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ABSTRACT 

ABD-EL-AZIZ, MAHMOUD H.; 1933; The Influence of Exchangeable 
Ions and Their Concentration in the Pore Fluid on Plastic and 
Strength Properties of Cohesive Soil; Department of Civil 
Engineering; Dr. A. A. Bishop, major professor. 

A study was conducted to find out both the effect of different ex-

changeable cations and the concentration of ions in the soil pore fluid 

on strength and plastic properties of a sample of cohesive soil taken 

from the bank of an open drain ditch at the Utah State University Irri-

gation and Drainage Farm. 

The experimental results of this study may be sumrp.arized by 

the following points: 

1. A general decrease of liquid limit and an increase -in :}j:oth 

shear strength and modulus of elasticity, with increasing salt concen-

tration in the pore fluid, were observed for all samples, with the 

exception of HCI-treated samples for which shear strength was inde-

pendent of HCI concentration in the pore water. 

2. An increase in both shear strength and modulus of elasticity 

with decreasing exchangeable sodium percentage was definite. 

3,\ The increase of soil shear strength caused by different ex-

changeable cations with distilled water in the soil pores was in the ord~v 

Na + < Ca ++ < Mg ++ < K + < HCl-treated soil. whereas the modulus of 

+ + ++ . elasticity increased in order Na < K < Ca < HCI-treated solI < 

++ Mg 



4. A decrease in the liquid lhnit with decreasing exchangeable 

sodium was found. 

5. The influence of the diffe:rent exchangeable cations used on 

+ d 1 M++ soil liquid limit was in the order Na > HCl-treate samp e > g > 

C ++ K+ a > . 

From this study it could be concluded that: 

1. The strength and plastic properties of cohesive soils are af-

fected greatly by the type and concentration of adsorbed ions as well as 

by the ions concentration in the pore fluid. 

2. The failure of the sloping sides of drain ditches may be attri-

buted at least in part to increasing exchangeable sodium percentage. 

3. For satisfactory and economical design of earth structures, 

a knowledge of chemical as well as physical properties of cohesive soils 

is essential. The boundary conditions which may change the soil physico .. 

chemical properties with time should be considered. 

4. Strength properties of HCl-treated soils are controlled by 

aluminum rather than hydrogen ions. Exchangeable aluminum ~as 

liberated as a result of the breakdown of the clay fraction in soils when 

treated with HC!. 

5. The experimental results are not completely explained in 

terms of the Gouy-Chapman theory of double layers. However, the 

Stern theory which considers the specific adsorption of ions on clay 

surfaces is a better alternative and does explain the results adequately. 
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INTRODUCTION 

At all locations where the ground surface stands at an inclination 

with the horizontal~ gravitational forces tend to cause m.ovem.ent of soil 

particles from. top to bottom. of the slope. As a result of this m.ovem.ent, 

alteration of the slope m.ay take place gradually or suddenly in the form. 

of landslides. The force of gravity is aided by seepage of water through 

the slope which reduces the resistance to m.ass m.ovem.ent. Only when 

the resistance to m.ovem.ent is great enough to withstand the downward 

m.oving forces will the slope rem.ain stable. 

In the design of em.bankm.ents, earth dam.s p and other earth 

structures, the m.ost frequent and m.ost serious problem.s which the soil 

engineer faces are those of stability; i. e., those requiring knowledge of 

the shear strength of the soil. A great amount of research concerning 

soil stability and measurem.ents of shear strength of undisturbed soil 

t" 
sam.ples has therefore been undel taken during the past few years. Much 

of this workq however ~ was largely concerned with the size and arrange-

m.ent of the different particles rather than with the chem. ical and physical 

characteristics of the sonG The elem.ents of shear strength of com.plex 

com.pacted cohesive soils (constituting the m.ain portion of earth structures) 

are m.ore com.plicated than for the sim.ple cohesionless soils. Since 

cohesive soils have a large specific surface ll their behavior m.ay be 

influenced considerably by surface forces. These forces are controlled 
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by the physico -chemical properties of the soil and may undergo gradual 

change under particular conditions. 

Several researchers (Berger, 1951; Marsland~ 1957; Casagrande, 

1959) called attention to the fact that some slopes have failed when 

conventional analyses have indicated that they should be stable. 

Casagrande (1959) stated that it is doubtful if progressive failure is the 

cause of the discrepancy, and further suggested that a reduction of soil 

strength with time may be the reason. The reduction in strength, the 

writer thinks, may be due to a change in the physico-chemical properties 

of the soil. 

For satisfactory predictions of soil stabilitYa and for a better 

understanding of the soil-forming materials, a knowledge of the physico

chemical characteristics of cohesive soils might be useful. It seems to 

be generally agreed by many investigators (Rosenquist. 1957, 1959; Lambe, 

1960b; Michaels, 1959) that the strength of cohesive soils is a function 

of the interparticle forces. These, in turn g are affected by several 

variables in the soil-water-electrolyte system. 

Stability of slopes in open drains is a special problem in which the 

physical and chemical properties of both soil material and dra inage 

water should be of major importance. The influence of exchangeable 

ions may have greater effect on the stability of drainage ditch banks 

than is commonly realized. The problem of bank sloughing that 

frequently occurs in open drains may be aggravated by a reduction in 

strength could be a result of the continuous process of replacing the 



ions on the clay fraction of the soil by that in the dra inage water. 

It is the purpose of this investigation to find out how much the 

stability (strength properties) of an embankment made from a certain 

cohesive soil will be affected by the type and concentration of ex

changeable ions and their concentration in the pore fluid. 

3 



4 

REVIEW OF LITERATURE 

There are two main approaches to an understanding of the strength 

properties of cohesive soils. The fir st of these, and the one to which 

the major efforts have been devoted, is the examination of soil shear ing 

strength. The second approach concentrates on the study of the aspects 

of interparticle behavior relating the macroscopic strength character

istics of the soil to the chemical and physical properties of its 

constituents including the pore fluid. 

To obtain insight into the complexities of the shearing process in 

cohesive soils~ it may be revealing to examine the nature of the material 

under consideration both physically and chemically from the micro

scopic point of view. 

Nature and Structure of Cohesive Soils 

A cohesive soil consists of an accumulation of particles ranging 

from larger granular constituents to the much smaller size particles; 

i. eo, clay. It is now known in soil mechanics that clay particles are 

usually of a size less than two microns. The individual clay particles 

are, in general, sheet mineral crystals made up of various combinations 

of silica, gibbsite, and brucite type structures. Their lateral surfaces 

are oxides or hydroxidesQ The crystal structures of the common clay 

minerals have been illustrated in the literature (Grima 1953). Clay 
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particle surfaces generally possess a net negative electrical charge. 

This net negative charge is balanced by adsorption of cations at the 

surfaces of the particles. These ions are readily exchangeable with 

other ions (Grimi/ 1953). The edges of the particles~ on the other hand, 

may be electrically positive, negative, or neutral~ depending on the 

nature of the mineral and the environment with which it is in contact 

(Seed, et al., 1960). 

A soil in its natural state may have single-grained or compound 

structure. In the single -grained structure, each particle acts 

independently of all others and is supported by contact with several 

other particles. In the compound structure, large voids are enclosed 

in a skeleton of arches, either of individual fine gra ins forming a 

honeycomb structure, or of colloidal sized particles aggregated into 

chains or rings, making a granular structure (Casagrande. 1932). 

Compound structure is the result of interacting particles which are 

small enough to exhibit appreciable surface activity. 

Lambe (1953, 1960a) has suggested that clays which were floccu

lated during sedimentation or compacted at water contents less than 

optimum develop a random orientation of the clay particles called a 

"card-house" type structure. Conversely, clays which were dispersed 

during sedimentation or compacted at a water content greater than the 

optimum develop a parallel orientation of the particles. Poss ible vari

ations from these general rules are discussed by Seed and Chan (l959bl.., 

who also found that although the structure may have a pronounced 
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influence on the deformation characteristics of compacted clays, it has 

relatively little influence on the maximum strength because a reorien

tation of the particle in the failure zone may take place during a shear 

or a triaxial test. 

Rosenquist (1959) has developed techniques for obtaining stereo

graphs of the structure of undisturbed clay by means of an electron 

microscope. He found that the structure of marine clays in general 

is a random orientation of the particles and resembles the card-house 

structure suggested by Tan (1957) and Lambe (1960a). Salas and 

Seratosa (1953) have used x-ray diffraction to investigate the relative 

. orientation of clay. They found that the particles in remolded and 

uniaxially reconsolidated clays are oriented perpendicularly to the 

direction of the principal consolidating stress. Mitchell (1956) also 

investigated the structure of many undisturbed clays. He found that 

some clays have a completely random orientation of the particles and 

that others have various degrees of a preferred particles orientation. 

The degree of parallel orientation of the particles is uniform in sortle 

clays; in others this degree of orientation varies from point to point or 

zone to zone. 

Stresses 

Soil as an engineering material may be visualized as a compressi

ble skeleton of solid particles enclosing voids, which in saturated soils 

are filled with water and in partially saturated soil with both water and air. 
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Consider the soil skeleton as an ideal homogeneous isotropic 

material; stress at a point is a force per unit area on a plane surface 

containing the point (Gibbs, et al., 1960). For each of the infinite 

number of planes containing the point, the stress can be resolved into 

a component stress at right angles to the plane, i. e., normal stress; 

and a component stress parallel to the plane, i. e., shear stress 

(Taylor, 1962, p. 315). The normal and shear stresses are symbo1-

ically referred to as cr and T respectively. The equilibrium equation 

for the stresses on the soil skeleton are (Taylor, 1962, p. 316) 

2 2 
8' = cr 1 cos e + cr 3 sin e 1 

T = (cr 1 - cr 3) sin e cos e 2 

where cr 1 and cr 3 are the major and minor principal stresses at a 

point respectively, and e is the angle between the planes on which T 

and cr 1 act. Under the action of stresses, the soil skeleton undergoes 

elastic deformation, and its structure is altered by particle rearrange-

ment. 

