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ABSTRACT

Spatially Indexed Functional Data

by

Oleksandr Gromenko, Doctor of Philosophy

Utah State University, 2013

Major Professor: Dr. Piotr S. Kokoszka
Department: Mathematics and Statistics

The increased concentration of greenhouse gases is associated with the global warming

in the lower troposphere. For over twenty years, the space physics community has studied

a hypothesis of global cooling in the thermosphere, attributable to greenhouse gases. While

the global temperature increase in the lower troposphere has been relatively well established,

the existence of global changes in the thermosphere is still under investigation.

A central difficulty in reaching definite conclusions is the absence of data with suf-

ficiently long temporal and sufficiently broad spatial coverage. Time series of data that

cover several decades exist only in a few separated regions. The space physics community

has struggled to combine the information contained in these data, and often contradictory

conclusions have been reported based on the analyses relying on one or a few locations.

To detect global changes in the ionosphere, we present a novel statistical methodol-

ogy that uses all data, even those with incomplete temporal coverage. It is based on a

new functional regression approach that can handle unevenly spaced, partially observed

curves. While this research makes a solid contribution to the space physics community, our

statistical methodology is very flexible and can be useful in other applied problems.

(142 pages)
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PUBLIC ABSTRACT

The increased concentration of greenhouse gases is associated with the global warming

in the lower troposphere. For over twenty years, the space physics community has studied

a hypothesis of global cooling in the thermosphere, attributable to greenhouse gases. While

the global temperature increase in the lower troposphere has been relatively well established,

the existence of global changes in the thermosphere is still under investigation.

A central difficulty in reaching definite conclusions is the absence of data with suffi-

ciently long temporal and sufficiently broad spatial coverage. Time series of data that cover

several decades exist only in a few separated (industrialized) regions. The space physics

community has struggled to combine the information contained in these data, and often

contradictory conclusions have been reported based on the analyses relying on one or a few

locations.

To detect global changes in the ionosphere, we present a novel statistical methodology

that uses all data, even those with incomplete temporal coverage. It is based on a new

functional regression approach that can handle unevenly spaced, partially observed curves.

While this research makes a solid contribution to the space physics community, our sta-

tistical methodology is very flexible and can be useful in other applied problems including

spatio-temporal data.

Oleksandr Gromenko
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CHAPTER 1

INTRODUCTION

The research presented in this dissertation was originally motivated by a very important

problem which is directly connected to global warming in the troposphere. The increasing

concentration of greenhouse gases has been associated with the global cooling in the iono-

sphere as opposite to the global warming in the lower troposphere. Roble and Dickinson

(1989) using global modeling have shown that the doubling of the mixture of CO2 and

CH4 will lead to significant cooling of the thermosphere by about 50K. Since then, many

researchers in the geophysics community have been working on estimating the linear trend

possibly associated with the increasing concentration of greenhouse gases.

To address this problem, we analyze the maximum or the peak frequency of oscillation

of free electrons which is directly connected to the temperature of the ionosphere and

comparing to the last can be measured in a straightforward way. This frequency has a special

nomenclature in geophysics literature, foF2, and we use the same notation everywhere below.

The foF2 data represent collections of long (50+ years) mostly equidistant time series with a

typical time separation of one hour. These records are collected at different spatial locations

all around the globe by ground based instruments called ionosondes.

Global cooling in the ionosphere would cause systematic global decrease of foF2. Behav-

ior of the ionosphere is dominated by several natural factors such as solar activity, Earth’s

magnetic field, and others. These natural factors have changed over the last decades. Thus,

the main challenge in the study was to separate the influence of these natural factors and

anthropogenic factors which can be later associated with the increasing concentration of

greenhose gases. There exist many different ionospheric models which reproduce the short

and middle term behaviour of the ionosphere very well. But modeling of the long term

behaviour has always been challenging. Thus, determination of the long term trend should

be done from the statistical point of view rather than via physics modeling.
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This dissertation consists of four chapters. Each chapter represents a separate article,

three of which are already published and one is under review.

The foF2 data are very new to the statistical community. They are freely available from

the Space Physics Interactive Data Resource (SPIDR), http://spidr.ngdc.noaa.gov/spidr/.

Unfortunately, the raw foF2 data are not of good quality and need preprocessing (cleaning)

before any statistical study. We developed a more or less automatic cleaning procedure,

which besides general cleaning, is also capable of calculating medians and averages for dif-

ferent selected times or time periods. One of the main methodological challenges is that

foF2 data have very long gaps of missing observations which, at the early stages of our work,

forced us to significantly reduce the analyzed time interval and drop most of the records.

Let X(s; t) be a foF2 measurement at location s and time t. The main new idea in

our research was to use a functional approach instead of applying classical spatio–temporal

statistics. Specifically, we treat the whole curve X(s; ·) as a single L2-valued observation.

These L2-valued observations form a spatial random field. Assuming strict stationarity, we

represent each curve using the functional space–time model:

X(s; t) = µ(t) + ε(s; t), (1.1)

where µ(t) = EX(s; t) and Eε(s; t) = 0. The error term is further decomposed using the

Karhunen–Loéve expansion: ε(s; t) =
∞∑
j=1

ξj(s)vj(t), where vj(t) are the functional principal

components (FPC’s) and ξj(s) are the corresponding zero mean scores with some internal

spatial correlation structure. In Chapter 2, we proposed several new estimators for the

mean function, µ(t), and the FPC’s, vj(t), which naturally incorporate spatial or another

type of dependence. Using numerical simulations, we have shown that our new estimators

have better performances compared to the standard ones which assume independence of

curves. In the same chapter, we proposed a correlation test for testing if two sets of curves

measured at the same locations are uncorrelated. Using this test, we confirmed that the

changes in foF2 records are strongly correlated with the changes in the Earth’s magnetic

field.
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After developing a suitable statistical framework for modelling spatially correlated func-

tional data (SCFD), we wanted to test if indeed the mean function, µ(t), is the same for all

spatial locations. In Chapter 3, we proposed a testing procedure for testing if the means of

two samples of CFD are the same:

H0 :µ1(t) = µ2(t),

HA :µ1(t) 6= µ2(t).

Using this test, we have shown that the means of foF2 records in western and eastern Europe

are statistically different.

One of the reasons why the analysis of SCFD has become so popular is because it can be

treated as a fully nonparametric extension of spatio–temporal statistics. By fully nonpara-

metric we mean that neither the mean function µ(t) nor the covariance Cov(X(sk; ti),X(sℓ; ti′))

require any parametric assumptions. Particularly, the Karhunen–Loéve expansion of the er-

ror term, mentioned earlier, leads to the following nonparametric covariance function

Cov(X(sk; ti),X(sℓ; ti′)) =

∞∑

j=1

γj(sk, sℓ)vj(ti)vj(ti′), (1.2)

where γj(sk, sℓ) = E[ξj(sk)ξj(sℓ)]. Model (1.2) is nonseparable, except in some very special

cases, and can be constructed without any parametric assumptions, see Chapter 4 for the

further details.

In the second part of Chapter 4, we estimated the linear trend not associated with the

natural factors such as solar activity and assessed its statistical significance. We proposed

a simple procedure and applied it to the noon foF2 records. We found that for the studied

period, the linear trend is negative and it is statistically significant.

In Chapter 5, we proposed new estimators for the mean function µ(t) and the FPC’s

vj(t) which simultaneously incorporate spatial dependence and handle missing observations.

Using this new technique, we were able to analyse 85 foF2 records in the northern hemisphere

for the period from 1957 to 2011. We found that the linear ionospheric trend in the northern
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hemisphere is statistically significant. We believe this result will make a sound contribution

to the geophysics community. Our new statistical methodology will also be useful in other

research areas which involve the analysis of space–time data with observations and trend

determination.



CHAPTER 2

ESTIMATION AND TESTING FOR SPATIALLY INDEXED CURVES WITH

APPLICATION TO IONOSPHERIC AND MAGNETIC FIELD TRENDS1

Abstract

We develop methodology for the estimation of the functional mean and the functional

principal components when the functions form a spatial process. The data consist of curves

X(sk; t), t ∈ [0, T ], observed at spatial locations s1, s2, . . . , sN . We propose several methods,

and evaluate them by means of a simulation study. Next, we develop a significance test

for the correlation of two such functional spatial fields. After validating the finite sample

performance of this test by means of a simulation study, we apply it to determine if there

is correlation between long term trends in the so called critical ionospheric frequency and

decadal changes in the direction of the internal magnetic field of the Earth. The test provides

conclusive evidence for correlation thus solving a long standing space physics conjecture.

This conclusion is not apparent if the spatial dependence of the curves is neglected.

2.1 Introduction

The contribution of this paper to statistics is two–fold: 1) we develop estimation

methodology for the functional mean and the functional principal components (FPC’s)

when the functions form a spatial field; 2) we propose a significance test to determine if two

families of curves observed at the same spatial locations are uncorrelated. The contribution

to space physics consists in solving a controversy regarding the impact of long term changes

in the internal magnetic field of the Earth on long term ionospheric trends. The required

physics background is provided later in this section, and in Section 2.8.

1CO-AUTHORED BY O. GROMENKO, P. KOKOSZKA, L. ZHU, AND J. SOJKA. REPRODUCED

FROM THE ANNALS OF APPLIED STATISTICS, VOL. 6, 669-696, 2012. PERMISSION IS NOT RE-

QUIRED.
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The data is modeled as curves X(sk; t), t ∈ [0, T ], observed at spatial locations

s1, s2, . . . , sN . Such functional data structures are quite common, but typically the spa-

tial dependence and the spatial distribution of the points sk are not taken into account. A

fundamental question is how to estimate the mean function of curves indexed by spatial

locations. Clearly, curves located at close by points look similar and must be given smaller

weights than curves at points far apart. In addition to the mean function, FPC’s play

a fundamental role in functional data analysis. Good estimators of FPC’s are needed to

construct reliable testing and classification procedures, but such issues have been addressed

only in the contexts of independent curves, with focus on sparsity and measurement error.

The geophysical data that motivate this research are available at fine temporal grids and are

measured with errors that are negligible relative to the objectives of the statistical analysis.

A focus of recent geophysical research is on the detection and estimation of global and/or

regional long term trends (the global warming paradigm), so before a statistical analysis

is undertaken, the data are typically smoothed to remove daily or even annual periodicity.

The question we address is how to combine the temporal trajectories available at many

spatial locations to obtain meaningful summary trends. We argue that one can do better

than using simple averaging. The focus of this paper is thus on combining information from

spatially dependent curves, which are smooth and available at all time points.

Many environmental and geophysical data sets fall into the framework considered in this

paper. The data set that motivated this research consists of the curves of the ionospheric

F2-layer critical frequency, foF2. Three such curves are shown in Figure 2.1. In principle,

foF2 curves are available at over 200 locations throughout the globe, see Figure 2.2, but

sufficiently complete data are available at only 30-40 locations which are very unevenly

spread; for example, there is a dense network of observatories over Europe and practically

no data over the oceans. The study of this data set has been motivated by the hypothesis

of Roble and Dickinson (1989) who suggested that the increasing amounts of (radiative)

greenhouse gases should lead to global cooling in mesosphere and thermosphere, as opposed

to the global warming in lower troposphere, cf. Figure 2.3. Rishbeth (1990) pointed out
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Figure 2.1: F2-layer critical frequency curves at three locations. Top to bottom (latitude
in parentheses): Yakutsk (62.0), Yamagawa (31.2), Manila (14.7). The functions exhibit a
latidudal trend in amplitude.
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Figure 2.2: Locations of 218 ionosonde stations. Circles represent the 32 stations with the
longest complete records.
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that such cooling would result in a thermal contraction and the global lowering of the

ionospheric peak densities, which can be computed from the critical frequency foF2. The

last twenty years have seen very extensive research in this area, see Lastovicka et al. (2008)

for a partial overview. One of the difficulties in determining a global trend is that the

foF2 curves appear to exhibit trends in opposing directions over various regions. A possible

explanation suggests that these trends are caused by long term trends in the magnetic field

of the Earth. There is however currently not agreement in the space physics community

if this is indeed the case. In general, to make any trends believable, a suitable statistical

modeling, and a proper treatment of “errors and uncertainties” is called for Ulich et al.

(2003). This paper makes a contribution in this direction. Space physics data measured

at terrestrial observatories always come in the form of temporal curves at fixed spatial

locations. In Maslova et al. (2009), Maslova et al. (2010a), and Maslova et al. (2010b) the

tools of functional data analysis were used to study such data, but the spatial dependence

of the curves was not fully exploited.

Spatio-temporal modeling has received a great deal of attention of late, see Part V

of Gelfand et al. (2010) and Chapters 3, 4 and 6 of Gneiting et al. (2007) which dis-

cuss spatio–temporal models for geostatistical data. There has however not been much

research specifically on spatially indexed functional data; Delicado et al. (2010) review

recent contributions. For geostatistical functional data, several approaches to kriging have

been proposed, see Yamanishi and Tanaka (2003), Nerini et al. (2010), Giraldo et al. (2011)

and Bel et al. (2011).

Throughout the paper, {X(s)} denotes a random field defined on a spatial domain and

taking values in the Hilbert space L2 = L2([0, 1]) with the inner product

〈f, g〉 =
∫ 1

0
f(t)g(t)dt, f, g ∈ L2.
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Figure 2.3: Typical profile of day time ionosphere. The curve shows electron density as a
function of height. The right vertical axis indicates the D, E and F regions.

The value of the function X(s) ∈ L2 at time t ∈ [0, 1] is denoted by X(s; t). We postulate

the model

X(s; t) = µ(t) +
∞∑

i=1

ξi(s)ei(t), ξi(s) = 〈X(s) − µ, ei〉, (2.1)

where the ei form a complete orthonormal system. Note that the mean function µ and the

FPC’s ei do not depend on s. A sufficient condition for this is that the distribution in L2

of the function X(s) does not depend on the location s. A stronger sufficient condition is

the strict stationarity of the field {X(s)}.

For the applications we have in mind, it is enough to assume that the spatial domain

is a subset of the plane or a two–dimensional sphere. On the plane, the distance between

points is the usual Euclidean distance; on the sphere, we use the chordal distance defined

as the Euclidean distance in the three–dimensional space. The reason for using the chordal
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distance is that any spatial covariance functions in R
3 restricted to the unit sphere is then

also a covariance function on the sphere. Denoting the latitude by L and the longitude by

l, the chordal distance, 0 ≤ dk,ℓ ≤ 2, between two points, sk, sℓ, on the unit sphere is given

by

dk,ℓ = 2

[
sin2

(
Lk − Lℓ

2

)
+ cosLk cosLℓ sin

2

(
lk − lℓ

2

)]1/2
. (2.2)

For arbitrary (not necessarily spatially indexed) functions, X1,X2, . . . ,XN , the sample

mean is defined as X̄N = N−1
∑N

n=1Xn, and the sample covariance operator as

Ĉ(x) = N−1
N∑

n=1

[
〈(Xn − X̄N ), x〉(Xn − X̄N )

]
, x ∈ L2.

The sample FPC’s are computed as the eigenfunctions of Ĉ. These are the estimates

produced by several software packages, including the popular R package fda, see Ramsay

et al. (2009). The consistency of the sample mean and the sample FPC’s relies on the

assumption that the functional observations form a simple random sample. If the functions

Xk = X(sk) are spatially distributed, the sample mean and the sample FPC’s need not even

be consistent, see Hörmann and Kokoszka (2013). This happens if the spatial dependence is

strong or if there are clusters of the points sk. We will demonstrate that better estimators

are available and we will use them as part of the procedure for testing the independence

of two functional fields {X(s), s ∈ S} and {Y (s), s ∈ S}. The procedure is based on the

observed pairs of functions (X(sk), Y (sk)), 1 ≤ k ≤ N . The test we propose is applied to

ionosonde (X) and magnetic (Y) curves, and conclusively shows that the temporal evolution

of these two families is strongly correlated.

The remainder of the paper is organized as follows. Sections 2.2 and 2.3 focus, respec-

tively, on the estimation of the mean function and the FPC’s in a spatial setting. Section 2.4

demonstrates by means of a simulation study that the methods we propose improve on the

standard approach, and discusses their relative performance and computational cost. In

Section 2.5, we develop a test for the correlation of two functional spatial fields. This test

requires estimation of a covariance tensor. After addressing this issue in Section 2.6, we
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study in Section 2.7 the finite sample properties of several implementations of the test.

Finally, in Section 2.8, we apply the methodology developed in the previous section to test

for the correlation between the ionospheric critical frequency and magnetic curves.

2.2 Estimation of the mean function

We propose three methods of estimating the mean function µ, which we call M1, M2,

M3. As will become apparent in this section, several further variants, not discussed here,

are conceivable. But the results of Section 2.4 show that while all these methods offer an

improvement over the simple sample mean, their performance is comparable. We represent

the observed functions as

X(sk; t) = µ(t) + ε(sk; t), k = 1, 2, . . . , N, (2.3)

where ε is an unobservable field with Eε(s; t) = 0. All methods assume that the function

valued field ε(·) is strictly stationary and isotropic, even though weaker, more technical

assumptions could be made for the specific methods. Methods M1 and M2 are akin to the

kriging technique advocated by Giraldo et al. (2011) in that they treat the curves as single

entities and seek to minimize the integrated mean squared error. Method M3 is similar in

spirit to the approach to functional kriging developed by Nerini et al. (2010) and Giraldo

et al. (2010) who use cokriging of basis coefficients.

Methods M1 and M2 estimate µ by the weighted average

µ̂N =

N∑

n=1

wnX(sn). (2.4)

The optimal weights wk are defined to minimize E‖∑N
n=1wnX(sn) − µ‖2 subject to the

condition
∑N

n=1wn = 1 (‖x‖2 =
∫ 1
0 x

2(t)dt). Using the method of the Lagrange multiplier,

we see that the unknowns w1, w2, . . . , wN , r are solutions to the system of N + 1 equations

N∑

n=1

wn = 1,
N∑

k=1

wkCkn − r = 0, n = 1, 2, . . . , N, (2.5)
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where

Ckℓ = E[〈ε(sk), ε(sℓ)〉]. (2.6)

Set w = (w1, . . . , wN )
T . An easy way to solve equations (2.5) is to compute v = C−11,

where C = [Ckℓ, 1 ≤ k, ℓ ≤ N ], and then set w = av, where a is a constant such that

1Tw = 1.

Method M1. At each time point tj, we fit a parametric spatial model to the scalar

field X(s; tj). To focus attention, we provide formulas for the exponential model

Cov(X(sk; tj),X(sℓ; tj)) = σ2(tj) exp

{
−d(sk, sℓ)

ρ(tj)

}
. (2.7)

It is clear how they can be modified for other popular models.

Observe that under model (2.7),

Ckℓ = E

∫
(X(sk; t)− µ(t)) (X(sℓ; t)− µ(t)) dt

=

∫
Cov(X(sk; tj),X(sℓ; tj))dt

=

∫
σ2(t) exp

{
−d(sk, sℓ)

ρ(t)

}
dt.

One way to estimate Ckℓ is to set

Ĉkℓ =

∫
σ̂2(t) exp

{
−d(sk, sℓ)

ρ̂(t)

}
dt, (2.8)

with the estimates σ̂2(tj) and ρ̂(tj) obtained using some version of empirical variogram,

(2.29) or (2.30) in this study.

Another way to proceed, is to replace the ρ̂(tj) by their average ρ̂ = m−1
∑m

j=1 ρ̂(tj),

where m is the count of the tj at which the variogram is estimated successfully. Then, the

Ckℓ are approximated by

Ĉkℓ =

(∫
σ̂2(t)dt

)
exp

{
−d(sk, sℓ)

ρ̂

}
.
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As explained above, in order to compute the weights wj in (2.5), it is enough to know

the matrix C only up to a multiplicative constant. Thus we may set

Ĉkℓ = exp

{
−d(sk, sℓ)

ρ̂

}
. (2.9)

Once the matrix C has been estimated, we compute the weights wj, and estimate the

mean via (2.4).

If (2.8) is used, we refer to this method as M1a, if (2.9) is used, we call it M1b.

Method M1 relies on the estimation of the variograms at every point tj . Method M2,

described below, requires only one optimization, so it is much faster than M1.

Method M2. We define the functional variogram

2γ(sk, sℓ) = E||X(sk)−X(sℓ)||2 (2.10)

= 2E‖X(sk)− µ‖2 − 2E [〈X(sk)− µ,X(sℓ)− µ〉]

= 2E‖X(s) − µ‖2 − 2Ckℓ.

The variogram (2.10) can be estimated by its empirical counterparts, like (2.29) or (2.30),

with the |X(sk)−X(sℓ)| replaced by

||X(sk)−X(sℓ)|| =
{∫

(X(sk; t)−X(sℓ; t))
2 dt

}1/2

.

Next, we fit a parametric model, for example we postulate that

γ(sk, sℓ) = σ2f

(
1− exp

{
−d(sk, sℓ)

ρf

})
. (2.11)

The subscript f is used to emphasize the functional variogram. Denoting by ρ̂f the resulting

NLS estimate, we estimate the Ckl by (2.9) with ρ̂ replaced by ρ̂f .

Method M3. This method uses a basis expansion of the functional data, it does not

use the weighted sum (2.4). Suppose Bj , 1 ≤ j ≤ K, are elements of a functional basis with
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K so large that for each k

X(sk) ≈
∑

j≤K

〈Bj ,X(sk)〉Bj (2.12)

to a good approximation. By (2.3), we obtain for every j

〈Bj ,X(sk)〉 = 〈Bj , µ〉+ 〈Bj , ε(sk)〉, k = 1, 2, . . . , N. (2.13)

For every fixed j, the 〈Bj ,X(sk)〉 form a stationary and isotropic scalar spatial field with a

constant unknown mean 〈Bj , µ〉. This mean can be estimated by postulating a covariance

structure for each 〈Bj,X(sk)〉, for example

Cov (〈Bj ,X(sk)〉, 〈Bj ,X(sℓ)〉) = σ2j exp

{
−d(sk, sℓ)

ρj

}
.

