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ABSTRACT 

Forest Recovery, Nutrient Cycling and Carbon Sequestration in a Southern Appalachian 

Spruce-Fir Forest 

 

by 

 

Patrick T. Moore, Doctor of Philosophy 

Utah State University, 2013 

 

Major Professor: Dr. Helga Van Miegroet 

Department: Wildland Resources 

In order to fully understand the magnitude of the benefits that forests provide, it is 

crucial to understand the full suite of ecosystem services that they offer.  A southern 

Appalachian red spruce-Fraser fir forest was intensively analyzed using a variety of 

methodologies to determine the nature and quantity of some of these services.   

Many hypotheses exist regarding the future of these spruce-fir forests, which were 

heavily disturbed by the non-native balsam wooly adelgid during the 1980s.  Direct 

measurements over the course of a decade assessed these hypotheses and indicate that 

this forest is recovering structure and function.  The forest is accruing overstory biomass, 

with vegetation composition on a trajectory towards historic conditions.   

By using a total forest inventory of all vegetation from overstory trees to understory 

mosses, rates of productivity and nutrient cycling were determined.  Productivity of this 

forest at low elevations has returned to pre-adelgid levels, while at high elevations 
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productivity is approaching these levels.  In the absence of an intact overstory, forest 

understory vegetation can compensate by disproportionately cycling and retaining 

nutrients such as nitrogen that would otherwise leach offsite.  The understory of this 

forest provides an important service in nutrient cycling. 

Our ability to actively manage forests in order to manipulate levels and rates of 

carbon sequestration was assessed using stand data and the Forest Vegetation Simulator 

Growth and Yield Model.  Silvicultural intervention proved effective at sequestering 

additional carbon over a no action alternative by the end of our simulation period.  This 

forest provides a variety of ecosystem services and has retained its ability to recover their 

function after catastrophic disturbance.   

(141 pages) 
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PUBLIC ABSTRACT 

Forest Recovery, Nutrient Cycling and Carbon Sequestration in a Southern Appalachian 

Spruce-Fir Forest 

by 

Patrick T. Moore 

Our forests provide us with a variety of services from clean water, forest products and 

wildlife habitat to the lesser known functions of nutrient cycling and carbon 

sequestration.  This research helps to demonstrate the extent of some of these services in 

a heavily disturbed southern Appalachian spruce-fir forest within Great Smoky Mountain 

National Park, the most heavily visited National Park in the United States.  Following a 

catastrophic infestation of the non-native balsam wooly adelgid, the future of this forest 

was unknown, causing some to speculate about the future of this sensitive forest type.  

Though predictions about this forest’s future varied widely from a full forest recovery to 

an extinction of tree species, direct measurements of forest conditions demonstrated that 

this forest is on a trajectory toward full recovery of structure and function of an intact 

forest.  While these forests are recovering it was discovered that the understory is playing 

a critical role in keeping nutrients, such as nitrogen, on site and out of streamwater where 

they can contribute to water quality decline.  We determined that active management of 

these forests can sequester more carbon in standing forest biomass and forest products 

and release less to the atmosphere where it can contribute to global climate change. 
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CHAPTER 1 

INTRODUCTION 

Red spruce (Picea rubens Sarg.) -Fraser fir [Abies fraseri (Pursh) Poir.] forests of the 

southern Appalachian Mountains exist today as a chain of high-elevation vegetation 

islands located above 1500 meters in elevation and between 34 and 41 degrees north 

latitude.  They represent the remnants of their original range and lower elevation limits of 

their ecological niche.  Historically, the spruce-fir persisted as a contiguous forest type 

that dominated areas above 41 degrees north latitude under the cooler climates 

experienced during the last ice age (Cogbill and White, 1991).  As the planet has warmed 

since the Pleistocene glaciation, spruce-fir forests have retreated to the high-elevation 

peaks and ridges, predominantly within Great Smoky Mountains National Park.  Spruce-