Shear stresses are carried only by the skeleton of solid particles 

except at very high strain rates (Bishop, et al., 1960). On the other 

hand, the normal stress at any plane is in general the sum of two com-

ponents, the stress carried by the solid particles cr and the pressure of 

the fluid in the void space u (Terzaghi, 1943, p. 268). For saturated 

soils, the effective normal stress (J is expressed mathematically as 
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(Terzaghi, 1943, p. 12) 

cr = O'-u 3 

where 0' denotes the total normal stress. The case of partially 

saturated soils, however, calls for special treatment since the pore 

space contains two fluids, air and water. An expression for effective 

stress 0' for the general case was put forward by Bishop (1959), which 

is 

cr = cr - u +x(u - u ) 
a a w 

4 

where u denotes pressure in the gas and vapor and u denotes 
a w 

pressure in the pore water. The value of the parameter x is unity for 

saturated soils and is zero for dr y soils. Intermediate values will 

depend primarily on the degree of saturation, but will be influenced 

also by factors such as soil structure and the cycle of wetting and 

drying. 

Hilf (1956) has made an extensive study of pore water pressure in 

compacted soils. He assumed, for degrees of saturation greater than 

about 25 percent, that the water is present as a continuous film covering 

the grains and forming menisci of a single curvature. Considerations 

of surface tension effects in water show that the pres sure in the water 

is always less than the pressure of the air in contact with the water; 

e. g., the capillary pressure u is always negative if the air is at 
c 

atmospheric pressure. Consequently, Hilf showed that the pore pressure 



of water u is the algebraic sum of two terms, the pore air pressure 

u 
a 

w 

and the capillary pressure u. 
c 

An equation for pore pressures in 

compacted soil has been derived by Hilf with the aid of Boyle f s law of 

compressibility of ideal gases and Henryf s law of solubility of air in 

water. He considered that when a partially saturated soil is loaded 

9 

under undrained conditions, the air is compressed by the full amount of 

the volume change and some of it dissolves in the pore water. The pore 

pressure developed in an unsaturated soil as a result of such a load 

application is given by Hilf (1956) 

where 

u 
ao 

.6.e 

e 
ao 

.6.u =.6.u +.6.u 
a c 

u .6.e 
ao 

.6.u = ---------
a e + he -.6.e 

ao w 

= initial air pressure 

= change in void ratio 

= initial volume of air 

(eo - e 1 ) 

in soil mass of volume 1 +e 

e = volume of water in soil mass of volume 1 +e 
w a 

h = coefficient of air solubility in water by volume 

Soil Shear Strength 

0 

5 

6 

Studies of the shearing resistance of soils have generally centered 

around the use of the expression first proposed in 1776 by Coulomb 
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(Hough, 1957, p. 162) 

s = c + cr tan cj> 7 

in which s is the shearing resistance, a denotes the normal stress on 

the shearing plane, cj> is the friction angle, and c is a term which 

denotes cohesion. 

The conventional concept of shear strength as made up of the 

friction and cohesion terms, gives a simplified picture of the various 

complicated factors contributing to the shear strength of a soil. Recent 

studies have indicated, however, that such a relationship (Equation 7) 

greatly oversimplifies the picture. The parameters c and cj> are not, 

for a given soil, constant for different loading conditions, stress 

history, testing conditions, or soil structures, but vary over a con

siderable range (Hvorslev, 1960). 

In general, the shearing strength of a soil may be attributed to a 

combination of physical factors and physico-chemical factors. 

Physical factors 

The physical component of shear strength in soil is attributed to 

frictional resistance; 1. e. 1) the resistance to sliding of one surface on 

another, and interlocking between particles (Rosenquist~ 1959). For 

two randomly oriented particles in contact with each other s the friction 

resistance is made up of different components (Rosenquist, 1959): 

macrodilatent friction, which is a force working against the applied 

normal stress caused by the lifting of a particle on the one side of the 
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shear plane when the shear movement takes place; and microdilatent 

friction, which is a force required to move a particle up and over a 

surface irregularity of another particle. 

The frictional resistance is proportional to the effective normal 

stress on the failure plane, and is of significance primarily between 

the granular (greater than clay size) particles. 

Dilatency may have different effects on the shearing resistance 

of soils, depending on the test conditions. In drained shear tests, work 

is done against the normal stresses in increasing volume or by the 

normal stresses in decreasing volume. Corrections for these effects 

have been suggested by Bishop (1950). In drained shear tests the tend-

ency toward volume changes induces excess pore pressure which may 

be either positive or negative. Pore pressure coefficients were proposed 

by Skempton (1954) to evaluate these effects. 

One additional term which is classed as a physical factor is 

called by Rosenquist (1959) the nondilatent friction. Here, the re

sistance to shear may be regarded as a physico-chemical effect since 

it is due to mass forces between particles. When two particles of such 

size that their behavior is independent of surface forces (i. e. II sand or 

silt particles) are pressed together under the action of an effective 

stress" they will contact at a point since their surfaces are not com

pletely smooth. The very close proximity of the contacting surfaces 

gives rise to attractive Van der Waal forces. To slide the two particles 



12 

relative to each other~ a shearing resistance develops with a magnitude 

proportional to the strength of the adhesive bond. The total contact 

area developed is a function of the elasticity properties of the mineral; 

but if proportionality is assumed between stress and strain~ then the 

contact area depends directly on the magnitude of applied effective 

stress (Seed, et al., 1960). Bowden and Tabor (1954) have concluded 

that the area of actual contact between two solid bodies is very low 

(e. g., under normal loads the area of contact between two steel surfaces 

. 5 
wlll be of the order of 1/10 of the apparent area of contact)~ and that 

the real area of contact is nearly independent of the total area and only 

dependent upon the load. The real area of contact a· is expressed 

mathematically as (Rosenquist, 1959) 

w 
a=--p 

m 
8 

where w is the total load and p is the yield value of the material. 
m 

As the nond ilatent fr iction is regarded to be due to the adhe s ion on the 

area of contact, an approximation could be made (Rosenquist, 1 959) 

such that 

f = as 9 

where f is the friction force and s is the shear strength of the junction. 

The friction represents the shear strength and the adhesion tensile 

strength of the bonds in the contact area. 
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In practice, the physical component of shear strength is expressed 

by (s = a tan cj». The term cj> is a material function which represents 

the magnitude of adhesion between areas of real contact. 

If the effective normal stress a is removed from a material 

which develops its strength in the manner indicated above~ then the 

elastic stress within the particles will be relieved and the particles 

will rebound to their original shapes, reducing the contact area to point 

contacts and resulting in a loss of almost all adhesion (Seed, et al., 1960). 

The other important physical factor contributing to the mobilization 

of shear strength is the interlocking between particles, particularly as 

reflected by the tendency for volume change during shear deformation. 

Rosenquist (1959) has divided interlocking into two parts: (l) a large 

scale interlocking between particles which necessitates appreciable 

movements of particles normal to the shear plane accompanied by 

volumetric expansion in order that failure might occur; (2) a small scale 

interlocking due to particle surface roughness; necessitating only small 

movements normal to the shear plane in order that failure might occur. 

It is apparent that the magnitude of friction and interlocking; 1. e. , 

the physical factors contributing to shear strength in soils, is dependent 

on the effective normal stress. However, the nature of the minerals 

present and their surface characteristics will determine the magnitude 

of the true friction (Seed, et al., 1960). 
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Physico-chemical factors 

This component of soil shear strength is attributable to physico

chemical conditions in the soil and is often referred to as cohesion. 

Cohesion in a soil refers to that part of strength which is present 

independently of any applied stresses and would remain, though not 

necessarily permanently, if all applied stresses were removed. In 

other words, cohesion is a bonding of particles by physico-chemical 

mechanisms of an interatomic, intermolecular" or interparticle nature 

(Seed, et al., 1960). 

Although the precise nature of cohesion and the mechanism by 

which it is developed have not been clarified, it seems to be generally 

agreed that it is a function of the net interparticle forces (Rosenquist, 

1959; Lambe, 1960a, b; Michaels, 1959). These in turn are affected 

by several variables in the soil-water -air -electrolyte system as reviewed 

below. 

Interparticle forces 

The appearance and behavior of soils alter as the particle size 

decreases. The changes in behavior are due to the increas ing effect 

of the forces between adjacent particle surfaces as the size decreases. 

In the silt or sand sizes, the ratio of the area of the surface to the 

volume of the sample (specific surface area) is relatively small. In 

a small particle, the molecules forming the surface constitute a large 

proportion of the total number of molecules and the forces associated 
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with these surface molecules have an appreciable effect on the behavior 

of the particle and hence on the mass of the soil (Lambe~ 1960a). 

Interparticle forces may be divided into attractive and repulsive 

forces. Attractive forces between clay particles result from several 

mechanisms .. the most important of which is attraction due to the Van 

der Waal forces. 

As a result of the movement of electrons in their orbits around 

atoms, any molecule possesses an associated electric field which is 

capable of interacting with the field of nearby molecules giving rise to 

Van der Waal ' s attractive force between the molecules (Casimir and 

Polder, 1948). Derjaguin (1960) showed that the Van der Waal force 

between two flat parallel surfaces varies inversely as the cube of the 

distance between them if the plates are very close together, and 

inversely as the fourth power of the distance at large separation. In 

this connection the distance between the plates is considered small or 

large in relation to the wavelength of light absorbed by the materials in 

question and is always large in comparison with interatomic distances. 

