7,21=AI2,21+XK'XK 
AI2.31=AI1,31+XK'DK 
AI3,31=AI3.31+DK*OK 
Bill =8 f 11 +F K 
B 121=9121 +XK.tK 
8 13 1=81 3' +0 K .. FK 

143 WR]T~fG.I031)XK,CK,FK 
AI1,II=NPK 
A 12 .11=AI1,21 
AI3,1)=1I1031 
AI3.21=AI2,31 

flOIAX'1 

OK 

C ••••• DISPLAY MATR;Y OF NORHAl EQUATION" or leAST S~UARE 
WRITr 16 ,10321 

1e32 FCP~ATI1HO.· I'ATRT" AND VECTOR 8'1 
00 '3(17 1=1,3 

907 WRTTEIG,103311AII.JJ,J=1.31,PfII 
1033 FORHATf4ISX.F'"16.SII 

NH=3 
CALL DECOMPINH,S100rl 

FK'I 

w 
~ 



,,11 TO 182 
loDe WRTTf 16,10401 
1r4C FORMAHIH1,' 

60 TO 2000 
ALGORITHM FAILS'I 

C ..... OISPlAY DECOMPOSED MATRIx 
187 WPITElt,10341 
103~ FOPMATl1HD,' DECOMPOSED MATRIX" 

DO '108 1=1,3 
'108 WRITEI6,lD33'IAII,JI,J=1,31 

CALL SOLVEINMI 
WRIT[ 16 .1035' 

1035 FORMATI1HO,' COEFF[CIENTS VECTOR C'I 
WRITE 16.103'1 

1036 FORHATClHO.' CIlI CI21 
WRITrl6,10311ICIII,I=1.31 

C •••••• FINO CONDUCTTVITY AT NODES OF DOHAIN 
DO 1411 I =1> NX 
DO II1Ij J=I.NY 
IFI"!CAllI,JI.rn.I' GO TO 145 
X="LOATI!-ll.DCLX 
JTFMF'=JTIII 
DK=FLOATIJTEMP-JI·DElY 
SKII,JI=CI11+CI21.X+CI31.nK 
IFISKII,JI.LT.FKMINI GO TO 1~1 
IFI~KII,JI.GT.FKMAXI GO TO 152 
GO TO 1'14 

151 ~KII,J'=FKMIN 
G'l TI" 1"~ 

152 SKIT.JI=rK~AX 
GO T'1 144 

145 SKfI.JI=O.O 
IIj~ CONT'!NUE 

C •••••• rISPLAY HYDRAULIC CONDUCTIVITY ~T Nours 
WRJT"16.1037J 

1C!7 FORMATIIHO.' SATURATED C~NDurTIVITY AT NODES'I 
N2=0 

1207 N2=NZ+I0 
Nl=N7-': 
IFINZ.GT.NXI NZ=NX 
WRITf 16 ,1Z061 

lZIJf, FOPMATIIHO,' <;ATUPATED CONDUCTIVITY', 
DO '109 INOEX=l.~Y 
J=NY + I-TNor X 

909 WRTT[16,1038'ISK(I.J',I=N1,N~I 
IFINZ.lT.NX' G'l TO 1~07 

oELKX=CI21 
OElKT=C 13' 
PO T(, 9934 

'193r R[A('f~.99311$ATK 
9931 FORHATIF10.51 

!)ElIfY.=O.O 
!'ELKT=C.O 
110 "1932 1=1. "X 
DO q~3l J=l,NY 

~~3; SKfI.JI=SATK 
'33 ~~ CONTINUE 
~.""REAr r~IL PAOAMETER~ 

PEA~f~.51C'AC,HS.TAW.3A,? 

~1G FO~MATI5F1C.~1 
REAnI5,301IAn.TAWp.BP.AIT~,SP. 

101 FOR~ATfSr1r.<1 
wlnr'" 16 .1051j1 

CI31'I 

1('154 FORMATl1HO.' 
WRIT" 16 .1051' 

1051 FOPHAT/1HO.' 

~OIL PARAMET"RS'I 

AC 
'liB A Z" 

WRIT"f6,1DS21 
1rS2 FORHATI1H,' DIMENSIONLESS 

SONLESS FT. 
WRITFI6.1053IAC,HB,TAW,BA,Z 

1053 FORHATlIHo,5"X,F1D.S» 
WRTTEI6,303, 

HB 

FT. 

" 

~C3 FORMATIlH " AP TAWP 
SATTA SR', 

WRITf 16 ,304, 
104 FORHATlIH,' DIMENSIONLESS OIHfN<;IONLES'" 

SONLESS DIMENSIONLE<;S 'I 
WRITEI6,305IAr,TAwp,BP,AITA.SQ 

30~ FORMATI1HO.515X.F1C.5» 
REAOIS,511'EPR,W,WZ,MAX 

511 FORMATf3FIO.5.ISI 
WRITF IG .10551 

1055 FOPMATl1HD,' ERR 
S" 

WRITEI6,1056IERR,W.WZ.MAX 
1056 fORHATl1HD,315X,f1D.5I,Sx.I51 

E=On X/OELY 
E2=E.F 
E3=2 •• 0ELY 
E 8=oEl Y 
[9=1./[2 
E10=1.-E9 
TV=HeuTAW 
G l=TAW/ lAC" TV) 
GZ=TAWP/IAP.HP. •• TAWPI 
G3=G2.AITAoll.-SR, 
'4=.5/11. +E 21 
T ANA=EL SO /Sl 
ALPHA=ATANfTANAI 
HYP=~lBO.ELBO+SL·SL 
HYPl=SGRTIHYPI 
SINAL P=[LBO /HYP1 
COSALP=SL/Hyr l 
T ATA=DEl Y /OH X 
THETA=ATANITATA' 
HYP3=DELX_OElY+DELY.OELY 
liVPZ=<;GRTIHYP31 
S INTH=D [L Y /!on °2 
C 05T<-I=0 El X lilY P Z 
r7=2 •• 0ELX.S~NAL~.CO<;ALP 
WRTTFI6,10571 

TAW 

D!MfNSIONLI!"" <; 

BP 

DIH EN SJ ONL ES<: 

W2 

1£'57 FORMAT/lHO.· GENEPAL SLOPE OF BFD AS A FRACTUON" 
WPTr"f6,105~ITANA 

H15q rORMATI1HQ,S)!'.FIC.51 

DI ME N~I 

OI~ENSI 

MAX 

c ••••••••••••••••••• • ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C ••••• <;TEAnY STATE ~OLUTION 

WRITE IG ,10501 
1f50 FOPHAT!1Hl,' rT£ADY STATE SOLUTION" 

C ... '.KLBOUN=l, LOWER BOUNO,l,°Y UNTfORM FLOW 
C ••••• KlBOUN=C. Lowrp BDUN~ARY FIXEO HEAD 

REAOI5.99331K~BOUN 
C..... InITIAL GUESS 
Coo ••• R[AD ""LEVATION CF WATER TA"!Lr AT STATIC BOUN[)~RY 

C ..... (LW=["L(VATION Cf WATE" TABLE AT npPEP BQUNDAr:>y 

>I'
o 



C ..... ELW7= ELEVATION Of WATER TABLE AT LOWFR BOUNnAIH 
REAnlS,1060lELW 

106e FOPMAT!8FIO.S) 
Cao ."SET sTATIC BOUNDARY CONDITION ANn INITIAL GUESS FOR THE REST O~ 

C ..... Tfl£: DOMAIN 
YW~lW-ELSM+DELY 

1=1 
00 161 J=l,NY 
IF(NCAl(I,JI.E~.ll GO TO 170 
PHI 11 ,..I I =Ft OA T( J-11. OEl.,.SINR P.S THAL P +YW.COSAl P. COS ALP 
GO T(' 161 