fir forests cannot retreat higher to cooler sites in the southern Appalachian Mountains 

because they already occupy the highest sites.  The geographic distribution, extreme 

climatic conditions and a variety of stress factors including land use history, insect 

infestation and anthropogenic influences such as atmospheric pollution have combined to 

form a sensitive ecosystem with an uncertain trajectory.  Because of the condition of the 

overstory and the uncertain future of Fraser fir, understanding the biomass and nutrient 

dynamics of the natural regeneration is vital to ensuring the future of this species as well 

as the persistence of this ecosystem.  By analyzing how this forest type acquires biomass 

and cycles nutrients we can gain insight the various ecosystem services that it provides 

and understand how this system will function into the future. 
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LITERATURE REVIEW 

Disturbance 

Typical disturbance processes in this ecosystem include gap dynamics from the scale 

of individual trees, in the case of mortality and windthrow, to entire stands, in the case of 

the more recent insect infestation.  Historically, fire has had little influence on the 

vegetative characteristics of this ecosystem (Fahey and Reiners, 1981).  With lush 

understory, high rainfall and soil moisture, these forests have even been found to stop the 

spread of fires started at lower elevations (Korstian, 1937).  With a fire return interval of 

thousands of years (White et al., 1985), these systems do not depend on stand replacing 

fires to reset important soil forming and stand dynamic processes.  Furthermore, the 

present ecosystem could not persist with repeated exposure to fire.  Tree species in the 

spruce-fir forest are not fire tolerant.  The organic mat on the forest floor develops slowly 

and is important to seed viability and slope stability.   

In more recent times, the spruce-fir ecosystem has been host to many disturbances 

that have altered the vegetation composition, stand dynamics and biogeochemistry.  

Stands are subjected to hurricane winds on a greater than 1000 year cycle making 

windthrow a significant disturbance factor (White et al., 1985).  Within the past 15 years, 

however, three large storms, hurricanes Hugo in 1989, Opal in 1995, and Ivan in 2004, 

have swept through the area causing large amounts of tree mortality via windthrow.  This 

recent frequency of violent storms would suggest an increased importance of windstorms 

to stand disturbance dynamics.   



3 

Though more common in northern spruce-fir forests, ice storms have caused mortality 

in southern Appalachian spruce-fir forests.  Nicholas and Zedaker (1989) reported that an 

individual ice storm was responsible for 8.1% and 2.4% mortality in southern 

Appalachian spruce and fir, respectively, with additional damage to surviving trees.   

The logging of eastern forests has changed forest composition for centuries.  Though 

more widespread in the north, logging in the southern Appalachian spruce-fir began in 

about 1905 and continued until 1927 when the first protection efforts resulted in the 

creation of the Great Smoky Mountain National Park (GSMNP) (Pyle and Schafale, 

1988).  In some instances, previously cutover areas were subject to wildfires due to 

unnatural fuel loads or soil erosion due to lack of sufficient cover.  The proportion of 

lower elevation and hardwood species increased, changing the vegetation composition.   

Some spruce-fir areas remained treeless for up to six decades after logging events (Eager 

and Adams, 1992).  Due to difficulty in accessing stands in very steep terrain, the 

majority of the spruce-fir forest in the southern Appalachians has not been logged (Pyle 

and Schafale, 1988).  Virtually all stands within the GSMNP have remained unaffected 

by logging due to additional protection efforts associated with National Park status.   

A more recent, anthropogenic stressor in high-elevation forests in the East is 

atmospheric deposition and air pollution (Van Miegroet et al., 2001; Johnson et al., 

1991).  A low cloud base makes this area susceptible to exposure to increased pollutants 

because cloud-water generally contains higher concentrations of some ions.  Atmospheric 

sulfur, nitrogen (N) and acid input to these montane forest canopies are significant 

(Johnson and Lindberg, 1992; Eagar and Adams, 1992).  These compounds can have a 

considerable impact on the soils of an ecosystem, particularly soils with low base 
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saturation, but their effect on vegetation is uncertain and the source of much debate.  The 

effects of air pollution and acid precipitation were thoroughly evaluated in Eager and 

Adams (1992).  Consensus is that many factors including atmospheric deposition and 

stand dynamics have contributed to an observed decline in spruce during the 1980s.    