The mean 〈Bj, µ〉 is estimated by a weighted average of the 〈Bj ,X(sk)〉 (the weights depend

on j). Denote the resulting estimate by µ̂j. The mean function µ is then estimated by

µ̂(t) =
∑

j≤K µ̂jBj(t).

2.3 Estimation of the principal components

Assume now that the mean function µ has been estimated, and this estimate is sub-

tracted from the data. To simplify the formulas, in the following we thus assume that

EX(s) = 0.

We consider analogs of methods M2 and M3. Extending Method M1 is possible, but

presents a computational challenge because a parametric spatial model would need to be

estimated for every pair (ti, tj). For the ionosonde data studied in Section 2.8, there are

336 points tj. Estimation on a single data set would be feasible, but not a simulation study

based on thousands of replications.

In both approaches, which we term CM2 and CM3, the FPC’s are estimated by ex-

pansions of the form

vj(t) =

K∑

α=1

x(j)α Bα(t), (2.14)
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where the Bα are elements of an orthonormal basis. We first describe an analog of method

M3, which is conceptually and computationally simpler.

Method CM3. The starting point is the expansion

X(s; t) =
∞∑

j=1

ξj(s)Bj(t),

where, by the orthonormality of theBj , the ξj(s) form an observable field ξj(sk) = 〈Bj,X(sk)〉.

Using the orthonormality of the Bj again, we obtain

C(Bj) = E

[
〈

∞∑

α=1

ξα(s)Bα, Bj〉
∞∑

i=1

ξi(s)Bi

]
(2.15)

= E

[
ξj(s)

∞∑

i=1

ξi(s)Bi

]

=
∞∑

i=1

E[ξi(s)ξj(s)]Bi.

Thus, to estimate C, we must estimate the means E[ξi(s)ξj(s)].

Fix i and j, and define the scalar field z by z(s) = ξi(s)ξj(s). We can postulate a para-

metric model for the covariance structure of the field z(·), and use an empirical variogram

to estimate µz = Ez(s) as a weighted average of the z(sk). Denote the resulting estimate

by r̂ij .

The empirical version of (2.15) is then

Ĉ(Bj) =

K∑

i=1

r̂ijBi. (2.16)

Relation (2.16) defines the estimator Ĉ which acts on the span of Bj, 1 ≤ j ≤ K.

Its eigenfunctions are of the form x =
∑

1≤α≤K xαBα. Observe that

Ĉ(x) =
∑

α

xα
∑

i

r̂iαBi =
∑

i

(
∑

α

r̂iαxα

)
Bi.
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On the other hand,

λx =
∑

i

λxiBi.

Since the Bi form an orthonormal basis, we obtain

∑

α

r̂iαxα = λxi.

Setting

x = [x1, x2, . . . , xK ]T , R̂ = [r̂ij , 1 ≤ i, j ≤ K],

we can write the above as a matrix equation

R̂x = λx. (2.17)

Denote the solutions to (2.17) by

x̂(j) = [x̂
(j)
1 , x̂

(j)
2 , . . . , x̂

(j)
k ]T , λ̂j, 1 ≤ j ≤ K. (2.18)

The x̂(j) satisfy
∑K

α=1 x̂
(j)
α x̂

(i)
α = δij . Therefore the v̂j defined by

v̂j =

K∑

α=1

x̂(j)α Bα (2.19)

are also orthonormal (because the Bj are orthonormal). The v̂j given by (2.19) are the

estimators of the FPC’s, and the λ̂j in (2.18) of the corresponding eigenvalues.

As in method M3, the value of K can be taken to the number of basis functions used

to create the functional objects in R, so it can be a relatively large number, e.g. K = 49.

Even though the range of j in (2.18) and (2.19) runs up to K, only the first few estimated

FPC’s v̂j would be used in further work.

Method CM2. Recall that under the assumption of zero mean function, the covari-

ance operator is defined by C(x) = E[〈X(s), x〉X(s)]. It can be estimated by the simple
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average

1

N

N∑

n=1

〈X(sn), ·〉X(sn) =
1

N

N∑

n=1

Ck, (2.20)

where Ck is the operator defined by

Ck(x) = 〈X(sk), x〉X(sk).

As for the mean, more precise estimates can be obtained by using the weighted average

Ĉ =
N∑

k=1

wkCk. (2.21)

Before discussing the estimation of the weights wk, we comment that the FPC’s vj

and their eigenvalues λj can be estimated using (2.21) and the representation (2.14). As in

method CM3, set x =
∑

1≤α≤K xαBα, and observe that

Ĉ(x) =

K∑

j=1

(
K∑

α=1

sjαxα

)
Bj ,

where

sjα =

N∑

k=1

wk〈Xk, Bj〉〈Xk, Bα〉.

Thus, analogously to (2.17), we obtain a matrix equation Sx = λx, from which the estimates

of the vj , λj can be found as in (2.18) and (2.19).

We now return to the estimation of the weights wk in (2.21). One way to define the

optimal weights is to require that they minimize the expected Hilbert–Schmidt norm of

Ĉ − C. Recall that the Hilbert–Schmidt norm of an operator K is defined by

||K||2S =

∞∑

i=1

||K(ei)||2 =
∞∑

i=1

∫
|K(ei)(t)|2dt,
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where {ei, i ≥ 1} is any orthonormal basis in L2. Since || · ||S is a norm in the the Hilbert

space S of the Hilbert–Schmidt operators with the inner product

〈K1,K2〉S =

∞∑

i=1

〈K1(ei),K2(ei)〉,

we can repeat all algebraic manipulations needed to obtain the weight wi in (2.4). The

optimal weights in (2.21) thus satisfy

N∑

n=1

wn = 1,

N∑

k=1

wkκkn − r = 0, n = 1, 2, . . . , N, (2.22)

where

κkℓ = E[〈Ck − C,Cℓ − C〉S ].

Finding the weights thus reduces to estimating the expected inner products κkℓ.

Since method M2 of Section 2.2 relies only on estimating inner product in the Hilbert

space L2, it can be extended to the Hilbert space S. First observe that, analogously to

(2.10),

E||Ck − Cℓ||2S = 2E||Ck − C||2S − 2κkℓ.

We can estimate the variogram

γC(d) = E||〈X(s), · 〉X(s) − 〈X(s + d), · 〉X(s + d)||2S , d = ||d||

by fitting a parametric model. In formulas (2.29) and (2.30), the squared distances (X(sk)−

X(sℓ))
2 must be replaced by the squared norms ||Ck −Cℓ||2S . These norms are equal to

||Ck − Cℓ||2S =

∞∑

i=1

∫
(fikXk(t)− fiℓXℓ(t))

2 dt,

where

fik =

∫
Xk(t)ei(t)dt.
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The inner products fik can be computed using the R package fda.

2.4 Finite sample performance of the estimators

In this section, we report the results of a simulation study designed to compare the

performance of the methods proposed in Sections 2.2 and 2.3 in a realistic setting motivated

by the ionosonde data. It is difficult to design an exhaustive simulation study due to the

number of possible combinations of the point distributions, dependence structures, shapes

of mean functions and the FPC’s and ways of implementing the methods (choice of spatial

models, variogram estimation etc.). We do however think that our study provides useful

information and guidance for practical application of the proposed methodology.

Data generating processes. We generate functional data at location sk as

X(sk; t) = µ(t) +

p∑

i=1

ξi(sk)ei(t), (2.23)

where the ei are orthonormal functions, cf. model (2.1).

To evaluate the estimators of the mean, we use p = 2 and

e1(t) =
√
2 sin(2πt · 6), e2(t) =

√
2 sin(2πt/2). (2.24)

We use two mean functions

µ(t) = a
√
2 sin(2πt · 3), a = 2 (2.25)

and

µ(t) = a
√
t sin(2πt · 3), a = 1 (2.26)

The mean function (2.25) resembles the mean shape for the ionosonde data. It is

however a member of the Fourier basis, and can be isolated using only one basis function,

what could possibly artificially enhance the performance of method M3. We therefore also

consider the mean function (2.26). Combining the mean function (2.25) and the FPC’s
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(2.24), we obtain functions which very closely resemble the shapes of the ionosonde curves.

In the above formulas, time is rescaled so that t ∈ [0, 1].

To evaluate the estimators of the FPC’s, we use p = 3 and

X(sk; t) = ξ1(sk)
e1(t) + e2(t)√

2
+ ξ2(sk)e3(t), (2.27)

where e1(t) =
√
2 sin(2πt · 7), e2(t) =

√
2 sin(2πt · 2), e3(t) =

√
2 sin(3πt · 3). Direct

verification, which uses the independence of the fields ξ1 and ξ2, shows that the FPC’s are

v1 = 2−1/2(e1 + e2) and v2 = 23 (for the parameters of the ξi specified below).

To complete the description of the data generating processes, we must specify the

dependence structure of the scalar spatial fields ξ1 and ξ2. A common assumption for

the Karhunen-Loéve expansions used in statistical inference is that the score processes

ξi are independent, and this is what we assume. We use the exponential and Gaussian

models (2.46) with chordal distances (2.2) between the locations described below. To make

simulated data look similar to the real foF2 data we chose σ1 = 1, ρ1 = π/6 for ξ1(s) field

and σ2 = 0.1, ρ2 = π/4 for ξ2(s) field.

The locations sk are selected to match the locations of the real ionosonde stations. For

the sample size 218 we use all available locations, shown in Figure 2.2. Size 32 corresponds

to the ionosondes with the longest record history. We also consider a sample of size 100;

the 100 stations were selected randomly out of the 218 stations.

Details of implementation. All methods require the specification of a parametric

spatial model for the variogram. Even though for some methods the variograms are defined

for L2– or S–valued objects, only a scalar model is required. In this simulation study we

use the exponential and Gaussian models.

Methods M3, CM2 and CM3 require the specification of a basis {Bj} and the number

K of the basis functions. We use the Fourier basis and K = 1+4[
√

#{tj}], where #{tj} is

the count of the points at which the curves are observed. For our real and simulated data

K = 1 + 4[
√
336] = 73, a number that falls between the recommended values of 49 and 99
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for the number of basis functions. Specifically, the basis functions Bj are

{1,
√
2 sin(2πt · i),

√
2 cos(2πt · i); i = 1, 2, . . . , 36}. (2.28)

All methods require the estimation of a parametric model on an empirical variogram.

There are several versions of the empirical variogram for scalar fields. The classical estimator

proposed by Matheron is given by

γ̂(d) =
1

|N(d)|
∑

N(d)

(X(sk)−X(sl))
2, (2.29)

where N(d) =
{
(si, sj) : dsi,sj = d; i, j = 1, ..., N

}
and |N(d)| is the number of distinct pairs

in N(d). A robust estimator proposed by Cressie and Hawkins is defined as

γ̂(d) =


 1

|N(d)|
∑

N(d)

|X(sk)−X(sl)|1/2



4

/

(
0.457 +

0.494

|N(d)|

)
. (2.30)

For details, we refer to Section 4.4 of Schabenberger and Gotway (2005), where other ways

of variogram estimation are also discussed. In our study we use only estimators (2.29) and

(2.30), and refer to them, respectively, as MT and CH.

Results of the simulation study. For comparison of different methods we introduce

the quantity L which is the average of the integrated absolute differences between real and

estimated mean functions or FPC’s. For the mean function, L is defined by

L =
1

R

R∑

r=1

∫
|µ̂r(t)− µ(t)|dt, (2.31)

where R is the number of replications, we use R = 103. For the FPC’s the definition

is fully analogous. We also compute the standard deviation for L, based on the normal

approximation for R independent runs.

The results of the simulations for the mean function (2.26) are shown in Figure 2.4. The

data generating processes have exponential covariance functions. If the ξi in (2.23) have
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Figure 2.4: Errors in the estimation of the mean function for sample sizes: 32, 100, 218.
The dashed boxes are estimates using the CH variogram, empty are for the MT variogram.
The right–most box for each N corresponds to the simple average. The bold line inside each
box plot represents the average value of L (2.31). The upper and lover sides of rectangles
shows one standard deviation, and horizontal lines show two standard deviations. The right
most boxes correspond to the standard method.

Gaussian covariances, the results are not visually distinguishable. The errors values for

mean (2.25) are slightly different, but the relative position of the box plots practically does

not change. All methods M1, M2 and M3 are significantly better than the sample average.

Method M2 strikes the best balance between the computational cost and the precision of

estimation. Note that methods M1 and M2 were designed to minimizes the expected L2

distance, and all three methods are compared using the L1 distance, so this comparison

does not a priori favor them. In the context of forecasting, using different loss functions to

evaluate the forecasts than to design them can lead to spurious conclusions, see Gneiting

(2011). In our context, if the L2 distance is used to compare the methods, the ranking and

conclusions are the same.

Errors in the estimation of the FPC’s in model (2.27) are shown in Figure 2.5. The

displayed errors are those for the ξi with exponential covariances and the CH variogram.

The results for Gaussian covariances and the MT variogram are practically the same. The



23

Figure 2.5: Errors in the estimation of the FPC’s for sample sizes: 32, 100, 218 . The bold
line inside each box plot represents the average value of L. The upper and lover sides of
rectangles shows one standard deviation, and horizontal lines show two standard deviations.
The right most boxes correspond to the standard method.

performance of methods CM2 and CM3 is comparable, and they are both much better than

using the eigenfunctions of the empirical covariance operator (2.20), which is the standard

method implemented in the fda package. The computational complexity of methods CM2

and CM3 is the same.

Conclusions. For simulated data generated to resemble the ionosonde data, all meth-

ods inroduced in Sections 2.2 and 2.3 have integrated absolute deviations (away from a true

curve) statistically significantly smaller than the standard methods designed for iid curves.

Methods M2 and CM2, based on weighted averages estimated using functional variograms,

offer a computationally efficient and unified approach to the estimation of the mean function

and of the FPC’s in this spatial setting.

2.5 Testing for correlation of two spatial fields

Motivated by the problem of testing for correlation between foF2 and magnetic curves,

described in detail in Section 2.8, we now propose a relevant statistical significance test.



24

There are N spatial locations: s1, s2, . . . , sN . At location sk, we have two curves:

Xk = X(sk) = X(sk; t), t ∈ [0, 1],

and

Yk = Y (sk) = Y (sk; t), t ∈ [0, 1].

We want to test the null hypothesis that the collections of curves {Xk, 1 ≤ k ≤ N}

and {Yk, 1 ≤ k ≤ N} are uncorrelated in a sense defined below. The null distribution is

derived assuming a stronger condition that these two families are independent. Szekely et

al. (2007) and Szekely and Rizzo (2009) introduced measures of dependence based on the

distance of characteristic functions which allow to test independence (rather than just lack

of correlation) of random variables X and Y given a sample of iid observations (Xk, Yk).

The extension of their theory to the case of spatially dependent observations (Xk, Yk) is not

obvious, so we consider only a test for linear dependence.

The idea of the test is as follows. To lighten the notation, assume that

EXk(t) = 0 and EYn(t) = 0.

The mean functions will be estimated and subtracted using one of the methods of Sec-

tion 2.2. We approximate the curves Xn and Yn by the expansions

Xn(t) ≈
p∑

i=1

〈Xn, vi〉vi(t), Yn(t) ≈
q∑

j=1

〈Yn, uj〉uj(t),

where the vi and the uj are the corresponding FPC’s. At this point, the functions vi, 1 ≤

i ≤ p and uj , 1 ≤ j ≤ q are deterministic, so the independence of the curves Xn of the

curves Yn implies the independence of the vectors

[〈Xn, v1〉, 〈Xn, v2〉, . . . , 〈Xn, vp〉]T , 1 ≤ n ≤ N
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and

[〈Yn, u1〉, 〈Yn, u2〉, . . . , 〈Yn, uq〉]T , 1 ≤ n ≤ N.

Then, under H0, the expected value of the sample covariances

AN (i, j) =
1

N

N∑

n=1

〈Xn, vi〉〈Yn, uj〉 (2.32)

is zero. If their estimated versions are large as a group, i.e. if some of the estimated AN (i, j)

are too large, we reject the null hypothesis.

To construct a test statistic, we introduce the quantities

Vkℓ(i, i
′) = E[〈vi,Xk〉〈vi′ ,Xℓ〉], Ukℓ(j, j

′) = E[〈uj , Yk〉〈u′j , Yℓ〉].

Note that Vkℓ(i, i
′) = 0 and Ukℓ(j, j

′) = 0, if the observations in each sample are independent

(and have mean zero). Thus, the Vkℓ(i, i
′) and the Ukℓ(j, j

′) are specific to dependent data,

they do not occur in the currently available testing procedures developed for independent

curves. Setting Xik = 〈vi,Xk〉, Yjk = 〈uj , Yk〉, observe that if the Xik are uncorrelated with

the Yjk, then

E[
√
NAN (i, j)

√
NAN (i

′, j′)] =
1

N
E

[
N∑

k=1

XikYjk

N∑

ℓ=1

Xi′ℓYj′ℓ

]

=
1

N

N∑

k=1

N∑

ℓ=1

E[XikXi′ℓ]E[YjkYj′ℓ] =
1

N

N∑

k=1

N∑

ℓ=1

Vkℓ(i, i
′)Ukℓ(j, j

′).

The normalized covariance tensor of the
√
NAN (i, j) thus has entries

σN (i, j; i
′, j′) =

1

N

N∑

k,ℓ=1

Vkℓ(i, i
′)Ukℓ(j, j

′). (2.33)

The idea of the test, is to approximate the distribution of the matrix

AN = [AN (i, j), 1 ≤ i ≤ p, 1 ≤ j ≤ q]
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via
√
NAN ≈ Z, where Z is a p × q Gaussian matrix whose elements have covariances

E[Z(i, j)Z(i′, j′)] = σN (i, j; i
′, j′).

We now explain how to implement this idea. Denote by λ̂i, γ̂j and v̂i, ûj the eigenvalues

and the eigenfunctions estimated either by method CM2 or CM3. The covariances AN (i, j)

are then estimated by

ÂN (i, j) =
1

N

N∑

n=1

〈Xn, v̂i〉〈Yn, ûj〉.

If the observations within each sample are independent, an appropriate test statistic is

N

p∑

i=1

q∑

j=1

λ̂−1
i γ̂−1

j Â2
N (i, j).

Since λi = E[〈vi,X〉2], this is essentially the sum of all correlations, and it tends to a chi–

squared distribution with pq degrees of freedom, as shown in Kokoszka et al. (2008). This

is however not that case for dependent data. To explain, set

aN = vec(AN ),

i.e. aN is a column vector of length pq consisting of the columns of AN stacked on top of

each other, starting with the first column. Then
√
NaN is approximated by a Gaussian

vector z with covariance matrix Σ constructed from the entries (2.33). It follows that

ŜN = N âTNΣ̂
−1

âN ≈ χ2
pq, (2.34)

where âN = vec(ÂN ). The entries of the matrix Σ̂ are

σ̂N (i, j; i
′, j′) =

1

N

N∑

k,ℓ=1

V̂kℓ(i, i
′)Ûkℓ(j, j

′), (2.35)

where V̂kℓ(i, i
′) and Ûkℓ(j, j

′) are estimators of Vkℓ(i, i
′) and Ukℓ(j, j

′), respectively. The

test rejects H0 if ŜN > χ2
pq(1 − α), where χ2

pq(1 − α) is the 100(1 − α)th percentile of the

chi–squared distribution with pq degrees of freedom. One can use Monte Carlo versions of



27

the above test, for example the test is based on the approximation

T̂N := N âTN âN ≈ wT Σ̂w, (2.36)

where the components of w are are iid standard normal.

The test procedure can be summarized as follows:

1. Subtract the mean functions, estimated by one of the methods of section 2.2, from

both samples.

2. Estimate the FPC’s by method CM2 or CM3.

3. Using a model for the covariance tensor (2.35), see Section 2.6, compute the test

statistic ŜN . (This tensor is not needed to compute T̂N , but it is needed to find its

Monte Carlo distribution.)

4. Find the P–value using either a Monte-Carlo distribution or the χ2 approximation.

We now turn to the important issue of modeling and estimation of the matrix Σ.

2.6 Modeling and estimation of the covariance tensor

The estimation of the Vkℓ(i, i
′) involves only the Xn, and the estimation of the Ukℓ(j, j

′)

only the Yn, so we describe only the procedure for the Vkℓ(i, i
′). We assume that the mean

has been estimated and subtracted, so that we can define

Ch(x) = E[〈X(s), x〉X(s + h)], h = ||h||. (2.37)

The estimation of the Vkℓ(i, i
′) relies on the identity

Vkℓ(i, i
′) = 〈Ch(vi), vi′〉, h = d(sk, sℓ).
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To propose a practical approach to the estimation of Σ, we consider an extension of

the multivariate intrinsic model, see e.g. Chapter 22 of Wackernagel (2003). A most direct

extension is to assume that

Ch = Cr(h), (2.38)

where C is a covariance operator, i.e. a symmetric positive definite operator with summable

eigenvalues, and r(h) is a correlation function of a scalar random field. Since r(0) = 1, we

have C = C0, so C in (2.38) must be the the covariance operator of each X(s). If we assume

the intrinsic model (2.38), then

Vkℓ(i, j) = 〈r(h)C(vi), vj〉 = λiδijr(d(sk, sl)). (2.39)

To allow more modeling flexibility, we postulate that

Vkℓ(i, j) = λiδijri(d(sk, sl)). (2.40)

Under (2.39) (equivalently, under (2.38)), each scalar field 〈X(s), vi〉 has the same correlation

function, only their variances are different. Under (2.40), the fields 〈X(s), vi〉 can have

different correlation functions. As will be seen below, model (2.40) also leads to valid

covariance matrix.