170 PHII1.JI=l. 
161 CONTINue 

IF!KLBDUN.EQ.CJ GO TO 9935 
GO TO '3936 

'3935 REAO!5.1060IElV2 
YW7=rLW2-ElBM+DELY 

9936 READ!5.8981(YP(II,r=2.NXI 
DO 9498 T=2. "IX 

9q'38 YPIII=YPIII+DELY 
898 fORMATI8FlO.51 

00 880 1=2, NX 
00 881 K=l.ND 
IFfI.!':a.IOIKIJ GO T'1 883 
Go TO B 81 

8A3 yPIII=FlOAT(JOfKI-1Io0ELY 
00 S8'1 J=lo NY 
IFCMCAlII.JI.EQ.11 GO TO 885 
P HI II ,..11=.,,. ITI 
GO TO 8811 

885 PHTII.JI=l. 
8 gq CONTINUE 

Go Tt" 886 
881 CONTINUE 

DO 887 J=l, NY 
IFINCALf!.JI.EO.11 GO TO 888 
PHTfI,JI=FLOATIJ-ll.OElY.SINALD*SINALP+YPllloCOSALP.COSAlP 
GO Tr 887 

888 PHIII,J)=l. 
887 CONTTNUE 
8116 CONTINUE 
88C CONTINUE 

IFfKLBOUN.EQ.CI GO TO 9931 
GO TO 9939 

9937 ['0 9938 J=l,NY 
9938 PHIIN)(',JI=YW2 
9939 CONTiNUE 

r ..... OTSPLAY INITIAL GUES'" 
WRITE 16,10611 

1r:61 FORMATllHO,' 
N2=0 

1712 N2=N2+10 

INITIAL GUESS FOR PHI') 

N1=N7-9 
IFIN2.fT.N)(,1 N2=N)(' 
WRITr l6,12111 

1711 fORMATI1HO,· INITIAL GUESS FOp PHI" 
DO 917 INOF.X=1.~Y 
J=NY+l-INOEX 

912 WRITEI6,10381IPHIII.JI .I=N1,N21 
IfIN7.LT.NXI GO TO 1212 

1038 FORMAI11H ,lrI3X.FS.1I1I 
p EArll 5.9001 HI S 

C ••••• NS= NUMBER O~ STEADY SOLUTIONS Of~IRfO 
9(>01 fORMAHI5) 

00 9000 f(I)UNT=l.NS 
WRITE Ui .10651 

1065 FORKATflHO.·STEADY STATE SOLUTION WITH RECHARG£ QIII= 
C ••••• REAO RECHARG£ RATES 

READf5.l0GOIIQIII.I=1.NXI 
WRIT£16.l0381IQIII.I=1.NXI 
NCT=O 

86C SUK=O.O 
DO 810 I=2.N)('1 
1"'=1-1 
IP=T+l 
DO 811 J=2.NY 
JH=J-1 
JP=J+1 
IfINCAlII.JI.F3.11 GO TO 811 
IFINCALII.JI.EQ.3) GO TO 811 
FZ=D<:::lKX.fSK 1T • ..I1 
f3=D[lKT.fSKII.JI 
FS=F2.0ElX.f2. 
F6=F3.e.OEl X.f2. 
F7=1.+FS 
l' 8=1.-FS 
F9::£2-FG 
1'UI=£2+1'6 
HC=PHIII.JI-FlOATIJ-11.0ElY 
NCA=NCALfI,JI 
IFIHe.LT.ZI GO TO 813 
CK=SK IT.J I 
GO TO 700 

81:" HO=ABSIHC, 
HE::HO/HS 
RK=AC/ISA+HE •• TAWI 
C K=RK .51111 • ..II 
T AWK=TAW-l. 
F1=G1.IHO.oTAWMI.RK 
f11=Fl/li. 
F1:?=£:2.f11 

FT/HR'I 

70G GO TOI811.821.811.822.823.8211.825.826.827.828,829.830.831.832,8331 
S,NCA 

822 PHIII.JPI=E3.QIII/CK+PHIII.JHI 
60 TO 821 

823 PHIII,JPI=E3.QIII/CK+PHIII.JHI 
PHIIIP.JI=£10.PHIIIP,JHI+E9.PHllr.JHI+E8.QCII/CK 
GO TO 821 

82~ PHIII.JPI=E10.PHIII,J)+E9.PHIIIM.JI+E8.0III.fCK 
PHIIIP,JI=E10.PHIIIP,JH)+F9.PHIII.JHI+[8.QIII/CK 
GO TO 1'21 

82~ PHIII,JPI=E3.0III/CK+PHIII.JHI 
PHIIIH,JI=(10.PHIIIM,JHI+F9.PHIII,J~I+E8.QIII/CK 
GO TO 821 

826 PHIII.JPI=£lC.PHIII.JI+E9.PHIIIP,JI+E8.QfII/CK 
PHIIIM • ..I'=[lC.PHIIIM,JHI+E9.PHIII.J~I+E80GIII/CK 
eo TO 821 

e27 PHIII.JPI=£3oQIII/CK+PHIII,JHI 
PHIIIP,JI=E10.PHIIIP,JKI+E9.PHIII.JMI+(S.QIII/CK 
PHIII~,JI=E1eoPHI'IM,JHI+r9.PHIII,JMI+E8oQIII/CK 

60 TO 821 
828 PHIII.JKI=PHTII.JPI 

GO TO 821 
829 PHIII,JMI=PHIII,JPI "'" -



PHlfIP.J'~[10.PHIIIP.JP'+£9*PHIII.JP' 

Cr, Tf" ~21 

83r PHlfI.JH'~PH1II.JPI 
PHIIIM.JJ=£10*PHIIIH.JPI+£9aPHIII.JPI 
SO Te 821 

831 PH1II.JHI=PHII1.JPI 
PH1I1P.JI=£lC.PH1IIP.JP)+E9*PH1I1.JPI 
PH1I1H.JI=£lC*PH1I1H.JP1+E9*PH1I1.JPI 
GO TO 8Z1 

832 PHIIIH.JI=£10*PHIIIH.JPJ+E9*PHII1.JPJ 
PHlf1.JHI=E1C.PHIII.JI+£9*PH1IIP.JJ 
GO TO 8Z1 

833 PHIfIP.JJ=E10aPHIf1P.JPJ+E9.PHIfI.JPI 
PH1II.JHI=£10.PHIII.JJ+[9*PHIIIH.JJ 

821 VC=PHlfI.JJ 
Vl=PH1IIM.JI 
YZ=PHIIIP.JI 
Y 3=PHI II. JM I 
Y 'I=PHIf1. JP! 
IFfHC.L T.ZI GO TO 7fl1 
PHT=r'l.lr7.V2+F8.Yl+~9·Y'I+F1r.Y31 

OIr=PHT-PH1II.JJ 
SUH=SUH+ABSIOlrl 
P HI IT.J I=PHIII. Jl+ W*OIr 
SO TO 702 

701 P HT=G'Ia IF7a V2+F 8*Yl+ F9aY'I+F1 C aY3+Flla 1 YZ-Vll. IYZ-Yl1 +F12 a f V4-Y 31 al 
SV'I-V31 I 
OIF=PHT-PHIII.JI 
S UH=S UH +ABS fOTF! 
PHlfI.JI=PH1fI.JI+WZaOIF 

702 HC=P4III.JI-FLOATfJ-l1*OELY 
IrIHC.LT.O.O' GO TO 811 
GO TO 1811.811.811.703.703.7C3.703.703.703.8l1.8l1.811.81l.e11.811 

