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NOTATION

Soil parameter

Soil parameter

Soil parameter

Soil parameter

Soil parameter

Coefficients of the heterogeneity equation

Soil parameter

Effective flow depth in linearized Boussinesq equation (L)
Depth from drains to impermeable bed (L)

Depth from drains to impermeable bed as modified- by
Hooghoudt's theory (L)

Gravity acceleration (L/’Iz)

Soil water pressure head (L)

Soil water suction head (L)
Thickness of flow in Boussinesq's equation (L)

Soil bubbling pressure head (L)

Node index in the x-direction
Rate of unsaturated accretion to the water table (L/T)
Node index in the y-direction

Unsaturated hydraulic conductivity (L/T)
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Newton'!s iteration index
Saturated hydraulic conductivity (L/T)

Relative hydraulic conductivity

Spacing between drains (L)

Soil parameter

iteration index (SOR iteration)

Height of water table at mid point between the drains above
datum for the steady state in sloping lands (L)

T_ime level index

Soil parameter

Normal vector

Soil water pressure (F/Lz)

Soil bubbling pressure (F/Lz)

Soil water suction (F/Lz)

Soil parameter (F/LZ)

Flux rate at soil surface (L/T)

Specific yield in Boussinesq's equation

Soil saturation = Ratio of volume of water to volume of voids
in soil.

Effective saturation

Residual Saturation = Irreducible saturation

Percentage of specific yield that is drained at the onset of

desaturation,



Depth from soil surface (L)

Time (T)

Darcian velocity vector (L/T)

Over-relaxation parameter

Horizontal coordinate (L)

Vertical coordinate (L)

Position head above datum (L)

Height of water table at mid point between drains above
datum (L)

Initial height of water table at mid point between drains
above datum (L)

Soil parameter (L)

Angle of slope of the impermeable bed
KD

0o e

S
. 3 2, 4
Density of water (M/L", or FT /L)

(L2/T)

Soil porosity

Angle of slope of surface of soil

Volumetric water content

Volumetric water content at saturation

Pore size distribution index - a soil parameter
Soil pararl;leter

The '"del" operator

Mesh size in the x-direction

Mesh size in the y-direction
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Magnitude of the time step
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ABSTRACT
Finite Difference Solution for Drainage of
Heterogeneous Sloping Lands
by
Fahd S. Natur, Doctor of Philosophy
Utah State University, 1974

Major Professor: Dr. Larry G. King
Department: Civil Engineering

The two-dimensional problem of tile drainage on sloping hetero-
geneous lands was considered. The land surface and the impermeable
boundaries of the problem were of a general shape. The flow in both the
saturated and unsaturated zones was considered and the system was
treated as one composite system. The problem was solved by a finite
difference numerical method using the successive over-relaxation
iterative (SOR) method fér the steady state case with no local recharge,
and a combined Newton inner iteration and successive over-relaxation
outer iteration for the transient state case with local recharge. Both
the rising water table and the falling water table cases were simulated.
A computer program was written in Fortrain IV Language for this pur-
pose, and a UNIVAC 1108 computer system was used. The results of
two runs for a hypothetical problem and one run for a field testing pro-
blem are presented. The results were compared with some approximate
mathematical solutions for the falling water table,

( 180 pages)



INTRODUCTION

Backg round

Artificial drainage, simply defined, is the artificial removal of
excess unwanted water from a locality of interest. It has a wide range
of application in the field of engineering. It is very important in soil
engineering, foundation works, earth works, earth fill dams, highways,
railroads, airports, in stabilization of slopes and wherever it is desired
to protect against excessive soil pore pressure, or against frost damage
or where it is desired to increase the shearing resistance of the soil.
(See Terzaghi and Peck, 1968, and Sherard et al, 1963 for more on non-
kagricultural drainage.)

Probably more drainage work is done for agricultural lands than
for all of the above fields put together. This research is concerned with
drainage of agricultural lands and for the rest of the paper the word
""drainage' will mean drainage of agricultural lands unless otherwise
qualified.

The purpose of agricultural land drainage is the removal of excess
moisture from the plant root zone to provide an optimum environment for
the plant roots for optimum production and to maintain a favorable salt
balance in the root zone so that economic and good production is sustained

perpetually.
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The beginnings of the art of dré.inage are lost in pre-history, but
probably man practiced drainage not very long after he practiced agri-
culture itself. Remnants of very old drainage works can still be found
at the seats of very old civilizations. In recorded history, the Greek
historian Hirodotus, as early as 400 B.C., mentioned the drainage
networks in the Nile Valley (Ayres and Scoates, 1939; Framji and
Mahajan, 1969).

The importance of land drainage cannot be overemphasized. A
significant volume of research confirmed the detrimental effects of a
high water table on crop production. Vast areas of present world deserts
were once very productive lands, but they deteriorated because of excessive
accumulation of salts due to lack of drainage. It is now recognized that
drainage is an effective means of managing river-basin salt balance,
that it is very important in maintaining a successful irrigated agriculture
for long periods and that, except for some very rare localities where
natural drainage is adequate, irrigation and drainage developments are
complimentary.

Some statistics may add to this emphasis on the importance of
drainage. Framji and Mahajan (1969) reported that there were 247
million acres of land in the world provided with artificial drainage. The
United States of America (USA) Water Resources Council (1968) estimated
that up to 1959 a total of 131 million acres of land had been drained for
agricultural purposes in the USA, and that 189, 000 miles of open ditches

and 58, 000 miles of tile drains had been constructed. In 1966 alone, the



United States Department of Agriculture (USDA) Soil Conservation
Service assisted in design and construction of 12, 720 miles of open
drains and 25, 553 miles of tile drains (USA Water Resources Council,
1968)., Luthin (1966) estimated that 20 percent of the land in the major
corn belt states was drained mostly by tile drains.

Although drainage development had been undertaken for centuries,
still vast areas of land in the world are in need of improved drainage.
Gulhati (1955) estimated that 150 to 200 million acres of irrigated crop
land in the world needed improved drainage. Nearly 84 million acres of
crop and pasture land in the USA need some drainage improvement (USA
Water Resources Council, 1968). With the increasing recognition of the
importance of drainage, construction of drainage works is being under-
taken at an ever-increasing pace.

The costs involved in drainage developments are not insignificant.
Luthin (1966) estimated that the cost of tile drains installed in the state
of Iowa alone was more than the cost of the Panama Canal, The cost of
the irrigation projects that depend on proper drainage for their success
is many folds greater. This makes it very important to have good
drainage design. No design can be any better than the theory on which
it is based and our understanding of the physical processes.

Until about three decades ago the design and construction of
drainage works were just an art that depended solely on the experience
and judgment of the designer. In fact there were no scientific bases

for the design nor any theory until about a century ago, that is, until



Henry Darcy discovered his famous linear law of flow of water through
porous materials in 1856. Probably the first drainage problem to be
investigated scientifically was the famous Boussinesq problem towards
the turn of the century. Hooghoudt is accredited by Luthin (1966) to be
the first to present a complete rational analysis of the drainage problem.
Since that time, and especially in the last three decades,much research
with rewarding results went into the science and engineering of drainage.
Nevertheless, drainage science is still not an exact science at the present
day. This i‘s due to the complexity of the physical problem and the com-
plexity of the factors that enter into it,

The greater part of the research was on steady state problems.
The greater percentage was for homogeneous soils with or without a
horizontal impermeable barrier. Most of the drain spacing formulas
were developed for these cases. Most design procedures are based either
on empirical information or on analysis incorporating simplifications
the validity of which is at best difficult to prove (Hedstrom, Corey,and
Duke, 1971). Many solutions assume no flow above the water table
(Hedstrom, Corey,and Duke, 1971) which in most cases introduces gross
errors. Some of the solutions that attemptéd to account for the flow
above the water table did so only by increasing the cross sectional area
of the saturated flow which is in most cases inadequate representation of
the flow system (Childs,1945). Many of the unsteady state solutions
consider only the saturated flow and assume instantaneous and complete

desaturation of the soil above the water table (Jensen and Hanks, 1967).



It is well deﬁonstrated now that this is not the case. These simplified
solutions, suff;aring as they do from restrictions and assumptions,
are nevertheless great steps in increasing our knowledge and under-
standing of the complex problem of drainage.

The steady state condition cannot exist practically for any
appreciable time. Heterogeneity of the soil is the rule rather than the
exception in nature. More often than not, the land surface is not flat
and the impermeable barrier is not horizontal. In humid and subhumid
areas it is very important to provide drainage on hillside forested or
pasture lands and to protect adjacent crop lands from seepage from the
hillside. In many arid and semi-arid areas the increase in population
and the resulting increase in demand for new crop land is forcing develop-
ment and irrigation of sloping areas. This is enhanced further by the
de&elopment and spreading use of sprinkler irrigation systems. This
creates the need for drainage of‘ sloping lands., Robinson (1959) estimated
that about 90 percent of the drain installations in Colorado are of
the interceptor type.

Although there has been a large volume of literature written on
the drainage problem in recent years, not very much is found on drainage
of sloping lands. This served as a motivation for this study. It was
decided to include the effects of slope, heterogeneity and unsaturation
in the solution. For this last consideration, the whole soil-water system
comprising the saturated and the unsaturated regions is treated as one

system.
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The resulting partial differential equations of flow are non-linear

and, to the knowledge of the writer, no analytical method of solution of
these equations is available, Recourse is therefore made to a numerical

solution,

Objectives of the Study

The following two objectives were set at the start of the study.

1. To use the finite difference numerical method to solve the
general two-dimensional unsteady state drainage problem in a hetero-
geneous sloping soil with a general geometry of the ground surface,
impermeable barrier and drain placement. The solution would be general
enough to be used at many different locations. The solution would treat
the saturated and the unsaturated parts of the medium as one system
since it is already recognized that the same governing equations (Darcy's
and the continuity) hold for both parts, and that the two parts form a
physical and mathematical continuity. Both infiltration and drainage
conditions will be simulated.

2. To test the solution with data already available in the litera-

ture for the actual performance of some field drainage systems.



REVIEW OF LITERATURE

Drainage of Sloping Lands

Seepage in sloping lands

Seepage and drainage on sloping lands are so intimately inter-
related that a brief review of this subject is warranted., Seepage studies,
whether their purpose be drainage (Kirkham, 1947), erosion control and
slope stability (Whisler, 1969) or hydrology (Jeppson,1969b) give us a
better understanding of the drainage problem.

The classical view (Since Dupuit, Forchheimer and Boussinesq)
was that the flow in steady state seepage on sloping lands was parallel to
the sloping impermeable layer. While this may be characteristic of many
areas and situations, it is not universal. Kirkham (1947) studying piezo-
metric surfaces in a hillside sloping farm in the Iowan glacial drift area
found that water moved approximately vertically downward at the top of
the slope, horizontally outward in the middle slope and approximately
vertically upward near the bottom of the slope. Bornstein, Bartlett,and
Howard (1965), studying piezometric data in a sloping area underlain by
a fragipan layer, concluded that water moved generally parallel to the
ground surface although the impermeable layer had protrusions and
depressions and no continuous slope.

Klute, Scott,and Whisler (1965) using analytical solutions for



seepage in a saturated inclined rectangular homogeneous soil slab
confirmed, in a geneﬁ-al qualitative sense, Kirkham's (1947) findings.
Whisler (1969),using an electric resistance network analog to simulate
the above mentioned inclined soil slab,confirmed the analytical results
and found that the minimum rate of recharge necessary to keep the slab
saturated increased as the slope angle was increased. He concluded
that long slabs acted like pipes with soil at both ends.

Powers, Kirkham, and Snowden (1967), and Selim and Kirkham
(1972a, 1972b) presented analytical solutions for the problem of seepage
through sloping saturated homogeneous soils overlying horizontal im-
permeable layers such as found in systems of drainage by bedding
(See Luthin, 1966, pp. 232-239, for drainage by bedding). Their results
confirmed those of Whisler (1969) and in addition showed that increasing
the depth of the soil increased the magnitude of interflow and the per-
centage of the total recharge that goes into interflow. Warrick (1970),
and Morin and Warrick (1973) used conformal mapping to solve a similar
problem with infinite depth and obtained similar general results,

Jeppson (1969b) used a finite difference numerical method to solve
the flow equation for infiltration of water on a watershed of heterogeneous
soil and any prescribed shape of bed and soil surface. He formulated the
problem in fhe inverse plane of the potentiai function and the stream
function.

Youngs (1971) presented a mathematical solution of the flow of a

free surface aquifer resting on an impermeable layer of any shape with



no limitation to small slopes. This solution however needs a prior

knowledge of the pressure distribution along the impermeable boundary.

Drainage of sloping lands

General

Bouwer (1955a, 1955b) using mathematical reasoning and a sand
tank model found that alignment of tile drains longitudinally with the slope
or transversely across the slope did not affect the drainage capacity of
the drains. Kirkham (1947) reported that in some seep areas on the slope,
drains were not effective even at a spacing as small as 50 feet, This was
especially true in the artesian areas near the bottom of the slope,
Bornstein (1964), Benoit, Fisher and Bornstein (1967), Bornstein, Thiel
and Benoit (1967), Bornstein and Benoit (1967) and Benoit and Bornstein
(1972) reported the results of a long term field experiment on sloping land
underlain by a fragipan layer. Their results showed that shallow (20 inches)
surface diversion ditches were not effective in draining the slope and that
most of the drainage was done by deep subsurface drains. They also
concluded that random drains or a single cutoff drain were not sufficient
and recommended a syste;n of parallel drains. Thiel and Bornstein (1965)
confirmed theése results with an electric resistance network analog and
showed that a backfill over the drains with high conductivity was highly
effective. Willardson (1968) recommended a backfill of high conductivity

to cut off the flow above and below the tile drain on slopes,
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Solutions to the dra!\.inage problem

Steady state with no surface recharge. The differential equation

of steady state, saturated, free surface flow in homogeneous soil resting
on a sloping impermeable bed with no local surface replenishment was
solved by direct integration by many investigators. Bear (1972) attributed
the solution to Dupuit in 1863 and to Pavlovski in 1931. Bear, Zaslavsky
and Irmay (1968) presented the solution and called the problem '"Pavlovski's
problem.' Solutions in one or another of the horizontal-vertical, the
longitudinal-vertical and the longitudinal-normal sets of coordinates were
given by Jaeger (1957), Polubarinova-Kochina (1962), Werner (1957),
Glover according to Donnan (1959) and Todd and Bear (1959). (Here
longitudinal axis means the axis along the slope and normal axis means
the axis normal to the slope.) All of the above solutions used one or the
other of two approximations used originally by Boussinesq. According to
Wooding and Chapman (1966), Boussinesq in 1877 extended the Dupuit-
Forchheimer assumptions (called D-F assumptions hereafter) to flow
systems on sloping barriers so that the streamlines are taken parallel

to the sloping bed, and in 1904 he used the original D-F assumptions
(horizontal streamlines) for the same problem. Consequently all of
these solutions are limited to small slopes. A solution by the method

of functional analysis and which does not utilize the D-F assumptions
(based on the hydrodynamic theory) was given by Polubarinova-Kochina
(1962). This solution would not be limited to small slopes, Childs

(1971) using the first of Boussinesq's formulations (stream lines parallel
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to slope) and a more accurate expression for the hydraulic gradient
obtained a more accurate solution that was claimed to be not limited to
small slopes only.‘

Childs (1946) used electric conductor sheet analogs to investigate
the problem of drainage of foreign water by open ditches or tile drains on
sloping lands.

According to Childs (1946), Hopf and Trefftz (1921) obtained
solutions to restricted cases of seepage to an open ditch on sloping lands
by conformal mapping. (For more on conformal mapping see Vallentine
1967 or Bieberbach,1964.) Polubarinova-Kochina (1962) used conformal
mapping to solve the case of drainage to a horizontal slit drain in sloping
land., According to Maasland (1959), conformal mapping was used by
Gustaffson (1946) for the solution of this problem. Conformal mapping
was used in a qualitative manner by Brooks (1959) and Nelson (1960) for
the same problem,

Many of the solutions cited above assumed that the source of
foreign water was at an infinite distance from the drain. Keller and
Robinson (1959) using dimensional analysis and the results of a sand
tank model, modified Glover's equation (Donnan, 1959) to apply to cases
where the source of seepage was at a finite distance from the drain.

This case would be encountered when an intercepter is used to intercept
seepage from a higher unlined canal. For such a case Willardson, Boles

and Bouwer (1971) applied the electric resistance network analog method
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and investigated effects of distance and depth of the interceptor relative
to the canal on seepage and intérception.

The solutions mentioned above give the shape of the water table
upstream of a drain and assume that the water table downstream of the
drain will be parallel to the sloping bed starting from the water level in
the drain. However it was pointed out by Brooks (1959), Nelson (1960)
and, for some casés, by Polubarinova-Kochina (1962) that the water
table downstream of the drain would rise to a level higher than the level
of the water in the drain,

Steady state with surface recharge. This problem was investi-

gated less extensively than the previous one. Werner (1957) used the
Boussinesq 1877 formulation and solved the approximate linearized
differentialkequation by Laplace transformations (operational calculas)
for a steady recharge rate with and without foreign seepage water. (For
more on the Laplace transforms see Spiegel,l 965).‘ Schmid and Luthin
(1964) used the Bodssinesq 1904 formulation and solved the linearized
differential equation for the case of drainage ditches penetrating to the
sloping impermeable boundary neglecting seepage surfaces. As design
aids they presented curves of —I% Vs, {I— for slopes from zero to 70
peréent, where q is the rate of replenishment, K is the hydraulic
conductivity of the soil, H is the méximum height of the water table
above the bed between two drains and L. is the spacing of the drains.

Guitjens (1964) and Guitjens and Luthin (1965) checked the solution of

Schmid and Luthin (1964) with a Hele~Shaw viscous flow model for slopes
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from zero to 80 percent. They found that the model showed the existance
of significant seepage surfaces and that the horizontal stream lines of the
D-F assumptions introduced an error in Schmid and Luthin's (1964) re-
sults and that this error increased with increasing slope for a fixed —qI-(-
ratio and with increasing -?<— ratio for a fixed slope. Wooding and Chap-
man (1966) compared the solutions of Werner (1957) and Schmid and
Luthin (1964) with an exact solution by conformal mapping. They found
good agreement between Werner's (1957) solution and the conformal
mapping solution, but a discrepancy that increased with increasing slope
when Schmid and Luthin's (1964) solution was compared with the com-
formal mapping solution. They presented design curves similar to those
of Schmid and Luthin (1964) but based on Werner's (1957) solution,
Wooding (1966) showed excellent agreement between Werner's (1957)
solution and conformal mapping for some other particular cases of flow
in sloping lands. Childs (1971) extended his refined expression of the
hydraulic gradient to the case of steady recharge and obtained a solution
which was claimed to be not limited to small slopes. An analytical solu-
tion to this case was also obtained by Henderson and Wooding (1964),

Mein and Turner (1968) using an electric resistance network
analog to study drainage on slopes of sand dunes for up to 10 percent slope
recommended that for slopes up to this value either Schmid and Luthin's
(1964) curves or Wooding and Chapman's (1966) curves could be used

for design.

Luthin and Taylor (1966a, 1966b) used a digital computer to



14
solve the more exact Laplace equation by the finite difference numerical
method for a homogeneous, sloping soil with steady replenishment rate
and open drains penetrating to the barrier,

Ziegler (1972) studied drainage on sloping land with steady re-
charge using a sand tank model and concluded that drainage on sloping
lands had many aspects similar to drainage in flat lands, Carlson (1971)
using a sand tank model compared the results of the model with results
calculated by formulas developed for flat lands and concluded that spacing
formulas developed for flat lands could be used for spacing of mid-slope
drains,

Unsteady state, This pfoblem has been investigated the least., Werner

(1957) gave an analytical solution for the cases of a sudden change in the
elevation of the tail water (drain water in drainage), a sudden change in
the rate of replenishment and a uniformly increasing rate of replenish-
ment. Henderson and Wooding (1964) gave a solution for the build-up of
the water table under constant recharge.

Luthin and Guitjens (1967) used a Hele-Shaw viscous flow model
to study the case of a falling water table after cessation of a steady
recharge. They wrote:

It appears that flat land drainage theory can be applied to sloping

land without much error if the drainage facility reaches the im-

permeable layer., (Luthin and Guitjens, 1967, p. 50)

Chauhan (1967) and Chauhan, Schwab and Hamdy (1968) studied the case

of the falling water table and compared the results of an analytical solu-

tion of the linearized Boussinesq equation and the results of an analog
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computer finite difference solution of the nonlinear equation with the
results of a Hele-Shaw viscous flow model, They found that the three
methods had good agreement up to 8 percent slope, but the two approxi-
mate methods (analytical and analog) deviated from the model at higher
slopes. They also confirmed the results of Luthin and Guitjens (1967)
that the rate of the fall of the water table at its highest point for the
moderately sloping case was the same as that for flat lands.

Heterogeneous soils, All of the drainage studies cited above

were for homogeneous soils. To the extent of my knowledge the only
paper that dealt with drainage of heterogeneous sloping land was that of
Nelson (1961) who presented theory and a graphical method for trans-
forming a heterogeneous soil into a homogeneous one, applying the
homogeneous drainage theory, then transforming the soil back to the

original heterogeneous condition.

Numerical Solutions

General

There are many problems in physical sciences and engineering
for which the differential equations governing the phenomena under study
can be formulated, yet the analytical solutions of these equations are
beyond the reach of pure mathematics as it stands at the present. The
partial differential equations of flow in porous media are almost always
in this class, (unless they are much simplified by sometimes valid and

sometimes totally unrealistic assumptions). In such cases the numerical
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methods of solving these equations are among the most powerful tools to
deal with the problem.

There are several numerical methods of solving partial differen-
tial equations, but the most general, the most versatile and the most
widely used method is the method of finite differences. In Lawrenson's
words:

There are several numerical techniques that can be used ...,

but the one which is still supreme, and which can be applied

equally to linear and non-linear problems, to steady-state

and transient ones without limits as to boundary shapes and

conditions, is the method of finite differences. (Lawrenson,

1966, p. 102)

The calculus of finite differences is an old branch of calculus that
started not very many years after the invention of the differential
(infinitismal or continuous) calculus, to deal with discontinuous functions
and discrete observations. (It was sometimes called the calculus of
observations)., According to Jordan (1960), it was started by Brook
Taylor in 1717, and its theory was laid down by Jacob Sterling in 1730,
Before the Twentieth Century, the main application of this calculus was
for evaluation of terms and sums of series (Boole, 1860), and in mathe-
matical statistics (Jordan, 1960).

A very close analogy between the calculus of finite differences
and the differential calculus was recognized from the beginning (Boole,
1860; Spiegel 1971), but it seems that this analogy was mostly used to

carry the theory and methods of solution of differential equations over

to difference equations. Although Luthin and Scott (1952) stated that the
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use of numerical methods for the solution of differential equations was
as old as Newton, it is widely accepted fhat Richardson (1910), was the
first to solve a differential equation by the method of finite differences,
(Thom and Apelt, 1961; Remson, Hornberger, and Molz, 1971)., Thom
and Apelt (1961) mentioned that both Boltzman in 1892 and Runge in 1908
gave the finite difference operator for the Laplace equation. Southwell
(1940, 1946) used finite differences and his relaxation method in solving
differential equations. Few other investigators used the method with
desk-type computations. With the advent of high speed computers,
numerous investigators used this method for a large number of problems
in many fields of application.