Several investigators (Michaels, 1959; Rosenquist~ 1959) are of 

the opinion that the Van der Waal forces are of sufficient magnitude to 

more than account for cohesion in clays. Additional interparticle 

attraction may arise. however, from the electrostatic attraction between 

negative clay surfaces and positive clay edges. This situation can lead 

to a non-salt flocculated structure (Lambe, 1960a). For some cases 

attractive forces may be caused by hydrogen or potassium bonds or may 



result from cementation by organic or inorganic compounds. 

Interparticle repulsive forces ar ise from the electrostatic re

pulsion between two surfaces or between two edges of adjacent 

particles. 

16 

Since the shear plane in clay will pass through the water between 

particles, the characteristics of the water in the force field between 

clay particles must be considered. This water is known to possess 

properties different from those of normal free water. However + the 

literature is controversial as to the precise nature of the adsorbed 

water structure and the mobility of this water. The work by Low (1959) 

has shown the viscosity of adsorbed water to be higher than that of free 

water. Martin (1959) concluded that the first few layers of adsorbed 

water on clay surfaces has a remarkably high freedom of mobility in 

direction parallel to particle surfaces. 

Water is strongly attached to clay surfaces by any or all of several 

mechanisms as outlined by Low and Lovell (1959). It appears that its 

role is that of a filler separating particles and resisting close approach. 

Thus g a lesser attractive bond is formed than would exist if water is 

removed from clay. 

The interparticle forces in the soil-water system may in some cases 

undergo thixotropic changes, which are defined by Freundlich (1935) as 

isothermal, reversible, sol-gel transformations; 1. e t J the strength of a 

clay may be decreased during rapid deformation l1 but is gradually regained 
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when the deform.ations cease or the rate of deform.ation decreases. The 

phenom.enon m.ay be visualized as a disturbance and subsequent re

establishm.ent not only of the arrangem.ent of the clay particles but also 

of the structure of the bound water with consequent changes in the 

transm.ission of interparticle forces. Michaels (1959) stated that any 

contribution to shear strength resulting from. water viscosity is negli

gible in com.parison to the contribution of the interparticle attraction 

forces. He concluded that despite the fact that the failure plane passes 

through the water separating soil particles, the resistance to shear is 

attributable to the bond caused by attractive forces originating in the 

particles them.selves and holding the particles in pos ition. 

Goldstein (1957) suggested that the interparticle forces m.ay be 

divided into two groups, one producing elastic bonds, and the other 

form.ing viscous bonds. However /I it has not yet been possible to 

identify the basic forces and conditions which cause form.ation of the 

two types of bonds. Borowicka (1959) has proposed that changes in 

free energy and corresponding forces at the interface of water and soil 

particles can produce tension in the bound water and a corresponding 

cohesion at any close spacing of the particles. It has not been verified 

experim.entally that such a tension in the bound water exists. Tan (1957), 

on the other hand~ questions that cohesion could be attributed to tension 

in the soil water because clay possesses cohesion even where positive 

pore pressure could be m.easured. 
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Externally applied compressive stresses undoubtedly influence 

the development of cohesive bonds, since they help to determine the 

particles I orientation and spacings and thereby affect the interparticle 

attractive and repulsive forces. Since such compression is not a 

reversible phenomenon (Seed, et aI., 1960), the particle spacing under 

a condition of decreasing external forces will depend also on the previous 

stress applications and thus on the stress history of the soil. 

In general, the magnitude of the resultant interparticle forces 

depends on the type of clay mineral, the size and corresponding specific 

surface of the particles, the type of ions adsorbed on the surfaces of 

the clay crystals, the type and concentration of ions in the pore fluid" 

particle spacingsp and on temperature. 

In a typical cohesive soil containing granular particles and clay 

size particles. the total strength will evidently be the sum of the 

contributions of physical and physico -chemical components. Lambe 

(1 960b) suggested that if the clay particles are in contact, the shear 

strength s can be thought of as a function of the net interparticle 

forces 

s = f (a + A - R + I) 

where a is the externally applied intergranular stress, A is the 

electrical attraction, R is the electrical repulsion, and I is a 

repulsive stress acting only when particles are in contact. 

10 
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The origin of various types of electrical charges carried by soil 

colloids is discussed in terrn.s of the theory of the diffuse double layer 

(Warkentin, et al., 1957). The nature and rn.athern.atica1 expressions 

of conditions within the double layer have been treated in detail by 

Overbeck (Kruyt, 1952, p. 115). However, before reviewing the litera-

ture which has likened the electrokinetic properties of clays with other 

aspects of their engineering properties, it is irn.portant to discuss sorn.e 

general relationships in colloidal chern.istry. 

A. clay suspension is corn.posed of negatively charged rn.ice1les 

surrounded by diffuse envelopes of positively charged ions which rn.ake 

up the diffuse double layer. Associated with each envelope of charged 

ions there will be a gradient of electrical potential whose intensity 

decreases with increasing distance from the surface of the particle. 

Until recent1yg the theoretical description of the double layer forrn.ed 

on planar interfaces has been based entirely on the theory of Gouy-

Chapman (Kruyt, 1952 .. p. 128). If we assurn.e a clay particle to be a 

plane surface and the charge uniformly distributed over the surface, 

the charge distribution (according to the Gouy-Chaprn.an theory) is 

obtained by the combination of the Poisson and Boltzrn.ann equations, 

which leads to 

47T 
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where ~ is the electrical potential at a distance x frorn. the surface 
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of the clay particle, z. is the valency of the ion in the bulk sohltia,u, E 
1 

is the charge on an electron, k is the Boltzmann constant, V is the 

Laplace operator, and D is the dielectric constant of the solution. 

This equation has been solved by Verwey and Overbeek for seve:ral 

cases. 

As the influence of ions is greatest near the colloidal pa:rticle 

surface, Stern (Kruyt, 1952, p .. 132) applied the Gouy-Chapman theory 

with the first layer of ions not immediately at the surface but at a 

distance 5 away from it. Stern further considered the possibility of 

specific adsorption of the ions and assumed that these ions were also 

located in the plane 5. This layer of adsorbed ions is called the Stern 

layer. 

In general terms, the double layer theory states that a tendency 

toward flocculation is usually carried by increasing electrolyte concen-

tration, ion valence and temperature, and decreasing dielectric constant, 

size of hydrated ion, pH, and anion adsorption. The influence of the 

first four variables follows from the Gouy-Chapman theory of the diffuse 

double layer as a decrease in the double layer thickness reduces the 

electrical repulsion forces which in turn causes a tendency towa!'ci 

flocculation. The smaller an ion plus its shell of hydration w'ater, the 

closer it can approach the colloidal surfaces. Thus, the smaHer the 

hydrated ion, the smaller the double layer thickness and the mOTe 

likely is flocculation. The pH of the pore fluid affects the net negative 
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charge on a soil particle by altering the extent of dissociation of OH

groups on the edges of the particle. High pH encourages the dissociation 

and increases the net negative charge, thus expanding the double layer. 

The adsorption of anions, especially polyvalent anions, increases the 

charge on the particles and thereby tends to cause dispersion (Schofield 

and Samson, 1953, 1954). 

Bolt and Miller (1955) showed that the classical theory of the 

electric double layer formed on planar surfaces provides an acceptable 

means of predicting the osmotic pressure of clay suspensions for various 

particle spacings and electrolyte contents. The results obtained with a 

compression apparatus for a number of illite samples were consistent 

with those predicted with the theory. Taylor (1959) stated that the Gouy

Chapman theory of the diffuse double layer provides a satisfactory basis 

for the study of many types of clay soils, and may be used to derive use

ful information about their mechanical behavior. Low (1961), on the 

other hand, showed that the double layer theory cannot be depended on 

for an accurate description of ionic exchange, clay swelling~ and 

mechanical behavior of soils. 

In engineering soils, we are mostly concerned with large nlasses 

of natural soils rather than with dilute suspension from which the theory 

of double layer derives its basis. Lambe (1960a) discussed seve:;tal 

factor s which are neglected in colloidal theorie s. He concluded that 

the force system acting between soil particles is influenced nCit only by 
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the forces arising from the nature of particles (i. e., considered in 

colloid theories), but also by those arising from noncompositional 

sources (forces derived from a source outside of the individual parti.
~ 

cle s). 

Since stable soil aggregates can only be formed after the clays 

are flocculated, it is expected that the strength properties of clays are 

influenced by any change in the net electrical forces between the pal"ti-

cles. Thus, any factor which causes the expansion of the double layer 

(1. e., increases the repulsive forces between adjacent particles) will 

result in reduction of the shearing strength. Michaels (1959) obseTved 

that with montmorillonite and to a lesser degree with illite clays, the 

liquid limit, which is a rough indication of strength, decreases with the 

following order of adsorbed cations 

Li > Na > K > Rb > Cs 

On the other hand, with kaolinite, the liquid limit will often increase 

with the same order of exchangeable ions. Experiments carried out 

at the Norwegian Geotechnical Institute by Rosenquist (1959) proved 

thata if a sodium montmorillonite is consolidated and kept under con-

stant consolidation load and then percolated by a KCl solutio~. the 

undisturbed shear strength increases considerably. However, in all 

reported investigations, the results were presented only in te!'ms of 

the general influence of a particular factor on some of the rnechanical 
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properties of pure clay minerals, with no indication of how the effects 

could be extrapolated to natural soils explaining actual failure phenome

non. The shear strength of a soil measured in a laboratory may depend 

considerably on the electrolytic characteristics of the water with which 

the soil was remixed, or on the type and concentration of the exchangea

ble ions, or on the temperature at which the soil was stored and on the 

storage time, as well as many other factors of physical or cheITlical 

nature. In the majority of reviewed literature, these details of testing 

were omitted. 