SI.Nel 
703 PH1II.JI=FLOATIJ-11aOELY 
811 CONTINUE 
BU CONTTNUE 

1FIKLBOUN.EG.CI GO "0 8'18 
I=NX 
1H=1-l 
IP=I+l 
00 837 J=Z.NY 
JH=J-l 
JP=J+1 
IFItICAL II .J) .EG.lI GO TO B37 
1FINCALI1.JI.r~.31 GO TO 837 
r2=O[LKX/~KIT.JI 

F3=OElKT/SKII.JI 
FS=F2aO£LX/Z. 
F6=F3*E*OELY./2. 
F7=1.+FS 
F8=1.-F5 
.. 9=r ?-F 6 
F1[,=[2+F6 
IFfNCALfI.JI.<"G.901 GO TO 83B 
IFfNCALI1.J).FQ.lOOI GO TO 841 
GO TO '1"0 

B3a PH1I1.JP,=PHTII.JMJ 
1FfNCALITH.JI.[G.1J GO TO 83~ 
('0 TO !l'lO 

839 PHlfII'I.J)=PH1II.JJ+[7/2. 
PHlIIr.JJ=PHII1.JI-£7/2. 

GO T('I Aq3 
8'11 PHIf1.JMJ=PH1I1.JPJ 

IFINCALI1H.JJ.[Q.ll GO TO 842 
GO TO 8'10 

842 PHlfIH.JJ=PHIII.JI+E7/Z. 
PH1fIP.JI=PHIII,JI-E7/Z. 
GO TO 8113 

840 PHIIIp.JJ=PHIIIH.JI-E7 
843 YC=PHIII.JI 

V l=PHII 1M .JI 
VZ=PHIlIP,JI 
V3=PHIC r. JM I 
V4=PHIf I. JP J 
HC=PHII I. JI-F"LOA TI J-1hOEL Y 
I'-'HC.LT.ZI GO TO 8'14 
PHT=~II.tr7.VZ+F8*V1+F9.Y'l+FI0.V31 

OIF=PHT-PHICI.JI 
S Ut1=SUM+ABS (oTF I 
PHr,I.JI=PHTfT.JJ+W.OIF 
('0 TO 849 

844 HD=AB<;'HCI 
HE=HO/HB 
R K=ACI'HE .. TAW+BAJ 
CK=RK*SKf!.JJ 
TAW"=TAW-1. 
r1=Gl.(HO*aTAVHI*RK 
F11=F1/4. 
"'12=£2*F11 
PHT=G4aIF7.Y2+F8.Yl+F9*V4+rlO.V3+F11.IVZ-Vl).IVZ-Vll+FlZ.IV4-V31al 

SVII-V31I 
n IF"="HT -PHI (I. JI 
SUM=SUM+ABS (OTF I 
PH1fI.JJ=PHI(T.JJ+WZaOIF 

849 HC=PHIII.JJ-FLOATI J-11.0ELY 
IFIHC.LT.D.OJ GO TO 846 
IFINCALII.JI.EG.901 GO TO 8115 
GO TO 837 

8'15 PHIII.JI=FLOATIJ-1).OELY 
837 CONTINUE 

GO TO 8'18 
8'16 JP=J+1 

DO 8'17 K=JP.NY 
IFINCALII.KI.EG.ll GO TO 847 
IFlNCALIT.KI.fG.31 GO TO 847 
f' HT=PH1 II .K-lJ 
DIF=PHT-PHIII.KI 
SUt1=SUM+ABS (OTr I 
PHTII.KI=PH1IT.K-11 
PHIIIP.KI=PHlfI.Kl-E7/Z. 

847 CONTINUE 
8'18 NCT=NCT+1 

IFfSUH.GT.fRR.ANO.NCT.lT.MAXJ GO TO B60 
WR!TE (6 .10701 

107C rORHATI1H .' NCT='J 
WRTTfI6.1071JNCT 

1071 FOPMATlSX.1SI 
WRTTf (6 .30001 

30rO FORMATl1H.' SUH=' I 
WR!T[{6.3001ISUH 

JODI FORHATIF1Z.S1 
W RITf 16 .10£81 

1068 rORMATIlH1.· STEADY c::TATE H '1 

-~ 
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N2=0 
7~£ N2=N2+10 

N1=N2-9 
rFrN2.GT.NXI N2~NX 

WR!Tfr6.73'li 
73a FORMATl1Ho.' STEADY STATE H'I 

DO 720 INOE X~1, NY 
..J:::NY.fl-INDEX 
DO 721 1:::N1.N2 
rFINCALI1 • ..Jl.[Q.11 GO TO 722 
HI1J:::PHIII.JI-FLOATI..J-11.0ELY 
GO TO 721 

722 HIIJ:::1. 
721 CONT!NUE 
720 WRITEI6.1D381rHII).1:::N1.N2) 

IFIN2.LT.NXl GO TO 736 
9cro CONTTNUE 

c·.·.·.·.**·.· •• ·························*············ ......................... . 
Coo ... THE UNSTEADY "TATE SOLUTION 

REAnrS.320)MAX2 
320 FORMAT(215) 

WRITE 16.300) 
300 FORMATI1Hl,' THE UNSTEADY STATE SQLUT!ON'l 

READIS.9012IW~.W4 
9012 FOPMATr2rFIO.5)) 

READIS.90141NWET.EDNWT 
9014 FOPMATIIs.Flr.4) 

WRITE 16.90131 
9013 FORMATl1Ho.' 113 W4'l 

WRIT r l6.90121W3.W4 
C ••••• READ NUMBER OF TIME STEPS 

REArll5 .3061 NTTM 
306 FORMATlISl 

TIM[:::o.O 
DO 201 1=l.NX 

201 QT! 11=0.0 
DO 202 KOUNT=l.NTIM 
READIS.3071DELT.RT.RQ.KEXT.KP~INT.KQ 

307 FORMATI3F10.5.3I51 
C ••••• DELT::: TIME STEP 
C ... "RT::: RATIO OF TIM£ STEP TO PREVIOU'" TIME ST£P 
C ..... RQ::: RATIO OF RECHARGE RATE TO PRFVIOUS RECHARGE RATE 
C ••••• KtXT= EXTRAPOLATION CODE. 1 EXTRAPOLATE. 0 NO EXTRAPOLATUON 
C ..... KPRINT::: PRINTTNG CODE. 1 PRINT. 0 NO PRINTTNG 
C ..... KQ::: RECHARGE CODE. 1 NON-ZfRO RECHARGE. ~ ZERO RECHARGE 

I~rKQ.NE.OI GO TO 330 
DO 331 I:::ltNX 

!31 Q ITl~O. 
GO T(1 332 

330 READI5.3oalIQIII.I=1.NX) 
308 FORMATI8F1o.51 
~32 00 203 t=l.NX 
7r.~ QTrII=QTII)+QIII.OELT 

TINE:::TII'I[+DEL T 

E5=f'ElX.OEL X/OfL T 
DO 2014 !=2."IX 
IP=I+1 
I M~I-1 
DO 205 J=2.NY 
JP=J.fl 
..J1'I=J-1 
1FI~CAlII • ..J).EQ.3) GO TO 206 