Ozone pollution has also been considered detrimental to the vegetation of this 

ecosystem.  A variety of studies have looked at the effects of ozone exposure, at levels 

found in the Smoky Mountains, on red spruce as a possible explanation for observed red 

spruce decline.  Some effects were decreased foliar biomass (Amundson et al., 1991a) or 

reduced chlorophyll (Amthor and Cumming, 1988).  However, other studies found no 

effects at all (Amundson et al., 1991b; Lawrence et al., 1989).  No field-based research 

has made a connection between increased ozone levels and associated decline of red 

spruce.    

As significant as these disturbances have been to this ecosystem, the invasion of the 

balsam wooly adelgid (BWA) [(Adelges piceae (Ratz.)] has caused widespread damage 

to even the most protected areas of the range of Fraser fir.  Imported on nursery stock in 

the northeastern United States prior to 1900, the BWA was first discovered in the 

southern Appalachians in 1957 (Speers, 1958) and GSMNP in 1963 (Ceisla et al., 1963).  

Since then the adelgid has invaded the entire range of Fraser fir and has caused extensive 

mortality of fir trees throughout (Busing et al., 1988).  A secondary wave of windthrow-

related spruce mortality has further reduced the remaining overstory trees (Busing, 2004).  
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Overstory 

Overstory species composition of southern Appalachian spruce-fir forests are 

primarily driven by elevation.  Red spruce can occur at elevations as low as 1,100 meters 

but only becomes dominant above 1,500 meters.  Spruce forests gradually transition to 

Fraser fir as elevation increases, with fir appearing at about 1,600 meters and becoming 

dominant at around 1,900 meters, where they can form nearly pure stands.  Yellow birch 

is a significant component of all southern Appalachian spruce-fir forests. 

Dramatic changes to the composition of the spruce-fir forest have occurred following 

the introduction of the BWA.  Nicholas et al. (1992) compared data collected from the 

Great Smoky Mountains in 1985 and 1986 to the 1946 measurements made by Oosting 

and Billings (1951).  Basal area and stem densities decreased with increasing elevation.  

Much of this decrease in live fir basal area from 1946 to 1986 (8-62%) was due to 

mortality caused by BWA.  Smith (1997) found that nearly 70% of standing fir basal area 

near the peaks of five mountaintops was composed of dead stems.  Openings lead to a 

decrease in small fir seedlings as well as bryophyte cover.  Size and age classes were 

becoming skewed toward younger and smaller Fraser fir individuals.  Smith (1997) 

hypothesized that fir may be eliminated from the lower elevations within its range in the 

southern Appalachians. 

The effects of these disturbances have been profound.  In response to the loss of 

overstory trees, the stem densities of fir and spruce advanced regeneration, mountain ash 

(Sorbus Americana Marsh.), yellow birch (Betula lutea Michx. F.), and pin cherry 

(Prunus pennsylvanica L. f.) have all increased (Pauley and Clebsch, 1990; Busing et al., 

1988; Witter and Ragnovich, 1986; DeSelm and Boner, 1984).  A dramatic increase in 
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density of shrub species has also been observed (Busing et al., 1988; DeSelm and Boner, 

1984).  Forest communities have been extirpated by climate change in the past (Jackson 

and Wang, 1999).  As global climate change continues, the future of this forest type is 

uncertain.  

Historically, spruce-fir forests held considerably more biomass and nutrients in the 

form of tree stems, branches, and leaves because the overstory was intact (Whittaker, 

1966).  ince the onset of the adelgid infestation, almost all mature fir trees have been 

killed (Nicholas et al., 1992).  This has created large gaps in the overstory allowing many 

understory plant communities to acquire light and nutrient resources previously 

unavailable.  Physical features such as topographical characteristics as well as light and 

water resources have been shown to drive understory vegetation composition (Yarie 

1980).  All of these factors are probably important in understory vegetation composition.  

