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Installed communication systems for the more recent imagery rockets and satellites generally do not 
have sufficient data link bandwidth to allow imagery transmission. High quality image compression can 
alleviate this problem since 5 to 10 times more image data can be transmitted over existing 
communication systems. 

Researchers at Utah State University haye developed a high quality image compression algorithm which 
has been denoted as ·Statistically Lossless". This algorithm combines the good features of the well 
known vector quantization (Va) compression and lossless compression. Results are presented in this 
paper in which different scientific imagery collection systems have been processed using the algorithm. 
In order to implement this algorithm, a CMOS VLSI chip has been produced which allows a va 
compression system to process 512 x 512 pixel images at a rate of 30 frames per second. 

1. OVERVIEW 

Data generated by present day space bourne instrumentation has long outstripped the 
associated onboard telemetry bandwidth. Compromises are made to reduce the data flow on all 
spacecrafts. The outcome of which is arguably of scientifically as great a consequence as the 
compromises made over the distribution of the limited electrical power on these spacecrafts. 

For future missions this situation of inadequate telemetry will not be changed. The scientific, 
or for that matter any user, community must find alternative means of maximizing the useful data 
recovery rate. Already techniques to logarithmically compress data, or use periods of "high bit rate" 
telemetry are common means of improving the data recovery. Another obvious thought is to carry out 
on board scientific analysis and use the limited telemetry bandwidth to return only reduced scientific 
data. This presupposes that the scientist knows in advance what the data will look like so that reduction 
algorithms can be developed. The problem of flying a computer to analyze the data is also none trivial, 
power consumption becomes prohibitive and space qualified hardware is not readily available. 

This report focuses on an alternative procedure for minimizing the above quandary. If an 
instrument generates x times more data than the instruments telemetry allocation, the problem can be 
viewed as finding the most efficient information conserving technique to compress this data by a factor 
of x. Ideally a lossless technique is wanted that will provide sufficient compression with no data loss. 
For typical 'exploration' type of scientific data it can be shown that the entropy associated with the 
information is in the range of only 1 to 3 and consequently lossless compression techniques can only 
give compression factors of x ranging from 1 to 3. Lossy techniques can however be used to achieve 
factors significantly better. One such technique is vector quantization (Va) compression. This is the 
specific topic of the remainder of this paper. The va technique is not new, it has been applied in other 
fields and was extensively discussed at a recent NASA sponsored Scientific Data Compression 
Workshop [1]. The technique has also been applied to global satellite images of the auroral zone 
obtained by Dr. L. A. Frank's Dynamics Explorer Imager [2], and to SOl projects with infra-red sensor 
arrays. 



2. POWER CONSIDERATIONS 

It is well known that the bit rate transmitted from a satellite or rocket is linearly related to the 
available power. Thus: 

Pr = K R 

where P r = power required, 
K = constant, 
R = bit rate in bits/sec. 

(1 ) 

If we assume compression is possible and that this compression will provide adequate quality 
for the user then 

Pre = Er = K R 
C C 

where Pre = power required with compression and 

C = bits in 
bits out 

Thus the power available for the compression system is 

P = P (1-1 ) a r -
C 

(2) 

(3) 

A Typical compression system requires 5 to 10 watts, and Pr may be 100 watts. Supose for 
example that P r = 100 watts and C = 5, then P a = 80 watts. If only 5 watts is needed for the 
compression system we have gained 75 watts. This extra power can be used for other tasks or we can 
reduce the required power. 

The required power for a certain bit rate will vary widely depending upon the type of satellite 
or rocket needed for the mission under consideration. However, in the situations studied thusfar, it is 
hardly ever the case that the power required to perform compression uses up the excess power 
compression makes available. Thus in many cases, compression provides a net power savings and 
should be considered by the system designer. 

3. va COMPRESSION 

3.1 va General Description 
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Vector Quantization (Va) is simply an extension of scalar analog to digital conversion. In scalar 
analog to digital conversion, an analog sample is assigned a predetermined binary code corresponding I 
to one of a number of levels which is closest to the analog sample level. In va, a finite group of 
samples called a vector is compared to a number of predetermined groups of samples, vectors, to find 
the closest matching group of samples. As in scalar quantization, a finite number of vectors is used I 
in the compression and is called a codebook. Compression comes about because we send the binary 
code or address corresponding to a vector rather than the individual data values in the vector. 