In view of the current literature, it is apparent that the physico

chemical properties of soil may have greater effect on its engineering 

properties than it is commonly realized. Hence, a more thorough 

knowledge regarding the factors influencing strength properties of soil 

is needed. 
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EXPERIMENTAL METHODS AND PROCEDURE 

The experim.ental procedures are discussed under four headings: 

(1) Soil sam.pling; (2) Chem.ical, m.echanical, and m.inerological charac

teristics; (3) Engineering properties; and (4) Prelim.inary experim.ents. 

Soil Sam.pl ing 

A soil sam.ple (about 200 pounds) was obtained from. a drainage 

ditch bank that exists on the Utah State University Irrigation and 

Drainage Farm., northwest of Logan, Utah. The drainage farm. area is 

classified as Salt Lake silt loam. by the United States Departm.ent of 

Agriculture, Soil Conservation Service. Soils are hum.ic gley of m.ixed 

lake sedim.ent origin and are considered poorly drained. The sam.ple 

was taken from. the clay part of the drain bank (about 6 feet from. the 

surface). Sloughing phenom.enonwas observed in the drain slopes. 

Chem.ical, Mechanical, and Mineralogical Characteristics 

Chem.ical analysis 

Chem.ical laboratory tests consisted of determ.ining the pH for 

both a saturated paste and a m.ixture of one part soil to five parts of 

water by weight (Richards, 1954), total soluble salt concentrations 

(Cheng and Bray, 1951), electrical conductivity of the saturation extract 
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(Campbell, et al., 1948), true specific gravity {Taylor, 1962L total 

exchangeable capacity, exchangeable sodium, exchangeable potassium 

(Bowers, et aL, 1952), lime content (Reitemeier, 1943), and o:rganic 

matter (Walkley, 1947). All tests were conducted on duplicate samples, 

and the results are listed in Table 1. 

Mechanical analysis 

The pipette method of mechanical analysis was used (Olrnstead o 

et aI., 1930). This method consists mainly of three parts: (1) S:)il 

~( 

cleaning which includes the removal of CaC0
3 

with diluted Hel and 

removal of organic matter with hydrogen peroxide; (2) Soil dispersion 

using sodium hexametaphosphate solution (calgon); (3) Different pa:cticle 

size determination using different times of settlings and a volumetric 

pipette connected in such a way that the strength and time of suction is 

always constant. 

Results of this test are shown in Table 2. 

Mineralogical analys is 

Soil fractionation. Mineralogical examination of the soil by x-ray 

diffraction or other methods of characterization requires fractionation 

of the soil. The procedure used was that of Kittrick as given by Miller 

(1956). This method involves: (1) The removal of carbonates by dilute 

i;;:C 

Mechanical analysis was done on the sample twice,. once ')~:'ithout 
the removal of CaC03 and another time after CaC03 was removed. This 
was done to determine the grain sizes of the lime in the soil. 



Table 1. Summary of chemical characteristics of the sa:mple 

Characteristic 

1. True specific gravity 

2. pH of saturated paste 

3. pH of one part soil to five parts of distilled 
water 

4. Total soluble salts determined gravimetrically 
(percentage) 

5. Electrical conductivity of the saturation extract 

6. Cation exchangeable capacity (milliequivalent 
per 100 grams) 

7. Exchangeable sodiurn (milliequivalent per 100 
grams) 

8. Exchangeable potassiurn (rnilliequivalent per 
100 grarns) 

9. Exchangeable sodiurn percentage 

10. Lime content, percentage 

11. Organic matter content. percentage 

12. Soluble salts in one part soil to five parts 
distilled water (milliequivalent per 100 grarns) 

Ca ++ 

Mg++ 

Nat 

K+ 

Value 

2.41 

9.20 

8.20 

0.53 

7.42 

21.60 

7.83 

O. 67 

36.00 

41.00 

0.77 

0.10 

0.20 

7.60 

20.00 
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Table 2. Particle size distribution of the sample (in mm. ) 

Sample 
Sand fractions, % 

(1 ) (2) (3) (4) 
treatment 

2.00-1.00 1.00-0.50 0.50-0.25 0.25-0.10 

Lime is removed 0.02 0.01 0.60 

With lime 0.03 0.03 0.25 

(l) Very coarse sand 

(2) Coarse sand 

(3) Medium sand 

(4) Fine sand 

(5) Very fine sand 

(5) 
Silt 

0.10-0.05 
'% 

0.18 40.10 

0.70 36.78 

Clay 

% 
58.80 

61.20 

Sand 

% 
0.29 

I . 01 

N 
-.] 



Hel; (2) The oxidation of organic lTIatter with hydrogen peroxide; (3) 

Dispersion of the soil by sodiulTI hexalTIetaphosphate. 
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X-ray diffraction. X-ray diffraction was perforlTIed on a North 

AlTIerican Norelco x-ray diffractolTIeter equipped with a wide angle 

goniolTIeter, a copper target x-ray tube, a proportional counter, and 

a scanning speed of two degrees per lTIinute. A nickel filter was used 

to elilTIinate K~ radiation frolTI the incident bealTI. 

Preparation of salTIples for x-ray diffraction 

The soil clay fraction was separated into two different sizes; 1. e. , 

0-0.2 lTIicrons, and 0.2-2 microns. The two different size fractions 

were then prepared as 3 percent suspensions in distilled water. The 

0-0.2 tJ. fraction was suspended in a silTIilar lTIanner in glycerol~water 

solutions (glycerol was used at rates recolTIlTIended by Jackson (1949)). 

The glycerol treatlTIent was used to distinguish between lTIontm.orillonite 

and illite groups. 

SalTIple slides were prepared by dropping about 0.5 lTIl of the 

suspension containing frolTI 10-15 lTIg of clay on a one -inch square area 

of a lTIicroscope slide. The slides were air-dried before analysis. 

Interpretation of x-ray patterns 

Each crystalline substance has a characteristic trace of dif

fraction peaks. It should be realized, however, that peak heights are 
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not always proportional to clay mineral quantities, Therefore, the 

problem of quantitative determination by x-ray diffraction made it 

necessary to compare the characteristic peaks of the experimental 

specimen with other characteristic peaks of pure clay minerals; i. e. , 

kaolinite, montmorillonite, and illite (Figures 1, 2, 3). The pure clay 

minerals were prepared and analyzed in the same manner as the 

experimental samples. 

From a cursory glance at the x-ray traces of the 0-0.2 I-! and 

0.2-2 I-! fraction samples and that of the sample treated with glycerol 

,I~ 

(Figures 4~ 5, and 6), it could be seen that the montmorin'" type of 

):c ':c 
clay minerals is the most dominant; however, small amounts of :mica 

... '~ .... ' ...... 1, 

and little or no kaolin""'"'' a"re 'indicated. The characteristic peak of 

o 
montmorillonite at 18 A is not as high in the glycerol treated sample 

(Figure 6) as that of pure montmorillonite (Figure 2). This may be due 

to poor crystallinity or to a considerable amount of amorphous rnaterial 

in the experimental sample. 

*Montmorin refers to 2: 1 lattice expandwg minerals having x-ray 
diffraction basal spacing of approximately 18 A. 

,I ...... 1, 
........... 1 ... 

Mica refers to minerals having x-ray diffraction basal spacing 
of about 10 A. This would include mica and illite. 

~:~ ,:~ ::::~ 

This refers to kaoJine-like minerals having x-ray diffraction 
basal spacing of about 7.2 A .. 
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Figure 1. X-ray traces of kaoli.nite clay mineral 
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Figure 2. X -ray traces of montmorillonite clay mineral 
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Figure 3. X-ray traces of iliite clay rn.ineral 
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Quartz 
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Figure 4. X-ray traces of 0-0.2 I-l fraction of the sample suspended in 
distilled "vVater 
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Figure 6. X-ray traces of 0-0. 2j-l fraction of the sample treated by glycerol 
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Sample preparation 

The whole soil sample was saturated with sodium ion. This was 

accomplished by preparing suspension of the soil in a 3 N sodium 

chloride solution. The suspension was allowed to equilibrate for a 

period of 15 days, after which the supernatant liquid was removed. 

This treatment was repeated four times, using fresh NaCI solution, 

stirring, then allowing the suspension to settle until the supernatant 

liquid is clear; then it was discarded. To remove the excess salts, 

the sample was washed with distilled water until all traces of chloride 

in the filterate disappeared. A test was performed in the laboratory to 

determine the exchangeable sodium percentage in the sample (Table 3). 

The sodium -treated soil was divided into nine parts. The 

exchangeable sodium ion on eight of these parts was replaced partially 

on four samples and completely on the other four by the ions: potassium, 

hydrogen, calcium" and magnesium. In each case, a test was per-

formed to determine the exchangeable soidum percentage in the sample. 

In the replacement of exchangeable Na + by another cation, the previou~ 

procedure of preparing suspensions of the sample and the chloride salt 

of the desired cation was used. In the case of replacing exchangeable 

Na + partially, the sample was oven-dried and weighed. Knowing the 

cation exchange capacity per 100 grams and the de$ired exchangeable 

+ Na percentage, the amount of salt to be added was calculated according 

to the following reaction 



Table 3. Exchangeable cation percentage on different salllpies 

Sample Na+ 

1 t 99.4 

2. 38.0 

3. 8.0 

4. 46.0 

5. 

6. 43.0 

7. 

8. 51.0 

9. 

Exchangeable percentage 

62.0 

92.0 

51.0 

98.0 

49.0 

100.0 

M ++ 
g 

56.0 

100.0 
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Naz X + CaCl
Z 

- Ca X + Z NaCl 

where X denotes the soil complex. In the case of replacing Na -{- with 

H + . lon, the sample was treated with HCl until all CaC0
3 

was removed, 

The sample was suspended thereafter in a solution of HCl of sufficient 

strength (3N) for complete saturation. 
+ 

One -half of the H -treated 

sample was then titrated by NaOH solution to reach the desired ex-

changeable sodium percentage. It is realized, however, that such 

treatment of soil by HCl may decompose part of the clay fraction, 

liberating exchangeable aluminum in the system. 