The correlations ri(d(sk, sl)) and the variances λi can be estimated using a parametric

model for the scalar field ξi(s) = 〈X(s), vi〉. The resulting estimates r̂i(d(sk, sl)) and λ̂i

lead to the estimates V̂kℓ(i, j) via (2.40). Analogous estimates of the functional field Y are

γ̂j(d(sk, sl)), τ̂j and Ûkℓ(i, j).

For ease of reference, we note that under model (2.40) and H0, the covariance tensor,

[
1

N

N∑

k=1

N∑

ℓ=1

V̂kℓ(i, i
′)Ûkℓ(j, j

′), 1 ≤ i, i′ ≤ p, 1 ≤ j, j′ ≤ q

]
,



29

has the following matrix representation

Σ̂ = diag

(
N∑

k=1

N∑

ℓ=1

Σ̂ξ1(k, ℓ)Σ̂η1(k, ℓ), ... ,
N∑

k=1

N∑

ℓ=1

Σ̂ξp(k, ℓ)Σ̂ηq(k, ℓ)

)
, (2.41)

where

Σ̂ξi(k, ℓ) =
1√
N
λ̂ir̂i(d(sk, sℓ))

and

Σ̂ηj (k, ℓ) =
1√
N
γ̂j τ̂j(d(sk, sℓ)).

This form is used to construct the Monte Carlo tests discussed in Section 2.7.

The matrices Σ and Σ̂ are positive definite. See Horváth and Kokoszka (2012) for the

verification.

2.7 Size and power of the correlation test

As in Section 2.4, our objective is to evaluate the finite sample performance of the test

introduced in Section 2.5 in a realistic setting geared toward the application presented in

Section 2.8.

Data generating processes. We generate samples of zero mean Gaussian processes

X(s; t) =

p∑

i=1

ξi(s)vi(t); Y (s; t) =

q∑

j=1

ηj(s)uj(t). (2.42)

The process X is designed to resemble in distribution appropriately transformed and cen-

tered foF2 curves; the process Y the centered magnetic curves. Following the derivation

presented in Section 2.8, we use p = 7 and q = 1. The curves vi and u1 are the estimated

FPC’s of the real data. The scalar Gaussian spatial fields ξi and η1 follow parametric mod-

els estimated for real data, details of the models are presented in Table 2.1. The ξi are

independent. Under H0, the ξi are independent of η1. The dependence under HA can be

generated in many ways. We considered the following scenarios: ξ1 and η1 are dependent, ξi

and η1 are independent for i 6= 1, then ξ2 and η1 are dependent, ξi and η1 are independent
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for i 6= 2, etc. To produce two dependent spatial fields ξi and η, we generated N iid pairs

xi = [x1i, x2i]
T , 1 ≤ i ≤ N , where

xi ∼ N


0,



1 ρ

ρ 1





 .

Then we merged all x1i into vector y1 = [x11, ..., x1N ]T and all x2i into vector y2 =

[x21, ..., x2N ]T . Performing the Cholesky rotation, we obtain correlated spatial vectors:

ξi = Vy1, (Σξi = VVT ), η = Uy2, (Ση = UUT ).

We used sample sizes N = 32 and N = 100 corresponding to the locations determined

as in Section 2.4.

Testing procedures. We studied the finite sample behavior of three methods, which

we call S, SM and T. Method S rejects H0 if the statistic ŜN (2.34) exceeds a chi–square

critical value. Method SM uses a Monte Carlo distribution of the statistic ŜN : after esti-

mating all parameters from the data and assuming the Gaussian distribution of the fields

ξi and η1, we can replicate the values of the statistic ŜN under H0 using the covariance

matrix (2.41). Method T uses the statistics T̂N (2.36), and approximates its distribution by

the Monte Carlo distribution of wT Σ̂w, as explained in Section 2.5. For determining the

critical values in methods SM and T, we used 107 Monte Carlo replications. The empirical

size and power are based on 105 independent runs.

Conclusions. As Figure 2.6 shows, the empirical size is higher than the nominal size,

and it tends to increase with the number p of principal components used to construct the

test, especially for N = 32. The usual recommendation is to use p which explains about

85% of the variance. For the foF2 data with N = 32, this corresponds to p = 4. Applied

to real data in Section 2.8, all tests (S, SM and T) lead to extremely strong rejections, so

the inflated empirical size is not a problem. Figure 2.6 also shows that the Monte Carlo

approximation is useful for N = 32, this is the sample size we must use in Section 2.8. The
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Figure 2.6: Size of the correlation test as a function of p. Solid disks represent method
S (based on χ2 distribution). Circles represent method SM (based on the Monte-Carlo
distribution).

size of test T is practically indistinguishable for that of test SM. Figure 2.7 shows the power

of method SM; power curves for method T are practically the same, method S has higher

power. The simulation study shows that a strong rejection when the test is applied to real

data can be viewed as a reliable evidence of dependence.

2.8 Application to critical ionospheric frequency and magnetic curves

In this section, we apply the correlation test, which uses the estimation methodology

of Sections 2.2 and 2.3, to foF2 and magnetic curves.

Description of the data. The F2 layer of the ionosphere is the upper part of the

F layer shown in Figure 2.3. The F2 layer electron critical frequency, foF2, is measured
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Figure 2.7: Power of the correlation test SM as a function of the population correlation ρ.
Each line represents one of the four possible correlated spatial field ξ1 − η, ξ2 − η, ξ3 − η,
ξ4 − η. The test was performed using p = 4, which explains about 85% of variance of the
foF2 curves. Since all curves in the graphs are practically the same, we do not specify which
curve represents a particular dependent pair ξi − η.

using an instrument called the ionosonde, a type of radar. The foF2 frequency is used

to estimate the location of the peak electron density, so an foF2 trend corresponds to

a trend in the average height of the ionosphere over a spatial location. The foF2 data

have therefore been used to test the hypothesis of ionospheric global cooling discussed in

the introduction. Hourly values of foF2 are available from the SPIDR database http:

//spidr.ngdc.noaa.gov/spidr/ for more than 200 ionosondes. We use monthly averages

for 32 selected ionosondes, with sufficiently complete records, for the period 1964 − 1992.

Their locations are shown in Figure 2.2. Three typical foF2 curves are shown in Figure

2.1. We omit the details of the procedure for obtaining curves like those shown in Figure

2.1, but we emphasize that it requires a great deal of work. In particular, the SPIDR data

suffer from two problems. First, for some data, the amplitude is artificially magnified ten

times, and needs to be converted into standard units (MHz). Second, in many cases, missing

observations are not replaced by the standard notation 9999, but rather just skipped. Thus

if one wants to use equally-spaced time series, skipped data must be found and replaced by

missing values. For filling in missing values, we perform linear interpolation. We developed
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Figure 2.8: Dots represent the scaling function GL(si) in the magnetic coordinate system
and crosses are same in the geographic coordinate system. Line is the best fit for GL in the
magnetic coordinate system.

a customized C++ code to handle these issues. We emphasize that one of the reasons why

this global data set has not been analyzed so far is that useable data have been derived only

over relatively small regions, e.g. Western Europe, and more often for a single location.

As explained in Section 2.1, the foF2 data are used to test hypotheses on long term

ionospheric trends. We thus removed annual and higher frequency variations using 16

month averaging with MODWT filter, see Chapter 5 of Percival and Walden (2000). This

leads to 32 time series at different locations, each containing 336 equally-spaced temporal

observations. The amplitude of the foF2 curves exhibits a nonlinear latitudinal trend;

it decreases as the latitude increases, see Figure 2.1. To remove this trend, which may

potentially bias the test, we assume that the foF2 signal, F (s; t), at location s follows the

model

F (s; t) = G(L(s))X(s; t), (2.43)

where X(s; t) is a constant amplitude field, and G(·) is a scaling function which depends

only on the magnetic latitude L (in radians). Since the trend in the amplitude of F (s; t)
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is caused by the solar radiation which is nonlinearly proportional to the zenith angle, we

postulate that the function G(·) has the form

G(L) = a+ b cosc(L). (2.44)

The parameters a, b, c are estimated as follows. Let s0 be the position of the ionosonde

closest to the magnetic equator. For identifiability , we set G(L(s0)) = 1. For the re-

maining locations sk, we compute Ĝ(L(sk)) as the average, over all 336 time points tj of

the ratio F (sk; tj)/F (s0; tj). Figure 2.8 shows these ratios as a function of the magnetic

and geographic latitude. The ratios in the magnetic latitude show much less spread, and

this is another reason why we work with the magnetic latitude. The curve G(L) (2.44) is

fitted to the Ĝ(L(sk)) in magnetic latitude by nonlinear least squares. The fitted values are

a = 0.5495, b = 0.4488, c = 4.2631.

We now describe how we construct the curves that reflect the relevant long term changes

in the internal magnetic field of the earth. The height of the F2 layer (and so the foF2

frequency) can be affected by a vertical plasma drift which responds to the magnetic field.

The vertical plasma drift is due to the wind effect, and is given by (we use the same notations

as in Mikhailov and Marin (2001))

W = (Vnx cosD − Vny sinD) sin I cos I + Vnz sin
2 I.

In the above formula, Vnx , Vny and Vnz are, respectively, meridional (parallel to constant

longitude lines), zonal (parallel to constant latitude lines) and vertical components of the

thermospheric neutral wind; I and D are inclination and declination of the earth magnetic

field. Detailed figures are provided in Chapter 13 of Kivelson and Russell (1997). Usually

Vnz ≪ Vnx, Vny, and assuming that the difference between magnetic and geographic coor-

dinates, D, is small (at least for low- and mid-latitude regions) we can simplify the above

formula to W = Vnx sin I cos I. Thus, only the meridional thermospheric wind is significant.

Measuring neutral wind components (Vnx, Vny, Vnz) is difficult, and long term wind records
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are not available. We therefore replace Vnx by its average. For the test of correlation, the

specific value of this average plays no role, so we define the magnetic curves as

Y (s; t) = sin I(s; t) cos I(s; t). (2.45)

The curves I(s; t) are computed using the international geomagnetic reference field (IGRF);

the software is available at http://www.ngdc.noaa.gov/IAGA/vmod/.

The test is applied to the curves X(sk; t) defined by (2.43) and (2.44), and to the curves

Y (sk; t) defined by (2.45).

Application of the correlation test. We first estimate and subtract the mean

functions of the fields X(sk) and Y (sk) using method M2 (the other spatial methods give

practically the same estimates). The principal components vi and ui are estimated using

method CM2 (method CM3 gives practically the same curves).

We apply the test, for all 1 ≤ p ≤ 7 and q = 1. The first seven eigenvalues of the field

X (computed per (2.17) or its analog for method CM2) explain about 95% of the variance.

The first eigenvalue of the field Y explains about 99% of the variance. The eigenfunction u1

is approximately equal to the linear function: u1(t) ∼ t. This means that at any location,

after removing the average, the magnetic field either linearly increases or decreases, with

slopes depending on the location, see Figure 2.9. To lighten the notation, we drop the “hats”

from the estimated scores and denote the zero mean vector [ξi(s1), ..., ξi(sN )]
T by ξi, and

[η1(s1), ..., η1(sN )]
T by η The covariances Σξi and Ση are estimated using parametric spatial

models determined by the inspection of the empirical variograms. In this application, it is

sufficient to use two covariance models:

Gaussian : c(sk, sℓ) = c0 + σ2 exp{−d2(k, ℓ)/ρ2},

Exponential : c(sk, sℓ) = c0 + σ2 exp{−d(k, ℓ)/ρ}.
(2.46)

When the scores do not have a spatial structure, we use the sample variance (flat variogram).

The estimated models and their parameters are listed in Table 2.1.

The P–values for different number of FPC’s 1 ≤ p ≤ 7 are summarized in Table 2.2.
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Table 2.1: Models and estimated covariance parameters for the transformed foF2 curves
and the magnetic curves.

Spatial Model Parameters
field c0 σ2 ρ

η Gaussian – 5.99± 0.48 0.32 ± 0.04
ξ1 Gaussian – 20.05 ± 2.20 0.12 ± 0.03
ξ2 – – 3.30± 0.43 –
ξ3 Exponential – 2.63± 0.52 0.16 ± 0.07
ξ4 Gaussian – 2.66± 0.39 0.18 ± 0.05
ξ5 – – 2.74± 0.32 –
ξ6 Gaussian 0.16 ± 0.02 0.85± 0.24 0.17 ± 0.06
ξ7 – – 1.22± 0.18 –

Table 2.2: P–values of the correlation tests applied to the transformed foF2 data. The
first column shows the number of FPC’s, the second column shows cumulative variances
computed as the ratios of the eigenvalues estimated using method CM2. Testing procedures
S, SM and T are defined in Section 2.7. The “simple” procedure neglects the spatial
dependence of the curves.

p CV, % Spatial Simple
S SM T

1 47.88 6.22 · 10−5 3.05 · 10−4 3.05 · 10−4 0.035
2 62.59 3.26 · 10−6 2.91 · 10−4 2.99 · 10−4 0.095
3 73.67 4.53 · 10−8 2.43 · 10−4 2.32 · 10−4 0.043
4 84.40 1.47 · 10−26 1.6 · 10−7 2.24 · 10−5 0.039
5 88.70 4.95 · 10−26 2.6 · 10−7 2.27 · 10−5 0.046
6 92.21 6.73 · 10−27 5.9 · 10−7 2.21 · 10−5 0.060
7 94.57 2.12 · 10−32 1.6 · 10−7 1.92 · 10−5 0.030

Independent of p and a specific implementation of the test, all P–values are very small, and

so the rejection of the null hypothesis is conclusive; we conclude that there is a statistically

significant correlation between the foF2 curves X(sk) and the magnetic curves Y (sk). We

also applied a version of our test which neglects any spatial dependence, this is the test

proposed by Kokoszka et al. (2008). The P-values hover around the 5% level, but still

point toward rejection. The evidence is however much less clear cut. This may partially
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explain why this issue has been a matter of much debate in the space physics community.

The correlation between the foF2 and magnetic curves is far from obvious. Figure 2.9

shows these pairs at all 32 locations. It is hard to conclude by eye that the direction of the

magnetic field change impacts the foF2 curves.

Discussion. A very important role in our analysis is played by the transformation

(2.44). Applying the test to the original foF2 curves F (sk; t), gives the P–values 0.209

(p = 1) and 0.011 (p = 2) for the spatial S test, and 0.707 (p = 1), 0.185 (p = 2), 0.139

(p = 3) for the “simple” test. As explained above, the amplitude of the field F (sk; t) evolves

with the latitude. This invalidates the assumption of a mean function which is independent

of the spatial location. Thus even for the spatial test, the mean function confounds the

first FPC. However, the spatial estimation of the mean function and of the FPC’s “quickly

corrects” for the violation of assumptions, and the null hypothesis is rejected for p ≥ 2.

When the spatial structure is neglected (and no latitudal transformation is applied) no

correlation between the foF2 curves and magnetic curves is found.

The rejection of the null hypothesis means that after adjusting the foF2 curves for

the latitude and the global mean, their regional variability is correlated with the regional

changes in the magnetic field. This conclusion agrees with recent space physics research, see

Cnossen and Richmond (2008) and Lastovicka (2009), and can, to some extent, be visually

confirmed, post–analysis, by the examination of the scatter plots shown in Figure 2.10.

It implies that long term magnetic trends must be considered as additional covariates in

testing for long term trends in the foF2 curves. The main covariate is the solar activity

which drives the shape of the mean function, but, as explained in the introduction, the

impact of the concentration of the greenhouse gases is of particular interest, see Qian et al.

(2009) among many other contributions.

A broader conclusion of the work presented in this paper is that methods of functional

data analysis must be applied with care to curves obtained at spatial locations. Neglecting

the spatial dependence can lead to incorrect conclusions and biased estimates. The same

applies to space physics research. If trends or models are estimated separately at each spatial
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location, one should not rely on results obtained by some form of a simple averaging. This

is however the prevailing approach. Interestingly, the results related to global ionospheric

trends are often on the borderline of statistical significance. Standard t-tests lead either

to rejection or acceptance, depending on a specific method used (a similar phenomenon is

observed in the last column of Table 2.2). It is hoped that the methodology developed in

this paper will be useful in addressing such issues.
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Figure 2.10: Scatter plots of the scores ξi, i = 1, 2, 3, 4 of the foF2 curves, vertical axes,
against the scores η of the magnetic curves, horizontal axes.



CHAPTER 3

TESTING THE EQUALITY OF MEAN FUNCTIONS OF IONOSPHERIC CRITICAL

FREQUENCY CURVES1

Abstract

This paper develops a significance test for evaluating the equality of the mean functions

in two samples of spatially indexed functional data. The problem is motivated by an im-

portant question in space physics research which is related to the hypothesis of ionospheric

global cooling (as opposed to the conjectured global warming of near surface atmosphere).

The critical electron frequency of the ionosphere’s F2 region, foF2, can be used to empir-

ically test conjectures about the trends in the ionosphere. We apply the proposed test to

the foF2 records over eastern and western Europe to verify if there exists a conjectured

difference between first order behavior of these records over regions with different magnetic

inclinations. It is found that the difference between the means is statistically significant for

night time records. The implications of this result are discussed. Finite sample performance

of the proposed test is validated via numerical simulations.

3.1 Introduction

Over the last two decades, functional data analysis has established itself as an im-

portant and dynamic area of statistics which has provided intuitive and computationally

feasible approaches to many applied problems. The monograph of Ramsay and Silverman

(2005) offers an excellent and accessible introduction to the central ideas of the field. Ram-

say et al. (2009) provide a concise introduction which focusses on computational issues.

Many recent developments are studied in the books of Ferraty and Vieu (2006), Bosq and

Blanke (2007), Ferraty and Romain (2011), Shi and Choi (2011) and Horváth and Kokoszka

1CO-AUTHORED BY O. GROMENKO AND P. KOKOZKA. REPRODUCED FROM THE JOUR-

NAL OF THE ROYAL STATISTICAL SOCIETY: SERIES C, VOL. 61, 715–731, 2012.
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(2012). Relatively little attention has however focused on inferential methods for spatially

indexed curves, even though data of this type are quite common; a data object is a curve

X(sk) observed at location sk. In many cases, the curves are functions of time so that

X(sk; t) is the value of the function X(sk) at time t. Such a data structure is a special

case of a spatio–temporal process which calls for statistical tools specifically designed for

it. Many environmental and geophysical data sets are of this type. A well-known example

is the Canadian weather data set which consists of temperature and precipitation curves at

35 locations, see Ramsay and Silverman (2005). Another example is the Australian rain-

fall data set, recently studied by Delaigle and Hall (2010), which consists of daily rainfall

measurements from 1840 to 1990 at 191 Australian weather stations. Snow water curves

measured at several dozen locations in Western US states over many decades provide cli-

matic information which is of importance for urban and agricultural development planning

in the Western states with little summer time rainfall, see e.g. Carroll et al. (1995) and

Carroll and Cressie (1996). Another important example is pollution curves: X(sk; t) is the

concentration of a pollutant at time t at location sk. Data of this type were studied by

Kaiser et al. (2002). In many studies, X(sk; t) is the count at time t of infectious disease

cases, where sk is a representative location, e.g. a “middle point” of a county. Still another

example arises in modeling brain activity based on continuous time records obtained from

probes placed at different locations in the brain, see Aston and Kirch (2012) and refer-

ences therein. Delicado et al. (2010) review other examples and recent contributions to the

methodology for spatially indexed functional data.

The data which motivate the research presented in this paper are not well–known in

the statistical community, but have played a central role in space physics research for many

decades. Since the 1930’s the ionosphere has been studied by an instrument called the

ionosonde, which is a type of radar vertically emiting a frequency spectrum and recording

the profile of the returned signal. The returned profile is called the ionogram, an example is

given in Fig. 3.1. The ionogram contains implicit information about the physical properties

of the ionosphere directly above the location of the ionosonde. The specific data set we
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Figure 3.1: An example of a digital ionogram recorded at Juliusruh ionosonde. The vertical
axis shows height in kilometers and the horizontal axis shows frequency in megahertz. The
pink and green dots show returned frequencies and their virtual heights. The frequency at
which the virtual height tends to infinity is called the electron critical frequency. The black
“bell shaped” curve is restored profile of ionosphere, cf. Fig 3.2, and the rightmost point of
this curve is the electron critical frequency.

study, derived from ionograms, consists of hourly records of the so-called electron critical

frequency in the F2 ionosphere region, foF2, at 13 locations in Europe, we describe this

data set in detail in Section 3.2. The F2 region is the main part of the ionosphere’s F region

in the range of heights 250–350 km above the sea level, see Fig. 3.2. For a brief overview

of the structure of the ionosphere and its properties see, for example, Chapter 1 in Kelly

(2009).

To describe the specific problem studied in this paper, we must provide some broader

background. The increased concentration of greenhouse gases in the upper atmosphere has

been associated with the global warming in the lower troposphere. Roble and Dickinson

(1989) suggested that the increasing amounts of these radiatively active gases would lead
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Figure 3.2: Typical profile of ionosphere. The curve shows electron density as a function of
height. The right vertical axis indicates the D, E and F regions of the ionosphere.

to global cooling in the mesosphere and thermosphere. Shortly afterwards, Rishbeth (1990)

pointed out that this would result in a thermal contraction and the global lowering of the

ionospheric peak densities. The peak density height of the F2 region can be approximately

computed using the critical frequency foF2. Thus, if the hypothesis of Roble and Dickinson

(1989) were true, cooling of the ionosphere would results in a systematic global change of

foF2 which, in space physics research, is referred to as a global foF2 trend. It initially

appeared that the evaluation of such a trend in the ionosphere might be easier than the

evaluation of a global warming trend in the near surface atmosphere which exhibits a very

strong local variability, making a definition of a global warming trend much less obvious.