The theory of the discretization of a differenfial equation by the
method of finite differences as given by Forsythe and Wasow (1960) could
be described by the following. If we have a partial differential equation
defined on an open connected domain R of the independant variables (x,y,...)
with a solution u(x,y,...) defined on R, we replace the domain R (infinite
number of points) with a set S which has a finite (but relatively large) num-
ber N of elements P, The solution u(x,y,...) is replaced with a function
U(P) defined on S. U(P) is then found by solving a system of simultaneous
algebraic equations., Usually each element P of the set S is taken as a
point in or near the set R = RUC, where C is the boundary of R, Nor-
mally these points are taken as the grid points of a regular mesh
dividing R.

The mechanics of the method consist of dividing the domain of
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the problem by a regular mesh (most usually a squarc mesh), then re-
placing the derivatives in the differential equation with differences of
the values of the dependant and the independant variables at the grid
points (nodes). This done at each node, gives a system of simultaneous
algebraic equations. The method of evaluating the derivatives in terms
of differences by use of expansion of functions into Taylor's series is
given by Remson, Hornberger and Molz (1971) and Carnahan, Luther,
and Wilkes (1969). There are other methods of obtaining the difference
equations from a differential equation, such as the methods of the calculus
of variation discussed by Forsythe and Wasow (1960), and Remson, Horn-
berger, and Molz (1971). Usually there is also a choice of several
schemes for representing a derivative in terms of finite differences.
(See Davis and Polonsky, 1964; Richtmyer, 1957). The choice usually
depends on the problem, the domain geometry, the requirements im-
posed on the solution and the individual solving the problem.

Once differencing is done, we need to solve the resulting system
of simultaneous algebraic equations (which is usually a large system).
Methods for solving such systems can be grouped into the direct methods
and the iterative methods., Iterative methods are usually preferred
for large systems (Forsythe,and Wasow, 1960; Lawrenson, 1966; Thom
and Apelt, 1961; Carnahan, Luther, and Wilkes, 1969; Remson, Hor‘n-
berger, and Molz, 1971). Direct methods, however, may be practical
and advantageous in certain cases (Jeppson, 1968b). Iterative methods,

starting from given or assumed values of the unknown at the nodes of the
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mesh, seek to improve these values in successive iterations until the
changes in these values with more iterations are made less than a small
error prescribed by the solver.

One iterative method that offers an optimum combination of
simplicity, flexibility and high speed is the method of '"Successive Over
Relaxation' (referred to as SOR hereafter) (Lawrenson, 1966), In this
method the improved value of the unknown at a node is taken as the sum
of the starting value of the unknown at the node plus the product of a
relaxation parameter and the difference between the computed and the
starting values at the node. Furthermore, this improved value is used
directly after it is computed in all subsequent calculations in the iteration.
The value of the relaxation parameter ranges from zero to two. Usually
an optimum value between one and two exists for this parameter to give
the quickest convergence (although in some problems a value less than
unity- underrelaxation may be needed for the stability of the solution).

In any case the optimum value of this parameter heavily depends on the
type of the differential equation, the geometry of the domain, and the
type of the boundary conditions (Forsythe, and Wasow, 1960), and on the
difference scheme, (Jeppson, 1968b).

Relaxation methods w;zre used by Gauss in 1823 and by Seidel in
1874 (Forsythe and Wasow 1960), and by Southwell (1940, 1946).
According to Forsythe and Wasow (1960), over-relaxation was used by
Fox in 1948 and its theory was given for limited types of systems by

Frankel (1950) and Young (1954). Later investigators successfully
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extended the use of SOR to systems outside the limitations of Young (1954)
and Frankel (1950). For more on the theory of iterative methods and the
SOR see Forsythe and Wasow (1960), Varga (1962),and Wachspress
(1966).

The equation of flow in porous media under unsaturated conditions
is a nonlinear partial differential equation. Finite difference numerical
solutions were obtained for a number of non-linear partial differential
equations although the theory of such solutions is very scant (Forsythe
and Wasow 1960), According to Forsythe and Wasow (1960), the only
nonlinear parabolic partial differential equation for which an approximate

difference has been studied systematically was of the form:

2
du 9 u du
T ao (x,t) axz + a.l(x,t) ™ +d (x,t,u)

where the nonlinearity is in the last term only and not associated with

any of the derivatives. Jeppson (1972) stated that the schemes used for
nonlinear equations were principally extensions of methods that worked
with linear equations, without a developed theory for the nonlinear equa-
tions. He pointed out that this was no guarantee for convergence, stability
or representation of the solution and that the scheme of differencing and
the method of solution were of extreme importance in dealing with non-
linear equations, He also pointed out that each of the many types of
nonlinearities introduces its own pecularities and difficulties in the

problem. (For more on solution of partial differential equations by the
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method of finite differences see Richtmyer, 1957; Forsythe and Wasow,

1960; Thom and Apelt, 1961; Carnahan, Luther and Wilkes, 1969.)

Finite difference solutions in porous
media flow problems

Even before the development of high speed computers some in-
vestigators used the method of finite differences with relaxation schemes
suited to desk calculators to solve problemé in porous media flow
(Southwell, 1946; Luthin .and Gaskell, 1950; Kirkham and Gaskell, 1950;
Day and Luthin, 1956). With the development and widely spread use of
high speed computers, a large number of more complex porous media
flow problems were solved using this method. The volume of literature
on this subject has become so large that a complete review of it is be-
yond the scope of this study. Freeze (1969) reviewed a number of one-
dimensional problems solved by this method, and Remson, Hornberger
and Molz (1971) gave a large number of references on this subject, To
set a background, some articles will be mentioned here with no claim
that the list is exhaustive or comprehensive.

This method was used in almost all areas of the field of flow in
porous media, such as underground hydrology (Hornberger, Ebert and
Remson, 1970; Lin, 1972, 1973), seepage through Aearth dams (Jeppson
1968b; Freeze, 1971), seepage from earth canals (Jeppson, 1968a;
1968c; Burejev and Burejeva, 1966, Jeppson and Nelson, 1970), infiltra-
tion (Brutsaert, 1971; Jeppson, 1972; Hanks, Klute,and Bresler, 1969;

Ibrahim and Brutsaert, 1968; Selim and Kirkham, 1973), trickle irrigation
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(Brandt et al., 1971), flow towards wells (Luthin, and Scott, 1952;
Taylor and Luthin, 1969; Brutsaert, Breitenbach, and Sunada, 1971;
Cooley, 1971), soil column drainage (Watson, 1967, Brooks et al.,
1971) and land drainage, which will be reviewed in a later section.

The problems solved represent a variety of combinations of
equation form (hydrodynamic or Boussinesq), flow dimensions (one, two
or three-dimensional), flow states (steady or unsteady), flow conditions
(saturated, unsaturated or a composite of both) and medium characteris-
tics (homogeneous or heterogeneous). Reference to these solutions is
given by the following.

Boussinesq's equation: Moody (1966), Terzidis (1968), Hornberger,

Ebert and Remson (1970), Lin (1972) and Zucker et al. (1973).

One-dimensional, unsteady flow in homggeneous, unsaturated media:

Wang, Hassan and Franzini (1964), Whisler and Klute (1965), Remson
et al, (1965), Remson, Resnicoff and Scott (1974), Remson,Fungaroli
and Hornberger (1967), and Whisler and Watson (1969).

One-dimensional, unsteady; homogeneous, composite: Whisler and

Klute (1967).

One-dimensional, unsteady; hetero&gneous, unsaturated: Ashcroft et al,

(1962), Hanks and Bowers (1962), Day and Luthin (1956), Rubin and
Steinhardt (1963), Klute, Whisler and Scott (1965), Whisler and Klute
(1966), Rubin (1966), Kobayashi (1966), Jensen and Hanks (1967), Klute

and Bresler (1969) and Jeppson (1970b).
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One-dimensional, unsteady, heterogeneous, composite; Freeze (1969).

Two-dimensional, steady, homogeneous, composite: Jeppson (1968a,

1968b).

Two-dimensional, steady, heterogeneous, saturated: Freeze and Wither-

spoon (1966) and Jeppson (1969a).

Two-dimensional, steady, heterogeneous, composite: Sewell and van

Schilfgaarde (1963) and Jeppson (1968c, 1969b).

Two-dimensional, unsteady, homogeneous, saturated: Isherwood (1959),

Todsen (1971) and Tseng and Ragan (1973).

Two-dimensional, unsteady, homogeneous, composite: Rubin (1968).

Two-dimensional, unsteady, heterogeneous, saturated: Burejev and

Burejeva (1966), and Taylor and Luthin (1969).

Two-dimensional, unsteady, heterogeneous, unstaurated: Brandt et al,

(1971) and Green, Dabiri and Weinang (1970).

Two-dimensional, unsteady, heterogeneous, composite: Brutsaert,

Breitenbach and Sunada (1971), Freeze (1971a) Hornberger, Remson and
Fungarolli (1969), and Brutsaert (1971),

Three-dimensional, steady, heterogeneous, composite: Nelson (1962),

Reisenauer (1963) and Reisenauer, Nelson and Knudsen (1963).

Three-dimensional, unsteady, hetero&eneous, composite: Freeze

(1971Db).

Three-dimensional, axisymmetric: (these problems collapse to two-

dimensional ones). Jeppson (1968d, 1970a) and Wei (1971).
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Various methods of differencing the transient equation were used.
The explicit difference scheme was used by Kobayashi (1966), The
implicit scheme was used by Brutsaest (1971), Brutsaert et al, (1971)
and Freeze (1969, 197la, 1971b) among others. The Crank-Nicolson
Scheme was used by Ashcroft et al, (1962), Hanks and Bowers (1962),
Hanks, Klute and Bresler (1969), Jensen and Hanks (1967), Klute
Whisler and Scott (1965), Rubin (1966), Whisler and Klute (1965), Brandt
et al, (1971) and Jeppson (1972).

Methods of solution of the resulting system of algebric equations
were also numerous, The relaxation method was used by Day and Luthin
(1956), Isherwood (1959), Luthin and Gaskell (1950), Kirkham and Gaskell
(1950) and Luthin and Scott (1952). The SOR was used by Nelson (1962),
Reisenauer (1963), Reisenauer, Nelson and Knudsen (1963), Taylor and
Luthin (1963), Freeze and Witherspoon (1966), Jeppson (1968a, 1968b
1968c) and Tseng and Ragan (1973). The line successive over-relaxation
(LS.OR) method was used by Freeze (197la,b). The alternating direction
implicit (ADI) method was used by Rubin (1968) and Lin (1972, 1973).
The Newton Iterative method was used by Jeppson (1968d, 1972) and
Brutsaert (1971). The Newton-SOR (Newton inner iteration and SOR
outer iteration) was used by Jeppson and Nelson (1970) and Wei (1971).
The Newton-LSOR was used by Brutsaert, Breitenbach and Sunada (1971).

The Newton-ADI was used by Brandt et al, 1971,
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Finite difference solutions
of drainage problems

Although drainage problems were among the earliest porous media
flow problems solved numerically by the method of finite differences, very
little is found in the literature on this subject. Luthin and Gaskell>(l950)
and Taylor and Luthin (1963) used the method of finite differences to study
steady state drainage to tile lines in layered soils with a ponded soil sur-
face., Kirkham and Gaskell (1950) used the method to study the transient
case of the falling water table in homogeneous soils drained by tiles or
open ditches. Finite differences and the method of Kirkham and Gaskel
(1950) were used by Isherwood (1959) to study the effect of tile depth,
tile spacing, barrier depth, hydraulic conductivity and drainable porosity
on the rate of fall of the water table between tile drains. The same
methods were used by Todsen (1971) to study the transient behavior of
the water table between ditch drains in the presence of local accretion,
Sewell and van Schilfgaarde (1963) used finite differences to study steady
drainage to tile drains in a composite saturated-unsaturated system, and
Rubin (1968) investigated the case of the falling water table in a com-
posite system using finite differences., Luthin and Taylor (1966) studied
steady drainage to open ditches on sloping homogeneous lands with
accretion using finite differences. Remson, Hornberger and Molz (1971)
gave a finite difference solution to the Boussinesq's transient equation
for tile lines lying on the impermeable layer. Moody (1966) solved the
Boussinesq's transient equation for the falling water table between tiles

above the impermeable barrier, using finite differences.
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Composite Saturated-Unsaturated Systems

General

Until very recently the saturated and the unsaturated regions of
water flow in soils were treated separately; the first by groundwater
hydrologists neglecting the unsaturated flow and the second by soil
physicists with no consideration of the saturated flow (Freeze 1969). In
most solutions of drainage problems the unsaturated flow above the water
table was either neglected or an equivalent saturated fringe thickness was
added to the saturated flow cross section to compensate for it. The
validity of this method of compensation, especially in flows which are
not predominantly horizontal, was never confirmed (Hedstrom, Corey and
Duke, 1971).

Neglect of the unsaturated flow above the water table may lead,
in many cases, to serious errors (Jensen and Hanks, 1967; Brutsaert,
Breitenbach and Sunada, 1971; Hedstrom, Corey ana Duke, 1971). The
importance of including the unsaturated flow was emphasized by Bouwer
(1959, 1964), Kraijenhoff Van de Leur (1962), Reisenauer (1963) and
Freeze and Harlan (1969). Bird and McCorquodale (1971) studying per-
formance of tile drains reported that the seepage in the unsaturated zone
was very significant, Luthin and Day (1955) showed experimentally and
by a numerical solution that the volume of unsaturated flow can exceed

that of saturated flow in some problems in certain cases. Freeze (1971a)
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showed that the inclusion of the unsaturated flow was not a matter of
trivial consequences on the results,

Many of the solutions of the transient drainage problem (especially
the case of the falling water table) were obtained as a succession in time
of steady state solutions, where, starting from an initial water table
position, a new water table position, after a time increment, is calculated
by some equation, then the steady state equation of flow is solved for the
new saturated region and the procedure is repeated for new time steps.
(See for example Kirkham and Gaskell, 1950; Isherwood, 1959; Burejev
and Burejeva, 1966; Todsen, 1971; Tseng and Ragan, 1973), In addition
to neglecting the flow in the unsaturated zone,most of these solutions
assume instantaneous and complete desaturation of the medium at a
point as soon as the water table falls beyond that point. They assume
furthermore that the drainable porosity or specific yield is a constant
quantity independent of time or position above the water table. These
assumptions were criticized as inaccurate by Childs (1960), Kraijenhoff
Van de Leur (1962), Jensen and Hanks (1967), Rubin (1968) and Freeze
(1971b), all emphasizing the fact that drainable porosity was a dynamic
quantity that depended on time as well as position above the water table.
Hewlett and Hibbert (1963), in a sloping soil tank experiment, reported
that they were still getting measurable amounts of drainage outflow from
a 10.85 cubic meters volume of soil (38,3 cubic feet) 145 days after the
soil mass was desaturated.

Treatment of the problem in a composite saturated-unsaturated
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system climinates the inaccuracies mentioned above. Two contrasting
theories exist in the literature concerning composite systems, These
theories were reviewed by Fujioka and Kitamura (1964) and by Hornberger
and Freeze (1970). The first theory, although admitting the physical
continuity of flow between the saturated and the unsaturated zones,
claims that there are differences between the flows in the two zones in
that the water in the unsaturated zone possesses relative compressibility
and that the curve of moisture content versus pressure head exhibits a
first derivative discontinuity at saturation. The results of an experiment
conducted by Fujioka and Kitamura (1964) to test this theory did not
support it, The second theory claims that there is physical and mathe-
matical continuity of flow in both the saturated and the unsaturated zones,
and that the distinction between the two zones is only an arbitrary dis-
tinction of definition. This second theory is more widely accepted by
workers in the field than the first (Rubin, 1968; Freeze and Harlan, 1969;
Freeze, 1969, 1971a, 1971b; Hornberger, Remson and Fungaroli, 1971;
Brutsaert, Breitenbach and Sunada, 1971).

In solving transient free-surface problems in porous media, the
composite system treatment has another great advantage. It eliminates
the need for calculating the position of the water table a priori, leaving
this to emerge as part of the solution (Freeze, 1971b).

The advantages of treating a composite system were recognized
early by many researchers, but the task of solving such a system

analytically was (and still is) formidable if not impossible. This
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treatment was made feasible only through the availability of high speed
computers and the wide spread use of numerical methods in solution,
This probably explains why this trend is only very recent. Some of the
works that treated composite systems were referenced previously in
this review under headings with the agdjective '"composite, "

Treatment of a composite system would only be possible through
the extension of the flow equation to the unsaturated zone. This would
necessitate the extension of Darcy's Law to unsaturated flow and the
consideration of variable medium hydraulic conductivity and water con-
tent (or saturation) as functions of the pore pressure head; it being under-
stood that the mass continuity equation is universally true in any medium
(at least for the velocities we consider in porous media flow).

Extension of Darcy's law
to unsaturated media

In 1856, Henry Darcy published his famous experimental law that
stated that flow through saturated sand was directly proportional to the
head loss and inversely proportional to the length of path of flow. This
law which gave a linear relation between flow and hydraulic gradient
(which is the‘ loss in hydraulic head divided by the length of the flow path),
was originally found for vertical downward flow through saturated homo-
geneous sand columns., It has been since shown to be independant of the
direction of flow (van Schilfgaardes 1970) and it has been extended to
two and three dimensions by many investigators, first heuristically and

then by planned experiments and success in application (Bear, 1972).
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It has also been obtained theoretically by various workers by statistical
averaging of the Navier-Stokes equations (neglecting inertial terms) over
the flow section, and by various conceptual models of the porous medium
to which the hydrodynamic theory was applied. (See Hall, 1956; DeWiest,
1969; Rumer, 1969; Bear, 1972). This showed that Darcy's law reflected
the macroscopic statistical average of the hydrodynamic behavior of water
flow through the multitude of the tortuous flow paths in a porous medium.

Buckingham (1907), investigating capillary flow of soil moisture
and utilizing analogies of this flow to heat flow (Fourier's law) and to
electric current flow (Ohm's law), suggested a law for unsaturated
moisture flow in soils which was in actuality an extension of Darcy's law
for saturated flow. Although Buckingham did not mention Darcy's law,
the analogy between saturated and unsaturated flows would have been as
close (if not closer) as that of the unsaturated flow to heat and electric
current flows (Swartzendruber, 1969). Buckingham's law was accepted
and recognized as an extension of Darcy's law to unsaturated media by
Israelsen (1927), Richards (1928, 1931) and Gardner (1936)., This ex-
tension of Darcy's Law was verified experimentally by Childg and
Collis-George (1950) and analytically by Hall (1956). This is now
universally accepted except maybe at very low moisture contents (Swartz-
endruber, 1963; Churayev, and Gorokhov, 1970), Using this law and the
continuity equation, Richards (1931) derived the general equation of flow

in isothermal unsaturated media.
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Soil water content and hydraulic
conductivity as functions of
capillary pressure

Buckingham (1907) and later investigators (Richards, 1931;
Gardner, 1936) recognized that the water content and the hydraulic con-
ductivity of unsaturated media were functions of capillary pore pressure.
In the last two decades much work has been done to investigate these
relationships both in the field of petroleum engineering (Rose, 1949;
Fatt and Dykstra, 1961; Burdine, 1953) and in the field of soil water
(Gardner, 1958; King 1965).

It is well established now that the conductivity-water content
relation is unique with no hysterisis, Water content-capillary pressure
relation is hysteritic and (consequently) the conductivity-capillary
pressure relation is also hysteritic (Childs, 1969; Bear, Zaslavsky and
Irmay, 1968; van Bavel, 1969 among others), Although some authors
mentioned dependence of some or all of these relationships on the water
content gradient (Gardner and Gardner, 1950) or on the hydraulic gradient
(Churayev and Gorokhov, 1970; Rogers and Klute, 1971), yet according
to Bear (1972) no definite conclusion has been reached on this matter.

Researchers using numerical solutions for problems of unsaturated
flow dealt with these relationships in three different ways. One group of
researchers used tables of corresponding values of water content, con-
ductivity and capillary pressure for their particular media (Day and
Luthin, 1956; Hanks and Bowers, 1967; Jensen and Hanks, 1967;

Whisler and Klute, 1967; Whisler and Watson, 1969; Hanks, Klute and
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Bresler, 1969; Freeze, 1969; Green, Dabiri and Weinang, 1970; Watson
and Whisler, 1972). Another group of researchers fitted their particular
data with special functions (Brandt et al., 1971, used cubic spines, and
Selim and Kirkham, 1973 used exponential fits). A third group used
some general equations developed for these relationships. The equations
given in the literature are many and their origins are various. Some
were based on empirical fitting of data (Gardner, 1958; King, 1965) and
some were based on conceptual idealized models of porous media (bundles
of capillary tubes) coupled with empirical fitting (Burdine, 1953; Brooks
and Corey, 1964). In reviewing some of these equations here, the
symbols of some authors will be changed to conform to a single set of
symbols and to avoid confusion especially between negative values of
pressure (P, H) and positive values of pressure (Pc’ h).

Water content-pressure relations. Swartzendruber (1969) used

an approximate linear relation of the form:

© = N—Dbh (1)
where
6 = volumetric water content
n = soil porosity

h = —H=- -—p-g—- = suction head

P
H = Pg - pressure head
b = a soil parameter
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This was a gross simplification. Taylor and Luthin (1969) used an

equation of the form

(2)

where

S] water content at saturation

o

A

a soil parameter

]

Brooks and Corey (1964) studied a large number of experimental data

and suggested the equation:

1
= —— f >
Se B X or Pc > Pb (3)
5
where
S-S
S = ———= = effective saturation
e 1-S8
r
S = —%— = saturation = ratio of volume of water to volume of
voids
Sr = residual saturation (irreducible saturation)
= saturation when the water phase becomes discontinuous and
conductivity becomes practically zero
Pc = = P = guction
P = pressure

P, = bubling pressure, a positive soil parameter with units as P
c
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A = pore size distribution index, a dimensionless soil parameter

(For definition and methods of finding Pb, X, Sr see Brooks and Corey,

1964). Brutsaert (1968) suggested a more general form:

A
S, = b (4)

A +h

Where A and b are parameters. A similar form was used by Cooley

(1971). Wei (1971) following Brutsaert (1968) used the form

where A, b and Pb are parameters,

More complicated equations were suggested by King (1965), Rubin,
Steinhardt,and Reiniger (1964), Visser (1969), Rogowski (1971) and

White et al. (1970).