Engineering Properties 

Atterberg limits (liquid and plastic limits) and unconfined shear 

tests were conducted for all nine samples, using distilled water as the 

pore fluid. In addition, tests were conducted using solutions of NaCl, 

CaCl
Z

' MgCl
Z

' KCl, and HCl as pore fluid. These latter tests, how-

ever, were performed only on the five samples that were completely 

+ ++ ++ + + . saturated with Na ,Cl ,Mg ,K, and H ,respectIvely. Concen-

trations of 0.1, 0.3, 0.5, 0.7, 1 ~ 0, and 1.5 N were used for each 

electrolyte. 

Atterberg limits 

1. Liquid limit. Tests have been conducted according to the 

standard method (A. S. T. M., 1944a). The distance which the cup drops 



(1 em) was properly set and checked at frequent times. 

2. Plastic limit. Tests were conducted following standard 

method (A. S. T. M., 1944b). A piece of brass rod one -eighth inch 
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in diameter was used to compare the size of soil threads. Tests were 

conducted on dupl ica te s. 

Unconfined compression test 

The unconfined compression test measures the compression 

strength of a cylinder of soil to which no lateral support is offered. 

The shear strength is taken as equal to one-half the compressive 

strength. Because no lateral pressure is employed, the unconfined 

compression test is used only for cohesive soils since a cohesionless 

soil will not form an unsupported cylinder. This test, however, is the 

si.mplest and quickest laboratory shear test. 

Sample preparation for the compression test 

It was important for this test to prepare the samples in such a 

way that they have void ratios, degree of saturation, and water contents 

duplicated as closely as possible. A sufficient amount of oven-dried 

soil was mixed thoroughly with a predetermined amount of distilled 

water or with the appropriate solution. Mixing of the soil was ac

complished by hand mixing. The mixed soil was compacted in a 

cylindrical brass mold (2 inch inside diameter) in successive equal 

layers. The cylinder was then covered by a waterproof plastic and 
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allowed to com.e to equilibrium over 24 hour s. The different soil 

sam.ples were extruded using the m.achine in Figure 7. Sam.ples were 

trim.m.ed to a length between 5 and 5. 5 inches. Each sam.ple was 

m.easured carefully and weighed before the test. For all sam.ples, 

tests were conducted in duplicate. 

Apparatus 

The apparatus used was of the controlled strain type; i. e., the 

strain was applied at a uniform. rate. In the apparatus shown in Figure 

8 the load is applied to the spec iInen by a vq.riable speed m.otor drive. 

The m.agnitude of the load is m.easured by the double proving ring dial 

and the strain is indicated by the strain dial. 

Te sting of the sam.ple 

For each sam.ple tested, the following procedure was adopted. 

1 . The sam.ple was placed with its vertical axis as near the 

center of the loading plates as possible. 

2. Extensom.eters were adjusted and initial readings of the 

proving ring dial J tim.er, and vertical deflection dial were recorded. 

3. Com.pression was started, and readings were taken every 

m.inute until the stres s-strain curve was past its peak (the proving ring 

dial starts to decrease). 

4. The specim.en was placed in a preweighed dish and weighed. 

5. The water content of the entire rem.olded specim.en was 

determ.ined. 



Figure 7. The extruding apparatus 

A The extruded sample 

B Brass cylinder 

C Pulley to a driving motor 

..p.. 
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Figure 8. The unconfined compression test 
apparatus 

42 
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Calculation of data 

1. Strai.n. The strain was calculated from the equation 

E = 12 

where e is the strain in inches/inch, Ah is the change of specimen 

length as read from the extensometer; i. e., (h - h), and h is the 
o 0 

initial length of the sample in inches. 

2. Stresses. Since the sample thickens under cornpressit\n, the 

area was corrected for the increase in diameter. The corrected area; 

i. e., the average cross -sectional area A was found from 

A 
o 

A=-
1 -E 

13 

in which A is the initial area of the specimen. The vertical load P 
o 

was calculated from the equation 

P=Ak 
pr 

where A i.s the proving ring dial movement and k is the proving 
pr 

14 

ring constant in pounds per inch. The shear stress T was taken equal 

to one-half the compressive stress and can be found from the equation 

P 
T =--

2A 
15 

Modulus of elasticity 

To evaluate the modulus of elasticity, it is a common practice to 
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draw astra ight line to average the data for the fir st part of the stre s s -

strain diagram neglecting the curvature. The modulus of elasticity 

(Young's modulus) was taken as the slope of the straight line. This is 

expressed mathematically as (Higdon, et al., 1. 962, p. 45) 

a 
E - 16 

E 

where E is the modulus of elasticity. 

Preliminary Experiments 

1. Soil water and compaction uniformity 

Since the moisture content and the degree of compaction play a 

very important role in the compression test results, a preliminary 

experiment was conducted to find out the variation in initial spec ific 

weight and water content throughout the specimen. For a given soil, the 

compacted density varies with the degree of compaction. 

A soil sample was compacted in the same manner and under the 

same conditions used throughout this investigation, in a lucite tube (2 

inches inside diameter) which divided into six parts of known lengths 

(Figure 9). The divided cylinder was actually placed ins ide another 

cylinder before soil compaction to prevent any loss of water or soil. 

The sample was allowed to come to equilibrium for 24 hours, then was 

cut into six parts of known volume. Each part was weighed to determine 

its specific weight. The samples were dried at 1100 C for 24 hours and 

reweighed to determine the water contents. 



"""--- Brass blocK--ffIrtiI"'-':\.'''\: 

utside tube 

Inside tube 

Figure 9, Diagram. of the lucite tubes used to deter'nyine 
specific weight and water content throughol.1.t 
the length of the sam.ple 
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Results. Figures 10 and 11 show that the compacted dens ity 

varied by ± 0.4 pounds per cubic foot from that averaged over the 

whole specimen, and the water content varied by ± O. 15 percent from 

that of the whole sample. Such close specimen uniformity may not 

always be obtained for every sample. The results obtained from. three 

different samples. however p were in the range of variation reported in 

Figures 10 and 11. 

2. Comparison between unconfined 
compression test and triaxial shear test 

Although the triaxial shear test is more reliable for research 

purposes and for other testing in which control of the boundary condi-

tions is desired, the unconfined compression test was perform.ed 

because of its simplicity. A preliminary experiment was conducted, 

however, to find out how well the two methods agree. 

The apparatus used for performing a triaxial shear test is shown 

in Figure 12. It consists of a pressure-tight test chamber~ an air 

pressure control valve, a pressure gage, and the necessary pipes and 

fittings. A cylindrical sample is encased in a thin rubber membrane 

to isolate the sample from the fluid in the test chamber., A.fter the 

sample has been placed, fluid is introduced into the chamber under the 

desired pressure. Failure is induced by an additional thrust supplied by 

a hand wheel. 
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Results . Reasonably good agreement of resul ts ha s been ob-

tained from the unconfined compression and triaxial she a r tes t s for 

+ 
a Na -saturated sample using both d i stilled vv·ater and O. 1 N NaCl 

solution as pore fluid (Figures 13 and 14). The phys ica l properties 

of the sample s (compacted dens i tie s , water contents L the l a t eral 

pressures used, and the shear strength values obta'ned by both 
. ~ 

tests are listed in Table 4. 
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Figure 12. Triaxial shear test apparatus 
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Table 4. A cOITlparison between shear strength values obtained froITl triaxial and 
unconfined cOITlpression tests 

Triaxial te st Unconfined test 
Pore fluid COITlpacted Water Lateral Shear COITlpacted Water 

density content Eressure strength densitl:: content 

lb/ ft 
3 

0/0 psi psi Ib/ft
3 

0/0 

Distilled l2S.2 21.2 lS.O 

water 
124.8 21.6 2S.0 \ 11.0 124.2 21.S 

12S.0 21.3 40.0 
I 

0.1 N. 126.0 21.3 15.0 } 
NaCl solution 11. 0 125.3 21. 3 

124.9 21.4 25.0 

Shear 

strength 

psi 

11.0 

11 . 5 

U1 
V.> 
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EXPERIMENTAL RESULTS 

Experimental results are presented under two headings: (l) 

plastic properties, and (2) Strength properties. Plastic properties 

consist mainly of liquid and plastic limits data, whereas, strength 

properties are based on the results of the unconfined compression 

te sts. 

Plastic Properties 

Liquid limit 

Liquid limit values are plotted as a function of salt concentration 

in the pore fluid (Figures 15 to 19). An increase of the soluble salt 

concentration resulted in a decrease in liquid limit for all samples 

+ + ++ ++ + 
saturated with Na , K ,Ca ,Mg ,and H . A sharp decrease of 

liquid limit values is seen in the case of Na + - and K + -saturated sam-

pIes (Figures 15 and 16), whereas a gradual decrease is observed for 

Ca ++- , ++ + 
Mg -, and H -saturated samples (Figures 17 to 19). 

As shown in Figure 20, an increase of the exchangeable sodium 

percentage increases the liquid limit values. It is clear that the liquid 

+ 
limit value dropped when exchangeable Na was replaced by exchanea-

bl K + b' d . f K+ C ++ e ,ut increase passing rom to a , ++ -:-Mg , and H ; i. e., 

liquid limit is in the order Na + > H+ > Mg ++ > Ca ++ > K +. 
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Plastic limit 

Although liquid limit values showed a progressive decrease with 

increasing pore fluid concentration, plastic limit did not vary signifi-

cantly (Table 5). Hence, plastic index (liquid limit - plastic limit) 

decreased with soluble salt concentration in the sample. 