Consequently, during the last two decades, trends in foF2 (defined in several ways) have

been extensively studied by many authors, Lastovicka et al. (2006) and Lastovicka (2009)

offer reviews of the relevant literature. In spite of this great interest and extensive research,

the nature of the trends in the upper ionosphere is not yet fully understood, and there is no
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universal agreement on the existence of a global trend. A central issue is that trends over

some regions appear to be upward, and over other regions to be downward. These trend

estimates have been obtained by regression methods not fully justified and validated for

the spatially distributed time series data, but they prompted explanations different from

the global contraction hypothesis of Rishbeth (1990). In particular, Danilov and Mikhailov

(1999) and Mikhailov and Marin (2000) argued that the trends in upper ionosphere can be

related to changes in geomagnetic activity. A different explanation is that the trends could

be due to long term changes in the internal magnetic field of the Earth, see Foppiano et

al. (1999). Recently Elias (2009) pointed out that it is more likely that observed trends in

foF2 are a combined result of the influence of several factors. The precise understanding

of the influence of different factors is needed to make a reliable conclusion about the origin

and significance of the observed trends, but because of the extremely complex nature of the

Earth’s ionosphere, separation of the influence of different factors from physical perspective

is almost impossible. For this reason, a reliable statistical analysis is needed. In particular,

it is important to determine if the trends over two regions are indeed different, or if the

apparent differences are spurious and stem from using regression methods not suitable for

the foF2 data. The present paper makes a contribution in this direction by proposing a

new methodology.

Dependence makes the study of spatially indexed functional data different from the

more common analysis of functional objects. Most methodological and theoretical devel-

opments in functional data analysis have been motivated by data obtained from designed

experiments in which functional observations on subjects can be treated as independent.

In this paper, we carefully take into account the spatial dependence between the curves

to develop a significance test for testing if the mean curves over two disjoint regions are

different. We apply the new test to establish if there is a difference in the mean functions

of foF2, due to the Earth’s magnetic field. We analyze foF2 data recorded over eastern and

western Europe. The inclination of the Earth’s magnetic field is positive in the eastern part

and negative in the western part of Europe. We use this property to separate Europe into
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two regions.

While there is extensive literature on comparison of spatial fields in different settings

such as medical imaging and forecasts, see for example Hering and Genton (2011) and

Gilleland et al. (2009) and references therein, in functional data analysis spatial dependence

is usually ignored. A test for the equality of the mean functions in two independent samples

of independent curves is proposed in Horváth and Kokoszka (2012). It is extended to time

series data in Horváth et al. (2013). These are asymptotic tests whose test statistic is

a quadratic form constructed from estimated variance operators (long–run variances for

time series data). The test statistic is asymptotically chi–square distributed under the null

hypothesis of equal mean functions. An approach of this type is in principle possible for

spatially correlated curves, but it gives very poor results in small samples. We therefore

pursue a different approach. Very small sample sizes combined with spatial dependence are

two main concerns we must tackle.

The paper is organized as follows. In Section 3.2, we provide a detailed description of

the foF2 data. Section 3.3 introduces the required notation, formalizes the problem, and

proposes a statistical model for the data. In Section 3.4, we introduce an iterative method

for the estimation of mean functions and of the covariance matrix. With these preliminaries,

we construct in Section 3.5 the test statistic and study its properties. This allows us to

apply the test to the foF2 data in Section 3.6 and arrive at well supported conclusions.

Section 3.7 contains an algorithmic description of one of the estimation procedures used in

the paper.

3.2 Description of the ionosonde data

The foF2 data are collected by a global network of ionosonde stations which consist

of over two hundred observatories, but only a few dozen have operated for sufficiently long

periods of time to provide data useful to study long term ionospheric trends. The complete

raw records are stored at the National Oceanic and Atmospheric Administration web site

http://spidr.ngdc.noaa.gov/spidr/. The quality of the raw data from most stations

is poor. The main problem is that even if the measurements are listed as equidistant, in
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Table 3.1: Summary information for the ionosonde stations.

Code Location Latitude,0 Longitude,0
Magnetic
inclination

AZ136 Arkhangelsk 64.4 40.5 +
DB049 Dourbes 50.1 4.6 −
JR055 Juliusruh 54.6 13.4 +
KI167 Kiruna 67.8 20.4 +
KL154 Kaliningrad 54.7 20.6 +
LN047 Lannion 48.8 −3.4 −
LY164 Lycksele 64.7 18.8 +
MO155 Moscow 55.5 37.3 +
PQ052 Pruhonice 50.0 14.6 +
PT046 Poitiers 46.6 0.3 −
SL051 Slough 51.5 −0.6 −
UP158 Uppsala 59.8 17.6 +
US057 South Uist 57.4 −7.3 −

reality they are not. Some absent data are flagged as missing, and some are not. The gaps

range from several hours to several months, and must be identified and filled. The second

problem is that in December the foF2 signal is artificially increased ten times. Because

of the amount of observations (over seventy thousand in eight years per curve (station)),

cleaning must be done algorithmically. We developed a customized C++ code which cleans

the foF2 data and performs interpolation; the code is available upon request. We suppose

that the absence of sufficiently long records of clean data at many locations has been a

practical major obstacle in studying the global foF2 trend. We hope that our code will be

useful to the space physics community.

We selected 13 ionosonde stations with hourly records of the foF2 starting from January

1972 and ending in December 1980. All stations are located in Europe. The main criterion

used for ionosonde station selection was the lack of long periods of missing observations. The

selected ionosonde stations are listed in Table 3.1. For ease of reference, we also provide a

map of Europe with the locations of the ionosonde stations, see Fig. 3.3. The time interval

was selected to match two criteria: maximum data availability and coverage of a solar

minimum period. The last criterion is needed to reduce latitudinal variability of the foF2
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signal due to the solar activity. For further reduction of the effects due to the solar activity,

we calculated nightly sample averages of data recorded between 22 and 2 LT at each day. All

such averages are calculated based on 3-5 consecutive temporal observations. This results in

one data point per day. Finally, we used the maximum overlap discrete wavelet transform

to smooth the noisy curves, see Chapter 5 of Percival and Walden (2000). We used filter

length roughly corresponding to averaging over 32 days. The data curves thus prepared and

transformed are shown in Fig. 3.4, which also shows the estimated mean functions for the

negative and positive inclination samples. We call such smooth nightly averages ionosonde

data. The question we answer in this paper is whether the two mean curves (for positive

and negative inclination), whose estimates are shown in Fig. 3.4, are significantly different.

3.3 A functional spatio–temporal model for the ionosonde data

This section introduces the requisite Hilbert space framework within which the testing

problem can be clearly stated. Following the usual approach adopted in functional data

analysis, we assume that the smoothed foF2 curves belong to the Hilbert space of square

integrable functions on the interval [0, 1], which is the rescaled time interval from January 1,

1972 to December 31, 1980. This space is denoted L2 = L2([0, 1]), and is equipped with the

inner product 〈f, g〉 =
∫
f(t)g(t)dt and the norm ‖f‖2 =

∫
f2(t)dt. The curve at location s

is denoted X(s), and the value at time t ∈ [0, 1] is denoted by X(s; t). We treat the function

X(s) as a random element of the space L2.

We consider a spatial domain D which is separated into two disjoint regions D1 and

D2; D = D1 ∪ D2. Let s(1) ∈ D1 and s(2) ∈ D2 denote the generic locations in these two

regions, and s
(1)
k and s

(2)
ℓ denote the spatial locations in regions D1 and D2, respectively, at

which data curves are available. The number of observation in region Dj is Nj. We reserve

indexes j, j′ = 1, 2 to specify the region.

We assume that the random functions in the two regions may differ only in the mean

function, so the spatio–temporal model for the data is

X(s(j); t) = µj(t) + ε(s(j); t), j = 1, 2, (3.1)
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where ε(·) is a strictly stationary zero mean random field in L2. To define the covariance

function, we must assume that

E‖ε(s)‖2 = E

∫
ε2(s; t)dt <∞.

It follows that the expectations E[〈ε(s), ε(s′)〉] exist, depend only on the distance between

s and s′, and the distribution of ε(s) does not depend on s.

In this paper, the distance dk,ℓ between two points sk, sℓ is a chordal distance defined

as

dk,ℓ = 2

[
sin2

(
Lk − Lℓ

2

)
+ cosLk cosLℓ sin

2

(
lk − lℓ

2

)]1/2
, (3.2)

where L denotes the latitude and l the longitude. The reason for using the chordal distance

is that any spatial covariance functions in R
3 restricted to the unit sphere is then also a

covariance function on the sphere.

In this framework, the testing problem can be formulated as

H0 : µ1(t) = µ2(t), (‖µ1 − µ2‖2 = 0);

HA : µ1(t) 6= µ2(t), (‖µ1 − µ2‖2 > 0).

In the remainder of this section we tighten our assumptions in a way that makes

a construction of a test possible. The functional error field admits the Karhunen-Loève

expansion

ε(s; t) =

∞∑

i=1

ξi(s)vi(t),

in which the functional principal components (FPC’s) vi are unknown L
2 valued parameters.

Later in the paper we truncate the infinite sum by taking into account the first p summands

which capture the desired level of the variance. Let ξi be a column vector comprised

of the scores ξi(sk), ξi = [ξi(s
(1)
1 ), . . . , ξi(s

(1)
N1

), ξi(s
(2)
1 ), . . . , ξi(s

(2)
N2

)]T . Below we use two

assumptions: the vector fields ξi are normal, ξi ∼ N(0,Γi), where Γi = Var(ξi) and the

fields ξi and ξi′ are independent if i′ 6= i.



50

Longitude,
o

L
a

ti
tu

d
e

,o

−5 0 5 10 15 20 25 30 35 40

5
0

5
5

6
0

6
5 AZ136

DB049

JR055

KI167

KL154

LN047

LY164

MO155

PQ052

PT046

SL051

UP158

US057

Figure 3.3: Locations of 13 selected ionosonde stations with the corresponding 5 letter
codes. Empty circles represent stations with negative magnetic inclination and solid discs
represent stations with positive magnetic inclination.

The assumption of normality can be verified empirically. The QQ plots in Fig. 3.5 do

not contradict it in any obvious way. The assumption of the independence of score functions

is required to construct a computable test statistic, and is needed for most inferential

procedures, Delaigle and Hall (2010) discuss this point. The scores at the same location

are always uncorrelated, i.e. E[ξi(s)ξi′(s)] = 0, if i′ 6= i. Our assumptions imply that

E[ξi(s)ξi′(s
′)] = 0, for arbitrary locations s and s′.

The above development shows that in order to construct a useful test statistic, we must

address the estimation of the mean function and of the functional principal components in

a spatial setting. We turn to these issues in Section 3.4.

3.4 Estimation of the mean and covariance functions

In this section, we propose an extension of the methodology for the estimation of the

mean function and the FPC’s introduced in Chapter 2. There are several new elements:

the modifications required to deal with two samples, with possibly different means, the

introduction of an iterative estimation process, and the choice of the bin size in variogram
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Figure 3.4: Ionosonde data (gray lines). The black solid line is the mean function for stations
with the negative inclination, the black dashed line is the mean functions for stations with
the positive inclination.

estimation.

Recall that s
(j)
k refers to a location in region j = 1, 2. The mean functions µj are

estimated by weighted sums of observations:

µ̂j(t) =

Nj∑

k=1

w
(j)
k X(s

(j)
k ; t),

Nj∑

k=1

w
(j)
k = 1, j = 1, 2. (3.3)

To find the weights w
(j)
k , it is convenient to use matrix notation. We introduce the following

vectors and matrices:

11 =



1N1

0N2


 , 12 =



0N1

1N2


 , I1 =



IN1×N1

0N1×N2

0N2×N1
0N2×N2


 , I2 =



0N1×N1

0N1×N2

0N2×N1
IN2×N2




and

w1 = [w
(1)
1 , . . . , w

(1)
N1
, 0, . . . , 0], w2 = [0, . . . , 0, w

(2)
1 , . . . , w

(2)
N2

],

X(t) = [X(s
(1)
1 ; t), . . . ,X(s

(2)
N2

; t)]T .
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Figure 3.5: Normal QQ plots for the estimated scores ξi, 1 ≤ i ≤ 7.

Then, the estimates are given by

µ̂j(t) = wjX(t), w(j)1j = 1, j = 1, 2.

To give closed form expressions for the weights which minimize the constrained least squared

errors, we define the covariance matrix C, which has the block form

C =



C11 C12

C21 C22


 .

The elements of the sub-matrices Cjj′ are given by

cjj′(k, ℓ) =E
[〈
X(s

(j)
k )− µj ,X(s

(j′)
ℓ )− µj′

〉]

=

p∑

i=1

E[ξi(s
(j)
k )ξi(s

(j′)
ℓ )], 1 ≤ k ≤ Nj , 1 ≤ ℓ ≤ Nj′ . (3.4)
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(The estimation of the cjj′(k, ℓ) is discussed at the end of this section.) Using the method

of Lagrange multipliers, we find the optimal weights:

w1 = (1T1 C
−111)

−11T1 C
−1I1, w2 = (1T2 C

−112)
−11T2 C

−1I2. (3.5)

The covariance matrix C requires the estimation of the FPC’s, vi(t), which, in turn,

requires the estimation of the mean functions, µj(t), and centering the data. Thus, the

following iterative approach is used:

1. Compute the simple mean (average) for each sample and subtract it from the curves

in each sample.

2. Estimate the FPC’s and their number required to capture desired level of variability

using the method CM3 proposed in Chapter 2 and calculate the scores. We review

the method CM3 in Section 3.7.

3. Estimate the covariance matrixC using (3.4), find the weights using (3.5) and estimate

the mean functions using the weighted sums, (3.3).

4. Subtract the mean functions from the curves in each sample and repeat steps (b)–(d)

until a suitably defined convergence of the mean function estimates is reached. We

discuss the convergence in Section 3.6.

To calculate the expectations E[ξi(s
(j)
k )ξi(s

(j′)
ℓ )] appearing in the definition of the matrix

C, we use parametric modeling, common in spatial statistics:

E[ξi(s
(j)
k )ξi(s

(j′)
ℓ )] = Cov(ξi(s

(j)
k ), ξi(s

(j′)
ℓ )) = fi(dk,ℓ, σ

2, ρ, . . .),

where dk,ℓ is a chordal distance between sk and sℓ defined in Section 3.3. The selected

parametric models for scores as well as estimated parameters are summarized in Section 3.6.

They are estimated using weighted least square fitting of a robust variogram estimator of

Hawkins and Cressie (1984). We emphasize that there is no guarantee that the iterative

algorithm converges for an arbitrary dataset.
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When sample size is small, estimation of the empirical variogram can be a challenge.

In fact, improper selection of the bin parameter could potentially cause significant overes-

timation of the sill and the range, which may affect the conclusion of the test. To achieve

stability of the estimator of the empirical variogram the bin parameter should be selected

in such a way that each lag interval contains at least 30 distinct distances, see, for example,

Section 2.4 in Cressie (1993). In the case of small sample size this recommendation is hard

to fulfill, thus, visual validation both for variogram estimation and its fitting is essential.

In our study, we use two criteria for validation. The first criterion is that the empirical

variogram should have a flat-shaped region for large lags. The second criterion is that the

estimated range should be less than the characteristic size of the spatial domain. We also

recommend to use a simple estimator of the variance and FPC’s to approximate the mag-

nitude order of the sill. Usually, the maximum lag is taken to be half of the characteristic

size of the spatial domain. Finally, let us draw attention to the fact that overestimation of

the sill can cause under-rejection of the null hypothesis which in practice is more preferable

than over-rejection. We discuss bin size selection for the ionosonde data in Section 3.6

3.5 The test procedure

To test the null hypothesis formulated in Section 3.3, we use the statistic

Ŝ = ‖µ̂1 − µ̂2‖2 =
∫

(µ̂1(t)− µ̂2(t))
2 dt, (3.6)

where the mean functions µ̂1 and µ̂2 are estimated using the iterative procedure described

in Section 3.4. A natural approach for the small sample is to use a Monte Carlo (MC) test

based on (3.6), which is feasible under the assumptions stated in Section 3.3 (normality and

the independence of score processes). We describe this approach first. Then we introduce

tests based on gamma approximation to the distribution of (3.6) under H0.

Both the MC test and the gamma test use the expansion under H0

Ŝ0 =

p∑

i=1

[
(w1 −w2) ξ̂i

]2
(3.7)
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in which the ξ̂i are the scores estimated as explained in Section 3.4. The weights wj are

also estimated, but are treated as deterministic in both procedures. This is because the

variability of the mean function estimates is quantified by the variability of the scores.

Monte Carlo approximation. This method relies on the following procedure.

1. Estimate the mean functions µj, the weights w
(j)
k and the FPC’s vi as described in

Section 3.4 and Section 3.7.

2. Calculate the test statistics Ŝ using (3.6).

3. Generate scores ξ̃i ∼ N(0,Γi), where Γi is the estimated covariance matrix. (Recall

that the variances Γi = E[ξiξ
T
i ] are estimated using a parametric model.)

4. Calculate the MC statistic, S̃, by plugging the weights w
(j)
k and the generated scores

ξ̃i into (3.7).

5. Compare the MC statistic and the observed test statistics.

6. Repeat steps (c)–(e) M times to reach a required precision. (We use M = 106 which

provides precision of 3 orders of magnitude.)

7. The ratio of the Monte-Carlo statistics which are larger than the test statistics, Ŝ,

and the number of iterations, M , is the Monte-Carlo P–value.

The MC procedure is time consuming. We now describe a procedure based on gamma

approximation of the test statistics. This procedure is much faster and has comparable

finite sample properties in synthetic data sets generated to resemble the ionosonde data.

Gamma approximation. The test statistics (3.7) can be written as follows

Ŝ0 =

p∑

k=1

[
(w1 −w2) ξ̂k

]2
=

p∑

k=1

σ̂2kz
2
k, (3.8)
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where the zi are standard normal and σ̂2i = (w1 −w2)Γ̂i(w1 −w2)
T . It is not difficult to

verify that σ2k = O(N−1), and so the characteristic function of Ŝ admits the approximation

p∏

k=1

(
1− 2iσ2kt

)−1/2 ≈
(
1− 2i

p∑

k=1

σ2kt

)−1/2

. (3.9)

The right-hand side of (3.9) is the characteristic function of the gamma density

f(x) =
1

βαΓ(α)
xα−1e−x/β , x > 0,

with

α = 1/2, β = 2

p∑

k=1

σ2k. (3.10)

Instead of using (3.10), a better approximation is obtained by using exact values given by

α =

(
EŜ0

)2

Var(Ŝ0)
, β =

Var(Ŝ0)

EŜ0
. (3.11)

This requires estimates of EŜ and Var(Ŝ) valid under H0. Treating the weights w
(j)
k as

deterministic and using (3.8), we obtain

EŜ0 =

p∑

i=1

σ̂2i = (w1 −w2)Ĉ(w1 −w2)
T (3.12)

and

EŜ2
0 = 3

p∑

i=1

σ̂4i + 2

p∑

i>i′

σ̂2i σ̂
2
i′ and (EŜ0)

2 =

p∑

i=1

σ̂4i + 2

p∑

i>i′

σ̂2i σ̂
2
i′ ,

so that

Var(Ŝ0) = EŜ2
0 − (EŜ0)

2 = 2

p∑

i=1

σ̂4i . (3.13)

For the ionosonde data the difference between the “approximate” and the “exact”

values given by (3.10) and (3.11) respectively is about 20%, which is the main cause of the

difference between P-values in Table 3.3.

We can now summarize the testing procedure based on the gamma approximation.
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1. Estimate the mean functions µj, the weights w
(j)
k and the FPC’s vi as described in

Section 3.4.

2. Compute the test statistics Ŝ using (3.6).

3. Estimate the variances Γi = E[ξiξ
T
i ] using a spatial parametric model for each 1 ≤

i ≤ p.

4. Estimate the parameters α and β using either (3.10) or (3.11).

5. Compute the P–value:

P-value =
1

βαΓ(α)

∫ ∞

Ŝ
xα−1e−x/βdx .

3.6 Application to the ionosonde data

In this section we describe the application of the methodology we propose to the

ionosonde data. We begin with the details of implementation.

We estimated the variograms using the robust estimator of Hawkins and Cressie (1984)

and fit parametric spatial models using weighted nonlinear least squares. As explained at

the end of Section 3.4, the bin parameter needs to be selected with great care in order to

obtain a reasonable estimate of the spatial parametric model. The number of the distinct

distances is C13
2 = 78 and the maximum lag is about 200 or 0.3 rad, see Fig. 3.3. By letting

each lag contain N(hi) = 20 distinct distances we conclude that the bin parameter should

be 50 or 0.06 rad. Because N(hi) < 30 visual validation is needed in each step of the

iterative algorithm.

Visual examination revealed that for some score processes ξi the Exponential model

with zero nugget offers the best fit. Under this model, the covariances are given by

Cov(ξi(s
(j)
k ), ξi(s

(j′)
ℓ )) = σ2i exp {−dk,ℓ/ρi} .

The estimated sills, σ2i , and ranges, ρi are summarized in Table 3.2, “Simple” stands for

the ordinary variance estimation.
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Table 3.2: Estimates for the parametric covariance models fitted to the ionosonde data.
Abbreviation SF states for spatial field.

SF Model σ2 ρ SF Model σ2 ρ

ξ1 Exp. 1.57 · 10−1 0.056 ξ5 Exp. 2.17 · 10−3 0.028
ξ2 Simple 1.72 · 10−2 – ξ6 Exp. 2.76 · 10−3 0.025
ξ3 Exp. 6.56 · 10−3 0.036 ξ7 Simple 1.49 · 10−3 –
ξ4 Simple 3.92 · 10−3 –

Figure 3.6: Convergence of the iterative method for the estimation of the means, Ri as a
function of the iteration i.