HC:::PHIII • ..Jl~FlOATIJ-1).DELY 
IFIHC.l T.lI GO TO 207 

206 F131fI.JI=0.O 
BNfI.Jl=O.O 
GO TO 205 

207 IFfNCALII.Jl.[~.2) GO TO j15 
BNII.J)=O. 
F1311I • ..J)=O • 
GO TO 205 

315 F2=OfLKX/SKIT.JJ 
F3=OELKT/SKf!.JJ 
F5:::F2-0ElX/2. 
F6:::F3.E.OElX/2. 
F7=1. +F5 
F8:::1.-F5 
F9:::f:2-F6 
F lO=EZ+F6 
HO:::A8SIHC) 
HE=HO/HB 
RK=AC/fBA+HE •• TAWl 
CK=RK .SKI I. J) 
T AI/I'I:::TAW-1. 
Fl=G1.CHD** TAI/HI.RK 
Fll=Fl/ll. 
F12=E2·Fll 
SE=AP/IBP+HE*.TAI/P) 
TAWPM=TAIiP-l. 
F131Il.JI:::SE*sr*IHE •• TAWPHI/CK 
BNII.J):::f7.PH;IIP • ..JI+F8.PHlfIM.J)+F9.PHIII.JP)+F10.PHIfI.JMI+Fl1*1 

SPHlllp.JI-PHIIII'I.JI'+fPH1IIP.J)-PHlIIM.JI)+F12.fPHIII.JPI-PHIll.JM 
SIJ*IPHIII.JPl-PHIII • ..JH))-12 • .f2 •• E21.PHIII • ..J1 

205 CONTINUE 
2 04 CONTINUE 

lfIKEXT.EQ.Ol GO TO 208 
DO 210 I=2."IX 
IFII.Etl.NX.ANO.KLBOUN.EQ.O I GO TO 210 
DO 211 J=2.NY 
IFINCALII • ..JI.EQ.lI GO TO Z12 
IFINCAlII • ..JI.EQ.3J GO TO 212 
DIF=PHIII • ..JJ-oHII • ..J1 
PHIl • ..J):::PHIIT • ..J) 
PHrfI • ..JJ=PHIIT.JI+DIF.RT 
GO TO 211 

712 PHfI.Jl=PHIII • ..J) 
211 CONT'!NUE 
210 C ONHNU[ 

CO T(1 299 
20a 00 213 1=1.NX 

00 213 ..J=2.NY 
713 PHlr.Jl:::PHTII.J) 
:> 99 NCT=O 
2114 SUH=O.D 

00 215 I~2. NXl 
IP=I.f1 
11'1=1-1 
00 216 J=2.NY 
JP=J+1 
..JH=J-1 
IFINCALII • ..Jl.EQ.11 GO TO 216 
IFINCAlII • ..J).EQ.3) GO TO 216 
F2~OELKX/SKII.JI 

F3~OElKI/SKIT • ..Jl 

~ 
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F 5=F2'0rLX/Z. 
r6=F-.:.r.OELX/Z. 
F7=1.+F5 
FS=1.-F5 
F9=El-F6 
F10=E2+FE 
NCA=NCALII.JI 
HC=PHIII.JI-FLOATIJ-11.0ELY 
I I' 1 He .L T • Z I GO TO 217 

1168 CK=<;K!!.Jl 
1'132=0.0 
F11=C.0 
1'12=0.0 
SO TO 21S 

Z17 PP=PHIII.JI 
IFIKOUNT.N[.1) GO TO 470 
IFfKQ.EQ.OJ GO TO 470 
IFHICT.EIl.OI GO TO 117Z 
GO Tn '170 

'172 GO TO 1216.'I70.Z16,II71,471.471.471,'I71,'I71,470,'I70.1170.470,'I70.-'l7f' 
$I.NCA 

471 pHIII.JI=.S'CPHIII,JI+FLOATIJ-I).OELYl 
117[; NTT=O 

FFl=Gl.QIII/SKII.JI 
'167 HC=PHIII,JI-FLOATlJ-1).OELY 

1FIHC.GE.ZI GO TO 46B 
HO=ABSIHCl 
HE=HD/HB 
RK=AC/IBA+HEe'TAW) 
CK=RK 'SKI I. Jl 
T AW"=T AW-l. 
Fl=Gl.IHD •• TAWHI.QK 
Fll=FI/4. 
F1l=E2eFll 
S£=AP/IBP+HE"TAWPI 
T AWPH=TAWP-l. 
F13?=<;E*SEeIHE*'TAWPM1/CK 
F13=F132+F1311I,JI 
GS=G3.FI3eES 
GO TOIZIE.IISZ.216.4SII.1155.1156.1157.45S.459.460.'IGl.II62.1163.4611.11651 

S.NCA 
45:' F17=C. 

FH'=C. 
1'"19=0. 
F20=0. 
GO TO 466 

11511 FF=-FF1.rHO •• ITAW-l.I' 
FI7=0. 
1'"1S=C. 
FI9=E3.FF 
1'20=0. 
PHIII,JPJ=£3.QrIJ/CK+PHIII.J"' 
GO T!' '166 

45'; FF=-FF1' rHO" I TAW-t. II 
F17=ESeFF 
F18=0. 
FI9=E3. F F 
rZO=O. 
PHII!.JPJ=E3·GII1/CK+PHlr1.J'" 
PHIIIP.JI=EI0.PHIIIP,JMJ+EgePHIII,J"'+ES.QIIJ/CK 
CO TO 1166 

1156 FF=-FFt'IHO •• ITAW-l.11 

FI7=£80FF 
1'18=0. 
I' 1!'=£ 10+£ 8* FF 
F20=0. 
PHIII.JPI=£lO*PH1fI.J'+E~ePHIII",J)+E8'QIII/CK 
PHIIIP,J)=£10'PHIIIP.JHI+[9.PHIII.JHI+ESeQIII/CK 
GO TO 1166 

1157FF=-FFl.IHO"ITAW-l.ll 
F17=0. 
FI8=E8*FF 
F19=E3*FF 
F20=0. 
~H1II.JPI=E3eQII1/CK+PHI(I.JMI 

PHIIIH.JI~EI0.PHIII".JH'+EgePHIII,JHI+~8.QrII'CK 
SO TO .. 66 

II 58 FF=-FFleIHO'.1 TAW-l.11 
F17=0. 
F 18=£ aeFF 
Fl'!=£10+E8'FF 
1'20=0. 
PHIII.JP1=EtO.PHlrr.JJ+EgePH1I1P.JI+£8eQrII/CK 
PHIIIH.JI=EI0ePHIIIH.JH,+E9.PHIII.JH1+EseQIIJ/CK 
GO TO '166 

'159 FF=-FFlefHOe. C TAW-t. J) 

f"I7=£S*FF 
F1S=F17 
F19~E3*f"F 
f"2fl=0. 
PHICI.JPI=£JegIII/CK+PHICI.JH, 
PHIIIP,JI=£10.PHIIIP.JH1+E9.PHIII.JHI+E8.QIII,CK 
PHIIIH.JI~EtO.PHIIIH.J"'+E9.PHIII.JHI+E8eQI1I/CK 

GO TO 1166 
'161l 1'17=0. 

F18=0. 
FI9=0. 
F2C=0. 
PHIII.JH'=PHICI,JPI 
Go TO 1166 

.. 61 F17=O. 
FI8=0. 
Fl~=O. 

1'20=0. 
PHIII.JH1=PHIII.JPI 
PHIIIP,JI=EICePHlrIP,JP)+E9.PHICI.JPI 
SO TO 1166 

1162 F17=0. 
FlI!=O. 
1'19=0. 
1'20=0. 
PHICI.JHI=PHICI.JPI 
PHIIIH.J'=£10ePHIIIH,JPI+£9.PHICI,JPI 
SO TO 466 

1163 1'17=0. 
F IS=O. 
F19=0. 
F20=O. 
PHIII.JM1=PHICI.JPI 
PHIIIP,J'=Etll.~HIIIP,JP1+£9.PHIII.JPI 
PHIIIH,JJ=£10.PHIII",JPI+£9.PHIII.JPI 
Go TO 1166 

464 "-17=0. 
"-11'=0. 