Conductivity-water content relation. Irmay (1954) suggested a

relation of the form:

K=K §° (6)

where

K = unsaturated hydraulic conductivity
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saturated hydraulic conductivity

K =
o
Kr = relative hydraulic conductivity
= ?Ko— by definition

Bruch and Street (1967) used the same form. Wang, Hassan, and
Franzini (1964), Singh and Franzini (1967) and Brutsaert (1968) used
the same form but with a general parameter exponent for Se insteé.d of
three, Brooks and Corey (1964) using Burdine (195'3) theory and their
saturation-pressure relation (Equation 3) suggested the relation:

243\
_ A
Kr = (Se)

Conductivity-pressure relation. Richards(1931) used an equation

of the form:

K=aH+b (8)

where a and b are parameters. This linear relation was used because
it was helpful in some analytical solutions., Gardner (1958) reviewed
previous equations and from a study of available data at the time sugges-

ted the following equation:

a

K = (9)
h"+b

where a, b and n are parameters. Taylor and Luthin (1969) used the

following form:
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Kz— (10)

where A is a parameter. Sewell and van Schilfgaarde (1963) used the

following equation:

K = —o (11)

T P™m
c
Wesselling and Wit (1966) used the equation:

K=ah P (12)

where a and b are parameters. It should be noted that Equations (10),(11)
and(l12)are actually special versions of Gardner's Equation(9). Raats

(1971) used the form
K=be (13)

where a and b are parameters. Burdine (1953), starting with a concep-
tual model of the porous medium (a bundle of capillary tubes) and using
empirical fitting of data to evaluate tortousity suggested the equation:

S
ds
s—s o p °
K = -3 = (14)
r 1—-8 jrf ds

PZ
c

“o

which could be written (Brooks and Corey, 1964) as
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2
Kr = (Se) 1 S (15)

Obviously, to evaluate the integrals in Equation (14) or Equation (15) one
needs to know the S----Pc relationship. Brooks and Corey (1964) used their
suggested relationship (Equation 3) to evaluate the Burdine integrals in

Hjuation (15) to get

1
Kr = -—I;C——-; for Pc > Pb (16)
%
T =243\ (17)

Where Tis a positive parameter. Equation (16) gives good fits with
experimental data except for values of PC very near to Pb. Because of
the nature of their derivation, Equations (15) and (16) are more repre-
sentative of the drainage branch of the ©6- P relation. King (1965) noted

that Gardner's (1958) equation (Equation 9) is dimensionally inconsistent,

and suggested modifying it to the dimensionally consistent form

5B 7 (18)
‘—151-) +b

where P1 is a positive soil parameter of dimensions similar to those of

PC, and b and 7 are positive dimensionless soil parameters. This
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equation gave a very good fit to imbibition as well as drainage data.
For Kr to have a value of unity at saturation, the parameter b in Equation
(18) would be held equal to 1 at saturation (King, 1965), Wei (1971) used

a generalized form of Equation 18 which was given as:

b .
= — 1
K — (19)
C
+b
=

The relationship between the parameters 7and \ given by Brooks and
Corey (1964) (Equation 17) is supported by many sets of data (King,
1973, in a verbal communication). More on other equations for Kr

could be found in Smith (1966) and Raats and Gardner (1971).
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THE PHYSICAL PROBLEM

Although the drainage problem in nature is a transient three
dimensional flow problem, it will be reduced to a two dimensional
transient one by assuming that all conditions along the horizontal axis
normal to the general direction of flow are similar. This assumption
was used by the majority of investigators in the drainage field and in
most drainage problems it is quite reasonable and gives no serious
errors. A general two dimensional geometry is envisaged as shown in
Figure 1, with a general shape and slope of the land surface and the
impermeable boundary. The land receives foreign water seeping from
higher lands and local accretion from irrigation or rainfall., Tile
drains are assumed at specified depths and spacings and of sufficient
diameter to be able to carry away all the water that seeps into them
with no back pressure in the tile lines.

A complete irrigation cycle will be simulated, where irrigation
water is applied for some time, followed by a period of a few days of
no irrigation. This will encompass the cases of water table build-up
and water table recession. The effects of evapotranspiration during the
cycle will be neglected. It is assumea that the effects of evapotrans-
piration on the position of the water table are normally small, unless

the water table is very close to the land surface. This is supported
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by the facts that evaporation is a soil-surface phenomenon and that its
effects decrease rapidly with depth (Remson, Fungarolli, and Hornberger,
1967), and that root extraction for transpiration is limited to the zone
above the water table, Evaporation (if its magnitude is known a priori)
could be included in the model as a specified negative flux at the land
surface, but the problem is not as simple as this statement implies and
its investigation is not considered in this dissertation.

The soil is treated as a heterogeneous medium with respect to
the saturated conductivity. King's (1974) definition of heterogeneity
with respect to a property is adopted; namely that the value of the satu-
rated conductivity at a point varies with the position in space of that
point. The soil is assumed homogeneous with respect to the other soil
parameters that enter into the soil characteristic relationships (K— 6—P).
While this might not be strictly true, yet the inclusion of heterogeneity
in these parameters is not warranted by the scant amount of data one
can find about them in the literature for field soils. Evaluation of these
parameters is not yet a routine part of land drainage investigations and
it is highly improbable (at the present) that a drainage engineer will
find enough available data on these parameters to characterize hetero-
geneity with respect to them. In fact, other than a forthcoming paper
by Jeppson, the writer is not aware of any work that dealt with hetero-
geneity of these parameters. The soil will also be assumed isotropic.

It is suggested by King (1974, p. 12) that '""most field materials could
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be described as heterogeneous rather than anisotropic, provided the
scale of resolution of conductivity measurement is sufficiently small. "

Saturated and unsaturated zones of the domain are treated as one
composite flow system. This eliminates many of the weaknesses of
treating the two zones separately. The position of the water table
emerges as part of the solution as the zero pressure isobar,

No hysterisis in the soil characteristics relationships is considered,
and the drainage envelop curves of these relationships are used to
characterise the soil. It is true that during some parts of the irrigation-
drainage cycle (for example at the start of irrigation) parts of the soil
mass will be desaturating while other parts will be increasing in satura-
tion, yet it is contemplated that hysterisis, although important in detailed
studies of some fine phenomena, will not have a large effect on the gross
hydrologic phenomenon of water table fluctuation. It is also important
to note that during the greater part of the cycle, the soil mass will be

desaturating.
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THE MATHEMATICAL MODEL

The mathematical model consists of the partial differential
equations of flow together with the boundary and initial conditions. The
assumptions in the mathematical formulation are also included since it
is believed, after Nelson (1962), that the capabilities and limitations
of any formulation are best understood by a careful examination of the

underlying assumptions.

The Differential Equations

The classical method of derivation given by many textbooks on
porous media flow is followed here.Starting with Darcy's Law in vector

form:

V=—KVo (20)
and the differential form of the mass continuity equation:

Ve pV)=— -gat--(Pe) (21)
and substituting Equation (20) into Equation (21) we get:

V- [PKY4l = 5 (0) (22)
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Considering P to be constant gives:

where:
V
K
K
K_(H)

V' 1¥ye) = 5 (23)

The Darcian velocity vector.

Ko Kr(H) = The hydraulic conductivity at any pressure
head (H).

The saturated hydraulic conductivity.

The relative hydraulic conductivity = The ratio of the
hydraulic conductivity at any pressure head (H) to the
saturated hydraulic conductivity.

y + H = Hydraulic head or total potential energy on a unit

weight basis.
Position head above datum.
P N
_P_g:- = Pressure head (negative in unsaturated
media).
Soil pore water pressure (negative in unsaturated media).
Density of water.
Gravity acceleration
Soil water content on a volumetric basis
Time

The del operator
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In two-dimensional Cartesian coordinates Equation (23) can be

written as:

o
Ox

o 9 ¢ , _ 00
(K 8x)+8y (K By)— ot (24)

Setting K = K0 Kr(H) and © = N S(H) by definition and expanding Equation

(24) gives
: 82 82 ~ BKr(H) N BKO 5
K, K (H) [ ox2 | dy2 }+ %o Ox Cax TR T
9K (H) oK
T b o, 9¢ _ 0S(H)
+K, 5> s+ K_(H) 5y 5y " " e (25)
where:
N = Soil porosity
S = Soil saturation = Ratio of volume of water to volume of voids

in a soil elemental volume.
Using the chain rule of differentiation on the terms that involve
space derivatives of Kr(H) and time derivative of S(H) in Equation (25),
and dropping the functional notation of Kr and S, Equation (25) can be

written as:

2 2 0K . oK 2
KK _.a_i..,.M + K - - o ..(21. - K r .(B¢)
or | 2« L.2 T 0x ox o 0oh 9x
Ox dy

2
2. &, e B, __, 88 9%
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oh 9
Since the intermediate terms in the chain are ——=—1 and oH =1,
oH 9¢
where:
h=—H=~— -EP— = suction head (positive in unsaturated media).
The following relationships for Kr’ S and h are used:
K = _h-é;-—- for h> Z (27)
Ry
Kr=1 for h< Z (28)
C
Se=“"""‘""— for h> Z (29)
h X
(E + D
Se =1 for h< Z (30)
S —Sr
Se s (31)
r

where:
A, B, C, D, 7, \: are dimensionless soil parameters

hb’ Z: are soil parameters with units as those of h.

Se = effective saturation as defined in Equation (31)
Sr = residual saturation.

These relationships are of similar form to most of the equations
cited in the section on review of literature and are general enough to

allow a certain amount of freedom to the program user in fitting his
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data. By special choices of the parameters A, B, C, D and Z, Equation
(27) can revert to King's (1965) modification of Gardner's (1958) equation
(Equation (18)), to Brooks and Corey's (1964) equation (Equation (16)), or
to Equation (19), used by Wei (1971). Equation (29) can revert to Brooks
and Corey's (1964) relationship (Equation (3)), to Brutsaert's (1968)
relationship (Equation (4))or to Wei's (1971) equation (Equation (5)). The
disadvantage of having two many unrelated parameters on the other hand
is that more experimental data are neeaed to evaluate the parameters,
(Jeppson 1973, in a verbal discussion).

From Equations(27), (29), and (31) we get:

9K T—1
r_ Ath) ey e w2 Tl
3 - pe > = Gl Kr (h) (32)
—| +B
() (};
b
9S
8S e . el A—1
L = (1 Sr) 3h - (1 Sr) G2 Se (h) (33)
where:
Gl - and G2 = A

Am)’ cy)*

Ko usually varies with depth rather than with the y - coordinate,

and since T = Y "V, we get

oy - BT (34)
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where:

T depth.

]

y — coordinate of the soil surface.

Yo

Substituting Equations (32), (33) and (34) into Equation (26), and

dividing by Ko Kr gives:

2 2
g_i.,._é_i.’. Fl . (._82_)2+F2 . 2?__+F1 (..82_)2
9.2 92 9x ox oy
X y
—r3c 22 g3 F13 - 22 (35)
oy ot
where:
—1
Fl=Gl* K+ (h)
oK
1 o
Fz= K ox
o
oK
1 [o)
F3 =% 37
o
1 2 A—1
Fl3= R Se (h)

G3=1n-G2* (1-8)

Equation (35) is the equation of unsteady unsaturated flow. In

the case of saturated flow in both the steady and the unsteady states,

9K
—a-h1-= 0, and %Sl_= 0, giving Fl = 0, and F13 = 0, and Equation (35)

becomes:
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2 2
2..2.,__8._9 +F281—F3_ai.=0 (36)
ax2 ayZ 9x dy

9
In case of steady state unsaturated flow, -5%- = 0, giving F13 = 0, and

Equation (35) becomes:

2 2
99, 89 yp - (222 pae 2 p e (222 g3 2 g 37
sz 8}'2' o0x ox dy oy

Equation (35) is of the nonlinear parabolic type, Equation (36) is of the
linear elliptic type, while Equation (37) is of the nonlinear elliptic type
(although the classification of a nonlinear partial differential equation is
usually given at a point for a particular solution as it depends on the
coordinates of the point and the solution). For classification of partial

differential equations see Petrovsky (1950) or Garabedian (1964).

Assumptions in the Formulation

In the above derivation the following assumptions are made:

1. Darcy's law applies in both the saturated and the unsaturated
zones. In drainage problems, the low flow velocities and the range of
unsaturation are usually within the range of applicability of Darcy's
law,

2. The water is continuously connected throughout the system.
This is true for the range of unsaturation encountered in drainage
problems.

3. The flow of air in the porous medium takes place instantaneously



50
and under very small gradients (due to the low viscosity of air) such that
the energy dissipated in this flow is negligible, The air in the unsaturated
zone is assumed to exist at atmospheric pressure always. Despite some
cases reported in the literature where air pressure build-ups and signifi-
cant effects on the flow did occur during infiltration (Orlob and Radha-
krishna, 1958; Van Phuc and Morel-Seytoux, 1972; Linden and Dixon,
1973), it is belie\.red that it is reasonable and safe to assume that air will
rnove freely into and out of the unsaturated zone in drainage problems.
Entrapped air will tend to be removed by the permeating water (Swartz-
endruber, 1969). Experiments by Bloomsberg and Corey (1964) showed
that entrapped air is removed through solution and difusion even in
stagnant water.

This assumption simplifies the problem to a one-phase flow
problem.

4. The flow is assumed isothermal, For shallow water tables the
temperature variations in the system are usually small.

5. The flow of the liquid phase of water only is considered.
Water vapor flow is negligible compared to the liquid flow.

6. There are no osmotic gradients that affect the flow.

7. There are no interactions between the water and the porous
medium that affect the flow,

8. There are no biological effects that affect the flow,

9. The water is treated as a continuum, Strictly speaking the

water is composed of discrete molecular entities, but the dimensions
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of drainage problems are so large compared to the dimensions of these
entities or their mean free paths that assumption of a continuum is
justified.

10. The water is homogeneous in nature at all points in the
system.,

11. The water is incompressible (P = constant).

12. The porous medium exhibits no swelling, shrinkage or
consolidation and the solid particles do not move as the flow takes place,

13, The functions that describe the flow are assumed continuous

with continuous derivatives (Jeppson, 1972).

The Boundary and Initial Conditions

The boundaries are shown in Figure 1 with circled numbers to

indicate the different segments with different boundary conditions.

Boundary (1) - (2)

2 2
$=ySin @+ Y1Cos a (38)

Where Y1 and a are as indicated in Figure 1, a being the general angle
of slope of the bed. For the derivation of Equation (38) see Appendix B.
The assumptions on this boundary are:
a. Uniform flow across this boundary with equipotential lines
normal to the general slope of the bed. This implies that the flow

across the boundary is not affected by the drain.
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b. Steady flow across the boundary. This implies that the flow
across this boundary is not affected by recharge or discharge down-
stream.

Theoretically both of these assumptions may be true only at an
infinite distance from the drain and recharge point, but for all practical
purposes, the local effects of the drain or recharge can be considered
insignificant if this boundary is kept at a reasonable distance from the

drain, (which distance is inversely proportional to the slope of the bed).

Boundary (2) - (3)

g _
dn = 0 (39)

This is a zero flux boundary. Point (3) is sufficiently removed
from point (2) such that any recharge beyond point (3) will not affect the

boundary condition set for (1) - (2).

Boundary (3) - (4)

jl,; =K lK * q(x,t) * Cos © (40)
o'r
or
¢ =y (41)
where:
q(x,t) = Specified flux at the surface

)
"

Angle of surface with the horizontal
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Equation (40) comes from Darcy's law:

- de __ )
K K 52 q(x,t) + Cos ©

where the minus sign preceeding q(x,t) is because this quantity is by
definition measured opposite to the direction of the outward normal .
Cos O enters the equation because q(x,t) is normally measured as a
vertical flux (normal to the projection of the surface on the horizontal
plane). The program will use condition (40) unless the specified flux
cannot be accomodated with the existing hydraulic gradients in the
system, whence the surface becomes saturated and ponding starts

after which condition (41) is used. In Equation (41), H is assumed equal
to zero which means that ponding is only of negligible thickness and any

excess water is removed by surface drainage.

Boundary (4) - (5)

d
ﬁL =0 (42)

The same conditions as in boundary (2) - (3) apply here. Point
(4) is sufficiently far from point (5) so that recharge between points (3)

and (4) will not affect the boundary condition on (5) - (6).

Boundary (5) - (6)

6 = Y2 | (43)

Where Y2 is as indicated in Figure 1, The potential (¢) on this boundary
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is assumed in static equilibrium with the water table at point (6). Y2 is

not known a priori, but emerges as part of the solution on boundary (6) - (7).

Boundary (6) - (7)

—g%=—8ina~ Cos a (44)

For the derivation of Equation (44) see Appendix B. It is assumed
that this boundary is sufficiently removed downstream of the drain such

that uniform flow is re-established along this boundary.

Boundary (7) - (1)

d
=0 (45)

This boundary is a streamline along the impermeable bed, with

equipotential lines normal to the bed,

The initial condition

The initial condition for the transient problem is taken as the
steady state solution with no local recharge. This is a reasonable
starting condition as it reflects conditions in the field at the start of
an irrigation season after a prolonged period (say six months) of no
irrigation and no (or negligible) rainfall, This is the prevailing condi-
tion in many arid and semi-arid irrigated areas. This will enable us
to model a complete cycle of water table build-up with irrigation and

water table recession with drainage. After the transient solution is
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started it could be terminated and picked up again at any time step to
continue the modeling if this is desired, the previous time step solution

serving as an initial condition to the new time steps.
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SOLUTION

Treatment of the Problem Domain

The domain shown in Figure 1 is enclosed in a rectangle with the
sides in the x and y directions and the two vertical sides along boundaries
(1) - (2) and (5) - (7). This rectangle is then divided by a rectangular grid
mesh, thus creating nodes inside the domain and nodes outside it. A
square mesh is known to give faster convergence, but in drainage pro-
blems which are usually long and shallow the rectangular mesh may be
the optimum compromise. The dimensions of the rectangles of the
mesh (Ax and Ay) could be chosen at will by specifying the number of
rows and number of columns of the two dimensional grid., Motivated by
the belief that, for numerical solutions, reporting failures is as impor-
tant as reporting successes, I should report that when the rectangles
were chosen with (&x) much larger than (Qy) diveréence was experienced
mainly at the irregular boundaries.

The two irregular boundaries (2) - (5) and (7) - (1) were simplified
by making them linear segments that go through nodes by running them
only along horizontal sides or along diagonals of the rectangles. When
the actual boundary intersected a vertical column of the mesh the point
of intersection is moved up or down to the nearest node in that column,

This gave a domain which was composed of complete rectangles and
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half rectangles (right angle triangles), This method of simplification is
not serious at the impermeable bed which, under most field conditions,
is never known precisely and in most cases is more or less a diffused
boundary. On the land surface accurate surveys are possible, but it is
believed that the effect of the above simplification is small and only local,

Drains were simulated at specified nodes by specifying a zero
pressure head (H) at these nodes. To identify the different types of nodes
in the mesh a two dimensional array of integer code numbers was com-
puted and stored to correspond to the nodes of the mesh., Points exterior
to the domain were assigned a code number of one, interior points a code
number of two, drain nodes a code number of three and points on boun-
daries (2) - (5) and (7) - (1) were labeled with code numbers from four

to 15, as illustrated in Table 1.

Finite Difference Operators

In the following discussion the nodes will be identified by the
subscript (i) for position along the x-axis, the subscript (j) for position

along the y-axis and the superscript (n) for position along the time axis.

The steady state

The steady state condition was solved to provide an initial condi-
tion for the transient solution. Central differences for the space
variables and the five point scheme were used, thus resulting in a
second order truncation error [O(Ax)2 + O(Ay)z] . This procedure applied

to Equation (36) gives:
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Table 1. Calculation codes

Code number Node type o
1 Exterior node
2 Interior node
3 Drain
4 . [} %

v o

.

- “ - n x .
©

o~

n L] »

&'

»

] L L]

» 0 »
o

x n k3

7 ?/__"
X F ]

*% Circled nodes are the imaginary nodes (exterior) that are needed in
the five-point scheme for the central node (i, j).
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Table 1. (Continued)

ek
Code number Node type
* ©
X L
= o X
9 ‘:’/\?
L L) Fy » - .

12

a a =
I 3
m
x F

11 s
x ® *
N
(0]
» (c] »

*% Circled nodes are the imaginary nodes (exterior) that are needed
in the five-point scheme for the central node (i, j).
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Table 1, (Continued)

%%
Code number Node type

13
& @ »
x x
14 N
X @
L ~
15 x @
o X

Sk
Circled nodes are the imaginary nodes (exterior) that are needed

in the five-point scheme for the central node (i, j).
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() {¢i+1.j 24, ; +¢’i-1.j] " oy [¢i,j+1 24, ; +¢i,j-l]
F2, . F3,
* 28x ["’m,j“*’i-l,j]‘ 28y [¢i.j+l—¢i.j-1} =0 (46)

With algebraic manipulation this gives an explicit linear equation of

o, j in terms of the four surrounding nodes:

1,

. . =G4 7. . 6. . .+ F8, .o. . .
¢1,J [F 1,_]¢1+l,3+ 81,J¢1-1,J+F91,J¢1,J+l
+ FlOi’j ¢i,j-1] (47)
where:
G4 = 2 ,
14|
Ay
F7 = 1 +25 F2
2
F8 = 1 — 2 pp
2
2 2
Ay 24y

2
| &x (&x)
Fl0= —-—Ay } + oA F3

61
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Similar differencing applied to Equation (37) gives:

1 ' 1
=22, b, gt b, . =20, .+, .
2 [¢ #,5 %5 e, ] . 2{ i, 3+ 1,5 794, 5-1
() itl,j L] i ay) j j -1
2
F2, . ¢. .= b, . F3,
bl fo o —p  Jew, A LI LM,
2Ax i+l,] i-1,3j i, 2Ax . 2y i, j+1 i, j-1
: o
o T T
i, i+l 1,3-1]
+ Fl, . . =0 (48)
i,j 20y
which gives:
. .=G4 |F7. . ¢, .+ F8, .¢. .
ci>1,_*] G 1,3¢1+1,J 1,J¢1-1,_]+Fgl,J¢1,J+1+F10i,J¢1,J-1

2 2
+Flli,j(¢i+l,j—¢i-1,j) +F121.j(¢i.j+1“¢i.5-1) (49)

where;
Fl
Fll = 2
2
Ax , Fl
Fl2 = Ay 7

The unsteady state

For the transient case the Crank-Nicolson method of differencing
was chosen., This method evaluates the space derivatives centrally in
time as well as in space, by taking the average of the space differences
at time (n) and at time (n+l). This results in a second order approxi-

mation in space and time with a truncation error of the order of
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[0(Ax)2+ 0(Ay)2+ O(At)z] . This is an advantage over the first order
approximation of the implicit method which gives a truncation error of
the order of [O(Ax)2+ 0(Ay)2+ 0(At)]. For linear problems the Crank-
Nicolson method gives faster convergence and larger time steps can be
used due to the smaller truncation error., It is believed by workers in
the field of numerical solutions to partial differential equations that these
properties of the method hold also for non linear problems. The method
is unconditionally stable for linear problems. Nothing comparable to
this can be said about nonlinear problems.