VQ has a very sound theoretical basis. In fact, Shannon has proved that quantizing groups I 
of samples will always out perform scalar quantization with respect to distortion or sample rate. This 
is true even though the samples being quantized are samples of random noise. Over 130 technical 
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papers, mostly by electrical engineers, have been published on this technique since the early 1980's. 
va is well established and in use for speech compression systems and is becoming established in video 
compression systems. Gray [31 at Stanford was one of the first to revive va from the mathematical 
literature, Baker [4] at Stanford used this technique to develop an algorithm for imagery denoted as 
Mean Residual Vector Ouantization (MRVO). Budge (5] at BYU, now at Utah State University, was one 
of the first researchers to use MRVO on color images. 

The MRVO algorithm is well illustrated by viewing Figures 1 a and 1 b. Figure 1 a shows four 
pictures. The upper left hand picture shows a magnified picture of a woman's face which has been 
divided into 4 by 4 vectors, Le., 16 pixels per vector. The dark grid on the picture shows the vector 
divisions. If we digitized this picture using standard scalar video AID techniques with 8 bits/pixel, each 
vector requires 128 bits. This standard digitization provides many more combinations of binary patterns 
than are needed. For example, the 2128 binary patterns in one vector would take a human viewer at 
standard TV rates, 1015 times the age of the universe to view the number of patterns possible. It is 
obvious that in many applications this overdetermined digitization is not required. How can we 
intelligently reduce this set of patterns? 

Following MRVO suggested by Baker [3], we first find the mean of each vector. The image of 
vector means is shown in the upper right hand corner of Figure 1 a. Next we subtract the vector mean 
from each pixel which leaves the residual image in the lower right hand corner of Figure 1 a. (The 
residual image has had a constant value added so we can view it as an image.) Now the process of 
vector quantization takes place by choosing, according to a distortion criterion, the address of the 
codebook vector in Figure 1 b which most closely matches each image vector residual. For each 
residual vector an address will be chosen. In the example shown, the black and white image vectors 
have 128 bits while the vector mean requires 8 bits and the vector address of the 256 element 
codebook requires 8 bits. Thus, the compression is 128/16 or 8 to 1. 

The encoding procp,ss at the transmitter consists of finding the vector means, creating anrl 
quantizing the residual vectors. As shown in Figure 2, the transmitter sends the mean value and an 
address for each vector. At the receiver the decoding process is accomplished by simply looking up 
the code book entry using the vector address and adding the mean value to reproduce the estimate of 
the image. The picture in the lower left hand corner of Figure 1 a shows the result for the example. It 
is not exactly like the original since there is added quantization error. These errors may be reduced by 
increasing the code book size and reducing the compression. 

The codebook is generated off-line by using a training set of images. A popular algorithm is 
the LBG [6] codebook generation method. This algorithm is related to pattern classification techniques. 
We are essentially choosing a subset of the 2128 patterns which will represent the individual vectors. 
it is important to realize the MAVO algorithm sends the vector mean which is a subsample or lower 
resolution image of the actual data upon which we add the closest match codebook patterns. The 
subset in our example has 28 mean patterns and 2~ vector patterns or total of 216 = 65,536 patterns. 
Thus, the overdetermined data patterns have been reduced from 2128 to 216. 

An example of the above process applied to color images is shown in Figure 3. The training 
set used to generate the color codebook had a wide variation in intensity, shapes, and colors, but did 
not include the image shown in this figure. Figure 3 shows 3 images, the original of PEG (top left), and 
PEG compressed by a factor of 12 to 1, lower left hand corner, and 48 to 1, lower right hand corner. 
Typically, the 12 to 1 compressed imager is visually not distinguishable from the original while the 48 
to 1 image is useable for some applications but has noticeable degradation. This degradation is seen 
as a coarseness, at the vector boundaries, appearing in the image. The quantization errors are 
contained locally in their corresponding vectors. 

3.2 Statistically Lossless va Compresslo!" 

The MRVO process is a powerful, sound method for compressing visual imagery. Scientific 
imagery typically requires more accuracy depending upon the application. A method developed and 
tested on several types of satellite imagery at USU reduces the error from MRVO process by a factor 
of 3 and does not significantly degrade the image statistics from a scientific point of view. The error 



is reduced by computing the residual error from MRVa process and then using a loss less algorithm 
to encode all errors above a certain threshold. To obtain a constant data rate, a buffer with feedback 
to the threshold is used. This allows a constant data rate at the output of tile buffer. Using two 
different scientific imagery data sets USU has been able to achieve a 5 to 1 compression ratio while 
maintaining very high quality data. 