Using the iterative approach introduced in the Section 3.4, we estimate the mean

functions for the two regions described in Section 3.2. The convergence is evaluated by

means of the quantity

Ri =

∫ 1

0
|µ(i+1)(t)− µ(i)(t)|dt,

where the index i denotes the number of iterations. For the ionosonde data, the convergence

is reached after four iterations, as shown in Fig. 3.6.
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Table 3.3: P-values for different number of the FPC’s p, 1 ≤ p ≤ 7 for night and day data.
Abbreviation CV states for cumulative variance.

Spatial Simple
Target Final Final

MC Exact Approx
Final Final

Exact
CV,% p CV,% p CV,%

75 1 75.45 0.023 0.0244 0.0244 – – –
80 2 85.14 0.024 0.0250 0.0296 1 82.49 1.42 · 10−3

90 4 91.81 0.024 0.0254 0.0334 2 91.53 1.23 · 10−3

95 7 95.17 0.025 0.0257 0.0357 3 95.32 1.15 · 10−3

These estimates allow us to construct the following decomposition of variance:

N1∑

k=1

‖X(s
(1)
k )− µ̂1‖2 +

N2∑

ℓ=1

‖X(s
(2)
ℓ )− µ̂2‖2 =

N1+N2∑

i=1

{
N1∑

k=1

ξ̂2i (s
(1)
k ) +

N2∑

ℓ=1

ξ̂2i (s
(2)
ℓ )

}
.

The sum on the right–hand side is replaced by the sum

V (p) :=

p∑

i=1

{
N1∑

k=1

ξ̂2i (s
(1)
k ) +

N2∑

ℓ=1

ξ̂2i (s
(2)
ℓ )

}
,

with p so large that V (p) exceeds a specified percentage of V (N1 + N2). This procedure

is fairly standard for independent functional data. For spatially indexed functions, the

estimated score processes ξ̂i take into account the spatial correlations.

In some cases, the results of a test for functional data depend on the selection of

the cut–off value p, with the usual recommendation being to use the value of p which

explains between 80 and 90 percent of the variance. For the ionosonde data, p = 1 already

explains over 75% of the variance, and the results of the test, for both MC and gamma

implementations, do not significantly depend on p. Table 3.3 shows the P-values for the MC

method, gamma method with the exact parameters α and β calculated using (3.11) (Exact),

gamma method which uses (3.10) (Approx) and the P–values obtained by ignoring the

spatial dependence (Simple). In the last case we used estimation procedure and the gamma

method which neglect spatial dependence. We conclude that there is enough evidence to

support the alternative hypothesis. For the ionosonde data the conclusion of our analysis is
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Table 3.4: Empirical size (in percent) of the tests applied to data generated to resemble the
ionosonde data.

Spatial Simple
p MC Exact Approx Exact

10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

1 9.96 4.89 1.02 9.57 4.66 0.93 9.57 4.66 0.93 20.17 11.12 1.66
2 9.94 5.05 1.01 9.34 4.70 1.01 8.89 4.20 0.76 19.51 10.91 1.86
3 10.03 4.97 1.00 9.29 4.76 0.98 8.60 4.02 0.64 19.51 11.14 1.99
4 9.96 4.96 1.02 9.25 4.77 1.02 8.51 3.91 0.62 19.46 11.09 2.01
5 10.04 5.02 1.01 9.23 4.69 1.02 8.34 3.80 0.61 19.41 11.07 2.08
6 9.97 4.86 0.92 9.23 4.65 0.97 8.26 3.67 0.54 19.31 11.03 2.02
7 9.88 4.95 0.93 9.12 4.63 0.96 8.15 3.60 0.53 19.17 10.99 2.04

that there is statistically significant evidence to claim that the mean function over Europe

changes due to magnetic inclination. This conclusion agrees with the findings of Cnossen

and Richmond (2008) who used a physical ionospheric model.

The remainder of this section is devoted to the statistical validation of the conclusions

presented above. Due to very small sample sizes, the only feasible way of assessing the

final sample performance of the tests is through a simulation study. The results of any

such study depend on the model for the data generating process (DGP). We have taken

great care to ensure that the stochastic structure of the simulated data resembles that of

the real data. The key assumptions made to simulate the data are the normality and the

independence of the score processes ξi.

The DGP is given by

X(s(1); t) = m1(t) +

p∑

i=1

ξi(s
(1))vi(t), X(s(2); t) = m2(t) +

p∑

i=1

ξi(s
(2))vi(t). (3.14)

To evaluate the empirical size, we set m1(t) = m2(t) = 0. To evaluate the empirical

power, we set m1(t) = µ1(t), the estimated mean function for the western region, and

m2 = (1 − r)µ1 + rµ2, where µ2 is the estimated mean function for the eastern region.

The power is then a function of the “separation” 0 ≤ r ≤ 1. The FPC’s vi are those

estimated from the real data. The scores are generated from zero mean normal distribution
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ξi ∼ N(0,Γi), using the Cholesky decomposition. For the empirical size we select 1 ≤ p ≤ 7

and for the power p = 7. The number of replication of the process (3.14) is 105. The results

for the empirical size and the power are summarized in Table 3.4 and Fig. 3.7, respectively.

Starting with Table 3.4, we see that MC test has more accurate empirical size, very close

to the nominal size. The Gamma test (Exact and Approx) is slightly too conservative.

Method Exact without taking into account spatial correlation has inflated size. This agrees

with the very small P-values reported for real data, and shows that conclusions based on

this method must be treated as tentative.

Figure 3.7: The power function of the test. The lines represent the “exact” gamma test and
the empty diamonds represent the MC test for different confidence levels: α = 10%, 5%, 1%.

3.7 Estimation of the FPC’s

In this section we summarize a procedure for the estimation of the FPC’s when the

curves are spatially correlated. The method we outline is called MC3 in Chapter 2. It is

easy to implement and has good size and power in finite samples.
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1. Assuming that EX(s) = 0 postulate the expansion

X(s) ≈
K∑

m=1

ηm(s)Bm,

where, Bm is an orthonormal basis, and ηm(s) form an observable field ηm(sk) =

〈Bm,X(sk)〉. The value of K can be taken to the number of basis functions used to

create the functional objects in R, for example K = 49.

2. Fix n and m, and define the scalar field z by z(sk) = ηn(sk)ηm(sk).

3. Estimate µz = Ez(s) as a weighted average of the z(sk) for all n,m and denote

resulting estimate by r̂nm.

4. Find the solution of the following matrix equation:

R̂x = λx, (3.15)

where

x = [x1, x2, . . . , xK ]T , R̂ = [r̂nm, 1 ≤ n,m ≤ K].

We denote the solutions to (3.15) by

x̂(n) = [x̂
(n)
1 , x̂

(n)
2 , . . . , x̂

(n)
k ]T , λ̂j , 1 ≤ n ≤ K. (3.16)

5. The FPC’s vn, 1 ≤ n ≤ K are estimated by

v̂n =

K∑

α=1

x̂(n)α Bα. (3.17)

Because the Bn are orthonormal estimated FPC’s are also orthonormal. The λ̂n in

(3.16) are estimators of the corresponding eigenvalues.



CHAPTER 4

NONPARAMETRIC INFERENCE IN SMALL DATA SETS OF SPATIALLY INDEXED

CURVES WITH APPLICATION TO IONOSPHERIC TREND DETERMINATION1

Abstract

This paper is concerned with estimation and testing in data sets consisting of a small

number (about 20–30) of curves observed at unevenly distributed spatial locations. Such

data structures may be referred to as spatially indexed functional data. Motivated by an

important space physics problem, we model such data as a mean function plus spatially de-

pendent error functions. Given a small number of spatial locations, the parametric methods

for the estimation of the spatial covariance structure of the error functions are not satisfac-

tory. We propose a fully nonparametric estimator for the mean function. We also derive

a test to determine the significance of the regression coefficients if the mean function is a

linear combination of known covariate functions. In particular, we develop methodology for

the estimation a trend in spatially indexed functional data, and for assessing its statistical

significance. We apply the new tools to global ionosonde records to test the hypothesis of

ionospheric cooling. Nonparametric modeling of the space–time covariances is surprisingly

simple, much faster than those previously proposed, and less sensitive to computational

errors. In simulated data, the new estimator and test uniformly dominate those based on

parametric modeling.

4.1 Introduction

Models for data which exhibit both space and time dependence have attracted increas-

ing attention in geophysical and environmental research. This is a fast growing branch of

statistics, for a general overview see Cressie and Wikle (2011) and Sherman (2011), for

1CO-AUTHORED BY O. GROMENKO AND P. KOKOSZKA. REPRODUCED FROM COMPUTA-

TIONAL STATISTICS AND DATA ANALYSIS, VOL. 59, 82–94, 2013.
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a fast, accessible introduction, we recommend Gneiting et al. (2007). Space–time data

could be roughly separated into several categories according to the amount of information

contained, respectively, in their spatial and temporal components. One category are the

data which have a very rich spatial component and relatively limited temporal component.

Such data usually come from satellites, see e.g. Jun and Stein (2009), Cressie et al. (2010)

and Katzfuss and Cressie (2011), among many others. Another category are data which

have a rich temporal component and a relatively simple spatial structure. Such data come

typically as collections of long time series recorded at different spatial locations by ground

based instruments. For example, the Irish wind data studied by Haslett and Raftery (1989)

and consequently used in many other papers, the Canadian weather data extensively used

in Ramsay and Silverman (2005) and Ramsay et al. (2009), pollution data studied by

Bowman et al. (2009), and many others.

In this paper, we propose a flexible, fully nonparametric methodology for data of the

latter type. It includes estimation of the mean function and is applied to testing the

statistical significance of a linear trend. Our methodology builds on the theory of Hall et al.

(1994) and Hall and Patil (1994) by 1) developing a practically applicable tool set for the

estimation and testing in the spatial context with few data locations, 2) extending it to the

framework of spatially indexed functional data, 3) developing suitable confidence bounds,

and 4) applying it to an important space physics problem. The work presented in this

paper is a direct result of our attempts to solve this important space physics problem in a

fairly conclusive manner that would be satisfactory to the space physics community. Since

the problem concerns the detection of a long term (many decades) trend, we hope that out

methodology is general and useful enough to be applicable to other similar data sets and

problems. Spatially indexed functional data have been the focus of several recent studies,

see Delicado et al. (2010), Giraldo et al. (2011), Nerini et al. (2010), and Chapter 2

and 3 in this dissertation. Existing approaches however often fail when the number of

spatial locations is small because in such cases the numerical optimization required to fit a

parametric spatial model may fail, or the fit may be poor. The research we report is, to a
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large extent, a result of computational difficulties we encountered with standard approaches.

The resulting new methodology is computationally faster and the algorithms never fail to

converge (in our data sets and simulations).

The paper is organized as follows. In Section 4.2, we develop a nonparametric co-

variance estimation procedure for scalar data. Next, in Section 4.3, a statistical model for

spatially indexed functional data is introduced. Section 4.4 presents the estimation pro-

cedure for this model. In Section 4.5 , we derive a test for assessing the significance of

regression coefficients when the mean function is a linear combination of known covariate

functions. The application of this test to the assessment of a long term cooling trend in the

ionosphere is presented in Section 4.6. Section 4.7 presents the results of simulation studies

that validate the methodology we propose and its application to the ionosonde data.

4.2 Description of the method for scalar data

In this section, we assume that ζ is a mean zero stationary and isotropic scalar random

field observed at locations s1, s2, . . . , sN , and Γ is the N ×N matrix of covariances

γ(dkℓ) = Cov(ζ(sk), ζ(sℓ)) = E[ζ(sk)ζ(sℓ)],

where dkℓ is the distance between sk and sℓ. Estimation of Γ is not trivial for small samples.

Standard variogram based estimator for small spatial data sets is generally unstable, and

the the optimization often fails to converge. It is recommended that every lag interval

should contain at least 30 distinct distances, but for small sample sizes, it is difficult to

meet this condition without reducing the number of intervals to a level which makes fitting

a parametric model difficult. We therefore develop nonparametric methodology, based on

the work of Hall et al. (1994) and Hall and Patil (1994), which is suitable for small data

sets. It forms the basis of the estimation and testing procedures for functional spatially

indexed data, but can also be used for different spatio–temporal models, as illustrated in

Example 4.7.1.
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Recall that dkℓ is the distance between sk and sℓ, and consider the preliminary estimator

γ̃(dkℓ) = ζ(sk)ζ(sℓ). (4.1)

It is possible that for some distances there exist several distinct estimators γ̃(dkℓ), in fact for

dkℓ = 0 there are always N different preliminary estimators. The estimated covariances are

ordered so that the corresponding distances do not decrease: denoting the dkℓ by di, we thus

have di ≤ di+1, 1 ≤ i ≤ N(N + 1)/2. The resulting sequence {γ̃(di) : 1 ≤ i ≤ N(N + 1)/2}

is very noisy and must be smoothed. We use local linear regression, see Fan and Gijbels

(1996), rather than the kernel smoother suggested by Hall et al. (1994). The reason for

using the local linear regression is that it introduces a slightly smaller bias for small and large

distances di. Let κ(x) be a compactly supported symmetric probability density function.

The smoothed value of γ(d) is thus estimated by m̂(d) computed by minimizing

(m̂(d), m̂1) = arg min
m,m1

N(N+1)/2∑

i=1

κ

(
d− di
h

)
{γ̃(di)−m(d)−m1(d− di)}2 . (4.2)

We performed simulations using several popular kernels (triangular, quadratic, Epanech-

nikov, triweight, tricube), and found that they produce practically the same estimates. The

results reported in this paper are based on the Epanechnikov kernel. As with all problems

of this type, the most difficult issue is the selection of the bandwidth h; Hall et al. (1994)

do not recommend any specific procedure. They developed an interactive software which

allows the user to choose the bandwidth and visually compare the resulting estimates. We

describe our method of bandwidth selection in Section 4.9.

To construct a positive definite covariance function, we use Bochner’s theorem: We

compute the Fourier transform of m̂ and delete all negative lobes. The inverse Fourier

transform is then our final estimator γ̂(d). We enhance the idea of Hall et al. (1994) by

providing a procedure to construct functional confidence intervals for γ̂(·), see Section 4.9.

The application of the procedure to simulated data is illustrated in Figure 4.1.

Hall et al. (1994) showed that to achieve consistency in the estimation of γ(d), the



67

0.0 0.1 0.2 0.3 0.4 0.5

−
5

0
5

1
0

1
5

Distance

C
o
v
a
ri

a
n
c
e

Figure 4.1: Illustration of the estimation procedure for scalar data. The true covariance
function (dashed line), its estimate (solid line) and the 95% confidence region (dotted lines).

distance between min(di) and max(di) (the range) must grow much slower than the number

of the di. This condition is naturally satisfied in the spatial setting because adding one

more sk roughly increases the range at most by a unit, but increases the number of the di

by N .

4.3 Statistical model for spatially indexed functional data

The methodology developed in this paper is motivated by the problem of the estimation

and modeling of the mean function µ(·) in the model

X(s; t) = µ(t) + ε(s; t). (4.3)

The data are curves X(sk; t), t ∈ [0, T ], observed at spatial locations s1, s2, . . . , sN . Such

functional data structures are quite common: examples are discussed in Delicado et al.

(2010), Nerini et al. (2010), Giraldo et al. (2011), Hörmann and Kokoszka (2013), Chap-

ters 2 and 3 of this dissertation and Chapters 17 and 18 of Horváth and Kokoszka (2012).
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In model (4.3), the error curves ε(s) are assumed to form a mean zero strictly stationary

and isotropic spatial random field taking values in the Hilbert space of square integrable

functions with the usual inner product, see e.g. Chapter 2 of Horváth and Kokoszka (2012).

We assume that

E‖ε(s)‖2 = E

∫
ε2(s; t)dt <∞.

If the above assumptions are satisfied, the error term can be represented using the Karhunen-

Loève expansion ε(s; t) =
∑∞

j=1 ζj(s)vj(t), where vj is the jth functional principal compo-

nent (FPC), and ζj(s) = 〈X(s)− µ, vj〉 is the score of ε(s) with respect to it. Recall that

the vi are the eigenfunctions of the covariance operator E[〈X(s)− µ, ·〉 (X(s) − µ)]. This

leads to the model

X(s; t) = µ(t) +

∞∑

j=1

ζj(s)vj(t). (4.4)

In the above model, the mean function µ(·) does not depend on the spatial location. It

represents the mean temporal evolution of the spatially distributed curves. The inference

for µ(·), when then number of the spatial locations sk is small, is the focus of this paper.

The fields ζj(·) are mean zero purely spatial random fields. Set

ζj = [ζj(s1), . . . , ζj(sN )]
T , Γj = Var[ζj ].

The matrix Γj is a positive definite N ×N matrix with elements

γj(sk − sℓ) = E [ζj(sk)ζj(sℓ)] .

Our modeling framework requires that for every k, l

E[ζj(sk)ζj′(sℓ)] = 0 if j 6= j′. (4.5)

Note that (4.5) is always true for k = ℓ, but for k 6= ℓ it does not follow from any math-

ematical argument. One can show that the separability of the spatio–temporal covariance
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function implies (4.5), and we need assumption (4.5) to ensure that the spatio–temporal

covariance function is positive definite. Observe that under (4.5) the covariances are given

by

Cov(X(sk; t),X(sℓ; t
′)) = c(sk, sℓ; t, t

′) =

∞∑

j=1

γj(sk − sℓ)vj(t)vj(t
′). (4.6)

It is not difficult to verify that if each Γj is positive definite, then

N∑

k,ℓ=1

∑

t,t′

ak(t)aℓ(t
′)c(sk, sℓ; t, t

′) ≥ 0.

Model (4.6) is obviously nonseparable and enjoys the property of full symmetry. Its

spatial component is (strictly) stationary and isotropic and temporal component is nonsta-

tionary. Model (4.6) is thus more general than those proposed in Cressie and Huang (1999)

and Gneiting (2002).

4.4 Estimation of the mean function

In this section, we put together the developments of Sections 4.2 and 4.3, and propose

a complete nonparametric methodology for the estimation of the mean in model (4.4).

In Chapter 2 we considered several approaches to the estimation of the function µ and

found that the smallest integrated mean square and absolute errors are obtained by using

a weighted sum of functional observations:

µ̂(t) =
N∑

k=1

wkX(sk; t),
N∑

k=1

wk = 1. (4.7)

The weights wk are found by minimizing the expected value of the L2 norm of the difference

µ̂(t)− µ(t), and are given by

w = C−11/(1TC−11), (4.8)

where

C = E
[〈
ε, εT

〉]
=

∞∑

j=1

Γj . (4.9)
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The estimation of µ is summarized in the following algorithm.

(a) Compute the sample mean N−1
∑N

k=1X(sk; t). This yields the first estimate µ̂(t),

which will be improved in subsequent iterations.

(b) Calculate the functional version of (4.1), i.e.

γ̃(dkℓ) = 〈X(sk)− µ̂,X(sℓ)− µ̂〉 =
∫

(X(sk; t)− µ̂(t)) (X(sℓ; t)− µ̂(t)) dt

and estimate the covariance matrix C as described in Section 4.2.

(c) Compute the weights using (4.8), and the mean function, µ̂(t), using (4.7).

(d) Repeat steps (b)-(c) until suitable convergence is reached.

The convergence of the algorithm is evaluated by means of the quantity

Ri =

∫ 1

0
|µ(i+1)(t)− µ(i)(t)|dt,

where the index i denotes the number of iteration. When the Ri do not decrease with i, we

stop the algorithm. The graphs of the Ri for real data are shown in Fig. 4.6.

A similar estimation procedure for model (4.4) was considered in Chapter 2 (Method

M2) and Chapter 3, but the nonparametric covariance estimation was not used. We note

that we do not estimate the covariances Γj of the scores processes separately. This is a very

computationally expensive process, and our approach avoids it.

A simulation study that validates the above method and shows its superiority (in small

samples) relative to current approaches is presented in Section 4.7.



71

4.5 Significance of regression coefficients

In this section, we assume that the mean function µ(·) is a linear combination of q

known functions, so that model (4.4) takes the form

X(s; t) =

q∑

i=1

βizi(t) +

∞∑

j=1

ζj(s)vj(t). (4.10)

Model (4.10) is motivated by the application to ionosonde data described in Section 4.6,

where there is a dominant explanatory function z(t) which quantifies the solar activity.

Model (4.10) can include a linear trend z(t) = t, and can be used to test the significance of

the coefficient of this trend. Problems related to testing the significance of long term trends

abound in geophysical and ecological sciences. We now describe how this can be done if the

relevant time series are measured at several spatial locations.

Introduce the following vectors

β = [β1, . . . , βq]
T , z(t) = [z1(t), . . . , zq(t)]

T ,

and matrices

Q = [〈zi, zi′〉 , 1 ≤ i, i′ ≤ q], Ω = [〈zi, vj〉 , 1 ≤ i ≤ q, 1 ≤ j ≤ p].

The number p of the FPC’s is typically selected using the cumulative variance criterion, see

e.g. Ramsay and Silverman (2005) or Horváth and Kokoszka (2012). A general recommen-

dation is to use p such that the first p components explain about 85-90% of the variance.

It is often useful to perform the inference for several values of p. If the conclusions do not

depend on p, we can place more confidence in them.

To estimate the parameter vector β, we minimize

∥∥∥∥∥

N∑

n=1

wnX(sn)−
q∑

i=1

βizi

∥∥∥∥∥

2

, (4.11)
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which lead to the solution

β̂ = Q−1
〈
z,wTX

〉
. (4.12)

The quantity
〈
z,wTX

〉
is a q × 1 vector with the ith entry

〈
zi,
∑N

k=1wkX(sk)
〉
. Since

wTX is an estimate of the mean function µ(·), (4.12) can be written as

β̂ = Q−1 〈z, µ̂〉 . (4.13)

It is clear now that the estimation of the regression coefficients is a two step procedure:

first we estimate µ(·) using the methodology of Section 4.4, then we use equation (4.13).