It is interesting to note that in the literature there are two ways
reported for implementing the Crank-Nicolson scheme in nonlinear
problems. The first method multiplies the average of the nonlinear
coefficient evaluated at (n) and (n+l) time levels, by the average of the
differences at (n) and (n+l) time levels (Forsythe and Wasow, 1960;
Douglas, 1961; Remson, Hornberger and Molz, 1971). The second
method takes the average of the two products of the nonlinear coefficient
evaluated at (n) time level multiplied by differences at (n) time level and
the nonlinear coefficient evaluated at (n+l) time level multiplied by
differences at (n+l) time level (Richtmyer, 1957; Jeppson, 1972).

An example may best illustrate the difference. Suppose we want the

Crank-Nicolson scheme for the expression:

ou
a(x,y, t,u) ~8x_

Obviously we seek an approximation to:
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n+} du ntz
a e
Ox
where:
n+y n¥; 4o
a =a (x,v,t , U )
The first method gives:
n n n+l n+l
1 - . — U, .
a4 o™ YT Y, Y
2 2 2Ax 20%
4
The second method gives
UL, =u m gt
1| AP i+l,j i-1,j +An+1 i+l,j i-1,3
2 20x 20x

To test which of the two expressions is a better approximation, and at
the suggestion of Dr. Roland W. Jeppson and Dr. James D. Watson
(Professor of Mathematics at Utah State University), both expressions
were expanded in Taylor's series. Both were found to be second order
approximations to:

n

o

An-i-al- du
ox

The second method (Jeppson, 1972) was chosen for this study as it is
easier in computation, It is important to note that when the nonlinear
coefficient is associated with the time derivative, the first method is

used always (see Jeppson, 1972).
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Applying the Crank-Nicolson scheme to Equation (35) gives:

\n+1
' +F9 .¢. . +F10, .o, .
B3 %, 778 5 %, 5t 045 0 5 1050450 |
Ax 2 2 n
- £x 1 - B
2 [1 * Ay) ]¢i,j+Fl 1,3 ®i41, %01, 5 34,5
+F12, - %
i:j ¢i:j+1 ¢ioj"l
' J
n+l n
- G3.E5 (F 131 + F 132) ("1 =4" ) (50)
1,) 1)
where:
o)’
ms = X
1
F13"72-1 [F 131 + F 132
F 131 = (F13)"
F132 = (F13)°H
’
n
i} -
BT T g b, T TR 0yt POy eI
2
Ax
PR 0,5 T [”(Av} ]“’i,j
+F1L, ( - 24 F12, —b. . )2
1,341, 5 " %1, 5) 1,5 @1, 541 7%, 501
" o/

For saturated flow, Fl1, Fl12, F13 and B? . are all zero and Equation

’

(50) becomes similar to Equation (47).
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Treatment of the Boundary Conditions

Boundary (1) - (2)

The values of ¢ at nodes along this boundary were evaluated
using Equation (38) where Y1 is read as part of the data. These values

are then left static for the remainder of the solution.

Boundaries (5) - (6) and (6) - (7)

A central differencing is used for equation (44) resulting in:

q;i_H,j:‘-q;i_l’j—ZAx Sina * Cos « (51)

A column of imaginary nodes is created at (i+l) position where
(i) is the boundary, and values of ¢ at these imaginary nodes are com-
puted using equation (51). The boundary nodes are then treated as
interior nodes. Solution for ¢ at this boundary is started at the bottom
node and worked up through the column of nodes. H is computed from
¢ at each node and when H is found negative for a node the values of ¢
for all the nodes above it are made equal to the value of ¢ at the node.

This corresponds to the static equilibrium condition of boundary (5) - (6).

Boundaries (2) - (5) and (7) - (1)

These are the normal flux boundaries, Imaginary nodes are
created as shown in Table 1 for each type of boundary geometry, Values
of ¢ at these imaginary nodes are computed from ¢ values at neighboring

real nodes according to the equations in Table 2. For the derivation of
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these equations see Appendix C. The boundary nodes are then treated
as internal nodes. One more constraint was imposed on nodes along
boundary (3) - (4) where the flux is not zero. Whenever the value of H
at these nodes exceeded zero the value of ¢ was readjusted to give an H

equal to zero. This simulates saturation but no ponding at the surface.

Treatment of Heterogeneity

As discussed before, only heterogeneity in the saturated hydraulic
conductivity is considered in this study. There are methods of calculating
the distribution of values of K0 from measurements of the distribution of
¢ values in a saturated heterogeneous domain of interest, (see King,

1974 and the references therein). These methods utilize the method of
characteristics in partial differential equations to calculate Ko at any
point along a streamline (or stream tube) from measurements of ¢
gradients and Ko at few base points in the domain. These methods are
not yet of widely spread use and there are still some complications in
applying them to field situations (King, 1974). For the general drain-
age design problem (and for the present study as well) it is not expected
that there will be enough available data (especially on the distribution of
¢) to allow application of the above methods. Characterization of
heterogeneity will rather be made by the conventional method of taking
measurements of K0 at different points in a field,

For the present study Ko will be assumed to vary linearly with

x and with depth (T) according to the relation:



Table 2. Equations for normal flux boundaries.
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33
Code number Equations :
Upper boundary
q.
1
4 %540 - %y, TEIR
q.
b, . i
i, j+1 ¢i,j-l + E3 T
° q
‘ i
bipr,j = ELO& 5t BV T ESY
q.
1
¢i,j+l E10¢i,j+ E9¢i_1,j+E8—I'<-
6 qi
bigr,5 = FELO0 Lyt EIe 5 T EERT
q.
1
%541 = Py, tE3X
! q
i
¢i-1;J El0 ¢i-1,j-1 + E9 ¢i,j—l + ES8 '
q.
1
0y 541 = EL0& #E9G, . +E8—
8 q
G135 = E10¢; ), +E9¢ .+ E8 o—
q.
1
®,541 = %, 1T E3IR
q.
1
9 Sipr,y T FLO6 L 5T EIS , YEEY
q.
1
1 el
biy,; = E06, | . |+E9¢ . +EB8=




Table 2. (Continued)

Code number

e

Equations

Lower boundary

10

i,5-1 = %4541
®,5-1 = 4,541
11
41,5 ° El0¢i,5m Y EYS 50
,j-1 T %4,jn
12
41,5 = EROO ; satEYe
?,5-1 = 24,541
13 Pig1,i = EL0¢,5nt BV 50
%1, T ELOey 5mtEY
®i-1,; E10¢; ) sut EY9 s
14
b, . El10¢, . +E9d,. . .
i, j-1 i,] i+l,]
15 bi41,5 © FlO0 5n T EYY n
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Table 2. (Continued)

Code number Equations .
15 &40 = EL0¢ (+E9¢, ,
*E3 = 24y
o E8 = Ay
"By = (2L
** Elo=1 --(-92%)2
K_=Cl +C2x +C3T (52)

The coeffecients Cl, C2 and C3 are found by fitting the actual Ko
measurements to Equation (52) by a least squares method., (For least
sqares method see Kreider et al, 1966.) The matrix equation that
results in the least squares treatment has a symmetric positive definite
matrix (see Appendix D), The equation is solved by two subroutines
(Decompose and Solve) adapted from Weaver (1967). Once the coeff-
cients of Equation (52) are known the values of Ko at the nodes are cal-
culated and stored in a two-dimensional array that corresponds to the
mesh nodes. Since Equation (52), especially in extrapolation of data,
may give values that may be too high or too low, two constraints Komax

and Komin are imposed on the values calculated by Equation (52). Also

9k 9K

[o) o
o and 5T are calculated.
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Method of Solution

The steady state

Equations (47) and (49) for the saturated and the unsaturated
zones respectively, when applied at the nodes of the mesh, result in a
system of simultaneous algebraic equations. This system is solved by
the SOR iterative procedure. The solution in each iteration proceeds
systematically from the leftmost column of nodes to the right and from
the bottom node up in each column, Exterior nodes and drain nodes are
skipped. At each of the interior and boundary nodes, H is evaluated
and if the node is found saturated Equation (47) is applied. If the node
is found unsaturated Equation (49) is applied, Saturation is arbitrarily
defined by the user as a node is considered saturated if H at the node is
equal or larger than Z of Equation (27) where Z is specified by the user,
In this study Z was taken to be zero. Starting from an initial educated
guess for the values of ¢ at the nodes each sweep through the nodes
(one iteration) will improve the values of ¢ at the nodes toward the
solution. This procedure is iterated until the sum of the absolute values
of the improvements at all the nodes is less than a specified small value.
This value was specified at 0. 001 foot for this study., The solution
should converge starting from practically any initial guess, but a close
initial guess greatly cuts down the time needed for convergence. A
close initial guess can be obtained using any one of the approximate

steady state equations referred to in the review of literature (for example
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Keller and Robinson, 1959). In the present study convergence was
obtained from an initial guess of the position of the water table much
above the solution and from one below the final solution.
Equation (49) gives rise to a system of nonlinear algebraic
equations because of the dependence of F11, . and F1l 2i . on ¢

i, ) i,j
.and Fl Zi . from

These equations are linearized by evaluating Flli j j
» ’

known values of ¢i j at the previous iteration. Thus if we introduce the
?

iteration index m, Equation (49) at the advanced iteration will be:

m+l m m+l m
.. =G4 |F7. . ¢, .+ F8, - o, .+ F9, . o, .
4’1.1 G [ i,j ¢1+1:J i, j ¢1-1.J 91.3 ¢1»J+1
m+l m m m+l 2
+ F10, . * ¢, . Fll, . (¢. &, .
i,j ¢1,J-1 i,] (¢1+1,J q>1--].,.])
+F12m m m+l 2 (53)

i,5 1,541 794,500

With the iteration index, Equation (47) will look like Equation (53) with-

out the terms containing Flli .and F1 Zi ..

s ) )
After the value of-¢§n;1 is found by Equation (53) it is over-
’

relaxed according to Equation (54) below,

M P we™ T —e™ ) (54)

i,] 1] i,j 1L,)
1 1
Where ¢rln;- is the over-relaxed value of ¢Zn; and W is an over-
? ]

relaxation factor. As mentioned before, there are methods of calculating

an optimum value of W for linear problems with certain simple
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geometries (a square or a rectangle). These optimum values give the
fastest convergence to the solution, For nonlinear problems with
irregular geometries there are no such methods, Even in the linear
cases with simple geometries, sometimes the computer time spent in
calculating an optimum value of W is more than the computer time saved
by its use (Forsythe and Wasow,1960). For the present study few values
of W were tried and the number of iterations and time required for
convergence were observed. This resulted in a choice of W = 1.5 for

the saturated nodes and W = 1, 0 for the unsaturated nodes.

The unsteady state

The same SOR iterative procedure and the same method of
linearization which worked for the steady state were tried for the
unsteady state Equation (50) (which is nonlinear in the unsaturated zone).
This procedure did not converge and showed undamped oscillation at the
upper flux boundary. The reason for that was, most understandably,
the method of linearization. At one iteration the value of ¢?:lj is very
low, Kr is very small, the normal gradient needed to effect the specified
flux must necessarily be very large resulting in a very high value of ¢ at

. 1 . . 1
the imaginary nodes and a saturated ¢11'n;- . In the next iteration ¢m+
?

i,j

is saturated, Kr = K0 which allows the specified flux at a small normal
. : m+2 . . .

gradient and the resulting ¢, j is too small, This kept oscillating.

Because of the above difficulty the method was changed to a

scheme of two nested iterations. The inner iteration is a Newton
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iteration to solve the nonlinear equation at a node with the neighboring
nodes fixed, and the outer iteration is the usual SOR iteration.

The Newton iteration could be described by:

n+ly K+1 n+l FN
i,j '( i,3 FNP (55)
where:
K = The iteration index of the Newton iteration
n+l
FN = f|o. .
¢1'J
K
FNP - -_EFA—
n+1
34)

From Egquation (50) we get:

n+l n+l n+l n+l
FN =F7,. .° ¢. . . .0 D, . A T . Lt .
i,j ¢1+1.J ¥ FSI.J ¢1~1,J+ F91,J ¢1.J+1+ Flol.J ¢i.J-1
2
—(2 + 2E2 +G5) o™ +F11 Dt —ont
i,] 1+l j i- 1 j
n+l  n+l 2 n
Fl2, . . ., = . =
+ 21,_] (¢1, j+l ¢1 j- 1) +G5 ¢ i,J 0 (56)

FNP = F7, . “F17 +F8,  F18 + F9, . F19 + F10, . F20—F25 ¢~
1 1, 1,) 1) 1,)

+) ’
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n+l | n+l n+1
~(2+2E2+G5) + 2F11. " [0, —of ) | (F17=F18)
n+l n+l n+1 n+l
+F21(¢ i, ¢i_1'j) + 2F12 (¢1 41 T 1 (F19 — F20)
n+l n+l 2 n
+F22 ¢i,j+1"¢’i,j-1) +F25 g, | (57)
where:
2
Ax
22 |57 )
G5= G3 - E5- FI13"72-G3 . E5 (F131 + F132)
9
F17= 8¢ (¢i+1,3)
9
F18 = —— (6. | .)
34’1,3' i-1,j
3
Fl9 = 5¢, @; i)
9
F20 = (. .
8¢i, <t)1,_]-1
F21 =-—?———(F11 )
9o, i, i,j
F22 = ——(F12, )
aq)i,j i,]
9
F25 = ——9-5

%%,



76
In all of the above expressions the variables are taken at the (n+] time

level, Table 3, where,

shows the values of F17, F18, F19 and F20 for the different calculation
code numbers. These values are derived from the equations in Table 2,

The other derivatives indicated are:

Gl - ¢q
i T-1
F=- R (h)
o]
F21 = -%1—- Kr + (b2 [Gl - K_ (h) +1—1]
F22 = E2° F2l
G3°+ E5 Sel -2 T
F25 = == 22— (h)"[2G2-Se - (h) = G1* K+ (h) +1-N
o] r

This method of solution also did not work, especially at the upper
flux boundary. This brought into focus the warnings of Douglas (1961) and
Remson, Hornberger and Molz (1971) about the unworkability of using Crank-
Nicolson averaging process at a boundary with a normal derivative boun-
dary condition, For such cases both authors suggested differencing the
boundary condition completely at the advanced time level.

The implicit differencing scheme was then used for the nodes at
the normal derivative boundaries and the Crank-Nicolson scheme was

retained for the interior nodes. This worked well in the solution, but
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Ta‘ble 3. Derivatives for Newton iteration

Code number Fl17 F18 Fl9 F20
2 0 0 0 0
4 0 0 F.E3 0
5 F. E8 0 F.E3 0
6 F. E8 0 El10 + F. E8 0
7 0 F.E8 F.E3 0
8 0 F.E8 El0 + F. E8 0
9 F. E8 F.ES8 F.E3 0

10 0 0 0 0
11 0 0 0 0
12 0 0 0 0
13 0 0 0 0
14 0 0 0 El0
15 0 0 0 E10

doubt is shed on the order of the global truncation error now, and
whether the method as such would retain the second order truncation
error (in time) of the Crank-Nicolson scheme, (Jeppson, 1974, verbal
discussion),

The implicit operator can be obtained by differencing Equation
(35) completely at the advanced time level, or from Equation (50) by
setting B?,j= 0, F13 = F132 and G5 = G3 * E5 + F132. The expressions
for FN and FNP are similar to Equations (56) and (57) respectively,
with Bin .= 0, F13 = F132 and G5 as described above. The derivatives

]

indicated for the Crank-Nicolson are not changed.
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Since the values of ¢i,j computed in a Newton iteration are not
final values, this iteration is not carried to a high degree of improve-
ment. The iterations are terminated after three iterations or when the
improvement in any iteration is less than 0,01 whichever comes first,
The program however is flexible in these indeces as they are read as
data.

For the saturated nodes Equation (35) simplifies to the linear
Equation (36) and the usual SOR iteration (outer iteration only) is used

with Equation (47).
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THE COMPUTER PROGRAM

Description

The program is written in Fortran IV language. A listing of the
program is shown in Appendix A. It consists of the following four main

blocks and two subroutines.

1, Setting the problem

Data for the geometry of the problem and elevations of the land
surface and the bed at different points are read. The geometry of the
problem is set, divided by a mesh with pre-specified numbers of nodes
in the x-direction and the y-direction, and calculation codes are com-
puted and stored for each node,

2. Setting the heterogeneous
saturated conductivity

Point data of coupled values of x, T and Ko are read for several
measured points. The program sets the matrix equation for the coeffi-
cients of Equation (52) and the matrix equation is solved by the two sub-
routines Decompose and Solve, as described in Appendix D. There is an
option of by-passing this block for homogeneous soils, as the program was
constructed to handle both cases. This is done by reading in a code for

heterogeneity (KCODE) as a data input. If KCODE = 0, the domain is
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3K oK
o

specified as homogeneous, Ko is read and -g;c-?-and BT

T are set equal to

zero and the block is by-passed.

3. The steady state solution

The initial guess of the distribution of ¢ at the nodes, a one dimen-
sional array of the values of 9, (i=1,2 number of columns of the mesh)
and values for the over-relaxation pa.ra.;'neters W1l and W2 are read. The
solution then proceeds as described before in the section on method of

solution,

4. The unsteady state solution

The over-relaxation parameters W3 and W4 and the number of
time steps are read. For each time step the following data are read:
1. Magnitude of the time step
2. An extrapolation code number:
0: No extrapolation of the results of the previous time
step into the present step.
1: Extrapolate.
3. A printing code number.
0: No printing required, 1: Print
4. A code for the flux q:
0: q, = 0 is set for zero flux
1: 9, is read

The solution then proceeds as described earlier.
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The output of the program consists of the calculation code array,
Ko array, the coefficients of the equation of heterogeneity, and for the
steady state and each time step the values of 4 and H at each node. The
position of the water table is then easily drawn by interpolation (or

extrapolation) from the values of H at the nodes.

Results and Discussion

A hypothetical drainage problem on sloping land was used in
developing the program., The geometry of this problem is shown in
Figure 2, where the broken lines are the actual land surface and im-
permeable bed boundaries while the stepped boundaries are these same
boundaries as simplified by the computer. The soil was assumed
heterogeneous and hypothetical hydraulic cond’uctivity data were supplied.

These data when fitted by the least squares method gave:
K0 = 0,32711-0.00001x —0.01109T (58)

0.02< K < 0.5

o

Where K0 is in feet per hour and x and T are in feet. the constraints on
Ko are used because the least squares method may give minus values or
unreasonably high values for Ko when the data are extrapolated.

The soil parameters required in Equations (27), (29), and (31)

were arbitrarily (but reasonably) set as follows:
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A=1,0,b, B=1,0, C=1.0, D=1.,0
h,=1,5ft, 7=6.5 Xx=1.5, § =0,15
b r
n =0.,35 Z=0ft

The general slope of the impermeable bed was about 19 percent,

Two runs with two different rates of recharge were run for this
problem. One run had a very high flux rate to impose a severe condi-
tion on the program,., The other run was more in conformity with the
usual sprinkler irrigation practice as far as the application rate was
concerned. Table 4 shows the rates and total amounts of recharge.

Water was applied for five hours.

Table 4. Rates of recharge for the hypothetical problem

Node column Runl Run 2

Rate Total Rate Total

ft/hour ft ft/hour ft

1-6 0 0 0 0
7 0. 05 0. 25 0. 01 0.05
8 0.08 0.40 0.016 0.08
9 - 41 0.10 0.50 0.02 0.10
42 0.09 0.45 0.018 0.09
43 0.08 0.40 0.016 0.08
44 0. 05 0. 25 0.01 0.05

45 - 50 0 0 0 0
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Figure 3a shows the water table buildup for run 1. The water
table mounds and depressions seem exaggerated because of the disforted
(enlarged) vertical scale. It is interesting to notice in this figure that
the water table in some parts of the region (from xa2130 to xmel145) did
not rise much while in others it was raised greatly. The probable
reason for this is that in this region, having the maximum unsaturated
thickness above the water table, most of the recharge is still in transient
storage in the unsaturated zone at five hours., Figure 3b shows the water
table recession for run 1. The water table is receding in some parts,
but is still building up in the region x=130 to x#145 even at 39,45 hours
after recharge s.topped. This could be explained by the fact that this
region is receiving water from the transient storage plus water from
higher lands upslope after the recharge stops.

Figures 4a and 4b show the water table build-up and recession
respectively for the run with one fifth the rate of recharge (run 2).

Figure 5 shows the water table build-up and part of the
recession for the point midway between the two drains, for both run 1
and run 2. Curves A and B are for run 1. The difference between the
two curves ig that in curve A the position of the water table is found
by linear interpolation between the uppermost saturated node and the

lowest unsaturated node, while in curve B the position is found by linear

extrapolation from the uppermost saturated node to zero H using g? =—],

Obviously, both methods are only approximations, as the distribution of

H is not linear especially when there is infiltration and more so across
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a wetting front. Due to the large mesh size and because interpolation
would raise the water table instantaneously when the upper unsaturated
node is wetted (which is not physically the case), the water position for
all the other figures was found by extrapolation as described above.
Figure 5 shows that for both runs, and for a certain period, the rate of
risc of the water table is much larger than the rate of rise before or
after that period. This period was from t = 2, 25 hours to t = 3.0 hours
for run 1 and from t = 3,0 hours to t = 3,5 hours for run 2. This can be
explained by assuming that this was the time when extra seepage from
upslope reached the midpoint. The saturated thickness of flow is quickly
built up to pass that extra seepage. This is supported by the lag of 0.75
hours in run 2 for this to happen, and by noticing that the magnitude of
the buildup for this seepage was smaller in run 2 than in run 1, which is
to be expected physically., In both runs the very early response of the
water table to recharge is due to the large mesh size.

Figure 6 shows the water table recession with time at the mid-
point between the two drains. Time is started from t = 5, 0 hours for
run 2 but from t = 5, 25 hours for run 1 because in this case the land
surface at the midpoint was saturated att = 5.0 hours. The curves are

plotted on semilogarthmic paper with the two dimensionless parameters

-;Y-—- vs., P (—t“E)

o
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Where:

y = Height of the water table at the midpoint above the straight

line joining the two drains.
y = y at time zero
B = A parameter with dimentions ftz/hour
=1 ftz/hour in these curves.

These curves are presented in this form for a later comparison with
some approximate mathematical solutions for the falling water table in
flat lands, In curves lA and 2A in this figure the datum for y and Yo
is the midpoint of the straight line joining the two drains. In curves 1B & ZB
the datum was taken as the position of the water table at the midpoint in
the case of steady state with no local recharge. Two things to note about
these curves are that they are very flat and that the curves for run 2
(lower volume and rate of recharge) are higher than the curves for run 1,
The flatness of these curves is, most probably, due to the fact that a
part of the recharge was still in transit through the unsaturated zone at
the time of termination of recharge. The percolation of this water to
the saturated zone below will slow down the water table recession., In
fact this percolation in run 2, from t = 0 to t = 0. 25 hours after stopping
the recharge, was so great that it produced a rise in the water table
instead of a recession., This effect was more pronounced in run 2 be-
cause more of the recharge was in transit in the unsaturated zone
(thicker unsaturated zone) in this run than in run 1. This gave a flatter

and higher curve for run 2. Another factor in the flatness of the curves
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is the slope. These factors will be discussed in more detail in a later
gsection when the numerical solution is compared with some approximate

mathematical solutions.