Results from one of these tests using satellite data is as follows. The images were digitized 
originally with 8 bits per sample. The nns error computed on 5 rows of pixels after compression was 
only .71 counts. If it is assumed that the input data was uniformly distributed in the AID range, the input 
nns error is .29 counts. Assuming these errors are independent, the overall rms count error including 
the AID input count error is only. 77 counts. Error statistics on 5 rows of pixels which are representative 
of the whole image showed the following results: 

Counts in Error Percent of Data 
out of 256 Counts with this error 

0 46 
1 42 
2 11 
3 1 

above 3 0 

Thus, 46% of the data had zero error, 42% had 1 count error, 11% had 2 counts error, and 1% had 3 
counts. There were no errors above 3 counts by design. These error statistics show that the errors 
introduced by compression are very small, and 46% of the data was error free. 

Results reduced from the auroral images (discsssed later) before and after compression were 
scientifically equivalent. This algorithm has been designed to preserve the statistics of the data as 
closely as possible. Thus. USU has coined the name 'Statistically Lossless' for this proprietary 
algorithm. 

3.3 Present Day Implementation 

USU has developed a va encoding chip which can be used in a variety of key va 
implementations, denoted as the va full search. va multistage, and va tree search algorithms [7]. 
Fourteen of these chips are capable of encoding RS-170 color TV at 30 frames per second with an 
image size of 512 pixels by 512 pixels. The CMOS chip burns about .5 watts at 10 MHz clock rate and 
can process pixels at a rate of 100 ns per pixel. If the frame rate decreases, fewer chips are required. 

. USU has also developed the capability of digitizing RS-170 format black and white or color TV 
and passing the digitized samples over a 240 Mbps High Speed Bus (HSB) to an image proceSSing 
subsystem and then to a digital to analog converter [8.9]. The HSB is an uncommon feature not 
available in industry except from a special purpose video system. For example, frame grabber boards 
available from many manufacturers do not have this feature that is essential in any real-time digital video 
communication system. 

3.4 Future Potential 
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Although 5 to 1 compression in the Statistically Lossless algorithm has been tested and can be I 
implemented, experiments show that 10 to 1 is also feasible but will require development of more 
sophisticated VLSI chips for many real-time applications. For commercial applications USU has 
demonstrated that high quality RS-170 color TV can be compressed by a factor of 120 to 1 with some I 
slight degradation in quality. A video tape is available demonstrating this compression at IComp. Inc. 
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in Logan, Utah. As more sophisticated VLSI chips are developed, it is entirely feasible that by combining 
single frame and frame to frame compression commercial color TV can eventually be compressed by 
500 to 1 and still be useable for many applications. 

4. COMPRESSED AURORAL IMAGES 

A particular subset of the above mentioned va techniques were applied in a 'black box' sense 
to the compression of auroral images. These images, at different wavelengths, were observed by the 
SAl instrument on the NASA Dynamics Explorer 1 (DE-1) satellite. The images were made available to 
us courtesy of Professor L.A. Frank from the University of Iowa (Professor Frank is the Principal 
Investigator for the SAl instrument). The 'black box' va compression scheme was set to give a data 
compression factor of five. The data from the imager was compressed by the 'black box' after it has 
been logarithmically manipulated by the imager electronics. This corresponds to the data stream sellt 
to the satellite telemetry system. No attempt was made to fine tune the 'black box' or improve on the 
compression ratio in this study [2]. 

A va process using 4 x 4 vectors was used to compress the DE-1 SAl auroral images. Each 
image conSisting of 120 x 150 pixels was padded our to a 160 x 160 pixel image for the va processing. 
Both the raw pixels and the codebook have an 8 bit resolution. The code book for this study was 
developed from a set of 12 images from day 326, 1981. A codebook of only 256 vectors was used. 
These were obtained from a statistical analysis of the day 326 images. Other techniques for generating 
the codebook are being considered, i.e., real clustering analysis and even a synthetic technique. The 
laHer would enable rapid generation of the codebook. With this codebook, images from day 329, 1981 
were compressed. Compression ratioS of 4.8, 5.6, and 4.7 were obtained respectively for the 557 nm, 
630 nm, and VUV images. The overall average compression was 5.02, which ws the target figure for 
this initial study. Each of the day 329 images were subsequently reconstructed using the codebook. 
On comparing these images with the original images, a mean absolute difference of 0.46 counts per 
pixel was obtained. 

Figure 4a shows two pairs of original images and their reconstructed counterparts as well as 
the pixel differences (right panels). Each of these images is from the DE-VUV imager and shows the 
illuminated dayside earth and a well defined auroral oval. After the factor of 5 compreSSion and 
reconstruction (middle panels) the images look almost identical. In fact, more than 50% of the pixels 
are identical. This is further demonstrated in the pixel difference plots on the right side where the 
difference between a pixel before and after compreSSion is color coded with a yellow being no 
difference. Figure 4b repeats this comparison for images taken at 557 nm. The same conclusion holds, 
now a slightly greater difference can be seen between the original and compressed images on close 
inspection. These compressed images were then scientifically analyzed by Sojka et al [2]. They found 
that within statistical limits already associated with the data the two sets of images (i.e. original and 
compressed) gave the same results. 