*'" *'" 



Fl'?=O. 
... 2C=[ 10 
PHIII~,JI=ElrePHIII~,JP)+EgePHIII.JPI 

PHIII.JMI=EI0ePHIII.JI+E9.PHIIIP.JI 
GO TO 466 

'165 FI7=0. 
Fa=O. 
F1CJ=O. 
F2C=EI0 
PHIIIP,JI=EICePHIIIP,JPI+E9*PHIII.JP I 
PHIII.JMI=EI0*PHIII.J'+E9*PHIIIH.JI 

466 F21=fGl/4.le(HDee(TAW-2.II_R~_IGleRKelHDeeTA~I+1.-TAW) 
F27=E2*F21 
F Z!' = I G3*ES* SE*SE/CKI -I HOe*ITAWP-?1 I - 12. eG2_SEe IHO-_ TAWP 1- Gl* RK. IH 
~-*TAWI+l.-TAWPl 

VC=PHIrI.JI 
Vl=PHIIIM,J) 
V2=PHII Ip • .1) 
V3=PHII I, J" I 
V4=PHIII,JPl 
FN=F7*Y2+F8*Vl+F9.V'I+F10-V3-12.+2 •• E2+G51.VC+Fl1*(V2-V11.IV2-V11+F 

S12*IVII-V31.(VII-V31+BNII,Jl+G5.PHII,JI 
FNP=F7*F17+F8.FI8+FgeF19+F10*F20-12.+2.*E2+G5J-F2S*VC+F21*IV2-Vll* 

'IV7-VlI+2.*F11*tV2-VlJ*IF17-flSI+F2Z*IV'I-V3,eIV4-V31+?*F12*IV4-V3 
$1*rF19-F201+F25*PH,I.JI 
o IT=FN/rNP 
PHIII.JI=PHllr.JI-OIT 
NTT=NTT+l 
o IFT=AB S I 01 T) 

IFINTT.LT.NWrT.ANO.D!FT.GT.ERNWTI GO TO 467 
HC=PHIII.Jl-FlOATIJ-ll*D~LY 

IfIHC.LT.O.l GO TO 310 
GO TO 1216.31C.216.311,311,311,311,311.311,310,310.310.310.3le.310 

$I.NCA 
~11 PHIII.JI=FlOATIJ-ll*OELY 
310 Olf=PHIII.Jl-PP 

SUH=SUH+ABSIDTFI 
PHIII.JI=PP+V'I*OIF 
GO TO 281 

718 F13=f13Z+FI31II.JI 
G5=G3*FI3*[5 
G6=1./12.+2.*E2+G51 
GO TO 1216.226.216,228.229.230.231.232,233.220.221.222.223,22'1,225 

SI.NCA 
728 PHIfI,JPI=E3*QIII/CK+PHIII.JHI 

GO TO 226 
229 PHIII.JPI=E3*QIII/CK+PHIII,JHl 

P HI lIP. JI =E 10*PHII IP .JH I+E9*PHI I I •• n", +[8* QI II/CK 
GO TO 226 

~~c PHIII,JPI=EI0*PHIII.JI+E9*PHIII".JI+E8*JIII/CK 
PHIIIP,JI=EI0-PHIIIP.JMI+E9*PHIII,JMJ+E8*QIII/CK 
GO TO 226 

?31 PHIII.JPI=E3*r,IIJ/CK+PHIII.JMI 
PHIIIM,JI=Elr*PHIIIH.JH1+ES*PHIII.JMI+E8*QIII/CK 
GO TO 226 

732 PHIII.JPI=E10*PHIII.JI+E9*PHIIIP.JI+E8*QIII/CK 
PHIIIH,JI=EI0*DHI(IM,J~I+F9.PHI(1.JM'+E8*QIII/CK 

flO TO 226 
233 PHIII.JP1=E3*QIII/CK+PHIII,JMI 

PHIIIP,JI=E10*PHIIIP.JMI+E9*PHII1.JMI+E8*QI1I/CK 
PHIIIM.JI=E10.PHIIIM.JKI+E9*PHIII.JMI+E8*QIII/CK 
GO 7(' 226 

:'2r PHHI,JHI=PHTlI,JPI 
GO TO 226 

721 PHIII.JHI=PHIII,JPI 
PHIIIP,JI=EI0*PHIIIP,JP)+E9*PHIII.JPI 
SO TO 22G 

222 P HI II .JHI=PHII I.JPI 
PHIIIM,JI=EI0.PHIIIM.JP1+E9.PHIII.JPI 
GO TO 226 

723 PHIII.JMI=PHIII.JPI 
PHIIIP.JI=EIC*PHIIIP,JPI+E9.PHIII.JPl 
PHIIIH.JI=EI0*PHI(IH.JPI+E9*PHIII.JPI 
GO TO 226 

724 PHIIIH.J)=EI0*PHIIIH.JP)+E9.PHI(I.JPI 
PHIII.JH)=E10*PHIII.JJ+E9*PHIIIP,J) 
SO TO 226 

225 PHI(IP.JI=EI0*PHIIIP.JPI+E9*PHIII,JPI 
PHI(I,JHI=EI0*PHIII.JI+E9*PHIIIH.JI 

226 P HT=1':6. I F7* PH,. I IP • .11 +~ a.PHI 1 IH, .II +F9*PHI 1 I, JP) +Fl(1*PHI II. J!4 I+F11*1 
SPHIIIP,JI-PHIIIH.JlleIPHIIIP,JI-PHIIIH,JI1+F12.IPHIII.JPI-PHIII.JM 
$l1*IPHIII.JP1-PHIII.JMII+S5.PHII.JI+BNII.JI I 

HC=PHT-FLOATlJ-ll.0ElY 
IFIHe.LT.O.) GO TO 312 
GO TO 1216,312,216.313.313.313.313,313.313,312,312,312,312.312.312 

SI.NCA 
313 PHT=FLOATIJ-1)*OELY 
312 OIF=PHT-PHIlI.JI 

SUM=SUM+ABSlOTFJ 
HC=PHT-FLOATIJ-11.DELY 
IFIHC.L T.O.OI SO TO 23 .. 
PHIlI.Jl=PHII~.JI+V3.0IF 

GO TO 281 
23'1l'HIII.J)=PHIlT.JI+W ... OIF 
781 HC=PHIlI.JI-FlOATIJ-II.0ELY 

IFlHC.lT.O.OI SO TO 21G 
GO TO 1216.216.216.280.280,280.280.2S0.280.216.216.216.216.216.216 

II.NCA 
280 PHIII,J)=FLOATCJ-1).OElY 
216 CONT!NUE 
Z15 CONTTNUE 

IFIKlBOUN.EG.OI GO TO 253 
T=NX 
Ip=1+l 
1"=1-1 
flO 2QO J=2.NY 
JP=J+l 
JH=J-l 
IFINCALlI.JI.FQ.11 GO TO 240 
IFINCAL II ,JloEG. 31 GO TO 2110 
F2=DELKX/SK I!. JI 
I' 3=O[LK T 15K IT • .11 
FS=TZ*OELX/2. 
F 6=T3*E *0 El X/Z. 
F1=1. +F5 
F8=1.-F5 
I' 9 =1'" Z-F 6 
FI0=E2+F6 
IFINCALII.JJ.EQ.90J GO TO 241 
IfINCALII.JI.EG.I001 GO TO 245 
GO TO 243 

ZII1 PHIII.JP1=PH1II.JHI 
IFINCAlIIM,Jl.EQ.11 GO TO 24? 
GO TO 243 

-,j:>.. 
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?~2 PHIII~.JI=PHIII.JI+E7/2. 