Testing of the Program

For proper testing of the program, the best thing would be a con-
troled field experiment designed and executed for that purpose. This
however would be too costly and time consuming. Available data were
searched for something suitable for a test of the program. No suitable
data were found for the rising water table where very frequent measure-
ments of the water table elevations are required during the rise, Some
good data for the falling water table were available for the Hullinger
farm near Vernal, Utah. The data are those of Khalil-Ur-Rehman
(1971) who recorded measurements of the water table depths daily for
six days with hourly measurements in the early phases of the water
table recession., Fortunately, data on the saturated hydraulic conductivity,
other soil parameters and depths to the impermeable layer were also
available for this farm.

Figure 7 shows the domain of the testing problem (with the
vertical scale greatly enlarged). This is a section across drains 6 and
5 in the Hullinger farm. Again, the broken lines give the actual boundaries
while the stepped boundaries are the computer boundaries. Data for the
saturated hydraulic conductivity and elevations of land surface and im-

permeable layer were taken from unpublished data by Dr. Larry G. King.
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Data on water table positions shown in Table 6 in Appendix E were taken
from Table 22 of Khalil-Ur-Rehman (1971), Table 7 in Appendix E
shows the relationship of K, ® and H. This table is a reproduction of
Table 51 of King and Hanks (1973) which is based on laboratory results
by Andrade (1971).

The sgoil is a two-layered system as shown in Figure 7. The
program however changes it into a one-layered heterogeneous system

with
Ko = 0,09846 + 0,00011 x + 0.30020 T (59)

1.33_<_K _<_8.75

(o]

Where Ko is in feet per hour and x, T are in feet, The general slope of
the bed is about 2 percent.

From Table 7 in Appendix E, 1 is found, and using the methods
of Brooks and Corey (1964), Sr, Pb, and Tare found. With these values
known, fitting of the data to Equations (27) and (29) gave the values of
A, B, C, D, and 7 in these equations. The following values of these

parameters were found for the Hullinger farm soil:

A =1.0 B = 1.0 C = 4.0 D = 4.0
hb = 0.46ft 7 = 2,81 A = 0,527 Sr= 0.13
n = 0,48 Z = 0ft,

The above values of Tand A\ are not any nore related to each other by the

Brooks-Corey (1964) relationship (Equation 17). However, to check the
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data they were fitted to Brooks-Corey (1964) equations (Equations 3, and
16) and the resulting values of Tand A\ were in excellent agreement with
Equation (17), (A = 0,28 and 7= 2.81). This gave confidence in the data.
Figures 8 and 9 show the data of Table 7 and the predictions of equations
(27) and ( 29) with the above values of the soil parameters. In both
figures the divergence of the table data from the predictions at high
suction heads was disregarded because the data in this range were only
extrapolations of Andrade's (1971) laboratory results., A second reason
for the neglect of this divergence is the fact that in the drainage problem
we are not likely to deal with such large suction heads (the divergence
was for heads of 40 meters and above or 131 feet and above). A third
reason for neglecting the divergence in the effective saturation curve
(Figure 9) was the recommendation of Brooks and Corey (1964) to neglect
this divergence at high heads as the value of Se becomes very sensitive
to the choice of the value of Sr at high heads,

The falling water table case on the Hullinger farm was solved
by the program starting from an initial condition very close to the initial
condition of Khalil-Ur-Rehman (1971), Differences in the two conditions,
however, were inevitable because of the changes the computer program
introduces on the geometry of the problem and because the initial distri-
bution of values of ¢ at the nodes could only be grossly approximated
from our knowledge of the initial water table position, The fall of the
water table was simulated for a period of 349,55 hours (14. 55 days).

Figures 10 and 11 show the results of the numerical solution together
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with Khalil-Ur-Rehman's (1971) field results for the recession of the
water table at the mid point between the drains. Both curves in Figure

2
L0 were plotted with § = 1 ft /hour. In Figure 11 f was calculated
K De
separately for each curve from 3 = —z— . For the numerical solution

S

the following values were used:

K = 5. 08 ft/hour (average Ko)
D = 29,29 1t
e
S =n-8 =0.35
r

Khalil-Ur-Rehman (1971) used the following values for his experiment:

Ko = 1.339 ft/hour
D = 19.08 ft

(4]
S = 0,26

Figure 10 shows that the recession of the water table in the
numerical solution was much slower than the results of the field experi-
ment, This difference could be due to a combination of the following
factors:

a. Inaccurate characterization of Ko and heterogeneity in the
model.

b. The presence of natural drainage in the third dimension.
This was observed by previous investigations on the Hullinger farm
(King, in a verbal communication), This, of course, will give faster
actual recession than the model will predict,

c. Effects of heterogeneity in, or inaccurate characterization

of the soil parameters for the unsaturated flow.
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d. Differences between the two initial conditions as discussed
above, Y, for the model was 3,025 ft. While in Khalil-Ur-Rehman's

(1971) experiment Yy, was 2. 29 ft.

Limitations of the Program

In addition to the limitations dictated by the assumptions in the
formulation of the model as the one-phase assumption and the neglect of
air pressure buildup in the medium and other assumptions which were
discussed earlier in this dissertation, the program has another important
limitation. This is that the model cannot simulate the phenomenon of
infiltration as accurately as it should be. This limitation is introduced by
the large size of the mesh which is dictated by the usually large size of
the drainage problem. While infiltration simulation may need a mesh
size of one inch or less, such a small size is neither needed nor econ-
omically possible for the rest of the domain of the drainage problem

which may be several hundred feet in length,
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COMPARISON OF THE RESULTS WITH SOME

APPROXIMATE THEORY

Some researchers (Dumm,1954, 1968; Brooks, 1961; Jenab,
Bishop, and Peterson, 1969; vaun Schillfgaarde, 1963, 1965; Moody,
1966) investigated the transient case of the falling water table in flat

lands by solving the linearized form of the Boussinesq equation:

9 dh dh

Ox (Koh 9x ) =S ot (60)
Where:

h = Thickness of saturated flow

x = Horizontal coordinate. h and x are shown in Figure 12,

K = Saturated Hydraulic Conductivity
S = Drainable porosity or specific yield.

t Time

By considering only homogeneous soils (K0 = constant) and by
approximating the variable h in the brackets of the left hand side of
Equation (60) by a constant average value of h called De’ Equation (60)

is linearized into:

9 h dh
KoPey 2™ % 3¢ (61)
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(a) Flat land

Steady state
water table

\' 4
o

I‘ L

(b) Sloping land

Y

Figure 12. Definition of drainage parameters.
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Where:
De = The average depth of flow
= d+ -Z;— or de + j—;—
d = Depth below drains to the barrier
de = Depth below drains as modified by Hooghoudt!s effective
depth theory
Y, = Height of the water table at the midpoint between the drains

above the line joining the two drains at time zero.
Some of these solutions for the falling water table were reviewed by
Khalil-Ur-Rehman (1971) and Sabti (1974). Many of these solutions were
presented as recession curves of the water table at the midpoint plotted
on semi-logarithmic paper with the two dimensionless parameters L

%

and 5—2-2—
L

Where:
y = Height of the water table at the midpoint above the drains

at time t
L = Spacing of the drains
K D
o e
S

Figure 13 shows some of these theoretical curves. This figure was
taken from Sabti (1974).

Although the approach of the above theory is quite different from
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the approach of the model in the present study, it was felt that a quali-
tative comparisbn of the results of the two may give an insight into the
applicability of this theory to drains in sloping heterogeneous lands. |
The formulation in the present model is closer to the physical process
of drainage than the above theory and it may be desirable to indicate the
differences between the two at this point, Firstly, the theory treats
homogeneous soils only while the present model treats both the homo-
geneous and the heterogeneous cases. In nature, heterogeneity of the
soil is the rule. Secondly, the theory is based on the Dupuit-Forch-
heimer assumptions which are not used in the present model. The
model uses the more accurate hydrodynamic theory. Thirdly, the
theory was developed for flat lands while the present model was developed
for sloping lands., Fourthly, the theory considers saturated flow only
and assumes instantaneous and complete desaturation as the water table
falls beyond a point. The present model is closer to the natural process
as it considers both the saturated and the unsaturated flows and the time
variability of desaturation,

Khalil-Ur-Rehman's (1971) field results on the Hullinger farm
did not agree with the theory. His recession curves were flatter than
the theoritical curves. Sabti (1974) investigating drainage on the same
farm found different degrees of correlation (from good to none) between
his field results and the theoretical curves. Both workers mentioned
slope as a main possible reason for the divergence of the field results

from the theory.
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In comparing the results of the hypothetical problem with the

K D
o e
S

theory it was impossible to define a value for 8 = for plotting

"the curves of Figure 6 because Ko’ De and S were all variables, That
was the reason for plotting these curves withp =1 ftz/hour. Since the
use of any other value of § will only displace the curves horizontally
without affecting their slopes it is possible to compare these curves with
the theoretical curves of Figure 13, It is obvious that the curves of the
present model are much flatter than the theoretical curves, indicating a
slower rate of recession,

Figure 14 shows a comparison of the numerical curve and the
field curve for the Hullinger farm with some of the theoretical recession
curves. Again both the numerical prediction and the actual curve were
flatter than the theoretical curves. The theoretical curves predict a
much faster rate of recession than the numerical solution, Some of the
factors that might contribute to this difference are slope, unsaturated
flow, heterogeneity and method of linearizing the nonlinear Boussinesq
equation,

1. Method of linearizing the Bouss'mesq equation, In getting
Equation (61) from Equation (60) the depth of flow is assumed constant
and equal to the average of the values of the variable depth (De=cile + }%’-— .
This underestimates the flow depth in the early stages of recession and
over-estimates this depth for the latter stages., This will result in a

theoretical recession curve which is steeper than the actual,

2. Effect of the unsaturated flow. Equations (60) and (61) give:
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9h _ KoDe azh 62)
8t =~ S 2 (

Since we are dealing with the falling water table, the right hand side of
Equation (62) is negative.

If we include the percolation from the ;msaturated region into the
saturated region in the formulation of the Boussinesq equation, and
recognize that desaturation is not complete and instantaneous as the

water table falls, then Equation (60) will become:

9 oh v oh
r e (Koh-—-«---ax )+ i(t) = So 3t (63)
Which gives after linearization:
oh _ KoDe 82h + i(t) (64)
ot =~ S - S
o 9x o

Where:
i(t) = Rate of percolation into the saturated zone
S0 = The fraction of the specific yield that is drained at the
onset of desaturation (less than S)

Since the second term on the right hand side of Equation (64) is positive,

it tends to make less negative which means a slower rate of recession.

ot
This effect will depend on the magnitudes of i(t) and So' and in run 2 of

the hypothetical problem between times t = 0 and t = 0. 25 hours it must

have been larger than the absolute value of the negative first term on
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the right hand side of Equation (64) changing gThto a positive value and
resulting in a water table rise., This also could be one of the reasons
for the difference between the field results of Sabti (1974) and those of
Khalil-Ur-Rehman for the same farm, Sabti started his measurements
directly after stopping irrigation (i(t) is still high), while Khalil-Ur-"
Rehman started his measurements after some time of stopping the irriga-
tion (giving time for i(t) to become small).

3. Effect of the slope. As mentioned earlier the approximate
theory was developed for flat lands, where the midpoint between the
drains is a water divide. In sloping lands the midpoint is not a water
divide. Actually the water divide in sloping lands was observed to be
close to the upper drain in the steady state with no recharge case, to
shift downslope as the water table rose and to shift back upslope as the
water table fell., In all cases the midpoint was downslope of the water
divide.. This means that the section at the midpoint receives water
from higher land between it and the upper drain as well as from lands
farther up beyond the upper drain, This extra flow needs an added
thickness of flow at the midpoint, thus slowing the water table recession
there. The presence of this seepage, even in the steady state with no
recharge in some problems (as in the hypothetical problem) makes it
erroneous to use the midpoint of the line joining the two drains as a
datum for measuring y and Vo As seen in Figure 12, Limit y is zero

t—o0

for flat lands, but may be larger (m in Figure 12) in sloping lands.
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‘This seepage and this choice of datum for y and Yo will make the
recession curve flatter,
Investigation of the Boussinesq equation for sloping lands may
shed some light on the behavior of the water table in such cases. This

equation for sloping lands is:

) oh

dh
—&-[KohCosoz(?;+tana)]—S~aT— (65)
which gives after linearization:
h _ .. KD 0%n s im0 2h 66)
ot - ~°° ) 2z "M% T ek (

ox
Where «a is the slope angle. It is interesting to note that the presence
of the second term on the right hand side of Equation (66) can account for
the lop-sided shape of the water table and the shifting of the water devide
in sloping lands. %i— is negative for the part of the water table down-
slope of the water divide and positive for the part upslope of the water
divide. This results in a water table recession for the down slope part
which is faster than that for the upslope part. Investigating Equation
(66) at the midpoint between the drains, it is noted that %:{-l—is always
negative there, but its absolute value decreases with time as the water
devide shifts upslope. This means a slower recession at the midpoint
as time passes and a flat recession curve. The magnitude of these

effects of course depends on the magnitude of the slope angle a.

It is difficult to compare the predictions of Equation (66) with
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those of the flat land Equation (62). Whether Equation (66) will give a
slower or a faster recession at the midpoint will depend on the net
result of the decrease in the negative value of the first term of the right
hand side of Equation (66) and the increase in negative value introduced
by the second term there.

4. Effect of heterogeneity., If we formulate the Boussinesq
equation for heterogeneous soil ( flat land case) and if we assume K0 to
vary with x and y, y being measured from the impermeable bed upwards,

then the equation would be

-y=h(x)
a | [ dh dh
K3 {L_O KoGoy)ay ) 51 = 8 3¢ (67)

Expanding Equation (67), using Leibnitz's rule for differentiation under

2
the integral sign, and neglecting the term containing (—a;—) we get:

h 2 h 9K ‘
dh _ 1 8 h o dh
5t © S (LKO(X’Y)dY) ax2+U 5x dy) ox (68)

(o]

Since it is difficult to investigate Equation (68) when KO varies
with both x,y, hetergeneity with one coordinate at a time will be con-
sidered,

a. Ko varies with y alone. Say Ko = Cl + C3 y. Equation (68)
becomes

4 2
dh _ 1 . 9°h
e “Cl+zc h}h ]
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or to put it in a form similar to Equation (62)

oh _ Koav Pe 5°h (69)
ot S 2
ox
where:
Koav = average Ko for the flow section. It is the average only

because of the assumed linear relation of K0 toy. Ifit
is a nonlinear relation, then the definite integral of
Equation (68) should be evaluated.

If Ko increases with depth, Koav increases with time and a steeper
recession curve results. A flat curve results if Ko decreases with depth.
In practice it is believed that the effect of this factor is not significant
because h varies over a small range compared to its magnitude.

b. Ko varies with x alone. Say K0 =C, +C_ x.

1 2

Equation (68) becomes:

2
oh 1 2% oh
Bt —-—-S-[(C1+C2x)h > tCh 5k
: ox
or
on _ %™ P % | €22 sn 70)
ot S 2 S Ix

Ox

The second term on the right hand side of Equation (70) will act to change
the shape of the water table and to shift the water divide even in flat
lands. If C2 is positive (Ko increases with x) the water divide shifts

)
back and —5}—}1— at the midpoint becomes negative, If C2 is negative (Ko
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decreases with x) the water divide shifts forward and v at the mid-
point becomes positive. In both cases this second term in Equation (70)
is negative. Its effect as time passes is difficult to evaluate as its value
oh - : . .

starts from zero (-—a—; = 0 at the midpoint to start with) and then in-
creases in the negative direction with time and then decreases as the
water divide shifts farther away in the latter stages of drainage.

From the results of the numerical solutions presented, the field
results for the Hullinger farm and the above theoretical discussion it
can be safely concluded that the approximate analytical solutions deve-
loped for homogeneous flat lands are not applicable to heterogeneous

sloping lands mainly because of slope, heterogeneity and the unsaturated

flow,
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SUMMARY AND CONCLUSION

The objectives of the present study were to develop a computer
program to solve the transient tile drainage problem in heterogeneous
sloping lands, and to test this program for an actual problem where data
were available, The surface of the soil and the impermeable bed were
to be of a general shape and slope.

A program was written in Fortran IV language to solve this pro-
blem. Finite difference formulation was used with a general rectangular
mesh specified by input data. The saturated and the unsaturated parts
of the soil mass were treated as one integrated composite system, and
the flow, whether saturated or unsaturated was considered. The pro-
gram can treat homogeneous or heterogeneous media. Heterogeneity
with respect to the saturated hydraulic conductivity only was considered.
This heterogeneity was characterized by specifying, as data, the mea-
sured values of hydraulic conductivity at several points and fitting these
data to a linear relationship between Ko’ x and depth using the least
squares method of approximation.

The program solves the case of steady state with no local re-
charge first, to provide an initial condition for the unsteady state. The
steady state solution was obtained using the successive over-relaxation

iterative method.
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The Crank-Nicolson difference scheme was used for the unsteady
state except at the normal flux boundaries where the implicit difference
scheme was used. The solution was obtained by using a combined method
of few Newton inner iterations and the successive over-relaxation outer
iterations. Both the rising water table with local recharge and the falling
water tabl~ after the recharge stops were simulated. The results showing
the water table response with time for a hypothetical solution are presented.

The program was tested with an actual drainage problem on the
Hullinger farm, Vernal, Utah, for which data on the soil and water table
positions for the falling water table case were available. Results of the
numerical solution of this problem are presented and compared with the
results of a previous field experiment, The two sets of results did not
coincide most probably because of differences between the computer
model and the actual field conditions.

The results of the numerical solution were compared qualitatively
with some approximate analytical solutions for the falling water table in
homogeneous flat lands. The numerical solution gave flatter recession
curves for the water table at the midpoint between the drains, Some of
the probable reasons for flat curves were discussed. It was concluded
that these analytical solutions were not applicable to drainage of hetero-
geneous sloping lands.

It is concluded that the finite difference method of numerical solu-
tion can be used very effectively in solving the drainage problem in
sloping hcterogeneous lands taking into consideration both the saturated

and the unsaturated flows.
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RECOMMENDATIONS FOR FUTURE RESEARCH

It is recommended that the following areas of research be investi-
gated:

1. The possibility of using the finite difference solutions for
layered soils.

2. The possibility of using the numerical solutions to develop
some design criteria for drainage systems on sloping heterogeneous
lands.

3. The effects of the heterogeneity of the soil parameters other
than KO on the drainage solutions.

4. The possibility of using graded mesh sizes with small sizes

above the drains to simulate the infiltration process more accurately.
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Appendix A.

Program Listing




IFRRIS MATN,HATIN
CIMENSTION XTHIC)»ELTI2THXB(ICY+ L TIC1CY,DEPTHI10Y ELB (LD
DIMENTION HNELIDC) +NNT{1CC)
DIMENTION Y1(1DC)e YZI1TGIeJBI1CD )V (1ICD)
COMMON AL3+3)1+BU33+CIZ1oI0117V4CNUIC) +JDIICH+3{1C0)+HIICO) »YPIICOY
COMMON @T(102)
COMMON BNT1102+v1B)eFI31(102+181,PHI1I0Z.18)
COMMNN PHIT1C2.18)
COMMON NCAL(I02018)¢SK(10Z+18) +NXeNYsDELXsDELY s NX1sNY1sACsHB T AN
COMMON BAe? vAF s TANP s BP s AT T A SRyEP RN IWZIMAX T sE20E3+ETERGE
COMMON ¥LBOUMELCYELvG2+6T9CHsDELKYsDELKT +SINALP#COSALP s SIHTH
COMMON COSTH.™D
a3 tetrr800200 0020083080 800%000a0tINeEsRestItNtIs Esctsntstststetstsssssssts
Cesv2sDRAINAGE OF HETEROCCENETUS SLCPING LAND
CesesasF INITE DIFFERENCE SCLUTION
CeesssF AHN NATUR
G0 0ara 8008 tat0era38800030 R tsnisscsdiit salnstsstosttststotntssssesssassssonssd
CesossSETTING TME CPOBLEM
Ces ¢2+PEAN DATA
CooeseSL-LENETH IN ¥ DIRECTION
Cer 22X TUII=DISTANCE CF SUPFACE SUPYEY POINTS FROM ORIGION
CoesoasELTII)-ELEVATYAK OF SURFACE SURVTY POINTS
CreoseXBIII=DISTANCE OF IMPERNMEFABLE BOUNDARY PDINTS FROM ORIGION
CossesELTE{IITELEVATION 7F TUOFA-L AT IMPERMEAELE BOUNDAPY POINTS
CessssDEFTHITICDEPTH TO IMOPEOMEABLE DQUWNRAOY
CessseNT=NUMBER OF SURFACE SURQVEY FOINTS
CessssNBNUMBER CF “MPERMERBLE BOUNLCA®PY POINTS
CesvesNXz NUNBER OF NOPES TX THE X-DIRFCTIOM
CrseeeMY= NUMBEP OF NODES IN THE Y-DIRFCTIOWN
g

READ(S+SO0IMTNBy KX NY
SCGL FOPRATINIS)
NXI1=NX-1
NY1=NY-1
PEADI5+50115L
DO 10C T=1.N7
10 READCSSCIIXTIIILELTLT)
501 FOP¥ATI3IF1D.5)
R DO 101 T=-lew®
1C1 READ{S+SCLIRBITI)ELY2II),DEPTHI T
CoovasayelYT NWToMENXeKY, XT(IJoELTI(I)»¥BI{TI,ELTBIT),DEPTHIT)
SRITE te.1CD10
17CI FOPMATUIML, "NRAINAGE PRIPLEM/SLOPING HETEPOGENECUS LAND®)
WRTTE (6410027
ArC” FORKAT(1HD. "
WeITY 15418030
1C0T FOPPATIINEG,. " L Ne NX NY *)
WOTTC (€ o 3I0RINTINS KXo RY
10Cs FOPWATINISX TS
WRYYF (€ 010CS)

DISTLAY OF GEOMETRY DATA ')

1ICTS FORMATIIMG, * LA B ] ELT(IV )
* T0 90C To1eN™
OCI KOTTELE 1006V YTIIIE£L7 (D)
10Cc FOC®ATIZ{S5X.FiC.5))
USTIT 1€, 1CCTY
1CCT FOOwRTE 1M N, YELTY LY TEPTHII™)