The effect of exchangeable cations on the plastic limit (Figure 21) 

shows in general that K + ion causes a lowering of plastic linlit and a 

decrease in plasticity index. ++ ++ . Mg and Ca Ions produced a Jrather 

similar effect in lowering plastic limit, but not as much as K-:~ ion. H + 

ion showed a peculiar effect on the soil sample. (The texture and struc

ture of the HCI treated samples changed':~ in such a way that plastic limit 

could not be determined. ) 

Strength Propertie s 

Stress -strain curves 

Typical stress-strain curves (Figures 22 to 26) are shown for 

+ + ++ ++ -:-samples saturated with Na , K ,Ca , Mg ,and H , respectively. 

Comparing stress -strain curves within the Na + or K -:- series of tests 

(Figures 22 and 23), it can be seen that the failure strain for samples 

compacted at high pore fluid concentration is relatively small~ whi.le 

for samples compacted with distilled water, failure was at higher 

strainso 

", 

'"'Reference is made to Figure 57. 
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Table 5. Plastic limit of soil as affected by the type of ion and 
soluble salt concentration 

Soil 
sample 

Distilled 

Na + -
saturated 

K+-
saturated 

Ca ++ 
-

saturated 

M ++ g -
saturated 

+ + (Na + K )-

water 

33.8 

31.9 

32.7 

32.8 

saturated 32.6 

+ ++ 
(Na + Ca )-
saturated 33.4 

+ ++ 
(Na +Mg )-
saturated 33.3 

Plastic limit 
Pore fluid concentration 

0.1 N 0.3 N 0.5 N 0.7 N 

33.6 34.0 33.8 33.5 

31.4 31.6 32. 1 32.0 

32.9 32.7 32.4 33.0 

32.6 32.5 32.6 32.2 

1.0 N 

33.9 

31.7 

32.9 

32,0 

62 

1.5 N 

34.0 

31.7 

32.5 

32.7 
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For Mg ++ - and H -+- -saturated samples (Figures 25 and 26), the 

stress-strain curves are almost straight lines (particularly with high 

salt concentration in the pore fluid) from zero to shear stresses ap ... 

proaching failu:re. The failure strains are exceptionally small for H+-

saturated samples with HCl concentration in the pore fluid more than 

0.5 N. These strains were about 1.0 to 1.6 percent (Figure 26). It is 

clear (Figure 27) that Ca ++ -saturated soil approaches failure in a 

+ ++ 
fashion which is intermediate between that of K - and Mg -saturated 

soils. Furthermore, the degree of curvature in stress -strain relations 

appears to decrease in the order 
+ + ++ ++ + 

Na > K > Ca > Mg > H , 

while the strain at which failure occurs for samples compacted with 

+ + ++ + ++ 
distilled water follows the order Na > K > Ca > H > Mg (e. g. , 

for Na + -saturated sample failure strain was 7.5 percent, whereas with 

++ 
Mg -saturated sample it was 2.4 percent. 

S tress-strain curves are drawn in Figures 28, 29, 30, and 31 to 

f f 1 + C ++ ++ + show the relative ef ect 0 exchangeab e K, a , Mg , and H 

+ 
percentage compared to Na -saturated sample, with distilled water 

used as the pore liquid in all ca se s. It can be seen that fa ilure stra in 

+ 
decreases with decreasing exchangeable Na percentage. The decrease 

is relatively sharp where Na + ion on the soil clay fraction was replaced 

++ + C ++ . with Mg , H , or a Ions, whereas it is gradual in the case ex-

+ + changea,ble K was used to replace exchangeable Na . This is further 

illustrated in Figure 32 where failure strain is plotted against exchangeable 

sodium percentage for different exchangeable ions. 
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+ + 
A comparison between a H -saturated sample and two Na -

saturated samples at failure is shown in Figure 33. It can be seen that 

+ 
the H -saturated sample failed by cracking or splitting, whereas the 

+ Na -saturated samples failed by flowing or bulging. Samples saturated 

with K+. Ca ++~ and Mg ++ showed intermediate behavior between that 

+ + shown by Na - and H -saturated samples. More and deeper cracks 

+ ++ ++ + + developed in the order H > Mg > Ca > K > Na . 

Modulus of elasticity 

The values of Young I s modulus E for different samples consid-

ered in the investigation varied from 800 to 11000 psi as shown in 

Table 6. The value of E was influenced by both the type of ion 

adsorbed on the clay fraction and the concentration of the pore fluid. 

Plots of E against salt concentration in the pore fluid are shown in 

Figures 34 to 38 for different samples with the specified ions. It is 

clear that for all samples the modulus of elasticity increases with 

soluble salt concentration in the pore water. However, E appear s to 

++ be affected less by the pore liquid concentration in the cases of Mg -

++ + and Ca -saturated samples (divalent ions) than in the cases of Na -, 

K + -, and H + -saturated samples (monovalent ions). A progressive 

increase of E with decreasing exchangeable sodium percentage is shown 

in Figure 39. + The relationship in the case of an exchangeable Na 

replaced by K+ or H+ is approximately a straight line. This relation-

ship is not definite, however, because the number of the experimental 
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Table 6. Modulus of elasticity of soil as affected by the type of 
exchangeable ions and soluble salt concentration 

Soil 
Modq.lus of elasticity, psi 

saITlple 
Distilled 

O. 1 N 0.3 N 0.5 N 0.7 N 1.0 N 1.5 N 
water 

+ 
Na -
saturated 856 1820 3660 4000 4660 4660 4660 

K+ ... 

saturated 1640 2400 2800 3100 3500 4000 4800 

Ca ++-
saturated 660 4000 4000 4000 4000 4000 5000 

M ++ g -
saturated 5000 5400 5900 6450 6450 6450 6450 

H+-

saturated 4400 6000 8400 10000 10200 10600 11000 

+ + 
(Na +K )-
saturated 1466 

+ ++ (Na +Ca )-
saturated 3000 

(Na + +Mg ++)-

saturated 2660 

(Na + +H+)-
saturated 2840 
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points on the curve is insufficient. 

Shear strength 

The shear strength of all sampl~s (with th~ exception of H + -

saturated specimen) was found to be a function of the salt concentration 

in the pore filling liquid (Figures 40, 41, 42, and 4~). A relatively 

high increase in shear strength with increasing salt concentration was 

found in the case of Na + -saturated soil. In thi$ case (Na + soils), the 

shear strength of the sample using 1. S N sodium chloride was 154.5 

percent of th~t when distilled water was llsed a. pore fluid. However, 

the influence pf the same range of concentration (1 . 5 N) on strength 

was less in the cases of Ca ++ (144.4 percent of distilled water), M'g ++ 

(122.3 percent of distilled waterL and K+ (119.3 percent of distilled 

water). + In the case of H -s~turated sample, no increase in strength 

was detecte~ for the different concentrations used (distilled water-

1.5 N Hel) as shown in Figure 25. 

An increase in strength with decreasing exch~ngeable sodium 

percentage is definite (Figure 44). When distilled water was used as 

the pore fluid, a substitution of exchCl.ngeablfe Ca ++ ++ or Mg for 

exchangeable Na + increased the strength by 31.8 percent and 34.6 

percent respectively, while a substitution of exchangeable K+ for 

exchangeable Na + increased it 45.4 percent. The increase in strength 

for the H+ -ion situation was out of proportion with other cations. Th.i~ 

latter amounted to 223 percent. 
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DISCUSSION 

The following discussion will be restricted to the interpretation 

of results in terms of what has been reported in the current engineering 

literature. A general discuss ion, however, will be presented in the 

end of this chapter to discuss all the experi.mental results in terms of 

Stern I s theory of electric double layer. 

Plastic Properties 

Atterberg limits 

A simplified procedure for determining the liquid limit has been 

investigated by the Waterways Experiment Station (1949). The method 

is based on the results of 767 liquid limit tests, according to which it 

was concluded that the plot of blows against water content on a log-log 

scale is a straight line. Hence, the liquid limit W for the soil investi-

gated could be found from one test us ing the equation 

N 1.21 
w = WN(ZS) 

in which W N is the water content of the soil which closes the groove 

in N blows in the standard limit device. 

It was found in this study that the slope of the curve (blows agai.ns~ 

water content on a log-log scale) is not constant; 1. e., it changes with 
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both salt concentration in the pore fluid and the type of ion adsorbed on 

the clay surfaces (Figures 45 to 53), The slope tends to flatten, how-

ever~ with decreasing exchangeable sodium percentage (Figures 50 to 

53). It seems that the slope of the plot of blows against water content 

on a log -log scale is a function of the elastic properties of the soil 

* which in turn change with the type of ion adsorbed anc;l soluble salt 

concentra tion in the sample. 

The :results presented in this dissertation showing that exchangea .. 

ble ions have an influence upon liquid limit (Figure 20) are in agreement 

with Rosenquist r s opinion (1957). However, Michaels (1959) showed 

that inconsistencies exist in the relationship between liquid limit and 

the nature of exchangeable ions in various clay minerals. He observed 

. that with montmorillonite, and to a lesser degree with illite clay 

minerals, the liquid limit decreases as the order Li + > Na + > K + > 

+ + 
Rb > Cs . On the other h~ndJ with the clay mineral of kaolinite, the 

order of liquid li.mit i.s reveJ;"sed as Li + < Na + < K + < Rb + < Cs +. 

Mourn and Rosenquist (1961) found that in the case of montmorillonite 

+ + + 
clays the liquid limit dropped from Li to Na and from Na to K+ 

but increased on passing from K+ to Rb + and from Rb + to Cs +, 

, 

h 0 k 10
• o· • 0 h L O + N + + b+ C + w ereas In ao Inlte It varles 1n t emal1ner 1 > a > K = R = s . 