The presence of the adelgid in spruce-fir today adds another gap-producing disturbance to 

an already gap driven forest.  As this forest acclimates to this new pest, it is hypothesized 

that the understory will play an increasingly important role in biomass storage and 

nutrient sequestration (Barker et al., 2002). 

Understory  

Because of the dramatic changes occurring in the overstory structure of this forest, 

overstory trees have received the majority of the research focus.  Recent research on 

understory vegetation has focused on the natural regeneration of common overstory 

species (Smith and Nicholas, 2000; Nicholas et al., 1992).  Researchers are only 

beginning to understand the valuable ecosystem service that understory herbaceous plants 
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provide by storing and cycling nutrients (Gilliam, 2006; Muller, 2003; Van Miegroet et 

al., 2007; Welch et al., 2007). 

Historically, the scientific focus on understory dynamics in the Smoky Mountains 

(Smokies) began when Cain (1935) emphasized the importance of including all 

vegetation strata in any type of forest classification system in his analysis of the entire 

GSMNP.  Crandall (1960) began thorough work on the understory of this system by 

applying the forest type and site system (Cain, 1935) to the spruce-fir ecosystem 

specifically.  Before the work of Crandall there was little information on site types and 

ground cover in the spruce-fir.  Whittaker (1956) did provide some information on site 

types; however, they were developed without much scientific rigor.     

Oosting and Billings (1951) compared northern spruce-fir forests with southern 

spruce-fir forests and determined them to be floristically different but both part of the 

boreal forest complex.  Fifty-seven percent of characteristic eastern spruce-fir species, 

including trees, shrubs and forbs, occur in both northern and southern Appalachian 

spruce-fir forests.  Southern Appalachian forests support eight endemic species (White 

and Renfro, 1984).  Ramseur (1960) provided an extensive flora of southern Appalachian 

high elevation communities.   

Much has happened since the time of Crandall (1960) and Whittaker (1956).  Forests 

have changed as a result of decades of exposure to BWA.  Crandall’s methods were 

current at the time; computing power, multivariate statistics, and spatial analyses have 

improved our ability to differentiate forest and site types quantitatively.  Increased 

computing power can also give us the ability to determine the relation of the understory 

to the many physical processes at work in this ecosystem.  
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While overstory biomass (Nicholas, 1992) in this forest type can be significant, other 

components of the forest cycle significant amounts of biomass and nutrients (Yarie, 1980, 

Whitaker, 1966).  In a system with recent and dramatic ecosystem level disturbance, such 

as BWA, coupled with a background of natural disturbances, it seems logical that the 

moss, understory and shrub species may control a greater proportion of biomass and 

nutrients than has been observed in other systems.  This would be especially important 

shortly after disturbance or during early stages of stand development. 

Understory vegetation may be far more responsive to overstory disturbance or 

nutrient fluxes than the overstory due to high relative light and nutrient demands and 

nutrient content of understory plants (Yarie, 1980).  Different understory plant 

associations possess distinct nutrient uptake and cycling regimes, even within the same 

biogeoclimatic zone (Yarie, 1980).  However, we are unsure if the understory plays a 

significant role in cycling nutrients in the spruce-fir.  Nitrogen dynamics can vary 

spatially within small watersheds.  Barker et al. (2002) showed in the Noland Divide 

Watershed (NDW) of GSMNP that there is considerable spatial variation of nutrient 

uptake even within small watersheds. 