TL M1 TzikwP

301 WPITTUE 2 1CCBIYRLT) 4ELTRIT) 4D PTHIT)
ICC3 FOOMATIZ(SX,T 10, 5))
¥RITEt6+1017)
1017 FCRMAT{1HO,* st=*)
VRITF(§,1018)SL
1r13 FCRMATISX,F10,.5)
c.l'..lt.l't'..'!".t.."‘!l'.’ﬂt..t.t...t.tl.l't.“.'...l'.l.l'..ll‘.“!.l..."
CoososCALCULATESELBITIZELEVATION OF IMPERMFABLF BOUNDARY POINTC
CeessslLPOZTLEVATION OF TMPFRMEASLE BOUNDARY AT 0RTGION
CesesebLT0 CLEVATION OF SURFACE AT ORIGION .
CessssE LEFSELEVATTON OF IMPERMEABLE BOUNDARY AT END
gn--.ruszn.:vn!ov OF SURFACE AT END
T0 102 Y=1.NB
12T TLBATICELTBCII-DEPTHIT)
ELTOZCLY(1) XTI 4ELTIZI-ELT (1) )/ 4XT(2)~XT (1))
ELBOZTLB(1)-XBU1)e (ELRI2)-ELR (1) /(XR(2)-XB (1))
ELYF:‘:L‘.’!N‘HO(SL-XT!MTIH(CLT(NT!—ELY(NY—II)/(XI’(NY)—XY!NT-[')
ELEF:"LB(NBHISL-XEI"BIl'(EL"IHB)-V.L‘!(NB-ll)/(XE(NB'—IB(H'.‘~1)l
CoranssdISPLAYSELBUI)2ELTOVELBOELTF »ELEF
MRYITE 16,1009)
ICTS FOAMATIIHG, * ELTC £Lso ELTF ELBF
s*)
WRITE (E 410101 ELTO+ELBOSELTF JELRF
WIL FCRWATI4(SYF10.5)1
WRITE(6 415110
111 FORMATI(IHO,® ELBITI= 0
VRYTE (6+1012) (ELBIT).I=1,NRY
1T1Z FORMATLIGI2X.F10.5))
CosessSEARCH FOR HTPHEST ELT AND LOWF<T FLR
FLYR=-EL YO
IFIFLTM.ST.ELTF) GO0 TO 103
ELTHM=CLTF
173 20 108 Y=1sNT
IF(ELTM.BY.ELTIT)) Go TO 108
ELTHZFLT(I}
1C% CONTTNUE
ELam=rL B2
IFIFLBM.LY.ELBF) GO To 105
ELEM=FLBF
1S 0O 106 I=1.NP
IFLELBM.LT.EL2LI)) GO TO 106
CLPM=ELBITY
178 COMTTMUE
WOoYYF(g,1319)
1719 FCPMAT{1HT, " ELB™
WRITE (€1 1020 ELBMLELTH
120 FOOMATIZ2(5X,F15,.5))
CeeerslALCULATE D-THE DEPTH
CCLTH_ELBM
TeeeseNOPHALITE SPACE DIMENSIAHT
©0 107 I-1.N7
107 ELTIIISELTATI-ELENM
D 1C8 I=LeNP
103 ELBII)ZELSU{TI-ELEN
ELYOSCLYO-ELB™
FLYFTLIF-ELRM
TLPO-TLBO-E L Ew
FLBF=TLOF-£1Pm
WYY g ,1021)
1071 FORRATIIHD.Y  THE DEPTHZ )
YT (g ,1022)0

LMy

LET



1072 FORMATISXsF10.5)
WRTYF (641G23)
1027 FORMATEING, " NORMALIZED GEOMETRY®)
WPTYE (621024)
1c24 FORMAT(1HOs+" ELTN ELT" ")
WRITFUE»1025)FLTOCELTF
1025 FORMATIZ2{5X+F10,5))
WRITF (610267
102€ FORMAT(1HO.* £LAn FLB8F ")
WRITF (6¢102535LBOLELBF
WRITF (6410051
N0 905 IZ1sNT
905 WRITEUE+10068)XTII) #ELT(I)
WRITS {64+1027)
1n27 FORMAT(1HO,"* XB(YIY FLRtII)
DO 306 I-1sNB
906 WRITELE 10061 XBII}»ELB(I)
CeesasCALCULATE YLI{TIZY-COORDINATE OF TMPERMEABLE POUNDAPY A 7 NOPE I
CossasY2{I)Y-COORDTNATE 0OF SURFACT AT NODE I
DELX=SL/NXT
DELY=D/NY1
R=DFLY/DELY
R2=RsP
Y1{1)=ELBO
Y2(1)ZELTO
Y1{NX)ZELBF
Y2(NXIZELTF
DO 109 I=ZsNX1
X=DELX«FLOATI(T-1}
IF{X.LY.XB(1)) GO TO 11C
IFIX.5T.X3{NPY) GO TO 112
PC 112 J=2/NR
IFIX.LTXBIJY) GO TO 113
117 CONTYNUE
11C YL{IPZELBO+X+{ELBUI)-TLBD)/XRI(1)
60 TO 118
111 YICIITELBINB)+(X-XBINR}}(ELPF-FELB(NBY)/ZISL-XBINBY)
60 TN 118
113 YUIIZELR{J-1)41X-XB(J-1)1e{ELB(JI-FL B(J-1))/IXBIJI-XR(JI-1))
118 IFIX.LT.XT(1)) GO TO 114
IF(XeSTLXTINT)) GN TO 115
DO 115 J=ZsNT
IF{X.LT.XTLJY CO TO 117
118 CONYTNUE
118 Y2{I)=ELTO+Xs (ELTL1I-ELTO) /XTI
0 TO 1G9
115 Y2(I)ZELTINTI+IX=XTINT) IS (ELTF-ELTINT)}Z{SL-YTINT}}
60 TC 1D9
117 YZUIIZELT LU=+ X-XT(J-1 D)+ CELT (I -EL TOJI=-13 )/ IXTOJ)-XT(I-1)
109 CONTTNUE
Cess++DISPLAY Y1(T} AND Y2(T)
WRITE16+1013)
1013 FORMATI1HC,"Y21I) AND Y1(I) *)
WRITEIE+21014)1Y2(I)eIZ14NX)
1014 FORMATIISIIX»F7.3))
WOITE 16210187 (YLII)eIT1eNX)
CexrsssPUT BOUMNDARTES AT NODES
00 113 T=1wNX
JBITISH{YI(TI)I/NELY)+1
JYLTIZ(Y2LI)/DEL Y41
YTI=FLOATIJBITYI-1)*0FLY
YT2-FLOATULUTIT)I-11sDFLY

IFCIYLITI)=YT1).LT,.5¢DELY) GO TC 1mn
JBL{IIZJUBIT ]

140 IFECY20T)-YT2).LT..5*DELY) GO Y0 119
JTIIIZSTITN+1

112 CONTTNUE
DD 9499 T=1.MX
JBIII=JBIT)+1

39 JTLIIZITIT) +1
NYZNY+l1
NYI=NYI+1l
WRITE(6+1028)

1023 FORMAT(1HOs"* J NUMBER OF BOUNDARY NODES JT{(T} AND JB{I) ")
WRITE(6 410291 1JTEINI=14NX)
WRITE{6+1029) (UBLI)sI=1eNX)

1023 FORMATI1I5(3XsT5) )

Cosstsnsnss s 0438040800 RSPRERSRRR R RERERRRRIINRH IR NS4RS S SLGRRENRRERES
Ces2eesSETYING THE CALCULATION CODE
CseseaREAD NOZNUNEFR OF DRAINS
Cess¢eSFT NCAL=1 FOR POINTS QUTSIDE THE FLOW REGION
CessesNCAL=Z FOR ALL INTERTOR POINTS THAT ARE NOT DRAINS
CesesssNCAL=3 FOR DRAIN POINTS
CseesesNCAL=90 FOR ALL SURFACE BOUNDARY POINTS
CossssNCALZI100 FOR ALL IMPERMEABLE BOUNDARY POINTS
READ(5+502IND
502 FORMATIIS)
IFIND.EG.O) GN TO 120
D0 121 K=1sND
READ(5+503)IDIK) »DD(K)
503 FORMATIIS.F10.5)
I=Iptx?
NDD=DOUK) /DELY
DDT=DELY*FLOAT{NDD)
IF{(DD(K)-DDTY.LT.D.5#DELY) €0 VO 15C
JDLKIZJTEII-NDD-1
60 TO 121
150 JDEK)=JTIII-NDD
121 CONTTNUE

120 DO 122 T=1eNX
0O 122 J=1eNY
IF{J.LT.J3ITIY GO TO 123
IF{J.CT.JTLT)) GO TO 123
IFtJ.T2.JBIT)Y GO TO 124
IF(J.TQ.JTI(T}) GO TO 125
IFIND.EQ.CY G~ TO 176
DO 127 K=1»NO
TIFITI.FQ.ID(KILAND,. J.EQ.JDIK)Y GO TC 128

1727 CONTINUE
126 NCALtTIsJ}=2
GC TO 122
123 NCAL(T,4)=3
6c TP 122
12 NCAL{I,J =1
€tc 10 122
124 NCAL(IyJ)=10C
60 T 122
1728 NCALITI»JY=90
127 CONTTNUE
Cas+essSET CALCULATTON CODE AT THE POUNDARIES
00 129 I=2s+NX1
IPz-I+1
MUER SR
DD 129 JT1sNY

8¢l



IF(NCAL(T+J).76.100) GO TO 13D
IFINCALITsJr.F3.3CY GO T 131
G0 T0 129
130 IF(NCAL(IM»J1.EQ.1CCLAND.NCALTIPYJ)LFGR.1CC) GO TO 10
IF(NCAL(TMyJI.EG.10N AND,NCALTIPy J).FNa2) Go Te 17
IF(NCALUIIMe J)eEQaZ.AND.NCALIIP+J).T3,100) GC TO 1P
IF(NCAL{IMyJ)oEQ.2.AND.NCALIIP»J}.FU.2) GO TO 1IN
IF(NCALIIMy J)oEG.1GC.ANDSNCALIIPs JIaF Q1) GO TO 11
IF(NCALIIMyJIuEG.1 ANC.NCALIIPsJ)}F3.100) GO TO 12
IF(NCAL(IMvJ)EG.1.AND.NCALITIPsJ) .EQ.1) GO TD 21T
IF{NCAL(IM»J)eEQ.1.AND.NCALIIP+J?.¥Q.2) GO YO 14
IFINCAL (TN J)eFQ.2.AND.NCALITPsJ).FQ.?) GO TO 15
1C NNBII=10
60 19 129
11 NNEIY)IZ11
60 Tr 129
12 NNBI(T)=z12
60 T0 129
13 NNEIT}Z13
G0 Y0 129
14 NNEB(T)IZ14
€0 TO 12¢
NNBIT)Z15
G0 TO 129
131 IFINCAL(IMyJY.FER.I0aANDLKTALIIPsJY.EQGL9D) GO TO 4
IF(NCAL(IMyJ)eFEQ.9C.AND.NCALCIP+J1.CG42) GO TO &
TFINCAL {TMs J)eEGe2.AND.NCALIIPyJ) .FQ.2C) GO TC 4
IFCHNCALtTIMs J1.EQ.2.AND.NCAL(IPyJ) .FQ.2) GO T7 &
IF{NCAL{TMy J) L EG.I0AND.NCALITIP»J3.EG.1) 6C TC S
IFCNCAL(TMyJ) eEQ.2.ANDJNCALIIPJY.€Q.2) 60 TO G
IFINCAL(IMyJ)oEQ.1.AND.NCALIIPyJ? .F@.3C) GO YO 7
IFINCALIIMy J)EQ.1.AND NCALITP+J).F@.2) GO TO 8
IF(HCAL (TMeJ?oEQ.1.AND.NCALIIPyJ).FQ.11 GO TO 9
RNT{T)zy
€0 To 129
NNT{T)=5
€0 TO 129
NNT (716
€0 Tn 123
NNTIIDZ7
GO Tn 129
NNT(I)=8
G0 TN 128
g NNTI(T)=9
129 CONTTNUE
DO 132 IZ2+NY1
D0 135 J=1sNY
IFINCAL(T,J).EQ.100) S0 TO 13X
IFINCALIT«J).FQ.90) 6O 7O 1324
€0 70 135
137 NCALTI»JISNNBIT)
172 CONYTNUE
1734 NCAL(I,JIZNNTI(I)
132 CONTYTNUE
Corsasss ssssassanssststasas sttt sttt sastastnostts sttt ts st stsistnssnstststs banns
CsesssDICPLAY CALCULATION CODE
WRITE(E,10151}
1017, FOPMATEIHG, "
N2:=C
1200 N2zN2+20
N1=N2-19
TFENZ.CT.NXY N2=MX

1

w

&

&

o

~

w

CALCULATION TONE AR ]

WPTITE (641201
1?0: FORMAT(IHCs " CALCULATION CCDET)
N0 136 INDEX=Z1eNY
JENY+1-INDE X
136 WPRITE(641C26) {NCAL(I+JYsI=N1sN2)
1016 FOPMATI1IH »2CT5)
IFINZ.LT«NX) CC TO 1200
D R I T R P T
CesesePART 2 DISTRIBUTION OF SATURATED HYDRAULIC FONDUCTIVITY
Cessesh LCAST SQUARE METHOD IS USED ASSUMING LTNEAR VARTATION CF
c CONDUCTIVITY WITH X AND DEPTH OF THE FORM K=C1+C2Y+C3D
CessssKCODE-1 HETFROGENEOUST SOIL
CosassKCNDEZD HOMOGENEOUS <OIL
READ{5,9933)KCNDE
9933 FORMATIIS)
IF{KCODE.ER.C) GO YO 9930

Casase

Cexa»2READ DATA/ NPK-NUMBER OF MEASUREMENTS OF CONDUCTIVITY

c XK=X COORDINATE OF CONDUCTIVITY MEASUREMENTS
c DK= DEPTH OF CONDUCTIVITY MEASUREMENTS

READ{S+504)NPK

504 FORMAYITIS)
DO 142 I=1.3
81T)=0.0
DO 142 J=1+3

182 AlYsJ)=0.0

Cxss3sDISPLAY DATA

WRTYC f6,1042)

1062 FORMAT{1HO." NPK=")
WRTTE (69104 3)NPK

1747 FORMATISX»IS)
REAN(S+S5051FKMINeFKMAX
WRTTF t6 1044

1r5y FORMAT{1HQ.* FXKMIN
WRIYE (6E+102311FKMINFKMAX

1031 FORMATII(SX+C10.5))
WRITF 16,1030

103C FORMAT(1HO,* x DK FK*")
DO 183 TZ1.NPK
READI{S¢5C5) XK+ DKsFK

505 FORMATI3F10.5)
Alle23TA0192) +XK
A(1¢3)°A01+3140K
Al2¢2)=A1292) +XK*XK
Af2+2)=AL2+3) +XKeDK
A13+31=A03+3)+DKsDK
B(11=8(1)+FK
B(2)1=8(2) +XKsFK
B(3)-B(3)+DKa*FK

143 WRITE (6410311 XKsCKeFK
A(1+11ZNPK
Al2:1)ZA0L2Y
Al3:131=-A01+3)
A{3+23ZA02,3)

CersseD ISPLAY MATRIY OF NORMAL EQUATIONS OF LFAST SQUARE

WRITE (6+1032)

1C32 FCPMATI1HG." MATRTY A AND VECTOR 8°%)
DO 9C7 I=1:3

907 WRITELE+1033)CA(T+J)sJ=1e3} P IT)

1033 FORMATIGISX.F16.51)
NM=3
CALL DECOMPINMes1000D)

FKMAX®)

6c1



100C
irsc

£n TO 182

WRTTF (6010000

FORMAT{1HLs" ALGORITHM FAILS")
€0 70 2000

CessseDISPLAY DECOMPOSED MATRIY

187
10 34

a08

1035

1036

WRITE (€ ¢1034)

FORMAT{1HO."* DECOMPOSED MATRIX*)

00 908 I=1,3

WRTTE (6920331 (AtTsJI»I=1+3}

CALL SOLVEUNM)}

WRITL (6210351

FORMAT(IHO.* COEFFECTENTS VECTCR C*)
HRYTE (6+1036)

FORMAT(1HOy* ct c{2)
WRITF(E+10311C(CIII+I1+3)

Caxe vessFIND CONDUCTTVITY AT NODES OF DOMAIN

151

152

145
14y

DO 14k T=1wsNX

00 184 J=1sNY
IFINCAL(T+J).EN. 1) GO TO 145
XZFLOATI(TI-1)sDELX

JIFMFZJTIT)
OX=FLOAT(JTEMP-J)sDELY
SKII,J)=Cl11+4CI2)eX+CI3)e0K
IFISKI{ZeJ)aLT.FKMINY GO 7O 1°1
IFISK(TeJ)uBT.FKMAX) GO TO 152
GO TO 1uy

SKIsJ)ZFKMT®

60 T 1luy

SKtTeJd)ZFKHAX

€0 TN 144

SXtI,JN=0.0

CONTYTINUE

CaasassCISPLAY HYDRAULIC CONDUCTIVITY AT NODFS

w%er7

1207

1206

303

993C
9931

Se3r

9374

WRITE(6+1037)

FORMAT{1HOs* SATURATED CNANDUCTIVITY AT NODES®}
NZ=D

N2zN2+1D

N1ZNZ-¢

IFINZ.BT.NX) N2:=NX

WRYTF {6+12061} :
FORMATI1HO» " SATURATED CONDUCTIVITY®'}
DO 909 INDEXT1,KY

JINY#1-TNDEX

WRITE(E#1038) {SK(TvJIsIZNL«N2?
IF(N2<LT.NX) 6¢ YC 1°07
DELKX=C (2}

DELKT=ZC (3}

E0 TO 993%

REANIS,9931)1%ATK

FORMAT{F10.5)

DELKY=0.0

DELKT=C.0

DO 29332 TIl.nX

D0 9232 JS1eNY

SKIT»J)=SATK

CONTINUE

CeeessREAD “7IL PAPAMETERS

51C

301

REAN(E»SICYACIHB s TANIRAL?Z
FOFMATU(SF1IC.R)

READ(5+3C1)A"» TAWP+BP+ALTA,SR
FORMAT(SFIC.")

WRITC (6 ¢1054)

ct3n

1054 FORMATULIHO.® SOIL PARAMETFRS')
WRITF16+1051)
1051 FORMAT(1HO" AC HR TAW
sBa "
WRITF (6,1052)
1052 FORMAT(1H »* DIMENSIONLESS FT. DTMENSIONLE S DIMENTT
SONLESS FTa 'y
WRTTF (6 ¢y 1053VAC+HBy TAWIBASZ
1053 FORMAT{LIHOYS{EXyF10.5))
WRYTE (63031}
TCI FORMAT(1H »° AP TAWP BP
s ATTA SR*)
WRITE {6+ 304)
XCY4 FORMAT{IH »* DIMENSTONLESS DINFNSIONLEST DIMENSIONLESS DIMENST
SONLESS DIMENSIONLESS *)
WRTTE (6 +305)AT» TAWP«BP+AITA,S®
305 FORMATIL1HO«SIS5XeF10.5))
READIS:S121ERRe W WZoMAX
511 FORMATI3IF20.5,1I5)
WRITF (G+1055)
1055 FORPMAT{1IHO."* Ernr w w2 MAY
%)
NRITE(E+1D56)ERR s WrW2e MAX
1056 FORMATI1HO»3(5XeF10.5)+5X»I5)
EZDELX/DELY
E2=Es€
E3-2.¢DELY
EB=DELY
£9=1./E2
F10=1.-€9
CTVZHBeaTAM
G1=TAW/ [AC*TVY
G2=TAUP/(APsHR=+TANP)
G3=G2ZeAITAs (1.-SR)}
€4=.5/11.+E2)
TANAZELBO/SL
ALPHAZATAN{ TANA)
HYP-TLBOSELBO+SL*SL
HYPI=SQRT[HYP}
SINALP-ELBO/HYP1
COSALPZSL/HYP1
TATA=DELY/DELX
THETAZATANI(TATA)
HYP3I=DELX+«DELY+DELY*DELY
HYPZ2ZSGRT(HYP2)
SINTH=DELY/HYP2
COSTHIDELX/HYPZ
ET7=2++DELX*STNALTsCOSALP
WRTTF 1641057
10ST FORMAT(1IHOs* GENEPAL SLOPE OF BFD AS A FRACTUON']
WPTTF (641052 TANA
1059 FORMATILIHD»SY+F1C.5)
Ceesses IR RS A N R R AR L R A R I R E R R R R S R R R S N N R RS L RS L R L
CessssSTLANY STATE SOLUTICM
WRTTE t6+1050)
10 S0 FORMAT(1H1." CTEADY STATE SOLUTIONT'!
Ces sesKLBOUN=1s LOWER BOUNDA®Y UNTFORM FLOW
Ces s2«KLBOUN=Cs LOWFF BOUNDARY FIXED HEAD
READ(5+3933 KL BOUN
C*sass JTNITIAL GUFSS
Ces22+READ "LEVATION CF WATER TARLF AT STATIC BOUNCARY
CossassL  W-FLEVATION CF WATE® TABLE AT N'PPEP EQUNDARY

oF1



CesesefLW2= ELEVATION OF WATER TABLE AT LOWER BOUNNARY

1n6C

READ{S5+1060IELW
FORMAT(8F10.5)

C*»0ssSET STATIC SOUNDARY CONDITION AND INITIAL GUESS FOR THE REST OF
r*s28sTHE DOMAIN

170
161
9938
93836

9 ag
898

883

885
B34

881

888
887
8 8¢
8aC

9937
9938
9939

YWSFLW—ELBM+DELY

I=1

DO 161 J=1.NY
IFI(NCAL(TsJ).ER.1) GO TO 170
PHI(1+J)=FLCAT(J~1)sDELYsSINALPsSTINALP+YWeCOSAL PsCOSALP
60 YO 161

PHIt1.,J)=1,

CONTINUE

IF(KLBOUN.ER.C] 60 YO 9335
60 T0 9938

READ(S5,»1060)ELW2
YWZ-FLW2-ELBM+DELY
READ(5,898) (YP{I})eI=2¢NX)

DO 94938 Y=2,NX
YP(I)=YPCI)+DELY
FORMAT{8F10.5)

DO 880 I=2sNX

DO B81 X=1sND

IF{I.5@.ID{KI? GO 77 883
€0 TO0 881
YPUIISFLOATIJDU(KYI-11eDELY
00 884 J=1,NY
IF(MCAL(T+J).EQ.1) GO YO 885
PHIT»J)=YPITY

G0 TO 884

PHY{TI,J)=1.

CONTINUE

60 7O 886

CONTINUE

DO 887 J=1,NY
IF(NCAL{T+J).EQ.1) GO TO 388
PHI (I yJ)SFLOATI{J-13¢DELY*SINALPsSTNALP +YP(T )*COSALP+COSALP
60 T 887

PHItIsJSY=1.

CONTTNUE

CONTINUE

CONTINUE

IF{KLBOUN.EQG.C) GO TO0 9837
Go TO 9939

PO 39938 J-1eNY
PHTINXyJIZYHZ

CONTTNUE

Cesss+DTSPLAY INITIAL GUESST

161

1212

1711

912

1038

WRITE (6+10E17T

FORMAT(1HO,® INITIAL GUESS FOR PHI")
2:z0

N2ZNZ+10

N1=NZ-3

IFINZ.CTLNX) N2=NX

WRITF(6+1211)

FORMATE(1HOs* INITIAL GUESS FORP PHIT)

DO 912 INDEX=1sKY

JZNY4+1-INDEX

WRITE(E+10238) (PHI{I+J) +I=N1sN2)

IF(N2.LT«NX) GO TO 1212

FORMAT(1H +1C{3X+FBat)?