PHrlIP.JI=P4III.JI-(7/2. 
60 TO 2~~ 

24~ PHIfI.JHI=PHIII.JPI 
IFINCALIIH.J).£G.11 GO TO 246 
GO TO 2 .. 3 

246 PHIIIM.JI=PHIII.JI+£7'2. 
PHIIIP.JI=PHIII.JI-£7/2. 
GO TO 244 

24~ PHIIIP,JI=PHIIIM.JI-£7 
'Z~II HC=PHIII.JI-FLOATlJ-1I.0£LY 

InHC.L T.ZI GO TO 247 
CK=SK II.JI 
F11=O.O 
1'"12=0.0 
F132=0.0 
60 TO 248 

7"7 HD=ABSIHC I 
H£=HD/HB 
RK=AC/rBA+H£··TAWI 
CK=RK.SKII.JI 
TAWH=TAW-1. 
F1=G1*IHO •• TAWMI.PK 
1'"11=F1' ... 
1'"12=£2.F11 
S£=AP/IBP+HE··TAWPI 
TAWPM=TAWP-1 •. 
F132=~£.SE*IH£*.TAWP~I'CK 

2"8 F13=F132+F131II.JI 
65=G3*F13*£5 
66=1./12.+2 •• [2+651 
P HT=('6. I F7* PHI f If. JI+F S*P4If IH • J 1 +1'"9. P HI I I. JP 1 +F H'* PHI II. JH J +F11*1 

SPHIIIP.JJ-PHIIIM.JII.lrHIIIP.JI-PHIIIM.JII+FI2.IPHIII.JPI-PHlfI.JM 
SII·'PHIII.JPI-PHIII.JHII+G5*PHfI.JI+FNII.JII 
Dlf=~HT-PHIII.JI 

SUM=SUH+ABSlOTFI 
HC=PHT-FLOATlJ-11.DEL~ 
IFIHC.LT.O.Ol GO TO 249 
PHIII.JI=PHIII.JI+W3.0IF 
GO TO 250 

7 .. 9 PHIII.JI=PHIIT.JI+W4.0IF 
'150 HC=PHI fI. JI-flOA TI J-1I.0£L Y 

IFIHC.LT.O.OI GO TO 251 
IFfNCALII,JI.EQ.901 GO TO 252 
60 TO 240 

252 PHIII.JI=FLOATIJ-l)*OFLY 
211e CONTINUE 

GO TO 253 
;>51 JP=J+l 

00 '1511 K=JP.NY 
IFINCAlII.KI.FG.ll GO TO 2511 
IffNCAlII.KI.F~.31 60 TO 2511 
PHTII.KI=PHIIT.K-il 
PHIIIP.KI=PHIII.KI-E7/Z. 

?5 11 CONTTNUE 
7 5~ NCT=NCT+1 
6~11 IFfSUH.GT.ERp.ANO.NCT.lT.MAX21 GO TO 214 

IFISU~.GT.ERPI 60 T~ 323 
G~ TO 32~ 

323 WRITFI6.3251 
325 fORHATt1HO.' SOLUTIn~ OIVEPGEO'I 

GO TO 2000 

32~ CONTINUE 
IFIKPRINT.EQ.OI GO TO 260 
WRITE" 16 0350) 

350 fOR "AT I1H1o , UNSTEADY STATf STEP'. 
WRITE f6. 3511 

351 FOR"ATI1HO.· DElT TIME'I 
WRITfI6.352)DELT.TIME 

352 FORHATI215X.F10.511 
WRTTft6.3531 

353 FORHATIIHO.' GIII= 'I 
WRYTEI6.9011'IQIII.I=1.NXI 

9011 FORHATI1H .10f3X.F8.4)1 
WRITEI6.35141 

3511 FOR"ATI1HO.· OTIII= 'I 
WRITEI6.90111IQTIII.I=1.NXI 
WRITf" 16 .60021 

6002 FORHA T I1H .' HCT=' I 
WRITE (6.60031 NCT 

6003 FORMATl5X.I51 
WRITf" 16.60001 

6000 FORMATI1H.' SUM=' I 
WRITE 16.60011 SUM 

6001 FORHATIF12.51 
WRITE 16.3551 

355 FORMATI1HO.' UNSTEAOY STATE PHI'I 
N2=0 

361 N2=N2.10 
H1="2-9 
IFIH2.GT.HX' NZ=HX 
WRITEI6.360) 

360 FOR"ATIIHO.' UNSTEADY STATE PHI') 
DO 356 lNOEX=1.NY 
J=NY+I-INO£X 

356 WRITEI6.90111IPHIlI,JI.I=NI.N21 
IFfN2.LT.HX, GO TO 361 
WRYTEI6.362' 

362 FORHATI1HO.' UNSTEADY STATE H'I 
N2=!l 

376 N2=N2+10 
N 1=H2-9 
IFIN2.GT.NX' N2=NX 
WRITf16.3771 

377 FOR"ATIIHO.' UNSTEAOY STATE HOI 
00 363 lNOEX=1.NY 
J=NY+1-INDEX 
DO 3614 1=N1.N2 
IFINCAlII.JI.EQ.ll GO TO 365 
H III=PHIII. JI -f"LOAT! J-11*DEl y 

So TO 36'1 
365 HIII=l. 
364 CONTINUE 
~63 WRIT[16.301111HIII.I=N1.N21 

If"IN2.lT.NXI GO TO 376 
760 CONTINUE 
21')2 C ONT'!'NU E 

2(' 00 STOP 
fNO 

a FO R .IS SUl'loSUBl 
SUSROUTINE O[CO"PIN •• , 
CO""ON AI3.3) 

c •••••• 
C •••••• THI~ SUBROUTINE OECOHPOSE"S A POSITIVf OEFINITf HATR:X 

*"" 0' 



1)0 8CC I=l.N 
DO 8CO J=l.N 
SUH=A II.J) 
LI"IT=I-1 
IFiLIHIT.Etl.CI GO TO 801 
00 802 K=l.LT~!T 

802 SUM=SUM-AIK.!).AIK.JI 
801 IFIJ.NE.T! GO TO 803 

IFISUI1.LE.O.OI RETURN 1 
TT=sglHISUM) 
TEMP=1.'TT 
AI!.Jl=TT 
GO Til 800 

803 AII.JI=SUM.TEMP 
BOC CONTINUE 

RETURN 
END 

iFOP.IS SUB2.SUB2 
SUBROUTINE SOlVEfNJ 
COMMON UI3.31.BI3J.Cf3J 

C ••••••• 
C •••••• THIS SUBROUTINE SOLVES THE DECOMPOSED MATRIX EQUATION 

PO 808 I=1.N 
00 B08 J=l.N 
IFII.NE.JI GO TO 808 
UII.Jl=l.'UIJ.J' 

BOB CONTINUE 
DO 80" 1=1.N 
s~=n II! 
LIMIT=1-1 
IFllIMIT.EQ.C) GO TO 804 
00 805 K=l.lTHIT 

BOS SUM=SUM-UIK.TJ.CIKI 
804 CIT)=SUM-UIT.TI 

00 807 INDEX=l.N 
!=N+1-INOEX 
S~=CfIJ 

L=I+1 
M=N+1 
IFIL.~9.MJ roo TO 807 
DO 806 K=L.N 

806 SUM=SUM-UII.KJ.CIK) 
807 CII)=SUM*UII.T) 

RETURN 

,p. 
-..l 
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Appendix B 

Derivation of Equations of Boundaries 

(1) - (2) and (6) - (7) 

Reference is made to Figure 15 which shows uniform flow on a 

bed sloping with an angle a. 