The variance of (4.12), Var[β̂], can be calculated in two different ways. The first way is

by substituting the bootstrap sample of µ̂ into (4.13) and using the sample variance. This

approach is computationally very expensive and we do not recommend it. Long run times

are due to the spatial estimation and the estimation of the FPC’s. Instead, we propose an

approach based on the following calculations. Observe that

〈
z,wT ε

〉
=




N∑

k=1

p∑

j=1

wkζj(sk) 〈vj , z1〉 , . . . ,
N∑

k=1

p∑

j=1

wkζj(sk) 〈vj, zq〉



T

=




p∑

j=1

ζ̃j 〈vj, z1〉 , . . . ,
p∑

j=1

ζ̃j 〈vj , zq〉



T

, (4.14)

where ζ̃j is the weighted sum of the scores: ζ̃j =
N∑
k=1

wkζj(sk). Let ζ̃ = [ζ̃1, . . . , ζ̃p]
T then

〈
z,wT ε

〉
= Ωζ̃ and hence

β̂ − β = Q−1Ωζ̃.

Thus

Var[β̂] = Q−1ΩVar[ζ̃]ΩTQ−1. (4.15)

Assuming that the weights are known constants, we have

Var[ζ̃] = diag
(
wTΓ1w, . . . ,w

TΓpw
)
, (4.16)
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which is a p×p diagonal matrix. The diagonal form of Var[ζ̃] is a consequence of assumption

(4.5). All quantities appearing in (4.15) and (4.16) can be estimated using the methodology

presented in the previous sections.

If the functions X(sk) are normally distributed, then, by (4.12), the estimator β̂ is

approximately normal. Thus to test βi = 0, for a fixed i, we assume that the statistic

β̂i/

√
Var[β̂i] has the standard normal distribution. We note that the spatial quasi–bootstrap

method also requires assumptions on the distribution of the spatial processes ξj, and the

only practical assumption is that these processes are normal (we must use the Cholesky

decomposition). In Section 4.6 we verify that the assumption of normality is approximately

satisfied by the ionosonde data.

A simulation study that validates our method is presented in Section 4.7.

4.6 Application to ionosonde data

We first provide some background and motivation. The problem we study is related to

the the hypothesis of Roble and Dickinson (1989) who argued that the increasing amounts

of greenhouse gases in the upper atmosphere should lead to its global cooling because these

gases radiate heat into space. Rishbeth (1990) pointed out that such a cooling would result

in a thermal contraction and the global lowering of the highest or peak electron density.

The ionospheric layer which contain the peak electron density is known as the F2 region.

The peak electron density above any location on the Earth can be measured indirectly.

Data obtained from a type of radar called the ionosonde allow to compute the a critical

frequency, denoted foF2. This frequency is related to the peak electron density by an

equation based partially on laws of physics and partially on empirical corrections. There

are, in fact, several versions of this equation, but the main point is that a lowering in the peak

electron density corresponds to a decrease in the foF2 frequency. There has consequently

been extensive space physics research aimed at determining if a decreasing temporal trend

in the foF2 frequency indeed exists. An interested reader is referred to Lastovicka et al.

(2008), as a starting point. We note that a long term change in the upper atmosphere

can impact space–based navigation, short-wave (3-30Mhz) radio communication and the
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Figure 4.2: F2-layer critical frequency curves at three locations. Top to bottom (latitude
in parentheses): Yakutsk (62.0), Yamagawa (31.2), Manila (14.7). The functions exhibit a
latidudal trend in amplitude.

operation of low orbit satellites. But perhaps even more importantly, long–term changes

in the upper atmosphere and in the lower atmosphere (troposphere) can be governed by

the same factors such as solar activity, changes the Earth’s magnetic field and greenhouse

gases concentration. Consequently, understanding of the influence of these factors and their

combinations in the upper atmosphere can provide additional information on long–term

changes in the troposphere.

Long-term changes in the upper atmosphere are usually described using a linear ap-

proximation which is called the ionospheric trend. The main problem in its determination

is the separation of the solar activity and other factors, like the long term changes in the

internal magnetic field of the Earth, see Clilverd et al. (2003). The solar cycle however
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Figure 4.3: Locations of 28 ionosonde stations in the northern hemisphere.

clearly dominates the shape of the foF2 curves, as shown in Fig. 4.2. A comprehensive

overview of statistical methods proposed in the space physics community is given in Las-

tovicka et al. (2006). The main problem from which they suffer is their inability to combine

the information from many spatial locations. The model and the testing approach we pro-

pose is an attempt to overcome this difficulty. We consider the following specialization of

model (4.10):

foF2(s; t) = β1 + β2t+ β3SRF(t) +

p∑

j=1

ζj(s)vj(t). (4.17)

The covariate SRF is the solar radio flux measured in W/m2Hz. It is a proxy for the solar

activity. Another possible proxy is the sunspot number. Our primary interest in this section

is in testing the hypothesis H0 : β2 = 0.

In this paper, we use data from 28 ionosonde stations, see Fig. 4.3, located in the

mid–latitude region form 300 to 600 in the magnetic coordinate system. To study the solar

influence on trends we split data into Night data from 22 to 2 LT, Noon Data from 10 to
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Table 4.1: P-values for the trend parameter as a function of the number of the FPC’s.

Day Noon Night
Target Final Final

P-value
Final Final

P-value
Final Final

P-value
CV,% p CV,% p CV,% p CV,%

80 2 80.81 3.3 · 10−03 2 84.08 5.58 · 10−3 2 81.82 0.3025
85 – – – – – – 3 89.08 0.3197
90 3 90.81 0.0101 3 92.32 5.79 · 10−3 4 92.40 0.3302
– 4 93.10 0.0102 4 94.70 5.79 · 10−3 – – –
– 5 94.62 0.0103 – – – – – –
95 6 95.87 0.0103 5 96.26 6.04 · 10−3 5 95.24 0.3304

14 LT and Day data (no time filter is applied). Here and below LT means local (latitudal)

time. The data are available from 1967-08-01 to 1989-08-01. This interval covers 22 years

or two solar 11-year cycles. We do not discuss the details of creating the functional objects

from the raw data, as these are fairly complex. An interested reader is referred to Chapter 2

and Chapter 3 herein. The distance between the locations on the globe is measured using

the chordal distance.

Table 4.1 shows the P–values obtained for several values of p. These values were

selected by targeting a specific percentage of variance explained by the first p FPC’s. It is

seen that the trend coefficient is significant for the Day and Noon data, but not for the Night

data. A more comprehensive discussion of this finding will require a more detailed space

physics research, but we note that our result is consistent with discussions published in space

physics literature. Due to different physical processes, the behavior of the upper atmosphere

is different at different times of a day. Our finding, in a sense, confirms that the problem of

trend determination is complex, an a clear cut answer may not be available. The problem

must be formulated in a more precise way. One might clearly wonder if the acceptance of

H0 : β2 = 0 is not a type I error. As seen in Fig. 4.5, the test has the power of about

80%, so a type one error is a possibility. One way to increase power, would be to consider

more ionosonde locations. There are however two problems that must first be solved. 1)

As seen in Fig. 4.3, the amplitude of the curves depends on the latitude. Thus extending
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the latitudinal coverage would violate te assumption of stationarity that underlines our

methodology. 2) Most stations outside the northern hemisphere have incomplete records.

These are not a few missing observations, but missing stretches of data of length 5–20

years. A suitable methodology to accommodate such incomplete records would need to be

developed.

4.7 Validation of the methodology

In this section, we present the results of several simulation studies that validate the

estimation on testing methods introduced in Sections 4.4 and 4.5.

Methodology of Section 4.4. To demonstrate the superior performance (in small

samples) of the new nonparametric estimation procedure, we designed the following simu-

lation study. We generate data using model (4.4) with two FPC’s, i.e.

X(s; t) = µ(t) + ζ1(s)v1(t) + ζ2(s)v2(t). (4.18)

We set

v1(t) = sin(2πt · 7) + sin(2πt · 2), v2(t) =
√
2 sin(2πt · 3);

ζ1 ∼ N(0,Γ1), ζ2 ∼ N(0,Γ2),

where the elements of the covariance matrices have the following parametric form:

γ1(dkℓ) = exp(−dkℓ/0.1), γ2(dkℓ) = 0.2 exp(−(dkℓ/0.3)
2).

The spatial locations sk are uniformly distributed on the unit square (different locations for

every MC replication).

We compare four estimation procedures:

S Simple average, which totally ignores the spatio–temporal dependence;

T The infeasible method which uses the true covariance matrix C = Γ1 + Γ2;
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P The method that uses a misspecified parametric spatio–temporal covariance function

σ2C(h;u), with C(h;u) given by

C(h;u) =
1

1 + a|u|2α exp

(
− c‖h‖
(1 + a|u|2α)β/2

)
. (4.19)

(This covariance function is discussed in detail in Example 4.7.1 below in this section.)

N The new nonparametric method.

Method S corresponds to using only step (a) in the algorithm presented earlier in this

section. It would be the default method if standard R or Matlab software were to be used.

The remaining methods are iterative, and differ by the way in which the covariance matrix

in step (b) is estimated. The parametric model used in method P is discussed in greater

detail in Example 4.7.1.

Table 4.2 compares the performance of the four methods for sample sizes ranging from

15 to 40. We report Monte Carlo averages and standard deviations of the L2 distance

defined as

L2 =

{∫
(µ̂i(t)− µ(t))2 dt

}1/2

. (4.20)

The most important conclusion is that method N is significantly better than all other

methods at the 5% confidence level (a difference of more than two standard deviations, which

will be the benchmark in the discussion that follows). It is even better than the parametric

method T which assumes the known true covariances. This illustrates a relatively well–

known fact that a flexible nonparametric model can approximate the stochastic structure

of the data better than a true parametric model, when the number of data points is small.

Method P, based on a more flexible parametric family is significantly worse than method

N, but “almost” significantly better than Method T: the differences between N and P are

significant at about 10% level. The standard method S is significantly worse than any other

methods. This means that taking into account spatial dependence of the curves even in

a suboptimal way significantly improves the estimates. We emphasize that for method P

only the cases in which the variogram optimization converged were considered; it did not
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Table 4.2: Average L2 distance between the estimated and true mean functions for different
estimation methods; the second number represents the standard error. The entries are
based on 104 replications.

Sample S T P N

15 0.164 ± 0.006 0.151 ± 0.005 0.145 ± 0.006 0.069 ± 0.004
20 0.137 ± 0.005 0.123 ± 0.004 0.116 ± 0.005 0.061 ± 0.003
25 0.122 ± 0.005 0.108 ± 0.004 0.098 ± 0.004 0.059 ± 0.004
30 0.115 ± 0.004 0.105 ± 0.004 0.098 ± 0.004 0.060 ± 0.004
35 0.109 ± 0.004 0.096 ± 0.004 0.089 ± 0.004 0.060 ± 0.004
40 0.104 ± 0.005 0.089 ± 0.004 0.082 ± 0.004 0.059 ± 0.005

converge in over 10% of replications. The conclusions reached from the analysis of Table 4.2

do not change if the data generating process (4.18) is modified by adding more principal

components which however do not account for more than 10% of variability, as is the case

for the ionosonde data.

The results reported in Table 4.2 reveal good performance of Method P based on

the misspecified covariances (4.19). The example below considers this spatio–temporal

model a bit closer. It is not a model for spatially indexed functional data that drives our

methodology, so it serves to underline the flexibility and extendability of our approach,

which proposes to estimate the spatial components nonparametrically, when the number of

spatial locations is small. It turns out that our nonparametric approach can improve on

the current estimation methodology for model (4.19) as well.

Example 4.7.1 We now consider the model Z(s; t) = µ+ε(s; t), with the true mean µ = 0.

The spatial locations sk are uniformly distributed on the unit square (different locations

for every MC replication). The errors are normal with the space–time correlation function

given by (4.19), i.e. by Eq. (14) in Gneiting (2002). The scale parameters a and c are

nonnegative, the smoothness parameter α, and the space-time interaction parameter β take

values in [0, 1]. The goal is to study performance of the nonparametric method in three

regimes: no space-time interaction β = 0, moderate space-time interaction β = 0.5, and

strong space-time interaction β = 1. The parameter a is also of importance; if it is small, it
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induces long range temporal correlation, if it is large the temporal correlation decays fast.

The space scale parameter and the smoothness parameter are fixed (c = 5, α = 0.7). Again,

to estimate the mean, we must estimate the covariance structure. The details are outlined

at the end of this example. The methods we study are:

S Simple average, which totally ignores the spatio–temporal dependence;

T The infeasible method which uses the correct model and true parameter values;

P The parametric method that uses the correct model and estimated parameters;

N The new nonparametric method.

The results of our simulations are displayed in Table 4.3. In all but four cases, method

N is significantly better than method P at 5% level of significance. In the remaining four

cases, the average L2 distance for method N is smaller, but the difference is smaller than

two standard deviations. The difference is much more significant than 5% for N = 15 and

N = 20. The marginally insignificant result for N = 15 and β = 1, a = 1 could be a type

II error. In all cases considered the infeasible method (T) is not significantly better than N

at 5% level. Somewhat surprisingly, in a few cases with N = 15 and N = 20 method P is

not significantly better than the trivial method S.

We conclude this example by outlining the covariance estimation procedure for model

(4.19), see Section 4 in Gneiting (2002) for more details. By plugging in (4.19) into (4.9)

one can see that for mean estimation only a purely spatial covariance is needed:

C(h) =

∫ 1

0
C(h; 0)dt = exp (−c‖h‖) .

After determining the parameter c via nonlinear fitting we calculate the weights using

(4.8). For method N, we estimate the covariance function nonparametrically, as described

in Section 4.2.

Methodology of Section 4.5. There are many reasonable data generating processes

that could be used to evaluate the finite sample performance of the normal test based on



81

Table 4.3: Average L2 distance between the estimated and true means; the second number
represents the standard error. Entries are based on 104 replications.

Parameters Sample S T P N

β = 0, a = 0.1,

15 0.201 ± 0.002 0.185 ± 0.003 0.192 ± 0.004 0.181 ± 0.001
20 0.188 ± 0.002 0.167 ± 0.002 0.183 ± 0.007 0.166 ± 0.002
25 0.178 ± 0.002 0.158 ± 0.003 0.158 ± 0.004 0.155 ± 0.002
30 0.173 ± 0.003 0.154 ± 0.003 0.158 ± 0.006 0.150 ± 0.003

β = 0, a = 1,

15 0.199 ± 0.002 0.183 ± 0.002 0.191 ± 0.003 0.181 ± 0.002
20 0.189 ± 0.002 0.171 ± 0.003 0.178 ± 0.006 0.166 ± 0.002
25 0.179 ± 0.002 0.159 ± 0.002 0.163 ± 0.003 0.156 ± 0.002
30 0.172 ± 0.002 0.150 ± 0.002 0.154 ± 0.003 0.149 ± 0.001

β = 0.5, a = 0.1,

15 0.200 ± 0.002 0.182 ± 0.002 0.196 ± 0.004 0.182 ± 0.002
20 0.189 ± 0.002 0.166 ± 0.002 0.171 ± 0.002 0.166 ± 0.002
25 0.179 ± 0.003 0.157 ± 0.005 0.167 ± 0.006 0.154 ± 0.003
30 0.173 ± 0.002 0.152 ± 0.002 0.158 ± 0.003 0.151 ± 0.002

β = 0.5, a = 1,

15 0.199 ± 0.002 0.181 ± 0.002 0.188 ± 0.002 0.180 ± 0.002
20 0.182 ± 0.002 0.161 ± 0.002 0.171 ± 0.004 0.161 ± 0.002
25 0.179 ± 0.002 0.157 ± 0.002 0.167 ± 0.004 0.156 ± 0.002
30 0.174 ± 0.002 0.162 ± 0.006 0.168 ± 0.005 0.151 ± 0.001

β = 1, a = 0.1,

15 0.199 ± 0.001 0.185 ± 0.003 0.196 ± 0.004 0.181 ± 0.002
20 0.189 ± 0.002 0.171 ± 0.003 0.180 ± 0.007 0.166 ± 0.002
25 0.177 ± 0.002 0.157 ± 0.002 0.166 ± 0.004 0.156 ± 0.002
30 0.172 ± 0.002 0.150 ± 0.001 0.158 ± 0.003 0.148 ± 0.001

β = 1, a = 1,

15 0.201 ± 0.001 0.185 ± 0.002 0.189 ± 0.002 0.186 ± 0.002
20 0.187 ± 0.002 0.172 ± 0.003 0.176 ± 0.003 0.166 ± 0.002
25 0.181 ± 0.002 0.159 ± 0.002 0.165 ± 0.003 0.157 ± 0.002
30 0.172 ± 0.002 0.150 ± 0.001 0.152 ± 0.003 0.149 ± 0.001

β̂i/

√
Var[β̂i]. A number of spatial designs, shapes of the FPC’s and the covariance functions

for the scores could be employed. To avoid producing a large number of tables, we focus

on a simulation study relevant to the science problem we consider in Section 4.6. The data

generating processes are designed to resample true data.

To evaluate the empirical size and power, we generate the data using model (4.17) with

p = 3 because the first three estimated FPC’s explain about 91–92% of the variance for

each of the three types of data. The coefficients β1 and β3 are equal to these coefficients

estimated from the real data. To evaluate the size, we set β2 = 0, to study the power,
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Figure 4.4: Normal QQ-plots plots for the estimated scores, ζi, 1 ≤ i ≤ 6 for the Day data.

we consider 0 < β2 ≤ 0.5. The FPC’s vj are equal to those estimated from the real data.

The vectors ζj are N(0, Γ̂j) with the Γ̂j equal to the covariance matrices estimated from

the data (using the nonparametric method). Monte Carlo replications are generated by

repeated simulations of the vectors ζj . The assumption of normality holds to a reasonable

approximation as shown in Fig. 4.4 for the Day data. The plots for the Noon and Night

data look similar. There is one outlying point in the QQ–plot of the ζ2(sk), and the plot for

the ζ3(sk) indicates some departure from normality. The third FPC contributes however

less than 10% to the variance, so its impact on our conclusions is small. In fact, the after

removing this point, the trend parameter practically did not change.

The empirical size of the test developed in Section 4.5 is reported in Table 4.4 as a

function of p. It is remarkably close to the nominal size and does not depend on p, as long

as it remains in a reasonable range. This remains true if the scores are not normal, but
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Table 4.4: Empirical Size of the test of H0 : β2 = 0.
Day Noon Night

p 10% 5% 1% 10% 5% 1% 10% 5% 1%

2 9.06 4.24 0.90 10.28 5.52 1.14 10.47 5.34 1.17
3 9.94 4.75 1.23 9.82 5.15 1.01 10.51 5.24 1.04
4 9.80 4.76 1.03 10.01 5.08 1.00 9.78 4.77 1.07
5 10.21 4.93 1.16 9.52 4.91 1.06 9.95 4.88 1.01

Table 4.5: Empirical Size for the “simple” method.
Day Noon Night

p 10% 5% 1% 10% 5% 1% 10% 5% 1%

2 65.97 60.82 49.91 27.34 19.21 8.35 54.70 47.59 34.79
3 61.95 55.42 43.23 69.34 64.02 53.98 55.51 47.27 35.65
4 60.22 53.49 41.40 68.20 63.73 54.63 55.52 48.73 35.94
5 62.18 55.31 43.51 70.51 62.15 53.24 54.75 47.08 34.24

severe departures from normality may distort the size for some values of p. For comparison,

Table 4.5 shows the sizes for the method which can be termed “simple.” It also relies on

(4.13) and (4.15), but it uses the standard estimation procedure implemented in software

packages discussed in Ramsay et al. (2009). (In the “simple” method, we set wk = 1/N and

the vj in Ω are estimated as the eigenfunctions of the usual empirical covariance operator.)

The “simple” method does not take into account the spatial dependence of the curves.

This method severely overrejects. The empirical power of the new method is displayed in

Fig. 4.5. The power curves for the Day data rise less steeply than those for the Noon and

Night data. We will return to these curves when we discuss the results of the application

of the test to the real data.

4.8 Summary and conclusions

The research reported in the paper is the outcome of our attempts to solve the hy-

pothesis of global ionospheric cooling in a manner that would survive a rigorous scientific

scrutiny. Our initial approaches failed because the standard parametric spatial model fitting
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Figure 4.5: Empirical power. Solid line - empirical power for α = 10%, dash–dotted line -
empirical power for α = 5%, dashed line - empirical power for α = 1%.

Figure 4.6: Convergence of the iterative method for the estimation of the means Ri as a
function of iteration i.

produces very poor results if a small sample of spatial locations is available. To address

this issue, we built on the nonparametric approach and developed a set of tools that can be

used with confidence in small samples of spatially distributed curves. The main ingredients

of the new methodology are the following. 1) Nonparametric estimation procedure for the

mean function which produces significantly smaller mean squared errors than any of the

existing procedures. 2) Estimation procedure for the mean function expressed as a linear
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combination of known functions. 3) A test to determine the significance of the coefficient

of any of the known functions in 2). As explained in the introduction, we hope that our

methodology will be used in other problems of inference for functional data available at a

small number of spatial locations.

4.9 Bandwidth selection and the construction of the functional confidence in-

tervals

In this section, we describe the procedures for the selection of the bandwidth h and

for the construction of the functional confidence intervals, the two important ingredients of

the methodology introduced in Section 4.2.

Regarding the choice of h, we performed a very extensive simulation study to evaluate

the performance of several potential methods. It is important to note that the nonparamet-

ric covariance function estimation described in Section 4.2 is only an ingredient of a broader

methodology for the estimation and testing in the functional spatio–temporal framework.