Soil 

In contrast with higher latitudes, landscapes underlying southern Appalachian spruce-

fir remained unglaciated during the last ice age.  Parent material in the southern 

Appalachian spruce-fir is generally derived from the Pre-Cambrian Thunderhead 

sandstone; a thick bedded rock composed of quartz, K-feldspar and some mica (Feldman, 

1991).  While soil and parent material at higher latitudes were being scraped, churned, 
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and ground and new parent material was deposited by advancing ice sheets, soils of the 

high elevation spruce-fir are older, more weathered, and more depleted of important 

nutrients such as calcium (Ca) and magnesium (Mg), while simultaneously richer in 

accumulated nitrogen (N).  Therefore, these soils are generally acid with low base 

saturation (Joslin et al., 1992; Johnson et al., 1991) in contrast to glaciated soils in the 

northern Appalachians.  Differences in surficial geology, mineralogy, slope steepness, 

elevation, and climate also exist (Fernandez, 1992; Joslin et al., 1992). 

Many of these soils undergo podzolization, yet the majority (75%) are classified as 

Inceptisols with spodic characteristics (Feldman et al., 1991; Wolfe, 1967; Kelly and 

Mays, 1989).  Histosols (18%) and Spodosols (6%) (Kelly and Mays, 1989) also occur. 

Though these are three distinct soil orders they represent a continuum of soil-forming 

process typical of cool coniferous forests.   

Spodosols are characterized as highly leached and acidic and may have an 

accumulation of illuvial humus with aluminum or iron into a spodic horizon due to forest 

floor leaching of organic acids (Fischer and Binkley, 2000).  In the southern Appalachian 

spruce-fir, Spodosols likely occur in areas of lesser disturbance and on lower gradient 

slopes (Fernandez, 1992).  They maintain similar soil forming processes as in other sites 

but longer periods of time between disturbances allows for sufficient translocation and 

the formation of a spodic horizon.   

Histosols are described as soils with very high levels of organic matter accumulation 

(Fisher and Binkley, 2000).  In this case the buildup of organic matter is enough to 

classify the soil as an organic soil, which is capable of containing high levels of carbon 

(Feldman et al., 1991).  Like the Spodosols, these soils are quite acidic due to the acids 
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produced via decomposition of organic matter from the upper soil horizons and leaching 

of base cations. In this forest, Histosols occur in areas of high rates of organic inputs and 

low decomposition.  This may occur in highly productive sites in areas where organic 

deposition results from mass movement such as the base of steep slopes. 

Inceptisols are the typical soil order of the spruce-fir in the southern Appalachians.  

They occur on the steep side slopes, prone to soil disturbance that dominates the 

topography of the spruce-fir.  They are generally described as mineral soils with 

minimum development and little to no subsoil clay accumulation.  Because landslides 

and windthrow are relatively common in these forests, Inceptisols are usually 

pedogenically younger soils that have had insufficient time to develop subsurface 

diagnostic horizons such as spodic or argillic horizons.  In the absence of disturbance, 

usually windthrow or mass movement, these soils may develop histic epipedons or spodic 

horizons.  Inceptisols have also been associated with poor site drainage that does not 

allow normal development of a spodic horizon (Fernandez, 1992).  The majority of 

Inceptisols in the spruce-fir are Umbrepts, because of their high levels of organic matter 

in near-surface horizons, and many have spodic characteristics but not enough to classify 

them as Spodosols.   

Nitrogen Research 

Though N is thought to be a limiting nutrient in many forest systems, this is not true 

in all cases, especially in the southern Appalachian spruce-fir which is considered N-

saturated (Van Miegroet et al., 2001).  Once thought a rare phenomenon, N-saturated soil 

conditions and nitrate leaching have been observed in forests across the United States 
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(Fenn et al., 1998; Aber et al., 1998). Southern Appalachian spruce-fir forests receive 

some of the highest rates of N input via atmospheric deposition in North America 

(Johnson et al., 1991; Lovett and Lindberg, 1993) and have limited N uptake ability 

(Barker et al., 2002).  They have also been shown to leach significant amounts of nitrate 

(Johnson et al., 1991) and export nitrate into streamwater (Nodvin et al., 1995; Van 

Miegroet et al., 2001; Cai et al., 2010 and 2011), indicating limited N-retention capacity. 