Boundary (1) - (2) 

~ = 0 = ~. dx + ~. ~ = ~. Sin a + ~. Cos a 
ds ax ds ay d s ax ay 

d.h d P dv . 
~ = -- (y + --) = ..;;;...L- = - Sln a 
dn dn Pg dn 

Since P is constant along the normal Do 

also we have 

iL =~. dx +~. ~=~. 
dn ax dn 8y dn ax 

Solving simultaneously the two equations: 

8",. 8", 
~ Sln a + ~ Cos a = 0 
ax 8y 

~ Cos a - ~ Sin a = - Sin a 
ax 8y 

Cos Q' - ~. Sin a 
8y 

(a) 

(b) 



4> = Constant 

VI 

Figure 15. Derivation of equations of boundaries (1)-(2) and (6)-(7). 
I--' 

~ 
-..D 
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gives: 

8q, S' 2 -- = In a By (c) 

integrating equation (c) gives: 

. 2 
cp = y Sln ex + C 

with cp = Y1 when y = Yl 

This gives: 

2 
C = Yl . Cos ex, 

and: 

(38) 

Boundary (6) - (7) 

Again solving Equations (,a) and (b) simultaneously gives: 

8rh . i:- = - Sln a Cos ex ( 44) 
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Appendix C 

Derivation of Equations for the Imaginary 

Points at Irrigular Boundaries 

Hori7.oni.1.1 Segments 

On those segments the norlnal direction is in the y-direction so 

that ~ - ~ Equation (40) becomes dn - 8y . 

;t = -+- qj Cos e (a) 

Where e is the angle between horizontal and the segment. Sine e e = 0 

and Cos e = 1 Equation (a) above with central differences give: 

<P, '+1 = cp. , 1 + 2Ay I,J l,J-

q. 
1 

K 

Equations (39), (42) and (45) give: 

..Q.t... = 0 
8Y 

which results in: 

<P, . +1 = <P, , 1 1,J 1,J-

For the upper boundary and: 

(b) 

(c) 
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<1> .. 1:: <1> .. 1 1,J- 1,J+ 
(d) 

for the lower boundary. 

Sloping segments - - upper boundary 

Reference is made to Figure 16a and b where the circled points 

are the imaginary points. Fox's method as described by Forsythe and 

Wasow(1960)and Remson, Hornberger and Molz (1971). In Figure 16a 

N is normal to the sloping segment and intersects the side at <1>4 

m = 6x - 6 y tan e 

tan e = .A::L 
6x 

q. 
1 

K 
Cos e 

This gives: 

q. q. 
1 1 

<1>5 = <1>4 + N cose - = <P +6y-K 4 K 

Which results in: 

q. 
1 

K 
(e) 
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Il.y 

~ __ ~e~ JL ~e~ __ ~ 
CPI 4>4 CP3 4>1 CP4 4>3 

~ j ---J ~ ~x ---J 
(a) (b) 

CP5 ...--__e-----.. 

(c) (d) 

Figure 16. Imaginary nodes at irregular boundaries 



Where: 

Similar treatment of Figure 16b gives 

1 1 
<P 2 = E2 <P 3 + (1 - E2) <P 1 + ~ Y 

Sloping segments- -lower boundary 

q. 
1 

K 

Treatment similar to the above for Figure 16c gives: 

and 

similarly, Figure l6d gives 
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(f) 

(g) 

(h) 

Combinations of Equations (b), (e) and (f) and Equations (d), (g) 

and (h) give Equat ions for all the different types of segments (Codes 

4 - 15). 
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Appendix D 

Least Squares Fitting for 

Heterogeneous Conductivity 

Suppose we have n number of tripples of data measurements: 

(x" T., Ko,) 
1 1 1 

1 = 1, 2 n 

Where: 

x = the x - coordinate of a point 

T = the depth from surface to the point 

K = Hyd raulic conduc ti vity at the point 
o 

We want to fit the data to a function of the form: 

K = C 1 + C 2x + C 3 T 
o 

n > 3 

The best approximation of the n-dimensional vec~or: 

(a) 

(b) 

in the three-dimensional subspace spanned by the three linearly indepen-

dant vectors: 

T = (1, 1 , . n elements 

x = (xl' x
2 

x ) (c) 
n --

T = (T 1 ' T 2' 
. T n) 
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-is the normal projection of K onto this subspace. This normal projection 
o 

I(\ will be a linear combination of the three bas e vectors such that 
a 

-" K = Cl -1 + C2 x + C3 T 
o 

This will minimize the square of the distance 

(b) 

and hence the name of the method. From the properties of projections 

we know that the vector (K - K') will be normal to all vectors in the 
a a 

subspace. Hence we have: 

(K - K') · 1 = 0 
o 0 - -, (K - K ) • x = 0 o a 

(c) 

(K - K') · T = 0 
o 0 

or: 

- --(Cl 1 + C2 x + C3 T) • 1 = K • 1 
o 

- - - -(Cl 1 + C2 x + C3 T) • x = K · x 
o 

(d) 

(Cl T + C2·~ + C3 T) . T = K · T 
o 

This gives 



n n n 
Cl n + C2 1; x. + C3 Z T. = ~ K . 

i= 1 1 i= 1 1 i= 1 01 

n n 2 n 
Cl ~ x. + C2 ~ x. + C3 Z x. T. 

i= 1 1 i= 1 1 i= 1 1 1 

n n n 2 
Cl Z T. + C2 :E x. T. + C3 :E T. 

i = 1 1 i = 1 1 1 i= 1 1 

or in matrix form: 

n 1Jx. ZT. Cl 
1 1 

:Ex. :Ex. 
2 

~x.T. C2 
1 1 1 1 

2:T. l:x. T. :E T. 2 C3 
1 1 1 1 

or 

-A C = B 

n 
= ~ x K 

i= 1 i oi 

n 
= ~ T. K . 

i= 1 1 01 

~K 
oi 

= :Ex.K . 
1 01 

2:T.K. 
1 01 
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(e) 

(f) 

(g) 

Where A is the symmetric positive definite matrix shown. Equation (g) 

is solved by decomposing the matrix A into two triangular matrices, one 

upper a'nd the other lower (one is the transpose of the other) such that: 

Where 



U = 0 

o 

and 

Equation (g) becomes: 

or 

Where 

t 
U Y 

o 

o 

= B 

-y = U C 
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o 

o 

(h) 

(i) 

(j) 

-Equation (i) is solved easily for Y by a forward sweep and then Equation 

-(j) is solved for C by a backward sweep. The program sets the matrix 

Equation (g) and the two subroutines Decompose and Solve do the solution. 
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Appendix E 

Data for Hullinger Farm 
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Table 5. Piezomete;r, locations and surface elevations for the Hullinger 
).c >jC 

farm test 

Piezometer Station Surfac e ele-
number feet vation feet 

1 0 5276.60 

2 99 5274.72 

3 129 5274.07 

4 144 5273.86 

Drain No. 6 149 5273.85 

5 154 5273.85 

6 169 5273.41 

7 199 5273. 05 

8 249 5272.21 

9 324 5271.07 

10 399 5270. 25 

11 479 5269. 13 

12 494 5269. 05 

Drain No. 5 499 5269.01 

13 504 5268.97 

14 519 5268.60 

15 599 5267.53 

** Source: Dr. Larry G. King, unpublished data 



Table 6. ** Water table positions in Khalil- Ur-Relunan's experiment 

Date Time Depth to the Water table - Feet 

Oct. Piezometer Nmnber 
1970 1 2 3 4 5 b "7 S 

8 8:30 4. 25 3.37 3. 11 3.09 3.20 2.88 2.78 2.36 
11: 10 4.31 3.49 3. 29 3.40 3.49 3.05 2.90 2.48 
12:45 4.35 3.54 3.39 3.49 3.59 3. 15 3.01 2. 55 
13:55 4.35 3.58 3.41 3.52 3.62 3. 16 3.02 2.66 
15:45 4.43 3.70 3.51 3.66 3.72 3.30 3.15 2. 72 
18:00 4.48 3.78 3.60 3.68 3.79 3 .. 38 3.27 2.82 