The choice of the bandwidth must thus be be tailored to the problems we want to solve.

These problems revolve around the estimation of the mean function µ(t) in model (4.4).

The procedure employed in all numerical work reported in this paper is the following: We

first center the functions by their average (their possible spatial dependence is not taken

into account). This step transforms the functions to a set of approximately mean zero func-

tions. We then estimate the covariance functions using a several choices of h, the same h for

every functional principal component. We select h for which the estimated mean function

is closest to zero. In other words, we select h which minimizes

‖µ̂h − 0‖2 =
∫
µ̂2h(t)dt

where µ̂h is the final estimated mean function (of the centered curves) obtained using

bandwidth h.

The other approaches we experimented with included: 1) cross–validation to minimize

the integrated mean squared error of m̂ given by (4.2) or of γ̂ described in the next para-
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graph. 2) Cross–validation to minimize the integrated mean squared error of the estimated

function µ̂h. 3) Spatial versions of the cross validations in 1) and 2), in which the removed

observation is replaced by a spatial prediction obtained using kriging with various values of

h. None of these approaches yielded uniformly satisfactory results.

We now turn to the construction of functional confidence bounds for the covariance

function γ(·). The idea is as follows. First, using the quasi–bootstrap procedure proposed by

Solow (1985) and further improved by Clark and Allingham (2011), we produce a collection

of M independent covariance curves, γ̂i(d), 1 ≤ i ≤ M . Then using the concept of a

functional depth we construct the confidence bounds. The concept of functional depth has

been extensively used lately, see Fraiman and Muniz (2001), Febrero et al. (2008), López-

Pintado and Romo (2009) and Sun and Genton (2011), but not in the context of covariances

of spatial data.

We start with outlining the quasi–bootstrap procedure. The estimated covariance

matrix Γ̂ is decomposed using the Cholesky decomposition as Γ̂ = L̂L̂T , where L̂ is the

lower triangular matrix. Using L̂, the spatial field ζ can be decorrelated as ζ0 = L̂−1ζ. Next,

ζ0 is resampled with replacement and recorrelated ζi = L̂ζ0. The superscript 1 ≤ i ≤ M

refers to the iteration step. Based on the bootstrap sample ζi, the correlation is estimated

by γ̂i(d) using the nonparametric method. These steps are repeated sufficiently many, say

M = 1, 000, times. This leads to a collection of independent covariance curves γ̂i(d).

A functional depth can be defined in many different ways. Here we use the definition

presented in Chapter 1 of Horváth and Kokoszka (2012). Let

FN,d(γ) =
1

N

N∑

i=1

I {γ̂i(d) ≤ γ} ,

be the empirical distribution function at point d. We define the functional depth (FD) of

the curve γ̂i by integrating the univariate depth:

FDN (γ̂i) =

∫
(1− |1/2− FN,d(γ̂(s))|) ds.
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Next, we select K curves with the largest depth. Then, for each d we find min(γ̂i(d))

and max(γ̂i(d)) from among these K curves. This produces the lower and upper bounds

which form the functional analogue of the univariate 1−α = K/M confidence interval. An

Example of the functional confidence bounds is shown in Fig. 4.1.



CHAPTER 5

EVALUATION OF THE COOLING TREND IN THE IONOSPHERE USING

FUNCTIONAL REGRESSION WITH INCOMPLETE CURVES1

Abstract

Long–term trends in the ionosphere can impact the operation of space–based civilian

and defense systems. The ionospheric cooling trend studied in this paper is also related to

the global warming hypothesis; both are attributed to the same drivers. The hypothesis

that such a trend exists has been an important focus of space physics research for two

decades. A central difficulty in reaching broadly agreed on conclusions was the absence of

data with sufficiently long temporal and sufficiently broad spatial coverage. Time series of

data that cover several decades exist only in several separated (industrialized) regions. The

space physics community has struggled to combine the information contained in these data,

and often contradictory conclusions have been reported based on the analyses relying on

one or a few locations. We present a statistical analysis that uses all data, even those with

incomplete temporal coverage. It is based on a new functional regression approach that

can handle unevenly spaced, partially observed curves. We conclude that a statistically

significant cooling trend exists in the Northern Hemisphere. This confirms the hypothesis

put forward in the space physics community over two decades ago. We also define the

minimum requirements on the number of curves and their temporal extent in order for

statistical significance of trend to be determined.

5.1 Introduction

1CO-AUTHORED BY O. GROMENKO, P. KOKOSZKA, AND J. SOJKA. THIS PAPER IS SUB-

MITTED TO THE JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION: APPLICATIONS

AND CASE STUDIES.
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This paper is concerned with a long standing problem of space physics research. The

increased concentration of greenhouse gases in the upper atmosphere is associated with

global warming in the lower troposphere. Roble and Dickinson (1989) suggested that the

increasing amounts of these radiatively active gases, mostly CO2 and CH4, would lead to

a global cooling in the thermosphere by about 50K. Rishbeth (1990) pointed out that this

would result in a thermal contraction of the atmosphere and the global lowering of the

ionospheric peak height and the decrease of the inospheric peak density, see Fig. 5.1. The

F region peak has been observed for many decades by globally distributed ground–based

ionosondes. The ionosonde is a type of radar projecting a spectrum of high-frequencies (HF)

vertically into the ionosphere. In principle, these observations could be used to quantita-

tively test the hypothesis of Roble and Dickinson (1989). A long term change in the upper

atmosphere can impact space–based navigation (including GPS systems), HF (2-30MHz)

radio communication and the operation of low orbit satellites. It is associated with the

global warming hypothesis because a physical mechanism for the conjectured cooling trend

is also attributable to greenhouse gases.

The ionospheric layer which contains the peak electron density is known as the F2

region (the right–most peak in Fig. 5.1). Ionosonde measurements allow us to observe a

critical frequency, denoted foF2. The ionosonde observes the frequency associated with

the peak plasma density known as the plasma frequency or the critical frequency of the

ordinary ray propagation of the transmitted radio wave. This frequency decreases as the

peak density proportional to the square root of the peak density. There has consequently

been extensive space physics research aimed at determining if a decreasing temporal trend

in the foF2 frequency indeed exists. Lastovicka et al. (2008) review some of the relevant

literature.

Long-term changes in the upper atmosphere are usually described using a linear ap-

proximation referred to as the ionospheric trend. The main problem in its determination

is the separation of the solar activity and other factors, like the long term changes in the

internal magnetic field of the Earth; the solar cycle dominates the shape of the foF2 curves,
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Figure 5.1: Typical profile of day time ionosphere. The curve shows electron density as a
function of height. The right vertical axix indicates the D, E and F regions of the ionosphere.

see Fig. 5.2. A comprehensive overview of statistical methods proposed in the space physics

community is given in (Lastovicka et al., 2006). The main problem from which they suffer

is their inability to combine the information from many spatial locations. The usual ap-

proach is to calculate trends separately at a number of locations, often using different time

periods, and then average these trends to obtain a sense of a global trend, see Bremer et

al. (2012) for a recent contribution and a discussion of previous work. There has, however,

long been a sentiment in the ionospheric physics community, that, in addition to informative

exploratory analyses, an inferential statistical framework should be developed to address

the question of the existence of long term ionospheric trends; Ulich et al. (2003) stress that

to make any trends believable, a suitable statistical modeling, a proper treatment of “errors

and uncertainties” is called for.
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Figure 5.2: Gray lines represent all foF2 records analysed in this paper with the scale on
the left-hand side. The black line represents the observed solar radio flux with the scale on
the right-hand side.

Our objective is to make a contribution in this direction which establishes the existence

of the negative foF2 trend over the mid–latitude Northern Hemisphere with statistical signif-

icance. This is achieved by developing an inferential framework which allows us to combine

incomplete ionosonde records from globally distributed locations and take their spatial de-

pendence into account. The absence of complete records has been a major stumbling block

in space physics research to date. Our approach is developed in the framework of functional

data analysis: the ionosonde records are viewed as spatially indexed curves which are only

partially observed.

There has been an increasing interest in correlated (in particular spatially dependent)

functional data. Such data occur in many settings of practical relevance: meteorological and

pollution variables at many locations measured over long periods of time, records of brain

activity at a number of locations within the brain, economic or health variables indexed

by counties, etc. An interested reader is referred to Delicado et al. (2010), Giraldo et al.
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(2009, 2010, 2011, 2012), Nerini et al. (2010), Secchi et al. (2011, 2012), Jiang and Serban

(2012), Crainiceanu et al. (2012), Staicu et al. (2010, 2012), and Chapters 2, 3 and 4

herein. Even though our new functional regression technique has been developed to solve a

specific science problem, it is hoped that it will be received with interest as a more broadly

applicable tool of functional data analysis.

The remainder of the paper is organized as follows. In Section 5.2, we introduce the

space physics data we work with. Section 5.3 is devoted to the new statistical methodology

we had to develop to solve the problem outlined above. Some technical aspects of this

methodology are explained in Sections 5.5, 5.6 and 5.7. In Section 5.4, we apply these

tools to establish, with statistical significance, the existence of a negative foF2 trend in the

mid–latitude Northern Hemisphere.

5.2 The data

The main data used in our study are the foF2 values calculated from ionosonde radio

wave echoes from the F2 layer. The raw data are available at the Space Physics Interactive

Data Resource (SPIDR), http://spidr.ngdc.noaa.gov/spidr/. In principle, these are

equidistant time series at over 200 locations with the typical separation between the obser-

vations of one hour. In practice, these raw data contain huge gaps, often over a decade long,

as well as a large number of “sporadic” missing observations, most likely due to equipment

failure or maintenance. Missing data are often not indicated and not plugged in a standard

way. Even at the same location, the foF2 values are sometimes reported in different units at

various times in the pat six decades. We developed a C++ program which converts the raw

data to standard units and to regularly spaced time series with missing values flagged. Due

to rounding of geographical coordinates, some stations appear to have the same location.

When this happens, we use exact locations provided by external sources. Also, some sta-

tions are listed twice with different 5-digit SPIDR codes. For example, HAJ43 and HAJ45

both are Hanscom AFB, MA. In this case, we use the record with the 5-digit code which

has the lower numeric part. In some cases, we merge such records to obtain longer temporal

coverage.
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Figure 5.3: Locations of the 85 ionosonde stations used in this study, black discs. The
two circles in northern Canada represent stations located in the auroral zone (dashed line),
which were not used.

For the study reported in the paper, we calculated monthly medians using only near

noon observations, 10-14 LT (LT denotes local solar time). At noon, the behavior of the

ionosphere is completely dominated by the solar radiation, see Fig. 5.2, which can be re-

moved using our regression model. At night, the behavior of the ionosphere is complicated,

and we postpone the study of the night time data to a more specialized space physics pa-

per. Our statistical study requires the assumption of spatial stationarity. To make this

assumption reasonable, we focus only on the mid–latitude region located between 30◦N and

60◦N geographic latitude. The ionosphere can be divided into three regions, equatorial,

mid–latitude and auroral. It exhibits different electron density profiles in each of these

regions, with the profile shown in Fig. 5.1 typical of the mid–latitude region. The reason

for choosing the northern hemisphere is that it contains the longest records with the most
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extensive spatial coverage, see Fig. 5.3. We dropped two Canadian stations located between

30◦N and 60◦N which are however in the auroral zone (determined by the magnetic coordi-

nates). Visual examination shows that these two records indeed appear to be outliers. The

total number of selected stations is 85. The majority of the ionosondes started to operate

in 1957, the international geophysical year. We selected the time interval from July 1957

to December 2011, so that the total number of months is 654. While the total number of

selected stations is 85, the number of stations available at any specific month never exceeds

50.

The foF2 curves are used as responses in our functional regression. The main ex-

planatory variable is the observed solar radio flux (SRF), also available at SPIDR, which

is a well established proxy for the solar activity. We also use another regressor which is

a function of the direction of the internal magnetic field of the Earth, which has changed

at every ionosonde location over the time span of the data. These directions are com-

puted using the international geomagnetic reference field (IGRF); the software is available

at http://www.ngdc.noaa.gov/IAGA/vmod/.

5.3 Statistical model and inference

In order to develop an inferential procedure, a statistical model for the data must

be postulated. Denote by {sk, 1 ≤ k ≤ N} the locations at which the functional field is

observed. We assume that each curve X(sk, ·) is an element of a strictly stationary spatial

random field taking values in the space L2 of square integrable functions. This assumption

implies that all curves X(sk, ·) have the same distribution in L2, in particular, they have

the same mean function µ(t) = E[X(s, t)] and the same functional principal components

(FPC’s), which we denote by vj(t). The inference on the mean function µ(·) is the main

objective of this research; this function may or may not contain the conjectured foF2 trend.

The main difficulty arising in the work that follows is that the curves X(sk, ·) are often not

available over long periods of time, these periods being different at different locations sk.

There is also a small measurement error, which we denote by θ(s; t). We assume that θ(s, t)

are mean zero iid random variables with variance σ2θ . We also assume that the random
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fields X and θ are independent. Under these assumptions, the model for the data is

X(s; t) = µ(t) +

∞∑

j=1

ζj(s)vj(t) + θ(s; t), (5.1)

where the second term on the right-hand side is the Karhunen–Loéve expansion, see e.g.

Chapter 17 of Horváth and Kokoszka (2012). Each ζj is a strictly stationary mean zero

scalar random field. For every s, E[ζj′(s)ζj(s)] = 0, j′ 6= j (this is a general property of the

scores). We impose a stronger assumption that for any s, s′,

E[ζj′(s
′)ζj(s)] = 0, j′ 6= j, (5.2)

which is needed to derive a test statistic whose distribution can be approximated. In

Section 5.5, we show that (5.2) is a very reasonable assumption for the foF2 data. Using

a mathematical argument, we also show in Section 5.5 that (5.2) holds for every separable

spatio–temporal random field, i.e. a field for which

Cov
(
X(s, t),X(s′, t′)

)
= Σ(s, s′)c(t, t′). (5.3)

We however do not assume separability. The covariance structure of our model, which can

be viewed as a spatio–temporal field, is

Cov
(
X(s, t),X(s′, t′)

)
=

∞∑

j=1

Σj(s, s
′)vj(t)vj(t

′),

where

Σj(s, s
′) = E[ζj(s)ζj(s

′)].

In our estimation procedure, we assume that the fields ζj are isotropic, an assumption that

holds reasonably well for the foF2 data.
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5.3.1 Estimation in the presence of incomplete records

In this section, we introduce a new method for the estimation of the mean function

µ(·) and the FPC’s vj(·) in model (5.1). This new approach is called for by the need to deal

with incomplete data.

Estimation of the mean function. For complete records, Chapter 2 proposed

several approaches. The most straightforward method is to estimate the mean by the

weighted sum:

µ̂(t) =
N∑

k=1

wkX(sk; t),
N∑

k=1

wk = 1. (5.4)

The optimal weights are found by minimizing the expected value of the L2 distance between

the mean and its estimator (5.4), subject to constrain wT1 = 1. This leads to the following

expression for the weights:

w = Σ−11/(1TΣ−11), (5.5)

where Σ is an N ×N positive definite matrix with entries

Σ(sk, sℓ) = E

∫
{X(sk; t)− µ(t)} {X(sℓ; t)− µ(t)} dt. (5.6)

It is clear that (5.4) and (5.6) require the curves X(sk; t) to be complete. This is particularly

important in (5.6); for incomplete records, it may happen that the segments over which

X(sk; t) and X(sℓ; t) are available are practically disjoint. A similar problem occurs if one

attempts to use the methods of the estimation of the FPC’s vj developed in Chapter 2

in situations when large segments of data are missing. These difficulties motivate us to

propose an different approach which we now describe.

Let N be the total number of curves, i.e. the number of ionosonde stations used in the

study. By ti, 1 ≤ i ≤ T , we denote all possible times at which the ionosonde records can, in

principle, be evaluated. By Ni, 0 ≤ Ni ≤ N , we denote the number of observations actually

available at time ti, and by Tk the actual number of observations of the curve X(sk).

The new method also uses weights to account for spatial dependence. To handle missing
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observation we use smoothing, common in longitudinal data analysis. The mean function

is estimated by the local linear indexed regression:

(m̂0(t), m̂1(t)) (5.7)

= arg min
m0,m1

T∑

i=1

κµ

(
t− ti
hµ

){ Ni∑

k=1

wk(ti)X(sk; ti)−m0 −m1(t− ti)

}2

.

The curve m̂0(·) is the estimate of the mean function µ(·). We report the results obtained by

using the Epanechnikov kernel κµ(t) = 3/4(1− t2)1[−1,1](t) because it has several desirable

properties, see e.g. Theorem 3.4 in Fan and Gijbels (1996). Simulations and application

to foF2 data show that the choice of kernel plays practically no role. The conclusions for

the foF2 data do not depend on the choice of the bandwidth hµ either, as long as it is in a

reasonable range, so that the smoothed curves visually follow the raw data. Specific values

are given in Section 5.4.

The main idea encapsulated in formula (5.7) is that at each time ti we use only the

Ni available curves; the weights wk(ti), which capture the spatial structure, depend on ti.

Their calculation is discussed in the following. This is a novel aspect because smoothing

methodology developed to date, see Yao et al. (2005), Yao and Lee (2006), Müller and Yao

(2008), assumes independence of the curves.

Calculation of the weights. In Chapter 2 proposed the so-called functional vari-

ogram:

2γ(dkℓ) = E

{∫
(X(sk; t)−X(sℓ; t))

2dt

}
. (5.8)

A natural estimator of 2γ(dkℓ) for complete records is

2γ̃(dkℓ) =
1

pkℓ

∑

P (dkℓ)

1

T

T∑

i=1

(X(sk; ti)−X(sℓ; ti))
2, (5.9)

where P (dkℓ) = {(sk, sℓ) : ‖sk − sℓ‖ = dkℓ} and pkℓ is the cardinality of P (dkℓ). The

points with d = 0 are not included. When the records are incomplete, averaging over

time can be a source of a severe bias especially for short records. Thus, preaveraging over
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time should be avoided. Instead, we perform averaging for all available squared differences

(X(sk; ti) − X(sℓ; ti))
2 , 1 ≤ i ≤ T , for locations which fall into P (dkℓ), see Fig. 5.4.

The resulting estimator is noisy and the corresponding spatial covariance is not necessarily

positive definite. We thus fit a valid parametric variogram model to the γ̃(dkℓ), using

nonlinear least squares, and restore the covariance. We use the Gaussian model

γ(d) = (σ2 − σ2ν)(1 − exp(−d2/ρ2)) + σ2ν1(0,∞)(d) (5.10)

because it fits the estimated variogram for the real data well, see Figure 5.4.

Once the parameters σ2, σ2ν and ρ2 have been estimated, calculation of the weights

wk(ti) is straightforward: we first estimate the covariance matrix Σ(ti) by plugging the

distances between locations with available observations into (5.10) and then use formula

w(ti) = Σ(ti)
−11/(1TΣ(ti)

−11).

Note that above Σ(ti) is the Ni ×Ni dimensional matrix and 1 is the Ni × 1 dimensional

vector.

We will also work with “universal” weights w obtained by plugging in distances between

all locations into (5.10) and using (5.5). We need the weights w for the trend estimation in

section 5.3.2.

Estimation of the covariance structure. To determine the statistical significance

of the conjectured cooling trend, we need to estimate several elements of the second order

structure of the incomplete functional field X. We will see in Section 5.3.2 that what is

needed are estimates of the FPC’s vj and of the matrices Σj whose entries are

Σj(k, ℓ) = E[ζj(sk)ζj(sℓ)], 1 ≤ k, ℓ ≤ N. (5.11)

To calculate these estimates, we extended the ideas used in the estimation of the mean

function to the estimation of the second order structure by using bivariate smoothing. The
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Figure 5.4: Estimation of the weights for incomplete records. Left panel: Gray dots represent
all available squared differences (X(sk; ti) − X(sℓ; ti))

2, 1 ≤ i ≤ T ; black dots represent
squared differences (X(sk; ti)−X(sℓ; ti))

2, for some fixed ti. Dashed lines separate regions
P (dkℓ). Right panel: The thin line shows the estimated variogram, the bold line represents
the fitted Gaussian variogram.

details are however fairly technical, and are presented in Section 5.6.

5.3.2 Functional regression

Estimation of the trend. In Chapter 4 we proposed a procedure for determining

the linear trend for complete records when all covariates are global, like the SRF which

does not depend on the spatial location. Here we generalize that approach to the case of

incomplete curves and covariates which may depend on the spatial location.

We assume that the mean function µ(t) is a linear combination of q known functions

(covariates) zi(t; s), so that model (5.1) takes the form

X(s; t) =

q∑

i=1

βizi(t; s) +

∞∑

j=1

ζj(s)vj(t) + θ(s; t). (5.12)
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Some covariates are global, but we use the notation zi(t; s) for all of them. All covariates

are fully observed and are treated as deterministic regressors.

For an arbitrary weight vector w = [w1, . . . , wN ]
T , set

zwi(t) =

N∑

k=1

wkzi(t; sk).

Next, introduce the following vectors

β = [β1, . . . , βq]
T , z(t) = [zw1(t), . . . , zwq(t)]

T ,

and matrices

Q =
[
〈zwi, zwi′〉 , 1 ≤ i, i′ ≤ q

]
, Ω = [〈zwi, vj〉 , 1 ≤ i ≤ q, 1 ≤ j ≤ p] .

The number p of the FPC’s in the definition of the matrix Ω is selected using the cumulative

variance criterion, see e.g. Ramsay and Silverman (2005) or Horváth and Kokoszka (2012).

A general recommendation is to use p such that the first p components explain about 85-

90% of the variance. It is often useful to perform inference for several values of p. If the

conclusions do not depend on p, we can place more confidence in them.