In general, greater net N uptake and retention rates are expected from vigorously 

aggrading forests while lower N uptake and retention abilities are often seen in older 

forests (Cole and Rapp, 1981; Emmet et al., 1993; Olsson et al., 1997).  The patchiness 

of this forest is such that components of the forests are degrading while others are 

simultaneously aggrading.  Individual stands within this forest are in all stages of 

development.  

Overstory and understory generally cycle biomass and nutrients differently.  While a 

forest overstory can immobilize large amounts of C and minerals, understory standing 

pools are generally smaller (Cole and Rapp, 1981).  Forest overstories can also generate 

higher rates of annual production due to higher leaf areas and lack of shading by superior 

vegetation.      

Carbon Research 

Little is known about the C pools and fluxes in mature and unmanaged forest 

ecosystems (Acker et al., 2000, 2002).  The pools of stored C in an ecosystem (the 

amounts and proportions stored in various components such as soil, litter, foliage and 

woody tissue) can relate to the total amount of C that an ecosystem can acquire or 
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sequester, while C fluxes in and out of the ecosystem impact its interaction with 

atmospheric carbon dioxide (CO2).   

Though unmanaged forests have been hypothesized to be at a relative C balance 

equilibrium (Odum 1969), expected changing climate conditions (Aber et al., 2001) and 

current stand dynamics may push these mature forests to be net sources of CO2.  While 

increment from living trees as well as the ingrowth of new trees into the stand represents 

a net sink for atmospheric CO2, the constant decay of standing dead and fallen trees as 

well as the soil respiration represents a net source of CO2 into the atmosphere.   

One major reason for this potential unbalance is the large input of C into the 

atmosphere through the decomposition of organic matter.  In an ecosystem such as 

spruce-fir, large amounts of C are held in the organic matter-rich soil (Feldman et al., 

1991), litter layer, and in coarse woody debris (Rose and Nicholas, 2008).  After the 

invasion of the BWA and associated mortality these forests now contain large amounts of 

standing dead and fallen overstory stems.  As this large input of newly dead stems 

decomposes it produces CO2 at an unusually high rate.  A forest that was once at C 

equilibrium may now be a C source, especially if one takes global climate change 

scenarios into account as well. Sequestering carbon in the form of biomass is a valuable 

ecosystem service provided by forests that are net C sinks.   

Historically, southern Appalachian spruce-fir forests held considerable C in the form 

of live standing trees (e.g., 127-147 Mg C ha
-1

 [Johnson and Lindberg, 1992], 96-149 Mg 

C ha
-1

 [Whittaker, 1966], C taken as 48% of biomass).  After the recent wave of mortality 

due to the BWA and the ongoing waves of windthrow-related spruce mortality, the extent 

to which the overstory of this forest is accruing C is uncertain.  For years after the onset 
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of the BWA the overstory C lost via decomposition of newly dead trees may have 

surpassed the ability of increment and ingrowth to compensate, making the living 

overstory C pool shrink in size (Van Miegroet et al., 2007).  Positive C sequestration as 

an ecosystem service is an important aspect of the recovery of the function of this system.  

This forest may never approach the historic levels of C contained in the overstory due to 

the ongoing presence of the BWA.   

GOALS 

Until recently, it was unknown whether or not this forest was on a path towards the 

recovery of structure, function and ecosystem services that this forest provided.  By 

analyzing historic and current data sets we determined the trajectory of this ecosystem.  

By looking at the individual contributions of C, N and biomass within forest strata, we 

created an integrated image of how the overstory and understory vegetation components 

in this system held and cycled nutrients and biomass.  In a disturbed system such as this 

the relative roles of the overstory and understory provided new insight into ecosystem 

function.  Prescribing silvicultural manipulation has demonstrated our ability to affect 

these processes.  These concepts have been addressed with the following specific goal 

statements: 

 Describe current stand conditions and post-BWA stand trajectory. 