FEAD(S,9001INS

CessxeNS™ NUMBER OF STEADY SOLUTIONS DFSIRED
arn1 FORMAT(IS)
DO 9000 KOUNTZ1eNS
WRITE {6+1065)
1065 FORMAT{1HD«*SYEADY STATE SOLUTION WITH RECHARGE @rI)= FI/HR")
CessssREAD RECHARGE RATES
READ(5+1060)(QtI)}sTI=1sNX}
WNRITEIG 10381 (QII) ¢ I=12NX)
NCT=0
86C SuUM=D.D
DO 810 I=2eNX1
IMT-1
IP=T+1
DO 811 J=2.NY
JHZI-1
JPZJ+1
IFINCAL(Y,JY.FQ.1) 6O TO B11
IFI{NCAL(T+J).£Q.3) GO YO B11
F2=DELKX/SK{T ¢ J)
ELKT/SK(TIJ}

3I+E+DELX/2.

- +F5
F8=1.-F5
FS~E2-F6
F10=E2+F6
HC=PHI{I» N-FLOATUJ-1)#DELY
NCAZNCAL(I+J)
IFIHC.LT.Z) 60 TO 813
CK=SK(T,J)
G0 TO 7¢C0

817 HDTABS{HC)Y
HE-HD/MB
RKZAC/(BA+HE*sTAUW)
CHK=RKsSK{Is+J)
TAWM=TAU-1.
F1=G1s(HD es TAWM) #RK
F11=F1/4.
F12=E2sF11

TOGC GO TO(8114821+8114822+8239828+825,826¢827,828¢829.,830+831,4832,833)
$1NCA

822 PHIT»JPIZE3sQII) /CK+PHI{ I+JM)
60 TO 821

823 PHICIJPIZE3*QUT}/CK+PHRI( T vJH)
PHI(IPs JIZELDsPHICIP I JM)I+ESsPHI(T+IM) +£82G( T) /CK
60 TD 821

824 PHI(IoJPIZ=E1DePHIIT+JI+EQePHI(IM»JI+EB45( 1) /CK
PHI(IPyJIZEL10sPHI(IP»IHI4FIsPHILI UM +EBG( T} /CK
GO 7O 221

825 PHIU{I+JPIZE3sQ(T)/CK+PHI{T+aM)
PHI(IMy JI=E10sPHI(INMsIMI+ESePHI(T ¢ JM) +EB82Q( I} /CK
GO 70 821

826 PHI(I+JPIZEIC*PHI(TvJI4EQePHIIIPs JI+E82Q (I} /CK
PHI(IMy I=EICePHI{IMyIN)+EI#PHI(TIMT +E84Q( 1) /CK
€p Y0 821

827 PHI(IeJPIZE3*Q{T)/CKIPHIIT +IM)
PHICIPs JI=E1D*PHI{IPsJMI+EI+PHI(T»IMI+E82Q( I} /CK
PHI(IMs N=E1C+PHICIMsIM)I+E Qs PHIIT o+ IMI +EB2Q( I} /CK
60 10 821

828 PHILI+JMIZPHT(TsJP)
G0 TO0 821

829 PHI(I+JMIZPHI(IJP)

84



PHI(IP s JIZEL1OsPHICIP ¢ JPI+EI+PHI( I+ UP)
ce 1o 821
PHY{I¢JMIZPHI{IsJP}
PHI{IMyJIZE10#PHI{IM+JPI+ESsPHI({T«JP)
60 TC 821
PHItIJMIZPHI(IJP)
PHICIP+J)ZEL1CsPHI{IP+JPI+EQ«PHI{I»JP}
PHItIMe J)ZELC*PHI(IM JPI+ESGsPHI(IJP)
60 To 821
832 PHINIMy JIZE10sPHI(IMsJPI+ET2PHI(INJP)
PHI(IvJMI=ELIC*PHI(Iv» JI4ES*PHI(IP,J)
60 ¥0 821
833 PHI{IP¢JIZE1Q*PHI(IP+sJP)+EQsPHI(I+JP)
PHI{TIeJMIZELID*PHI{Y 2 JI+ESSPHILIN, )
VC=PHI{I., N}
V1ZPHI[IMyJ)}
VZ=PHI{IP,»J)
V3I=PHI{I,»JM)
V4sPHI(TJP?
IF{HC.LT.Z) G0 TC 701
PHT=CY4+ (F7sV2¢FBaV1sFIaV44F10eV3)
DI HT-PHI(I«J}
SUMZSUM+ABSE(DIF)
PHIUI J)=PHI(T+J)+WsDIF
6o TD 702
701 PHTZCUs (FTaVZ4F 8o V14 FIeVA4FIC*VI+F 118 (VZ-V1)s{V2-VII+F1221VB-V3)s(
sVE-V31)
DIF=PHT-PHI(I+J)
SUMZSUM+ABSIDTF)
PHICI»JI=PHI(Y s J)¢N2+DIF
702 HC=PHICI+JI-FLOAT{J-1)«DELY
IF(HC.LT.0.0F GO TO 811
GO TO (811,811s8131+s703+703+703+703+703+703+811,811+811,811»211,811
%1 +NCA
702 PRI{TI+JI=FLOATIJ-1)+0DELY
811 CONYTNUE
B1C COMNTTNUE
IFIKLBOUN.EG.D) GO 7O 848
ToNx
IM=I-1
IP=T+1
D0 837 J=Z.NY
JMZJ-1
JPzJe1
IF(NCAL(I+J).EG.1) GO TO 837
IFINCALIT»J).EQ.3) GO TO B37
F2IDELKX/SKAT e}
FI=DELKT/SK(T. N
FS=F2+DELX/2.

83

t2]

83

Py

82

iy

7-F&
F10=E2+F§
IFINCAL{I+J).7Q.90) GO TO 838
IFINCALII¢J).F9.100) GO TO 841
50 TO 2840

B33 PHI(T4JPI=PHT(IsdM])
IF{NCAL(TM,J).EG.1) €O TO 839
€0 TO 840

833 PHILIMy JIZPHINTJI+E7/ 2,
PHT(IP, JI=PHItT+J}~-E7/2.

8451

8432

asr
843

Bag

843

885
837

8ac

847

858

1076

1071

3nc0

3001

1068

50 YO 843

PHI(TI »JMI=PHI(T,JP)
IFINCAL(TMsJI.EQ.1) GO TO B&2
€0 TO 8480

PHYTIMe JI=PHI(IsJI+ET/2.
PHITIPsJ)=PHIIIs JV-E7/2.

€0 TO BA3

PHILIPs MIZPHILIMJI-ET
VCZPHIII»J)

VIZPHIUIMWJ)

VZ2-PHI(IP«J)

VITPHI(T»JM)

VazPHItI+JP)
HC=PHIII+JI-FLOATCU~13sDELY
IF(HC.LT.2) GO TO B&h
PHTZCHe {F7+V2+FB83V1+F2aV4+F10sVI}
DIFZPHT-PHILIJ}
SUMZSUM$ABS(DTF)
PHTII»J¥=PHI(TsJ)+MNsDIF

€0 TO 849

HOZABSIHC)

HE-HD/HB

RKZAC/(HE«*TAW+BA)
CHZRK*SK(T+sJ)

TAWM-TAW-1.
F1=E1le({HDss TAUM) sRK
F11=F1/%.

F12TE2+F1i1

PHT=6Rs (FTaV2¢F B2V 1eFIaV4+F1ILaVI+F 112 {V2-V1)#IV2-VI}+F12#(V4-V3)sl
$V8-¥3))

DIF=PHT-PHI(I«J)
SUMZSUM+ABSIDIF)

PHI T+ JI=PHI(T ¢ J)+W2eDIF
HCZPHI(I+JI-FLOAT{J-10eDELY
IFIHC.LT.0.0) GO TO 886
TIFEHCAL(IvJ).EQ.90) GO TO 835
60 TO 837
PHIUI+JI=FLOAT{J-1)oDELY
CONTINUE

€0 TO 848

JPZg+1

D0 827 K-JPsNY
IF(NCALITK).EQ.1) 60 TO 847
IF(NCAL (T,K).EQ.3) GO TO 887
PHYZPHI(I.X-1)
DIF=PHY-PHI (I K}
SUM=SUM+ABS(DTF)
PHYIIsKIZPHI(TsK-1)
PHICIPKI=PHI{I»KI-ET/2.
CONTINUE

NCT=NCT+1
IF(SUNGT.ERR,AND.NCT.LT.MAX]} GO To 880
WRITE(E.1070)

FORKATI1H »* NCT= 7))
WRITC (E+1072INCT
FOPHATISX 15}

WRTTE (693000

FORMATIIH »* SuMz*}
WRITE{6s30011SUM
FORMATIF12.5)

WRITE(6+10E8)

FORMATUIH1»* STEADY STATE H *)

21



NZ=0
TI6 N2=N2+10
N1zNZ-9
IFINZGT.NX) HN2ZNX
WRITE (B+73%)
738 FORMAT{1HO." STEADY STATE H")
DO 720 INDEX=1sNY
JINY+1-INDEX
DO 721 T=N1.N2
IFCNCALITsJY.EG.1) GO TO 722
HAIY=PHI(T»J}-FLOATC(J-1)+DELY
Go To 721
722 H(I1IZ1.
721 CONTTNUE
720 WRITE(6,10381(HITI)+»I=N1,N2?
IF(N2.LT.NXY GO TO 736
9CCC CONTINUE
[ Y R L R R Y P R P E s RS R T R R R 2
CereesTHE UNSTEADY STATE SOLUYION
REAN{S«320)MAX2
32C FORMAT(2IS)
WRITE(6 300}
300 FORMATI{1M1." THE UNSTEADY STATE SQLUTICN®)
READIS+301Z2IWT+ WG
9012 FOPMAT(2(F10.5))
READIS+3014INWETsEPNUT
3014 FOPMATIIS»F1C.4)
WRITE (690131
9012 FORMAT{1HO»" w3 LLAR]
WRYTFI6+901271W3e WY
Cas2ssREAD NUMBER OF TIME STEPS
REAND{S+306)INTTH
3I0E FORMATIIS)
TIMF=0.C
DO 201 T=1leNX
201 ATLIN=0.0
D0 202 KOUNTZ1,NTIM
READIS»30TIPELT»RT+ RO+ KEXTyKPRINT +KQ
307 FORMATI3F1D0.5¢315)
Cess+eDELT= TIKE STEP
CsssssRT= RATIO OF TIME STEP TO PREVIOU< TIME STEP
Css02sR0O= RATIO OF RECHARGE RATE TO PRFVIOUS RECHARGE RATE
CosvasKEXT= EXTRAPPLATION CODEs 1 EXTRAPOLATE, € NO EXTRAPOLATUON
Cr+23+sKPRINTZ PRINTYNG CODEs 1 PRINT» 0 NO PRINTTNG
Ces*3+KQ= RECHARGE CODEr 1 NON-ZFRO RECHARGEs 1 ZERO RECHARGE
IFtKG.NE.O) 50 T0 330
00 331 TI=1sNYX
31 @lTI=0.
60 Te 32
I3C READ(5:308){(Q(X),I=1,NX)
308 FORMATIAF10.51)
32 00 203 T=1sNY
207 GTCII=GTCII+Q(I)Y«DELT
TIME=TIME+DELY
ES-MELX*DELX/DELT
DO 204 T=ZsNX
IP=1+1
IN=I-1
DO 205 J=2+NY
JP=J+1
JMzJ-1
IF(NCALtIVJ).EQ.3) GO TO 208

HCZPHI(I+J)I-FLOAT({J~1)+DELY
IFIHC.LT.2Z) GO TO 207

206 F131(I»J)=0.0
BNt(IrJ?1=0.0
€0 TO 205

207 IFINCAL{I+J).EQ.2) €60 TO 315
BN{I«d?=0.
F131(Ir01=0.
6a 10 20S

315 F2=DELKX/SKITJ)
F3=DELKT/SKIT»J}
FS5zF2eDELX/2.

3sE#DELX/ 2.

«4F5

«-F5
Fa=£2-Fsg
F10=E2+F6
HDZABSUHC)
HEZHD 7HB

RK=AC/{BA+HE®sTAW)
CK=RK*SK{TIsJ)
TANM=TAN-1.
F1=61+(HD»» TAWM) sRK
F11=F1/8.
F12zE2¢F11
SE=AP/UBP+HEs s TAWP)
TAWPM=TANP-1.
F131(1sJ)=SE+SEe (HE«s TANPH)/CK
BN(IvJ)=F7ePHT(IPyJ)+F BoPHIUIM s J1+FI4PHI(Te JPI4F 104 PHI(I o UM I+F 12 e
SPHIIP 2 J)—PHIUIMsJII*{PHIIIP»J)~PHI{IHsJ)I+F12¢ (PHI{I+JPI-PHI(I4JM
$)1etPHI(T UP)-PHI{T e JH})—{2.42.3E2)sPHI(I+J)

205 CONTTNUE

204 CONTTNUE
IFIKEXT.EQ.0) GO TO 208
DO 210 I=2¢NX
IFITI.EQ.NX-AND.KLBOUN.EG.O) &0 TO 210
00 211 J=2,NY
IFINCAL(Y,J).EQ,1) GO TO 212
IFINCALIT¢J?.EQ.3) GO TO 212
DIF=PHII+J}-PHIT,J)
PHUIsJIZPHI(T4J)
PHI(IsJI=PHI(T, J)¢DIFeRT
€0 TO 211

712 PHII+JI=PHTIT+J)

211 CONTINUE

210 CONTTNUE
€0 Y0 295

208 D0 213 I=1.NX
DO 213 J=2sNY

213 PHITsJ1=PHI [T+ )

799 NCT=C

214 SUM=C.O
DO 215 I=2.N¥1
IP=I+1
IN=T-]
D0 216 J=2.NY
NLENISY
JMZJ-1
IFINCAL(T,J1.EG, 1) 60 TO 216
IFINCAL(IsJ).EG.3) GO TO 216
F2=DELKX/SK{T+J3
FISDELKT/SKI(TeJ)

vl



568

FS=F2sDFLX/2a
CE=FXsL+DELX/2.
FTZ1.4F5

2-fFs

F10ZEZ+fFE

NCAZNCALIIsJ)
HCZPHIC(I,J}-FLOATIU-1)sDELY
IF(HC.LT.Z) GO TO 217
CKZSK(Yed?d

F132=0.0

F11=
Fiz=
€0 TO 2138

217 PPIPHIII,J)

872

871
87C

8567

457

854

957

45¢

IFIXOUNT.NE.1} GO TO 870

IF(KG.EQ.T) GO0 10 A4T70

IF(NCT.EQ.0) GO TC &72

GO TN 470

GO TO (216+s470s2169871+471s47194719871+871s470+470+870 870,470,870
$)eNCA
PHIIT+J)=.5¢{PHI[I+JI+FLOATIU-1)¢DELY)
NTTZ(O

FF1=G1sQIT)/SK(IyJ)

HC=PHTI(I yJI-FLOAT({J-13+DELY
IF(HC.GE.Z) GO TO 468

SABS{HC?

RK-AC/(BA+HEs¢TANY
CK=RK*SK{IyJ)

TAWMZ-TAW-1.
F1=Gl»{HDe* TAWNM) sRK

F11=F1/4.

F12-E2+F11

SETAP /IBP+HE#*+TAWP)
TAWPR=TAWP-1.
F132=-SE*SEs (HE«s TAWPMY/CK
F13=F132+F1311Y, )
GS=G3+F13+£5

GO TO(216¢852¢ 216985081055+ 8569s45708589459+460+8519862+863+864¢865)
$NCA

F17-C.

FiezcC.

F19-0.

F20=0.

€D 70O 466

FF=—FF1ls(HD*2 (TAW-1.1)

F17=0.

F18z0.

F19=E3sFF

F20=0.
PHItIZJPIZE3¢G(I)/CK4PHI{T «JM)
G0 TP 466

FF=—FFle(HDee (TAW-2.))
F17=EBefFF

F18=0.

F19=E3s¥vF

F20=C.

PHITT 4 JPI=E3¢G(I)/CK4PHILI »JM)
PHI(IP+J)IZELOsPHILTIPsJHM)+ESsPHIIT»IMI +E823(T) /CK
GO TO &85
FF=—FrlstuD++(TAW-1.))

8457

858

859

36¢C

361

862

463

464

FL17=EBeFF

Fis=gQ.

F19=E1D+E8sFF

F20=D.
PHI(I+JPYI=E1DPHI{ I+ JISETsPHI(IN+JI+E 825 (TI) /CK
PHI(IP+ JIZEL1C+PHIIIP +JMISES«PHIIT »JMI+EB+Q(T) /CK
€0 TO 466

FF=—FFls{HDs*{TAW-1.1)

F17=0.

F18=E8sFF

F19TEZsFF

F20=0.

PHI(I+JPIZE3*GITI)/CKAPHI(I JH)

PHI(IMy J)ZEL1CsPHIIIM+JHI+ESePHI(T e UM} +E82a( 1) /CX
60 TO %G6

FF=~FF1s{HD*s(TAW-1.1)

F1i7=C.

F18=EBsFF

F19=E10+4EBeFF

F20=0.

PHICI2JPI=ETID*PHIC(TI+ JI+ES+PHI(IP»J)+EB2Q (Y] /CK
PHI(IMy JIZELO#PHI(IMyJMI+EIsPHIIT+JIMI +E8+Q1 1) /CK
60 TO 466

FF=—FFle{HDes(TAW~-1,.))

F17=E8+FF

F18=F17

F19=E3sFF

F2p=0.

PHI(ISJPIZE3*@{I)/CK+PHRIII IN)
PHICIPyJIZEL10sPHIUIP +JHI+ESSPHI(T»JIM) +E8Q(T) /CK
PHIC(IMs JITE10«PHI(TIM«JMI+EI«PHI(TI+JM) ¢+EB+QL T) 7EX
GO TN 46E

F17=0.

Fi1e=0.

F19=0.

F20=0.

PHIII «JMIZPHI(I,JP)}

GO YO 366

F17=D.

F18=0.

F19=0.

F20=0,

PHI(TIJMIZPHI (Y, JP)

PHItIPy JI=E1CsPHI(IP»JPY+EQePHI(TJP)

B0 YO 465

F17=0.

Fiezp.

F19=0.

F2p=D.

PHI(IyJMIZPHI{I,»JP)

PHI(IMe JITEIDSPHI{IM»JPI4EIsPHI(TyJP)

60 TO u4E6

Fir=0.

F18=C.

F19=0.

F20=C.

PHILISJMIZPHI(IsJP)
PHICIPyJI=EL1CePHI(IP+JPI+EIsPHIIT UP)

PHI(IMs J)ZE10ePHI(IMeJPI+EF«PHIIT +JP)

60 TN 866

F17=C.

F18:=0.

424!



Fle=0.
c2C=E£10
PHI(IMsJ)ZELC*PHI(IM,JPI4ESSPHIII P}
PHI(T+JMIZE1DsPHIITI 2+ JIH+ESsPHI{IPvJ)
GO0 TO 466

865 F17=0.
Fis=0.
Fie=Q.
F20=E£10
PHIUIPsJISEL1C*PHI{IP+JPI+EG«PHI(IUP)
PHI(I+JMITELO*PHI{T ¢+ JI+EIsPHI(IM e J)

466 F21=(61/8.)8(HD*+{ TAU-2.))*RK*{GLaRKs {HD#+TAWI+1.~TAW)
F22-E2+F21
F25(63sE58SESSE/CKI s (HDs#{TAWP-7.119(2,2G2sSE+ {HD*+ TAWP )}~ G1sRK & (H

SDssTAW) +1.-TAWP)

VC=PHIII» )

VI=PHI{IM, )

V2=PHItIP.J)

VI=PHI(I,J M)

V4=PHI{TI,JP)

FN=F7#V2+FBsVI+F s VR4F108V3—{2,42.4E2+G5) sVC+F114{V2-V1IsIVZ-VI1}+F
$1Z2s(Va-V3)2(VE-VY3)+BN(I+J)+G5+PH(IJ)

FNP=FT+F17+F8sf18+F39F 194F102F20—(2.42.+E2465)-F25sVC+F21+(V2-V1)*
S(V2-V1)42.8F110(V2-V1I+(FL7-F18)+F22+ IV4-VIDIs(VE-V3} 47 . ¢FL2(VE~-V3
$)#(F13-F20)+F25sPHITJ}

DIT=FN/THNP

PHIUT»J)I=PHI(T+J}-DIT

NTT=NTT+1

DIFT=ABSIDITY

IFINTT.LTNWF T AND.DTFT.GT.ERNWT) GO TC 467

HC=PHIIL»J1-FLOAT{J-1)sDELY

IF({HC.LT.0.) GO TO 310

GO TO (216+310+216+3119311+321+311+311¢321+310+310+310+310+31C»310
$1eNCA

T11 PHItI JI=FLOATCJ-1)*DELY

31C DIFSPHI(T+J)}-PP
SUM=SUM+ABSIDTF)

PHI(I+J)=PP*+WLsDIF

60 1O 281

718 F13-F132+F1314(TI+J)

GS=GIesF13e€5

GE=1./12.42.4E24G5)

GO TO 1216922602160228+229¢230+231232+1233+220+221+22242234228+225
€) +NCA

728 PHIVI+JP)IZE3+0UIT)/CR4PHI(I »JM)
€0 TO 226

229 PHIUI+JPIZEI*QUI)/CK4PHIIT »uM)

PHIC(IP» JI=ELO*PHIC(IPyJMI+EQsPHII I+ UMY +EA+G{ 1) /CK

GO TO 226

7C PHItIsJPIZELIO*sPHItI ¢ JIES*PHI(IM,JI+E822(T) /CK
PHI(IP ¢ J)=E10*PHILTP,JM) +EI=PHI(I»JMI+EB»QL 1) /CK
B0 TO 228

731 PHIUI+JPIZE3#Q(T)/CK+PHI(T »JM)

PHI(TIMs JIZELC*PHITIM IMI+ESePHI(TI+JM) +E8*Q(IY/CK

GO TO 228

2?32 PHIC(TIoJP)I=E1G*PHI(T+ JI+EIsPHI(IP»JI+EB2Q{ T} /CK
PHItINs JISELOsPHI{IM,UM) +F9&«PHIT s UMY #E80({ I} /CK
60 TO 226

233 PHItTI+JPI=E3#QIT}/CK4PHILTI 1 JH)

PHI(IP s J)ZEL1Q*PHI{IP s JH)I+ESsPHIIT¢JM) +EB82Q( I} /CK

PHII{IMs JIZEL1O*PHIIIMyJUHISEGePHIIT »UM) +E82Q{ 1) /CK

60 TC 226

220 PHI(I¢JMIZPHT(TIyJP)
GO T2 226
221 PHI(T«JHI=PHItTI.JP?
PHRItIP» JIZEL1C*PHI(IPsJPI+EGePHI(T+JP}
80 YO 226
222 PHILI+»JHI=PHI(I,JP)
PHI(IM» JIZEL10ePHI(IMJPIIESsPHI(TJP)
60 TO 226
223 PHITL«JMITPHItT+JP)
PHI(IP+J)-E1C*PHICIP,»JP)+E9sPHIII P}
PHI(IM»JI=E1D*PHI{IMyJP)}+ETePHIIIHJP)
60 Y0 2286
228 PHI(INy JISEL1O0sPHICINSJPI+ESsPHIIuP)
PHI(I JSMIZEIO*PHI(IJI4EF*PHI(IP+J)
€0 TO 226
225 PHIC(IP+JI=E1C*PHILIPyJPI+ETsPHIITIUP)
PHI(IsJMIZEL1C+PHI(I¢JI+EI*PHIIM»J)
226 PHT=EE# (FToPHT(IP rJI4+F 84PHI(IM s JI+FQsPHI( Is JPI+FIOSPHI (T s M) +F 110 L
SPHITIP s J)-PRICIM s JIIS{PRI{IP v J)—PHI(INyJII+F128 IPHI(I+JPI-PHI(IJM
$) Ve {PHIUT+JPY~PHI{I+ M) }+ES5+PHIT»JI+BNI{Tr J))
HCZPHT-FLOAT(J-1)1+DELY
IF(HC.LT.B.}) GO TO 312
GO TO (216+312+2167313+313s313+313+313r313¢r312+312+312312+312+312
$1.NCA
313 PHT=FLOAT(J-1)sDELY
312 DIF=PHT-PHI(I.J}
SUM-SUM+ABSI(DTIF})
HC=PHT-FLOATY{U-1)sDELY
IF(HC.LY.0.0) 60 TO 238
PHItI+J)IZPHI(T,+J)+N3+DIF
6o TO 281
238 PHILT,JIZPHI(TJ)+ 4G sDIF
7?81 HC=PHI(I»JI-FLOATIJ-1)eDELY
IF(HC.LT.0.0) GO YO 216
€0 TO {216+2169216¢280+280+280+280+280+y2809216+21622169216¢216¢216
$) eNCA
280 PHI(I JI-FLOATC(J-1)=DELY
216 CONTINUE
215 CONTINUE
IFIKLBOUN.EG.D) 60 TO 253
T =NX
Ip=Is1
ITM=I-1
No 2aC J=2sNY
JPoJl
JHZJI-1
IFINCALII»JY.F0,1) 60 TO 240
IFINCAL T »JY.EG. D) G0 TO 280
F2=DELKX/SK(Y ¢J}
F3I=DILRT/SKIT J}
F5-F2«DELX/2.
FE-F3sE+DELX/2.
FI=1.4F5
F8=1.-F5
Fa:=r2-F6
FI1D=E2+F6
IFINCAL(T+J).EQ.30) GO YO 241
IFINCALIT»J).ER.100) G0 1O 285
G0 10 243
281 PHIII JPI=PHIII,JM]
IFUNCALITIM, JY EQ.1] GO TO 242
Ge TO 243

SP1



24¢

246

282
244

288

PHYIIMy JITPHI( I JI+ET/ 2.
PHICIP»J)=PHItI»J)-ET/2.
60 YO 2u4
PHI(I»JMIZPHI(IsJP}

IFINCAL{IMyJI.EQ.1} GO TO 246
GO TC 243
PHI(IMs JITPHI(T» JI+ET/ 20
PHICIPy J1=PHITIs J}-ET/2.