To explain this controversy, they presented two curves (Figure 54) 

* Referred to discussion on stress -strain curves and modulus of 
elasticity. 
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showing that the amount of int~rcrystalline water (water adsorbed in the 

inner structure of the crystal) at the liquid limit depends upon the 

bonding strength between the mineral, whereas the amount of infra-

crystalline water (water adso~bed between clay particles) is a function 

of the adsorption force. When these two curves are summed up, the 

liquid limit values are obtained. In the case of kaolipite clays, infra-

crystalline water is the only one involved, whereas both kinds of water 

exist in montmorillonite clays. This explanation, however, is still in 

contradiction with the results reported by Michaels (1959). It appears 

that the situation in clay minerals is rather complex, because the 

inner structure of the montmorillonite crystal is accessible not only to 

water molecules, but also to cations in the system. Thus, th~ different 

degree of hydration of these ions plays an important role in the liquid 

limit values. The results of this investigation are in agreement with 

those of Michaels (1959) and Moum and Rosenquist (1961), since it was 

found from x-ray analysis of the original soil sample that the dominant 

(about 85 percent) clay fraction is montmorillonite. 

+ ~:~ 
The effect of exchal1geable ions (with the exception of H) on 

Atterberg limits (liqui.d and plastic limits) may be explained on the 

basis of the differences in hydration of the clays. There are two types 

of hydration that influence Atterberg limits; namely, water of hydration 

-', 
"'Anomalous behavior of Hel treated soil is discussed separately 

uQ.der the subheading, "General discussion. II 
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held between particles in aggregate formation, and the hydration hull 

around the individual particles. The K+ -saturated soil requires a 

smaller amount of water to produce the plasticity effects than Na +-

saturated soil (Baver, 1928). This is merely a difference in the hy-

dration of particles as a function of the hydration of ions. In the case 

of Ca ++ - and Mg ++ -saturated samples, a certain amount of water is 

required to fill the pores in their aggregates, in addition to the water 

oriented on the particle surfaces. Therefore, a larger quantity of 

water is necessary to produce the same plasticity effect than in the case 

of K + -saturated soil. 

The decrease of liquid limit values with increasing soluble salt 

concentration is in agreement with the results reported by Lambe (1957). 

Lambe found that for ten different soil samples the liquid limit was 

reduced considerably when 10 percent calcium acrylate was added. 

However, the reduction of liquid limit values in Lambe I s experiment 

may be due to the effect of exchangeable calcium rather than to soluble 

salt concentration. 

Strength Propertie s 

Stress -strain curves 

Schmertmann and Osterberg (1960) stated that, for cohesive soils, 

:!.:: 
the cohesion strength component develops to its maximum value at low 

==:' 
Reference is made to the conventional concept of shear strength 

as made up of friction and cohesion terms (8 : (J ten <p + c). 
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strains (about 1 percent), while the friction component requires a much 

greater strain to reach its maximum. In this regard, Casagrande and 

Hirschfeld (1960) suggested a hypothesis of double failure, namely, a 

yield strength at a very low strain which develops immediately following 

the stra ight line portion of the stres s -stra in curve, and an ultimate 

strength that develops at high strains. They suggested that the first 

failure which would account for low strains corresponds to a bond at the 

points of contact between particles, whereas the high strains at the 

ultimate strength would reflect the mobilization of internal friction. 

Following the above reasoning, it seems that considerable strain 

is required to achieve maximum interference between particles and 

therefore maximum frictional strength. This would be true for a dis-

+ persed soil; e. g ... Na -saturated sample (Figure 22) where particles 

are packed closer together and one would expect particle interference. 

Since the cohesion is generally thought to be based on the electrical 

attraction forces between clay particles (Lambe, 1960b) and large strains 

would not be required to activate these forces, failure strain values 

decrease with decreasing exchangeable sodium percentage (Figure 32); 

i. e., increasing electrical attraction forces. 

+ When a sample fails by cracking; e. g., H -saturated sample 

(Figure 33), the inference may be drawn that the bonds within the sample 

have been de stroyed rather completely. On the other hand, in a plastic 

+ type of failure (bulging or flowing); e. g., Na -saturated samples 
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(Figure 33), the material remains intact and no cracks develop 

(Whitman, 1960). Since the bonds within a soil sample depend on the 

level of pore fluid concentration and the type of exchangeable cation, 

the fashion in which the sample fails is controlled by these factors. 

Modulus of elasticity 

The modulus of elasticity is a measure of the stiffnes s properties 

of a material; namely, its inherent capacity to resist elastic displace

ment under stress (Hetenyi, 1950). The range of elastic deformation 

(the particles move one with respect to the others, but they do not lose 

their bonds) is controlled by the force due to the interaction between 

particles, which in turn is affected by the interparticle forces in the 

system. In this study, an increase in attraction forces or a decrease 

in replusive forces would increase the contact pressure between parti

cles, which results in an increase of modulus of elasticity. Since the 

type of exchangeable ion and the salt concentration in the pore liquid 

affect the interparticle forces, it would be expected that the modulus of 

elasticity would be influenced by both factors. 

Cooling and Skempton (1942) found that the modulus of elasticity 

increases with increasing strength. This is in accordance with the 

results obtained in this study with the exception of the H + -saturated 

sample (Figure 55). For London clay, Skempton and Henkel (1957) 

found that the increase of E with strength was approximately a straight 

line relationship. This was expressed as 
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E = 140 T 

Such relationships as shown in Figure 55 are not linear and are affected 

by the type of adsorbed ion on the clay fraction. 

Shear strength 

Since shear strength in cohesive soils ITlanifests the bonding of 

particles which is a function of the interparticle forces, one would 

expect that it is influenced by both the type of exchangeable ion and 

soluble salt concentration. LaITlbe (1960b) suggested that the shear 

strength in cohesive soils could be expressed in terITlS of the net inter-

particle forces (Equation 10). FurtherITlore, he used the Gouy-ChapITlan 

theory of double layer to present the! effects of various environITlents in 

the soil-water systeITl on shear strength. The Gouy-ChapITlan concepts 

predict that any change in the soil-water system that expands the double 

layer; i. e., increases the repulsive forces, reduces the shear strength 

of a clay. Addition of salt to soil-water system or exchanging cations 

from low to high valence or froITl hydrated to less hydrated suppresses 

the double layer (decreases repulsive forces). If this suppression is 

adequate j the clay particles will approach each other close enough to 

react to attraction forces (Van der Waals), thus causing flocculation. 

Although the Gouy-ChapITlan theory as described above explains 

sOITle of the observed results 2 e. g., increase of strength with addition 

+ . 
of NaCI salt to the system or by replacing exchangeable Na wlth 
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++ exchangeable Ca ~ there remain several factors that are not fully 

explained. For example, experimental results presented in this disser-

. + tatlon show that the K -saturated sample in distilled water has higher 

++ 
strength than samples saturated with divalent cations, e. g., Ca and 

Mg ++ (Figure 44). This is in contradiction to the Gouy-Chapman theory 

which infers that divalent cations are more strongly attracted toward 

the negative surface than monovalent ions, and therefore, form a thinner 

layer (more stable). 

General discussion 

The increase of strength, modulus of elasticity, and the decrease 

of liquid limit with increasing salt concentration in the pore fluid and 

decreasing exchangeable sodium percentage could be generally explained 

in terms of the Stern theory of double layer. Stern (Kruyt, 1952, p. 132) 

applied the Gouy-Chapman theory with the first layer of ions not im-

mediately at the surface but at a distance 5 away from it. Stern 

further considered the possibility of specific adsorption of ions and 

assumed that these ions are located in the plane 5. This layer of 

adsorbed ions is called the Stern layer. As mentioned in the previous 

discussion regarding the Gouy-Chapman theory, the alteration of electro-

lyte concentration in a soil-water system alters the attraction-repulsive 

balance between particles. Increased ion concentration in the external 

fluid causes a suppression of the double layer which increases the net 

attractive force between particles (Warkentin, et al., 1957). Likewise, 
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different exchangeable ions influence the specific adsorption within the 

Stern layer, while in turn influencing the double layer (Bolt, 1955). 

These factors, therefore, alter the degree of flocculation and hence 

soil aggregation. 

Specific adsorption arises in soil-electrolyte systems when the 

crystalline silicate structure makes specific demands upon the ions; 

that is, certain clays are able to fix ions of appropriate sizes in a non

exchangeable forITl. An example of such a case is the potassiuITl ion, 

which is of such size and coordination nUITlber that it can easily fit into 

the surface holes in the silica sheets. Upon drying, the adjacent clay 

sheets COITle close enough together for the potassium ion to fit tightly 

into the holes and it then becomes nonexchangeable. Dyal and Hendricks 

(1952) showed that drying a potassium saturated montmorillonite gave 

rise to a ITlineral with inter stratified expanding and nonexpanding 

layers, and x-ray analysis confirmed this fact. It seems 9 therefore, 

that the clay fraction of the sample used in this study (ITlontITlorillonite) 

is converted into minerals of the illite group when saturated with 

potassium ion. The difference in strength between illite and montITlO

rillonite, the writer thinks, is a result of the difference in swelling 

behavior which is related to repulsive force (swelling pressure is pro

portional to repulsive forces). In ITlontITlorillonite clay ITlinerals, 

swelling manifests an interlayer swelling in addition to interparticle 

swelling, whereas in illite (les s hydrated) only the interparticle swelling 
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exists. This argum.ent is supported by the Atterberg lim.its, shown in 

Figures 20 and 21, where potassium.-saturated sam.ples showed the 

lowest lim.its am.ong all other sam.ples. 