9 7:15 4.70 4.04 3.89 3.96 4.06 3. 70 3.60 3. 20 
10: 25 4.72 4.07 3.92 3.98 4.10 3. 75 3.67 3.26 
14:00 4.75 4.12 4.00 4.01 4.15 3.80 3. 71 3.32 
18:00 4.82 4.19 4.03 4.06 4.18 3.85 3.78 3.38 

10 7:45 4.97 4.33 4.20 4. 20 4.33 4.00 3.95 3.59 
12:00 4.98 4.38 4.24 4.24 4.37 4.06 4.01 3. 66 
18:00 5.05 4.39 4.30 4.30 4.43 4.13 4.08 3.70 

II 17:08 5.19 4.60 4.40 4.44 4.57 4.30 4.24 3.87 
12 17:08 5.30 4. 74 4.56 4.57 4.69 4.42 4.37 4. 01 
13 16:40 5.41 4.85 4.69 4.70 4.83 4. 55 4.50 4013 
14 8:20 5.51 4.93 4.79 4. 78 4.93 4. 64 4.58 4. 22 

** Source: Table 22 of Khalil- Ur-Rehman (1971) 

-0"--



Table 6. ** Continued 

Date Time Depth to the Water table - Feet 

Oct. Piezometer NUIIlber 
1970' 9 10 11 12 13 

8 8:30 1.99 2. 13 2. 26 2.42 2.45 
11: 10 2.10 2. 25 2.39 2.92 2.95 
12:45 2. 20 2.35 2. 63 3. 10 3. 12 
13: 55 2. 21 2.42 2. 70 3. 19 3. 21 
15:45 2.35 2. 58 2.88 3.33 3.35 
18:00 2.45 2.68 2.99 3.41 3.43 

9 7: 15 2.88 3.10 3.40 3.69 3.72 
10:25 2.94 3. 16 3.40 3.72 3.73 
14:00 2.99 3. 23 3.48 3.77 3.79 
18:00 3.06 3. 29 3. 53 3.81 3.84 

10 7:45 3. 25 3.48 3.70 3.93 3.96 
12:00 3.31 3.52 3. 71 3.95 4.00 
18:00 3.40 3.59 3.79 3.99 4.04 

11 17:08 3.57 3. 76 3.91 4. 11 4.14 
12 17:08 3.70 3.89 4.01 4.19 4.24 
13 16:40 3.84 3.99 4.18 4.27 4.31 
14 8:20 3. 91 4.08 4.18 4.33 4.36 

..t,.,\. 
't' ..,-

Source: Table 22 of Khalil- Ur-Relunan (1971) 

14 

2.24 
2.48 
2. 67 
2.76 
2. 69 
3. 03 
3.38 
3.43 
3.47 
3. 51 
3. 65 
3. 69 
3.74 
3.87 
3.96 
4.04 
4.12 

15 

2.46 
2. 57 
2. 76 
2.85 
3.00 
3. 12 
3.45 
3.49 
3.54 
3.59 
3.74 
3.77 
3.81 
3.93 
4.02 
4.10 
4.17 

...... 
0" 
N 
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Table 7. Soil properties us ed for computations made. Mesa sandy clay 
,'e 

loam soil, Hullinger farm. I 

Hydraulic 
Water Content Conduc ti vity, Pressure Head 

e K (cm/hr) h (cm) 

.00 1 .0 (l 0- 9 ) -2 (10
6

) 

.01 2. 0 (10- 9 ) -1.3 (l0
6

) 

.02 3.4 (10- 9 ) -8.5 (lOS) 

.03 1. 0 (10-8 ) -4.2 (105 ) 

.04 1. 7 (10-8 ) -2.2 (105 ) 

.05 3. 0 (10 -B) -1. 15 (105) 

.06 5.4 (10- 8 ) -5.8 (10
4

) 

· 07 9. 2 (10-8 ) -3.0 (10
4

) 

.08 1 . 6 (10- 7 ) -1.5 (10
4

) 

· 09 2. 7 (10- 7) -1. 1 (10
4

) 

· 10 4.B (10- 7 ) -B.O (10
3 

) 

· 11 7.5 (10- 7 ) -6.2 (10
3 

) 

.12 1. 5 (10- 7) -4.9 (10
3 

) 

· 13 2. 5 (10- 6 ) -4.0 (10
3 

) 

· 14 4.5 (10- 6 ) -3.0 (10
3 

) 

· 15 B. 7 (10- 6 ) -2.35 (10
3 

) 

· 16 1.4 (10- 5 ) -1. B5 (10
3 

) 

· 1 7 2. 5 (10- 5) -1.45 (10
3 

) 

· 18 4.5 (10- 5 ) -1.12 (10
3 

) 
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Table 7. (Continued) 

Hydraulic 
Water Content Conductivity, Pressure Head, 

S K (cm/hr) h (em) 

· 19 7.5 (10- 5) -8.7 
3 

(10 ) 

• 20 1 . 1 (10-4 ) -6.7 (10
2

) 

· 21 1. 7 (10-4 ) -5.3 (10
2

) 

· 22 2. 7 (10-4 ) -4.1 (10
2

) 

.23 4.0 (10-4 ) -3.2 (10
2

) 

.24 6.1 (10-4 ) -2.5 (10
2

) 

.25 9.5 (10-4 ) -2.0 (10
2

) 

.26 1. 5 (l0- 3 ) -1.65 (10
2

) 

• 27 2.4 (10- 3 ) -1.35 (10
2

) 

.28 3. 5 (10- 3 ) -1015 (10
2

) 

.29 5. 5 (10-3 ) -9.9 (10) 

.30 9. 0 (10-3 ) -8.5 (10) 

• 31 104 (10- 2) -7.4 (10) 

.32 2. 1 (10- 2) -5.5 (10) 

· 33 2. 8 (10- 2) -5.6 (10) 

· 34 3.5 (10- 2) -4.8 (10) 

.35 4.6 (10- 2) -4.5 (10) 

.36 6.0 (10- 2) -4.1 (10) 

.37 7.9 (10- 2) -3.8 (10) 

.38 1.0 (10- 1 ) -3.4 (10) 
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Table 7. (Continued) 

Hydraulic 
Water Content Conductivity, Pres sure Head 

e K (cm/hr) h (cm) 

.39 1. 3 (10- 1 ) -3. 11 2 (10) 

.40 1. 7 (10-1) - 2. 731 (10) 

• 41 2. 3 (10-1) - 2. 413 (10) 

.42 3. I (10-1) - 2. 096 (10) 

• 43 4. 1 (10- 1 ) -1.715 (10) 

.44 5.4 (10-1) -1. 335 (10) 

· 45 6.9 (la-I) -I. 016 (10) 

.46 8.8 (10-1) -6.985 

.47 1. 03 -3.175 

.48 1.30 - • 0000 

):(>~ 

Source: King and Hanks (1 973 ) 
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