5. COMPRESSED INFRA RED IMAGES 

The statistically Lossless algorithm has been extensively tested on simulated Infra-Red space 
images. These images were simulated by using a white Gaussian noise background with a slightly 
varying DC offset. The DC offset was used to simulate imperfections in adjusting the DC to zero in a 
DC coupled focal plane array system. The desired results in this system were to have ·pulse like" or 
"target" signals be processed through the system with virtually no error, and the background noise 
preserved with as small an error as possible. 

The images were made up of 12 bit samples that were grouped into 4 by 4 vectors of 16 
samples. The images were processed by the Statistically Lossless compressioll and decompression 
system and then compared to the raw data without compression. Four different compression ratios were 
tested on an image with 100 targets in the field of view (FOV). The peak to rms signal to noise ratio 
(SIN) of the targets was chosen randomly for the 100 targets and varied over a range of 100 to 1 to 
5 to 1. 



Figures 5, 6 and 7 show the results. Figure 5 presents results of the SIN versus target number 
for a 9 to 1 compression ratio. Figure 2 shows this same d<lta for 4.5 to 1 compression ratio. The 9 
to 1 and 4.5 to 1 compressed data compare very favorably with the uncompressed data over the entire 
SIN range. Figure 3 shows the data for low SIN ratios with compression ratios of 9 to 1, 4.5 to 1, 2.25 
to 1 and 1.125 to 1. At the lowest SIN's there is some small degradation of the compressed data for 
9 to 1 and 4.5 to 1 compression ratios. However for 2.25 to 1 and 1.125 to the compressed data quality 
is virtually equal to the uncompressed data quality. As a result of these tests and more extensive tests 
with regard to post processing. the statistically lossless algorithm is scheduled to be used on the Air 
Force EDX SOl rocket program. 

6. SPACE BOURNE va HARDWARE 

To date no va data compression algorithms have been flown on space vehicles. At USU Dr. 
HArris's group are actively working to have such algorithms flown on both sounding rockets and 
satellites. Clearly, the implementation of such algorithms does impact its associated experiments. it 
requires both electrical power and electronics (space and mass). The larger the instruments output rate, 
the greater is the va packages electrical, space and mass needs. Given that these electronic 
components must meet military specifications, the present day available components can only meet 
modest output rates. A specific example is given below. 

Compression Number of Total 
Image Size Image Frequency Bit Rate Factor CPU's Power 

512 x 512 .5/minute 22 Kbps 3 1 1/2 W. 
10 bit CMOS 

Technology 

In Section 2.3 the development of high speed dedicated VSL! ships were discussed. This 
development is in its infancy and is primarily aimed at the video-telephone problem. Such prototype 
chips are not at present hardened to meet space requirements. Discussions with chip vendors are, 
however, in progress to produce space hardened chips. However, technologically such chips could well 
handle the highest telemetry rates allocated to most satellite instruments. 

7. GROUND APPLICATIONS OF va FOR DATA TRANSMISSION AND STORAGE 

Once data has been compressed on board the satellite, it is fed into the telemetry stream. This 
telemetry stream must be stripped down and stored (archived) on the ground. The experiment<ll 
benefits of having reduced the data to fit within the telemetry allocation on the ground lead to an option 
at some pOint to uncompress the data and hence cause a potential storage problem. To avoid this, 
it would be critical for the compressed data to remain so during the final analysis or "quick-look" would 
the images be uncompressed. 

On the positive side, the va compressed data would be viewed as making a factor x times 
better use of the ground based storage and transmission resources. The factor x would be comparable 
to the original va compression factor. However, it must be realized that arbitrarily applying va 
compression to existing stored data is frought with difficulty since it is a "lossy· process. By having the 
instrument scientist initiate the compression, the ·Iossy· part can be handled in an acceptable manner. 
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8. SUMMARY 

With the demand for more sophisticated, higher resolution space instrumentation the satellite 
telemetry requirements continue to increase. NASA and the DOD (for the most part) are not planning 
or able to increase their telemetry handling capability at this growth rate. Innovative alternative solutions 
are needed to maximize the scientific return from such instruments. Alternatives are to use a ·Iossy· or 
·statistica"y lossless" compression algorithms described in this report. In using these techniques the 
scientists attempt to associate the lossy part of the technique with aspects of their data that can be 
sacrificed. Typically this would be the noise or statistically insignificant component. Based upon VQ 
testing on images compression factors of 3 to 12 are readily achieved and have good reproduction 
characteristics. 
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