Despite the fact that the potassium. ion increased the soil strength 

m.ore than either calcium. or m.agnesium. ions (in distilled water -soil 

+ system.), it is clear (Figure 27) that K -saturated sam.ples increased 

in strength progressively as the strain increased, in a fashion similar 

+ to that of the Na -saturated sam.ple, i. e., the shear strength develops 

at high strains. This behavior toward failure reflects the initially 

dispersed structure, whereas initially flocculated structures (Ca ++

and Mg ++ -saturated sam.ples) develop high strength at low strains. 

The role of hydrogen in soils is rather com.p1ex since this ion 

seems to be preferentially adsorbed and held very tightly by silicate 

m.inerals. The hydrogen ion also tends to form. chem.ica1 bonds with 

oxygen on the surface. Furtherm.ore, it has been dem.onstrated 

(Marshall, 1949, p. 107) that hydrogen clays are in reality hydrogen-

aluminum. system.s. Alum.inum arises by the decom.position of parts of 

the clay lattice due to progress ive attack by hydrogen ions. It was 

suggested (Marshall, 1949, p. 107) that the chief action is breakage of 

Al -0 -Si linkages in clay m.inera1s. 

Experim.ental results showed a substantial increase in strength 

when exchangeable sodium. was replaced by exchangeable hydrogen 

(Figure 44). + Furtherm.ore. the shear strength for H sam.p1es was not 
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a function of electrolyte concentration. The ano:malous behavior of the 

hydrogen ion, however, :may be attributed to exchangeable alu:minu:m 

which is released when treating soil with HCl. Fro:m the work of 

Mukherjee, et al. (1947), it is shown that the alu:minu:m ion is present 

in large proportions in acid clays prepared by electrodialysis or 

leaching with dilute acids. Hence, it appears that the :method used in 

this study to prepare H sa:mples was rather severe (suspensions in 3 

N. HCl), which resulted in a breakdown of a large part of the clay 

fraction, liberating exchangeable alu:minu:m. This is confir:med by x

ray analysis (Figure 56, with co:mparison to Figure 6). Therefore, 

strength properties of HCl-treated sa:mples are controlled by the 

alu:minu:m ion. This ion, being trivalent, is strongly adsorbed on the 

clay colloid and would explain the high shear strength values of the HCl

treated sa:mples. Further:more, the breakdown of part of the clay 

fraction :might result in the for:mation of alu:minu:m colloids, which are 

characterized by the ir ce:menting action between soil particles. The 

increase of pore fluid concentration by addition of HCl apparently did 

not affect the strength value, because hydrogen ions are single charged 

and would be expected to cause little or insignificant suppression of the 

double layer co:mpared with the exchangeable trivalent alu:minu:m ions 

on the clay surfaces. Shear strength independence of pore liquid concen

tration could be also a result of the large effect of specific adsorption in 

the Stern layer co:mpared to the change in the double layer character

istics' so that the effect of the latter could not be detected. 
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The plastic limit for RCI-treated samples could not be deter

mined mainly because of the destruction of most of the clay fraction. 

This, in addition to the removal of CaC0
3

, resulted in a sample which 

is completely different in structure and texture than all other treated 

samples (Figure 57). 

It should be emphasized, however, that the strength and plastic 

characteristics shown by RCI-treated soU cannot be attributed only to 

the effect of exchangeable hydrogen. A thorough study regarding acid-

treated soils is needed, using methods of preparation which result in a 

high percentage of exchangeable hydrogen (Aldrich and Buchanan,- 1958). 

Reliability of experimental data 

There are many sources of test errors that can affect the measured 

values of Atterberg limits and shearing strength. Weight measurements 

were of sufficiently precise nature that errors from such sources, if 

any, are felt to be negligible. With the methods~:~ used in this study, 

remolded specimens were prepared with very small variations in initial 

density and water content. In all tests, initial compacted density (i. e., 

before test) was controlled to within ± 1.1 pounds per cubic foot (0.9 

percent) and moisture content to within ± 0.35 percent. These densities 

and moisture contents are considered to provide results well within the 

precision of test measurements. 

~.c 

See Experimental Methods and Procedure. 
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In order to detect errors due to uncontrolled conditions ~ duplicate 

samples were tested to ensure freedom from inconsistencies. 

Evaluation of experimental results 

The information presented in this dissertation gives a warning of 

dangerous conditions which may develop in a soil. The presence of 

large amounts of exchangeable sodium in a cohesive soil should be re-

garded as a danger signal. These results show also that the change in 

strength properties of an earth structure with time may be a result of 

a change in the percentage of the dominant adsorbed cations and/ or the 

concentration of salts in the pore fluid. 

The sloughing phenomenon which often occurs on the sloping sides 

of drain ditches may be explained as follows. The factor of safety for 

a cohesive soil which is statically stable will decrease if the dominant 

. ++ + ++ + 
exchangeable Ions (Ca ~ K g and Mg ) are replaced with Na ions. 

The substitution of exchangeable sodium is a phenomenon which natu-

rally occurs in the banks of open drains. Therefore~ the strength of 

slopes decreases progressively with increasing exchangeable sodium 

percentage and failure may be brought about. The chance of failure 

increases when salt is removed from the slopes by percolating rain water 

or by irrigation with salt-free water. It should be realized, however, 

that there are other factors, such as moisture variation and mechanical 

rupture produced in soil strata through frost action, which contribute 

also to the slope's fa ilure. 
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SUMMARY AND CONCLUSIONS 

A study has been conducted to find out both the effect of different 

exchangeable cations and the concentration of ions in the soil pore fluid 

on strength and plastic properties of a sample of cohes ive s.oil taken 

from the bank of an open drain ditch. Nine samples were prepared and 

tested for Atterberg limits and unconfined compression test. These 

samples were as follows: 

+ 
(a) Sodium-saturated sample (100 percent exchangeable Na ) 

(b) Potassium-saturated sample (92 percent exchangeable K+) 

(c) Calcium-saturated sample (98 percent exchangeable Ca ++) 

(d) Magnesium-saturated sample (100 percent exchangeable 

++) Mg 

(e) HCI-treated sample resulting in a (H+ + AI+++)-saturated 

+ +++ 
sample (100 percent exchangeable (H + Al }) 

(f) Sodium and potassium -saturated sample (34 percent ex-

+ + 
changeable Na and 62 percent exchangeable K ) 

+ (g) Sodium and calcium-saturated sample (46 percent Na and 

++ 
51 percent exchangeable Ca ) 

(h) Sodium and magnesium -saturated sample (43 percent ex-

+ ++ 
changeable Na and 56 percent exchangeable Mg ) 

(i) . + +++ 
SodIum and (H + Al ) -saturated sample (51 percent ex-

h bl N + d 49 t h bl (H+ + AI+++)) c angea e a an percen exc angea e 
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All samples were tested with distilled water in the pores (it 

should be realized, however, that some of the adsorbed ions dissociate 

in the pore water). In addition, the first five samples were tested 

using the chloride salt of the adsorbed ion as the pore -filling liquid. 

Hydrochloric acid was used as pore fluid for HCl-treated samples. 

Concentrations of electrolytes used were O. 1, O. 3, O. 5, O. 7, 1. 0, and 

1.5 normal. 

For unconfined compression tests, remolded samples were pre

pared with very small variation in compacted density (± 0.9 percent) 

and water content (± 0.35 percent). Furthermore, duplicate samples 

were tested to ensure that all variations were within the allowed experi-

mental error s. 

The experimental results of this study may be summarized in the 

following points: 

1. A general decrease of liquid limit and an increase in both 

shear strength and modulus of elasticity, with increasing salt concen

tration in the pore fluid, were observed for all samples, with the 

exception of HCl-treated samples for which shear strength was inde

pendent of HCl concentration in the pore water. 

2. An increase in both shear strength and modulus of elasticity 

with decreasing exchangeable sodium percentage was definite. 

3. The increase of soil shear strength caused by different ex

changeable cations with distilled water in the soil pores was in the order 
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+ ++ ++ + Na < Ca < Mg < K < HCl-treated soil, whereas the modulus of 

elasticity increased in order Na + < K+ < Ca ++ < HCl-treated soil < 

M ++ g . 

4. A decrease in the liquid limit with decreasing exchangeable 

sodium was found. 

5. The influence of the different exchangeable cations used on 

+ ++ 
soil liquid limit was in the order Na > HCl-treated sample> Mg > 

From this study it could be concluded that: 

1. The strength and plastic properties of cohesive soils are 

affected greatly by the type and concentration of adsorbed ions as well 

as by the ions concentration in the pore fluid. 

2. The failure of the sloping sides of drain ditches may be at-

tributed at least in part to increasing exchangeable sodium percentage. 

3. For satisfactory and economical design of earth structures, 

a knowledge of chemical as well as physical properties of cohesive soils 

is essential. The boundary conditions which may change the soil physico-

chemical properties with time should be considered. 

4. Strength properties of HCl-treated soils are controlled by 

aluminum rather than hydrogen ions. Exchangeable aluminum was liber-

ated as a result of the breakdown of the clay fraction in soils when 

treated with HC!. 

5. The experimental results are not completely explained in terms 
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of the Gouy-Chapman theory of double layers. However, the Stern 

theory which considers the specific adsorption of ions on clay surfaces 

is a better alternative and does explain the results adequately. 

Recommendations for Further Re search 

1. The study of the effect of organic matter, soil conditioners, 

and adsorbed organic ions (or molecules) on strength properties of 

soils is important in analyzing the stability of slopes. 

2. An analytical study to relate soil compaction, structure i and 

strength properties of cohesive soils is needed before any attempt is 

made to develop numerical equations based on colloidal theory. Cor-

rection factor s for noncolloidal particle concentration~ externally 

applied forces, and degree of soil compaction would be necessary. 

3. A detailed study regarding strength properties of acid soils 

is recommended for both its basic and applied importance. Methods 

for the preparation of hydrogen soils where exchangeable aluminum is 

reduced to a minimum should be investigated before relating the strength 

+ properties to exchangeable H . 
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