We now explain how the parameter vector β is estimated. If the responses X(sk) are

fully observed, we minimize

∣∣∣∣∣

∣∣∣∣∣

N∑

k=1

wk

{
X(sk)−

q∑

i=1

zi(sk)βi

}∣∣∣∣∣

∣∣∣∣∣

2

,

N∑

k=1

wk = 1. (5.13)

This leads to the solution

β̂ = Q−1
〈
z,wTX

〉
, z = [zw1, . . . , zwq]

T , (5.14)

with the weights w given by (5.5). The quantity
〈
z,wTX

〉
is the q × 1 vector with the ith

entry
〈
zwi,

∑N
k=1wkX(sk)

〉
.



101

Notice that wTX is the estimate of the mean function µ for full records. Solution

(5.14) can thus be written as

β̂ = Q−1 〈z, µ̂〉 . (5.15)

When the record are partially observed, µ is estimated using the indexed regression discussed

above. Thus (5.15) is suitable for estimating the parameter vector when data contain missing

observations. This is the approach we take.

Significance of regression coefficients. The variance of the estimator (5.15) is

Var[β̂] = Q−1E
[
〈z, µ̂ − µ〉 〈z, µ̂ − µ〉T

]
Q−1, (5.16)

where the middle term is a q × q matrix whose (i, j) element is

∫∫
zwi(t)zwj(t

′)Cov(µ̂)(t, t′)dtdt′. (5.17)

The formula for Cov(µ̂)(t, t′) is given in Section 5.7, where we also derive the approximations:

Var[β̂] = Q−1ΩVar[ζw]Ω
TQ−1 + σ2θQ

−1wTw, (5.18)

where, assuming that the weights are known constants,

Var[ζw] = diag
(
wTΣ1w, . . . ,w

TΣpw
)
. (5.19)

The last expression is a p×p diagonal matrix. The diagonal form of Var[ζw] is a consequence

of assumption (5.2). Quantities appearing in (5.18) and (5.19) can be estimated using the

methodology presented in the previous sections.

Using numerical simulations, we found that the estimator β̂ is approximately normal

even if the functions X(sk) are not normally distributed. The ionosonde data do not show

alarming departures from normality, see Fig. 5.6. Thus to test βi = 0, for a fixed i, we

assume that the statistic β̂i/

√
Var[β̂i] has the standard normal distribution, the P-value is



102

calculated as

P-value = 2Φ(β̂i/

√
Var[β̂i]). (5.20)

5.4 Application to ionosonde data

The specific form of regression (5.12) used in this section is

X(sk; t) = β1 + β2t+ β3SRF(t) + β4M(sk; t) +

p∑

j=1

ζj(sk)vj(t), 1 ≤ k ≤ 85. (5.21)

As explained in Section 5.6, the estimated noise variance is extremely small, so the noise

term is not included in the final model. The global functional covariate SRF is the observed

solar radio flux. The local covariates, M(sk), reflect the potential impact of decadal changes

in the direction of the internal magnetic field of the Earth, and are given by

M(sk; t) = sin I(sk; t) cos I(sk; t), (5.22)

where I(sk; t) is the inclination of the Earth’s magnetic field, see e.g. Chapter 13 of Kivelson

and Russell (1997). The space physics background justifying formula (5.22) is complicated.

An interested reader is referred to Elias (2009) and references therein. We also consider

a restricted model with β4 = 0. Using the full and the restricted models will allow us to

evaluate the impact of the decadal changes in the internal field on the conjectured trend.

Our interest is in estimating the coefficient β2, which we call the “trend,” and evaluating

its statistical significance.

Examples of modeling of the foF2 curves using model (5.21) are shown in Fig. 5.5.

Estimates of the linear trend as well as their statistical significance for different smoothing

bandwidths are summarized in Table. 5.1. We found that inclusion of the changes in the

Earth’s magnetic field changes the estimated values only slightly. A small impact of this

covariate is however clear, as it decreases the value of the estimated trend. Our main

conclusion is that the trend is negative and it is statistically significant. The estimated

trend value practically does not depend on the bandwidth hµ. When p = 3, 4 the estimated
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Figure 5.5: Examples of modeling of the foF2 records via (5.1) with hµ = 5, hc = 10 and
p = 3. Gray lines represent original records, solid black lines - model, dashed black line
- the mean function. Top: An almost complete record, middle: partially observed record,
bottom: example of unstable modeling when the number of observations per curve is less
than 200.

standard deviation and P-values do not depend on the bandwidth hc. But when the number

of FPC’s is 2, the estimated standard deviations and P-values are much smaller than those
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Table 5.1: Trends and P-values for different bandwidths. “NM” denotes estimation without
magnetic inclination, “M” denotes estimation when magnetic inclination is included. The
number of the FPC’s, p, was chosen to obtain the cumulative variance closest to but greater
than 85% (indicated as Final CV).

Final NM M
hµ hC CV,% p β2, 10

−3MHz/Year P-value β2, 10
−3MHz/Year P-value

10 86.77 3 −5.22 ± 2.25 0.020 −4.91 ± 2.24 0.028
5 15 90.44 3 −5.22 ± 2.30 0.023 −4.91 ± 2.29 0.032

20 87.07 2 −5.22 ± 1.48 4.36 · 10−4 −4.91 ± 1.47 8.62 · 10−4

10 88.75 4 −5.18 ± 2.15 0.016 −4.88 ± 2.14 0.023
10 15 87.57 3 −5.18 ± 2.11 0.014 −4.88 ± 2.10 0.020

20 86.50 2 −5.18 ± 1.83 4.67 · 10−3 −4.88 ± 1.82 7.52 · 10−3

10 88.55 4 −5.28 ± 2.16 0.014 −4.99 ± 2.15 0.020
15 15 87.09 3 −5.28 ± 2.11 0.012 −4.99 ± 2.11 0.018

20 91.36 3 −5.28 ± 2.20 0.016 −4.99 ± 2.19 0.023

10 88.58 4 −5.07 ± 2.13 0.017 −4.79 ± 2.12 0.024
20 15 87.02 3 −5.07 ± 1.99 0.011 −4.79 ± 1.98 0.015

20 91.04 3 −5.07 ± 2.04 0.013 −4.79 ± 2.03 0.018

for p = 3, 4. We believe that this happens due to oversmoothing of the covariance surface and

the resulting underestimation of the variance. The normal quantile-quantile plots are shown

in Fig. 5.6 which suggests that there is a slight deviation from normality, but according

to our simulations (not reported here) the t–statistics in (5.20) is robust enough to such

departures.

Our conclusion (significant negative trend) agrees with the hypothesis of Roble, Dick-

inson and Rishbeth discussed in Section 5.1. The exploratory analysis in Bremer et al.

(2012) applied to 37 stations located worldwide and various time periods yields however

mixed evidence. The average trend (simple average of individual trends) is either negative

or practically zero depending on the time period and the number of stations. It is therefore

important to determine if our conclusion depends on the choice of locations and the time

interval.

To assess the robustness of our conclusion we performed two experiments, which could

be called temporal and spatial subsampling. In the first experiment, we study the depen-
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Figure 5.6: Normal quantile–quantile plots for scores ξ1, ξ2, ξ3 estimated using hµ = 15
and hc = 15.

dence of the trend on the time interval length. To do this, we fix the interval length, L, and

determine the trend for all possible intervals. Since the observations must be sequential,

the number of possible intervals is limited, M = T − L + 1. The variability of the trend

parameter is shown in Fig. 5.7 (a). While the average trend parameter is uniformly less

than the final estimator, the variability is very high if L ≤ 400. This indicates, that if the

time interval is less than about 30 years, the sample may not contain enough information

to allow us to reach definite conclusions. In the second experiment, we use the whole time

interval (654 months), but we randomly select subsamples of locations of a specified size.

For each subsample size (e.g. 60), we draw 103 subsamples without replacement. The dis-

tribution of the values of β2 as a function of the subsample size is given in Fig. 5.7 (c).

While the average trend parameter is consistent with our final estimator, the variability is

high for small samples. If the sample size is greater than 65, we practically always obtain

a negative trend. However, for sample size smaller than 50, there is a good chance that

a positive trend will be obtained, if some specific locations are chosen. This phenomenon

has been a source of much debate in the space physics community. Studies of this type

have often been based on a handful of stations from a specific region because most of the

foF2 series are of poor quality and have limited temporal coverage. In particular, studies

based on individual records from the Asian part of Russia (east of 30◦ longitude) indicated
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a positive trend, Bremer (1998). Finally, we note that there is a clear relationship between

the time interval length and the number of stations that can be used. The distribution of

the number of stations as a function of the length is shown in Fig. 5.7 (b). We see that if

the time interval is about 400 months, about 70 stations are available. This establishing a

convincing connection between the two experiments. Our analysis indicates that a negative

trend in the Northern Hemisphere will be obtained provided the time interval is longer than

35 years (about 3 solar cycles) and at least 70 stations are used.
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Figure 5.7: (a) Distribution of the trend parameter as a function of the interval length, (b)
the number of stations as a function of the interval length. (c) distribution of the trend
parameter as a function of the number of stations. Light gray - full region, dark gray -
central 50 percent, dotted line - median, blue solid line - average. Bold black line is the
final estimator.

5.5 Correlation between scores

We first verify that if the covariance function is separable, i.e. if (5.3) holds, then

assumption (5.2) holds. Indeed, since the FPC’s vi are the eigenfunctions of the covariance
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kernel c(·, ·), we have

E[ζj(s)ζi(s
′)] = E

[∫
(X(s; t) − µ(t)) vj(t)dt

∫ (
X(s′; t′)− µ(t′)

)
vi(t

′)dt′
]

=

∫∫
Cov

(
X(s, t),X(s′, t′)

)
vj(t)vi(t

′)dtdt′

=

∫∫
Σ(s, s′)c(t, t′)vj(t)vi(t

′)dtdt′

= Σ(s, s′)

∫ {∫
c(t, t′)vi(t

′)dt′
}
vj(t)dt

= Σ(s, s′)

∫
λivi(t)vj(t)dt

= λiδijΣ(s, s
′),

where δij is Kronecker’s delta.

Now we explain a data driven approach to checking assumption (5.2). Recall that

ξj = [ξj(s1), . . . , ξj(sN )]
T is a zero mean random vector with the covariance matrix Σj .

Consider the N × N cross–covariance matrix Σjj′ = E[ξjξj′]. The matrix Σjj′ does not

need to be positive definite. We want to test

H0 : Σjj′ = 0, vs. HA : Σjj′ 6= 0.

This can be done assuming that Σjj′ is isotropic, i.e that Σjj′(sk, sℓ) = Σjj′(dkℓ), where dkℓ

is the chordal distance between locations sk and sℓ. To estimate Σjj′ we use the standard

binning approach:

Σ̂jj′(d) =
1

p(d)

∑

P (d)

ξj(sk)ξj′(sℓ), (5.23)

where P (d) = {(sk, sℓ) : ‖sk − sℓ‖ = d; k, ℓ = 1, . . . , N} and p(d) is the number of distinct

pairs. We call Σ̂jj′(d) the correlogram. Precise estimation of the confidence intervals for

Σ̂jj′(d) is a difficult task. Thus, we take a simplified approach which nevertheless pro-

vides useful information. It can be argued that under suitable mixing conditions Σ̂jj′(d)

is approximately normally distributed, see for example chapter 2.4.1 in Cressie (1993) and

references therein. Let Σ̂jj′ = [Σ̂jj′(d1), . . . Σ̂jj′(dH)]
T , be a vector of length H. Then
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Var(Σ̂jj′) is a H × H positive definite covariance matrix. To find the confidence bounds

we need to estimate the diagonal elements of Var(Σ̂jj′). We estimate the diagonal elements

using the sample variance estimator:

Var(Σ̂jj′(di)) ≈
1

p(di)− 1

∑

P (di)

(
ξj(sk)ξj′(sℓ)− Σ̂jj′(di)

)2
,

Now the pointwise confidence bounds can be constructed in a standard way. The estimated

correlograms and the corresponding pointwise 95% confidence bounds for different pairs j, j′

are shown in Fig. 5.8.

The pointwise confidence intervals cover the zero line almost entirely which shows that

the difference between the estimated correlograms and zero is not statistically significant.
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Figure 5.8: Black lines represent estimated correlograms and gray regions represent the 95%
pointwise confidence bounds.

5.6 Estimation of the covariance structure

We begin with the estimation of the vj(t). Since the vj(t) are the eigenfunctions of the

covariance operator, it is enough to obtain an estimate of the covariance surface, and then

numerically solve the eigenfunction equations. We emphasize that since many functions are

not observed over long temporal segments, the approaches developed in Chapter 2 cannot

be used, as they involve various integrals over the whole temporal domain. Our objective
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is thus to estimate

c(t, t′) = Cov(X(t),X(t′)).

The elements of the covariance function c(t, t′) for spatially correlated functional data are

estimated in two steps. In the first first step, which takes into account spatial correlations,

we obtain a preliminary estimator c̃(ti, ti′) which is noisy and contains missing values. The

second step is smoothing.

To obtain the preliminary estimator, we perform the following procedure. For fixed i

and i′ define the scalar field

ψ(s) = [X(s; ti)− µ̂(ti)] [X(s; ti′)− µ̂(ti′)] .

The estimation of c̃(ti, ti′) is thus reduced to the estimation of the mean (independent of s) of

the scalar spatial process ψ(·) based on the pseudo–observations ψ(s1), . . . , ψ(sN(i,i′)), where

N(i, i′) is the number of records available simultaneously at times ti and ti′ . To estimate

µψ = Eψ(s) as a weighted average of the ψ(sk), the covariance matrix of the ψ(sk) must be

estimated. This can be accomplished using either parametric modeling for large samples, or

the nonparametric approach developed in Chapter 4, for small samples (N(i, j) ≤ 20). In

this paper we use only parametric modeling with the exponential covariance. If the number

of observations in the the ψ(sk) is less than 20, we do not perform estimation. This is

admissible because of the second step. We point out that the first step is computationally

very expensive, but possible on a parallel machine.

Now we explain smoothing of the preliminary estimator. The core of the covariance

estimation methodology is discussed in Staniswalis and Lee (1998), Yao et al. (2003) and

Yao et al. (2005). In the presence of measurement error, the diagonal elements are contam-

inated by the noise variance and should not be included as input for the smoothing step.

The estimator of c(t, t′) thus is

ĉ(t, t′) = argmin
u

∑

1≤i 6=i′≤T

κc

(
t− ti
hc

,
t′ − ti′

hc

){
c̃(ti, ti′)− f(u, t, t′, ti, ti′)

}2
, (5.24)
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where c̃(ti, ti′) is the estimator obtained in step one, and

f(u, t, t′, ti, ti′) = u0 + u1(t− ti) + u2(t
′ − ti′), u = [u0, u1, u2]

T .

The choice of the kernel κc is not crucial, but the selection of the bandwidth hc requires

attention. The natural way to choose hc is by using leave one curve out cross–validation.

Unfortunately, due to extreme computational cost of the first step this type of cross valida-

tion is not possible at this time. We recommend to simply try several different bandwidths.

Notice that preliminary estimator does not depend on hc, thus this procedure is computa-

tionally fast. The conclusions reported in Section 5.4 do not depend on the choice of hc

as long as this bandwidth is reasonable. We used bandwidths corresponding to effective

averaging over periods from half a year to two years, which is unlikely to effect decadal

trends.

To asses the significance of the linear trend, the estimation of the score covariances

(5.11) is required. Estimation of the matrices Σj for the ionosonde data is not straight-

forward. When a curve is complete or almost complete numerical integration in ζj(s) =

〈X(s) − µ, vj〉 works very well. But when huge parts of a curve are missing, numerical

integration leads to a very poor estimate of a score. One possible remedy is to use the

conditional estimation advocated by Yao et al. (2005). Unfortunately, for ionosonde data

this approach performs poorly as well. We believe that the conditional estimation does

not work because observations are not missing at random. For the ionosonde data, using

visual validation, we found that if the number of observation per curve is bigger than 200

(about 1/3 of the maximum number of monthly observations), then the score estimates,

both obtained by numerical integration and the conditional estimation lead to predicted

curves µ̂(t) +
p∑
j=1

ξj(s)vj(t) which are close to the observed curves over the segments for

which the latter are available. Fig. 5.5 (bottom) is an example of a situation when this

is not the case. Thus, for accurate estimation of the score covariances we use only scores

estimated for curves with more 200 observations per curve. The size of the selected spatial

fields ζj is only 55 among 85 possible locations.
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Once the locations have been selected, we perform estimation of the covariance using

the semivariogram method. Namely, we estimate the semi–variogram

2γj(d) =
1

p(d)

∑

P (d)

(ζj(sk)− ζj(sℓ))
2,

where P (d) = {(sk, sℓ) : ‖sk − sℓ‖ = d} and p(d) is the cardinality of P (d). The points with

d = 0 are not included. We emphasize that not all N locations sk are used, only those which

have more than 200 temporal measurements. We then fit the empirical semivariogram to

some valid parametric model, γ̃j(d). The elements of the score covariances are calculated

as

Σj(k, ℓ) = γ̃j(0) − γ̃j(dkℓ), 1 ≤ k, ℓ ≤ N.

Finally, we note that the measurement noise variance can be estimated using Eq. (2) in

Yao et al. (2005). We found that for the ionosonde data the contribution of the measurement

noise is completely negligible. We thus omit it in numerical calculations, but preserve the

noise variance in formulas to enhance their broader applicability.

5.7 Covariances of the estimated mean function

Everywhere below we assume that the sampling variability of the weights wk(t) can be

neglected. Without this assumptions it is difficult to derive usable expressions.

We introduce the following vectors and matrices, with their dimensions given in paren-

thesis to facilitate the understanding:

µw =

[
N1∑

k=1

wk(t1)X(sk; t1), . . . ,

NT∑

k=1

wk(tT )X(sk; tT )

]T
, (T × 1);

m(t) = [m0(t),m1(t)]
T , (2× 1)

Z(t) =




1 t− t1
...

...

1 t− tT



, (T × 2);
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K(t) = diag [κ((t− t1)/h), . . . , κ((t − tT )/h)] , (T × T ).

Note that K(t), Z(t) and m(t) depend on continuous t, while µw is a vector of a fixed

length.

The solution to (5.7) has the form

m̂(t) = [ZT (t)K(t)Z(t)]−1ZT (t)K(t)µw, (5.25)

with the covariance matrix

Cov(m̂)(t, t′) = [ZT (t)K(t)Z(t)]−1ZT (t)K(t)Var(µw)K(t′)Z(t′)[ZT (t′)K(t′)Z(t′)]−1.

(5.26)

Thus the covariances of the mean function are

Cov(µ̂)(t, t′) = eT1 Cov(m̂)(t, t′)e1, (5.27)

where e1 = [1, 0]T .

The only factor in (5.26) that requires attention is Var(µw) which is a T × T matrix.

To calculate it in a general setting with measurement error we use model (5.1). Treating

the weights wk as fixed, we obtain

Cov(µw(ti),µw(ti′))

= Cov




Ni∑

k=1

wk(ti)X(sk; ti) ,

Ni′∑

ℓ=1

wℓ(ti′)X(sℓ; ti′)




=

Ni∑

k=1

Ni′∑

ℓ=1

wk(ti)wℓ(ti′)E







∞∑

j=1

ζj(sk)vj(ti) + θ(ti)









∞∑

j′=1

ζj′(sℓ)vj′(ti) + θ(ti′)








=

Ni∑

k=1

Ni′∑

ℓ=1

wk(ti)wℓ(ti′)





∞∑

j=1

E [ζj(sk)ζj(sℓ)] vj(ti)vj(ti′)



 + δii′σ

2
θ

Ni∑

k=1

w2
k(ti), (5.28)

where the last equality follows from (5.2).

Formulas (5.28) and (5.26) are computationally intensive. By comparing the values for
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selected times t, t′, we found that practically the same values are obtained by replacing the

smoothing matrices by identity matrices and replacing the weights wk(ti) by the universal

weights wk given by (5.5). Such a simplification leads to the approximations

Cov(µ̂)(t, t′) =
∞∑

j=1

wTΣjwvj(t)vj(t
′), t 6= t′

Var(µ̂)(t, t) =

∞∑

j=1

wTΣjwv
2
j (t) + σ2θw

Tw, (5.29)

Only the first few, p, FPC’s in the infinite sums in (5.28) and (5.29) are used in practice.

Usually this number is selected to capture the desired level of variability. Inserting (5.29)

so truncated into (5.17), leads to (5.18).



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Results reported in this dissertation make contributions both into statistical methodol-

ogy and space physics applications. Specifically, we introduced a new statistical framework

for analysis and testing of complete and incomplete spatially correlated functional data. Us-

ing this framework we answered a very important space physics question regarding global

changes in the ionosphere. We found that the critical frequency, foF2, is decreasing which

means that the temperature of the inosphere is also decreasing.

Now I describe several projects which I would like to address in the very near future.

1. In Chapter 3 we introduced the test for testing the equality of two functional means

when curves are spatially correlated. One possible extension of this work would be to

generalize testing procedure to test multiple hypothesis:

H0 :µ1(t) = µ2(t) = . . . = µN (t),

HA :µi(t) 6= µj(t), for some i, j.

2. We are planning to generalize our estimation procedure to let the mean function be

space dependent. This problem is not very difficult when there are repeated measure-

ments (curves) at each location and it could potentially became a project for a master

thesis. But when at each location there is only one curve this problem become much

more complicated, one possible remedy is to restrict µ(s; t) to some parametric form.

Other possibilities still need to be explored.

3. The core of the third project is to create an automatic procedure for selecting spatial

regions where the mean functions or other quantities such as linear trends are the

same. This project is rather long and perhaps in combination with important applied

problem can become a core of a PhD dissertation.
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Horváth, L. and Kokoszka, P. (2012). Inference for Functional Data with Applications.

Springer, New York.



119
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