60 TC 2a%
PHYUIP s J)ZPHILIM» J)-ET
HC=PHIUI+J)-FLOATIJU-1)sDELY

IF{HC.LT.2) ©CO TO 247

CK=SKI(T+I)

F11=0.0

F12=0.0

F132=0.0

60 TO 248
HD-ABSUHC)

D/HB
C/{BA+HEs*TAN)

CK=RK*¢SK(TsJ}

TAUM=TAW-1.

F1=G1s(HD*s TAWN) sRK

Fl11=-F1/8.

F12-E£2sF11

SEZAP/({BP*HE» s TAWP)

TANPM-TAWP-1. .

F132=SEsSEs {HEs s TAWPM)} /CK

F13=F132+F131(T.N)

G5=G3+F13sE5

G6-1./12.42,#E24G5)

PHTZCE# (FT¢PHT{IP v J)+F 8aPHIITM s J)+FIePHI(T» JPI+FIC*PHI(I +IMI+F 11l
SPHIUIP + J2-PHI(IMsJ))#(PHICIP»J)—PHI(IMyJ)}4F128PHI(Is JP)=PHI(IvIM
$) )# (PHI(I»JP)-PHI(I+JM)II+GS5sPHIT+ JI+ENLITIeJ))

DIF=CHT-PHI(I+J)

SUM=SUM+ABS(DYF)

HC-PHT-FLOAT(J~1}sDELY

IF{HC.LT.0.0} G0 TC 249
PHICIvJI=PHIIT» J)+W3+DIF

60 TO 250

749 PHICT+JI=PHItY, J)+Wa+DIF

250

252
24T

251

754
752
6011

323
32%

HC=PHI(I»JI~-FLOAT{J-1)sDELY
IFI(HC.LT.D.0) 60 TG 251
IF(NCALI(I¢J?.EQ.907 GO YO 252
G0 YO 240
PHIC(I+JIZFLOAT(JI-1)eDELY
CONTINUVE

G0 TO 253

JP=J+1

DO 254 K=JPsNY
IF(NCAL(TeK}.FQ.1) GO TO 254
IFA{NCAL{T+K}.FQ.3) GD TO 254
PHT(IsK)=PHI(T,K-11}
PHI{IPyKIZPHI(TeK)I-ET7/2.
CONTTNUE

NCT=NCT+1
IF{SUMGT.ERPLANDJNCT LT MAX2Y GO TO 214
IF(SUMLGTERF) GO TC 323

63 70 328

WRITE 16+ 325}

FORMAT(1HO.® ~ SOLUTINN DIVERGED®)
G0 T0 2000

324

35C

351

352

353

8011

354

&00z

6003

600C

6001

355

3561

360

356

362

376

377

365
364
363

260
202z
e 00

CONTTINUE

IF(KPRINT.EQ.D) GO TO 260
WRITE (6 +350)

FORMAT(1H1y* UNSTEADY STATE STEP®)
WRITE(6+351)

FORMAT(1HD,* DELY TIME®)
WRITE(6+352)DELT+TIME

FORMATI(2(5X F10,5))

WRITE (6+353)

FORMATILIHO, " arIN= M
MRYTE(6+9011)1QITI)»I=24NX)
FORMAT{1H +1C(3XsFB.8)}

WRITE (6+353)

FORMATUIHO, aT(II=  *)
WRITE(E+90111¢QTI(I),I=14NX}

WRITF (6+6002)

FORMATU1H »* NET= ")

WRITE (6+6003INCT

FORMATISX¢I5)

WRITF (6+6000)

FORMATIIH »* SUM="?

MRTTE (646001 SUM

FORMATIF1I2.5)

WRITE t6+3557)

FORMAT(1HOs* ‘UNSTEADY STATE PHI"]
N2:D

N2=ZN2+10

N1=N2-9

IFEN2.CT.NX? N2=NX

WRITE (6+360)

FORMATIIHOs* UNSTEADY STATE PHI®)
D0 356 INDEXT1.NY

JINY+1-INDEX
WRITELE¢9011Y (PHTI(T ¢ 3) »I=N1,N2}
IF(NZ.LT.NX} GO TC 351

WRITE 16,3621

FORMATU1HO. " UNSTEADY STATE HT)
N2=p

NZzZN2+10

N1=N2-9

IFENZ.BT.NX? N2ZNX

WRITELG 37T

FORMAT(1HO+* UNSTEADY STATE H®)
DO 363 TNDEXT1eNY

JINY+1-INDEX

D0 36% TSN1.NZ

IFINCAL(T+J).EQ.1} 60 TO 365
H{I}=PHI{T»JI-FLOATt J-1)+DELY

6o TO 364

H{T1=1.

CONTTNUE

WRITE (6,90113 CHET) » ITN12N2Y
IFINZLLT.NX) GO TO 376

CONTINUE

CONTTRUE

sToP

END

BFORIS SUE1,SUBL

SUBROUTINE DECOMP(Nes)
COMMON At3+3)

Cesesas

Ces+3ss THIT SUBROUTTINE DECOMPOSES A POSTTIVE DEFINITE MATRTX

9% 1



N0 BCC TI=1.N
D0 8CD J=1sN
SUMZR (T, )
LIMIT=T-1
IF(LIMIT.ER.C) GO TO 801
DO 802 KZ1sLIWTY
802 SUMZSUM-A(KTYIsA(KsJ}
801 IF{J.ME.IY 60 TO 803
IF(SUM.LE.D0.C) RETURN 1
TTYZSGRTISUM)
TEMP=1./TT
AtYeSIZTT
€0 TN 80O
803 A{T+JI=SUMsTEMP
80C CONTINUE
RETURN
END
@aFORsIS SUB2,SUBZ
SUBROUTINE SOLVE(N)
COMMON U[3+,3):B{3).C{3)
Cssassss
Cess9+sTHIS SUBROUTINE SOLVES THE DECOMPOSED MATRIX EGUATIOM
CO BD8 I=1eN
DO 808 J=1eN
IFtI.NE.J) GP YO 808
ULIsJ1Z1.7U(T+J)
8n8 CONTTINUE
D0 808 I=1sN
SUM=B (I}
LIMIT=I-1
IF(LIMIT.EQ.C) GO TO 804
DO 805 X=1¢LIMIT
805 SUM=SUN-U(K+IYsC(K}
804 C(YI=SUMsU(I,T)
DO 807 INDEX=1+N
I=N+#1-INDEX
SUM=Ct(I?
L=T+1
M-Ns1
IFtL.T8.M) F0 TO BO7
D0 806 K-L+N
806 SUMZSUM-UII«K12C(K}
807 CATI=SUMsULI,T}
RETURN

Ly
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AEEendix B

Derivation of Equations of Boundaries

(1) - (2) and (6) - (7)

Reference is made to Figure 15 which shows uniform flow on a

bed sloping with an angle «.

Boundary (1) - (2)

_Si_L: = ad? * dx a(b ¢ dy = 8¢ . 1 -%—— .
ds - 2% 3x @ Ty  Tds ax  Smatmy " Cosa
dp _ _d P9 . _gina

dn dn (y + Pg) dn

Since P is constant along the normal 7.

also we have

dp % . dx % .dy 8 . oo -0 . gina
0x dy

dn ~ 39 dn 8y dn

Solving simultaneously the two equations:

—a—‘b—Sina+—a-¢-Cosa=O (a)
0x dy

3 - X gina=-—si

O Cos « By Sin @ = — Sin & (b)



¢> =Constant

Water surface

o/

' ’T ,c

.
x,

Figure 15. Derivation of equations of boundaries (1)-(2) and (6)-(7).

¢>= Constant
dx
d
dn y

b1
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gives:
9 . 2
By Sin «a (c)
integrating equation (c) gives:
.2
¢ =ySin a+C
with ¢ =Yl wheny =Yl
This gives:
cC=Y1" Cos2 a,
and:
. 2 2
¢ =ySin a + Yl Cos « (38)
Boundary (6) - (7)
Again solving Equations (a) and (b) simultaneously gives:
(44)

-§-¢— = — Sin @ Cos «
ox
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AEEendix C

Derivation of Equations for the Imaginary

Points at Irrigular Boundaries

Horizontal Segments

On those segments the normal direction is in the y-direction so

do 0 tion (40) b
that an By Equation (40) becomes
) 1
By TR % Cos (=)

Where © is the angle between horizontal and the segment. Since =0

and Cos © = 1 Equation (a) above with central differences give:

Y

+ 28y —— (b)

®i 5+ T %4, 5-1 K

Equations (39), (42) and (45) give:

3.,
8y

which results in:

¢’i,j+1 = 4’1,3'-1 (c)

For the upper boundary and:
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5,517 %4, 541 (d)

for the lower boundary.

Sloping segments--upper boundary

Reference is made to Figure 16a and b where the circled points
are the imaginary points. Fox's method as described by Forsythe and
Wasow(1960)and Remson, Hornberger and Molz (1971). In Figure l6a

N is normal to the sloping segment and intersects the side at ¢4
by =t R 6y mey)

m = Ax —Ay tan 6

tan 6 =AY.
AXx

ds _ P57 %% 9

dn N = K Cos ©
This gives:
9 94
¢5=¢4+NCose K =¢4+Ay—K—-

Which results in:

cl s e qay oL
s E U T ER ety g (e)



(c) (d)

Figure 16. Imaginary nodes at irregular boundaries

153
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Where:

Ax 2
E2 =(—
(AY

Similar treatment of Figure 16b gives

R U SO W 1 .
¢, =gz ¢3 B2 0 TAY X (£)

Sloping segments--lower boundary

Treatment similar to the above for Figure léc givés:

1
¢y =0, Y g (057 ¢)
and
1 1
¢ = 2 b5 U T )9, (8)

similarly, Figure 16d gives
1 1

Combinations of Equations (b), (e) and (f) and Equations (d), (g)
and (h) give Equations for all the different types of segments (Codes

4 - 15).
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Appendix D

Least Squares Fitting for

Heterogeneous Conductivity

Suppose we have n number of tripples of data measurements:

(xi, Ti’ Koi) 1 =1, 2
Where:

x = the x - coordinate of a point

T = the depth from surface to the point

Ko = Hydraulic conductivity at the point
We want to fit the data to a function of the form:

K_=Cl +C2x +C3T (a)

The best approximation of the n-dimensional vector:

K_= (Ko, Ko, « . . Kon) (b)

in the three-dimensional subspace spanned by the three linearly indepen-

dant vectors:

~

[}
—
[
-
Pt
-
—

n elements

'
]
®
-
lal

2 X, (c)

H
it

=
M
H
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is the normal projection of Ko onto this subspace. This normal projection

—IE‘ will be a linear combination of the three base vectors such that
o
§;=CIT+C2;+C3_f (b)

This will minimize the square of the distance

2

K — K
o o

and hence the name of the method. From the properties of projections
we know that the vector (Eo —f(.;) will be normal to all vectors in the

subspace. Hence we have:

— —-’\ — _

(K, —KJ) " 1=0

(K, — K:)) x=0 (c)
— —-—D‘ R — -

(K,~K}) " T=0

or:

(CIT+C2x +C3 T)-T:'f{'o-'f
(c1'1’+cz_£+c3=f)-‘§=i<’o-’§ (d)

(ClT+C2x+C3T) - T=K - T

This gives
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n n n
Cln +C2 2 x +C3 2 Ti= z Koi

i=1 i=1 i=1
n n 2 n n
ClZ x, +C2 Z x, +4C3Z x T, =2 x K, (e)
i=1 ! i=1 1 i=1 t ' 4= 1t ot
n n n 2 n
ClZ T.+C2 Z x. T, 4+4C3 Z T, = 2 T K .
i=1 ! i=1 * 1! i=1 1! j=} 1 ©t
or in matrix form:
i A FT ] 1
n 22X, zZT Cl ZK
i i oi
2 .
Zx. zx. Zx, T Cc2 = Zx. K . (f)
i i ii i ol
2 .
=T Zx, T =T, C3 ZT K,
i i i ioi
J
L - - - -
or
AC = B (g)
Equation (g)

Where A is the symmetric positive definite matrix shown.
is solved by decomposing the matrix A into two triangular matrices, one

upper and the other lower (one is the transpose of the other) such that:

Where



[

U11 U12
U=1{0 U22
0 0
-

and
r-
U11 0
Ut- U U
- 12 22
U Uas

Equation (g) becomes:

wtuc =8
or

t — —_—

U 'Y =
Where

Y =ucC

13

23

33

158

(h)

(3)

Equation (i) is solved easily for ‘?by a forward sweep and then Equation

(j) is solved for Eby a backward sweep. The program sets the matrix

Equation (g) and the two subroutines Decompose and Solve do the solution,
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Appendix E

Data for Hullinger Farm
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Table 5. Piezometer, locations and surface elevations for the Hullinger

farm test

Piezometer Station Surface ele-

number feet vation feet

1 0 5276. 60

2 99 5274.72

3 129 5274, 07

4 144 5273, 86

Drain No. 6 149 5273.85

5 154 5273. 85

6 169 5273.41

7 199 5273. 05

8 249 5272. 21

9 324 5271, 07

10 399 5270. 25

11 479 5269.13

12 494 5269. 05

Drain No. 5 499 5269. 01

13 504 5268.97

14 519 5268. 60

15 599 5267.53

S

Source: Dr. Larry G. King, unpublished data
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Table 6. Water table positions in Khalil-Ur-Rehman's experiment

Date Time Depth to the Water table - Feet

Oct. Piezometer Number

1970 1 2 3 4 5 6 7 8

8 8:30 4,25 3.37 3.11 3.09 3.20 2. 88 2.78 2.36
11:10 4,31 3.49 3.29 3.40 3.49 3.05 2.90 2,48
12:45 4,35 3.54 3.39 3.49 3.59 3.15 3.01 2.55
13:55 4,35 3.58 3.41 3,52 3.62 3.16 3.02 2. 66
15:45 4.43 3,70 3.51 3.66 3.72 3.30 3.15 2,72
18:00 4,48 3.78 3.60 3.68 3.79 3.38 3.27 2,82
9 7:15 4.70 4, 04 3.89 3.96 4.06 3.70 3.60 3.20

10:25 4,72 4, 07 3.92 3.98 4,10 3.75 3.67 3.26
14:00 4,75 4.12 4.00 4.01 4.15 3.80 3.71 3.32
18:00 4.82 4.19 4,03 4. 06 4,18 3.85 3.78 3.38

10 7:45 4.97 4,33 4. 20 4, 20 4,33 4,00 3.95 3.59
12:00 4.98 4,38 4. 24 4, 24 4,37 4. 06 4,01 3.66
18:00 5.05 4. 39 4.30 4,30 4.43 4,13 4,08 3,70

11 17:08 5.19 4,60 4.40 4, 44 4,57 4,30 4, 24 3.87

12 17:08 5.30 4,74 4.56 4,57 4,69 4.42 4,37 4,01

13 16:40 5.41 4,85 4. 69 4,70 4.83 4,55 4,50 4,13

14 8:20 5.51 4.93 4,79 4,78 4.93 4. 64 4.58 4,22

**Source: Table 22 of Khalil-Ur-Rehman (1971)

191
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Table 6. Continued

Date Time Depth to the Water table - Feet

Qct. Piezometer Number

1970 9 10 11 12 13 14 15

8 8:30 1.99 2.13 2. 26 2.42 2.45 2. 24 2.46
11:10 2.10 2. 25 2.39 2.92 2.95 2.48 2.57
12:45 2. 20 2.35 2. 63 3.10 3.12 2. 67 2,76
13:55 2.21 2.42 2.70 3.19 3.21 2.76 2.85
15:45 2.35 2.58 2.88 3.33 3.35 2. 69 3.00
18:00 2.45 2. 68 2.99 3.41 3.43 3.03 3.12

9 7:15 2. 88 3.10 3.40 3.69 3.72 3.38 3.45

10:25 2.94 3.16 3.40 3.72 3.73 3.43 3.49
14:00 2.99 3,23 3,48 3.77 3.79 3.47 3.54
18:00 3.06 3.29 3.53 3.81 3.84 3,51 3.59

10 7:45 3.25 3,48 3.70 3.93 3.96 3.65 3.74
12:00 3.31 3.52 3.71 3.95 4,00 3.69 3.77
18:00 3.40 3.59 3.79 3.99 4.04 3.74 3.81

11 17:08 3.57 3.76 3.91 4,11 4.14 3.87 3.93

12 17:08 3.70 3.89 4,01 4.19 4,24 3.96 4.02

13 16:40 3.84 3.99 4,18 4, 27 4,31 4, 04 4,10

14 8:20 3.91 4,08 4,18 4,33 4.36 4,12 4,17

""Source: Table 22 of Khalil-Ur-Rehman (1971)

291
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Table 7. Soil properties used for coz‘knputations made. Mesa sandy clay
loam soil, Hullinger farm,

Hydraulic

Water Content Conductivity, Pressure Head
0 K (cm/hr) h (¢cm)
. 00 1.0 (109 -2 (106)
.01 2.0 (10 7) -1.3 (106)
.02 3.4 (10 %) —8.5 (10°)
.03 1.0 (10 %) —4.2 (10°)
. 04 1.7 (108 —2.2 (10°)
. 05 3.0 (109 ~1.15 (107)
. 06 5.4 (10 %) —5.8 (104)
.07 9.2 (109 ~3.0 (10%
. 08 1.6 (10—7) ~1.5 (0%
.09 2.7 (1071 ~1.1 (oh
.10 4.8 (101 —-8.0 (103)
11 7.5 (10 1) —6.2 (10
.12 1.5 (10 ) —4.9 (103)
.13 2.5 (10“6) —4.0 (103)
.14 4.5 (1079 -3.0 (103)
.15 8.7 (10"6) —2.35 (103)
16 1.4 (10 °) ~1.85 (10°)
.17 2.5 (10 °) ~1.45 (10°)

.18 4.5 (10 ) ~1.12 (10%)
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Table 7. (Continued)

Hydraulic

Water Content Conductivity, Pressure Head,
e K (cm/hr) h (cm)
.19 7.5 (102) 8.7 (10°)
. 20 1.1 (10°% —6.7 (109
.21 1.7 (10"'4) —5.3 (102)
. 22 2.7 (10" % —4.1 (10%)
.23 4.0 (104 3.2 (109
. 24 6.1 (10 % ~2.5 (102)
. 25 9.5 (10 %) 2.0 (10%
. 26 1.5 (10 ~1.65 (10%)
.27 2.4 (10 ) —1.35 (109
.28 3.5 (10 °) ~1.15 (10%)
.29 5.5 (10 °) —9.9 (10)
.30 9.0 (10°) —8.5 (10)
.31 1.4 (10"2) ~7.4 (10)
.32 2.1 (1079 —5.5 (10)
.33 2.8 (10 %) —5.6 (10)
.34 3.5 (105 —4.8 (10)
.35 4.6 (10_2) —4.5 (10)
.36 6.0 (10 %) —4.1 (10)
.37 7.9 (10 %) —3.8 (10)

.38 1.0 (10 ) —3.4 (10)



Table 7. (Continued)
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Hydraulic

Water Content Conductivity, Pressure Head
e K (cm/hr) h (cm)
.39 1.3 (10 4 —3.112 (10)
.40 1.7 (10} —2.731 (10)
.4l 2.3 (10} —2.413 (10)
.42 3.1 (10"1) —2.096 (10)
. 43 4.1 (10—1) —~1.715 (10)
. 44 5.4 (10 1) —1.335 (10)
. 45 6.9 (10 1 —~1.016 (10)
. 46 8.8 (10 1) —6.985
.47 1.03 —3.175
. 48 1.30 —~ . 0000

ksl

Source: King and Hanks (1973)
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