Since the onset of the BWA much has been hypothesized regarding the short-term 

direction of southern Appalachian spruce-fir forests; such as the coexistence of spruce 

and fir as dominants, dramatic reduction in the importance of fir, transition to a fir-birch 
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forest (Busing and Clebsch, 1987) or even complete extirpation of Fraser fir (Smith, 

1997).   

Because the majority of southern Appalachian spruce-fir forests are within Great 

Smoky Mountain National Park, the scenic and recreation value of a properly functioning 

forest is an important ecosystem service.  With a set of long-term inventory plots in the 

southern Appalachians we documented specific trends regarding individual species and 

size classes since the recent wave of BWA-induced fir mortality.  Plot-level ecosystem 

characteristics such as ingrowth, mortality, growth increment, trees per hectare, and basal 

area over time gave us a short-term forest trajectory and allowed us to determine whether 

hypothesized recovery scenarios were supported by our data set.      

 Quantify ecosystem source or sink strength of all aboveground C, N and 

biomass pools and fluxes. 

Prior to this work, very little research was done on the role of understory in the 

cycling and retention of nutrients.  Yet this ecosystem component may play an important 

role in rapid recycling and availability of critical nutrients, especially if annual species 

are abundant.  Also, the entire spruce-fir ecosystem is marked with spatial heterogeneity 

in forest structure, which can affect understory vegetation composition as well as 

understory nutrient cycling.   

Major C and N pools exist as overstory living trees, standing dead trees and 

understory vegetation. Though the C and N pools within this stratum were very large, 

smaller pools were contributing significantly to the cycling of nutrients and biomass.  

Shifts in the relative size of these pools have strong ramifications on the overall function 

of this ecosystem as either a C and N source or sink.  Ingrowth of new trees into the stand 
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and positive growth increment of existing trees over time represent a positive flux into 

aboveground C (i.e., sink).  At the same time, trees dying or falling from the overstory 

represent a removal of C from the active overstory C pool and no longer contribute to C 

sequestration.  If the ecosystem as a whole is sequestering more C as ingrowth and 

positive increment than it is losing due to decay of dead and windthrown trees from the 

overstory, then this ecosystem is acting as a sink to trap excess CO2.  This system was 

profoundly and directly affected by the BWA.  This analysis will provide further 

evidence of the extent and rate at which the forest is recovering from the BWA, and will 

characterize the ecological and environmental consequences of this disturbance.      

The methods outlined below allowed us to also estimate aboveground C, N and 

biomass pools and fluxes for major forest strata.  A complete understanding of how 

nutrients are cycled within the living components of this ecosystem required the inclusion 

of the understory, especially when this system is in transition.  We hypothesized that the 

understory is cycling a considerable portion of ecosystem N.  The objectives of this 

section were to determine the role of understory versus overstory in sequestering biomass 

and cycling N, whether overstory and N dynamics have recently changed from the prior 

measurement period and whether current biomass, C and N dynamics show elevational 

patterns.  

 Determine the effect of active management on C sequestration. 

Though there is some debate over how managed forests sequester carbon (C) relative 

to their old-growth counterparts (Skog and Nicholson, 1998; Harmon and Marks, 2002; 

Luyssaert et al., 2008), managed forests have been shown to make valuable contributions 

to C sequestration efforts (Van Duesen, 2010; Miner, 2006; Hoover and Heath, 2011). 
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While managed forests were not expected to contain as much standing C as old-growth 

forests on similar sites, managed forests  sequestered more C when both live biomass and 

harvested biomass are considered, and depending on the fate of harvested biomass [e.g., 

biofuel versus structural wood products, (Van Duesen, 2010; Sorenson et al., 2011)]. 

Furthermore, as the rate of growth for live biomass is increased by active management 

for wood products, the potential C sequestration rates in managed forests increase. 

The goal of this part of the research was to simulate the possible effect of silvicultural 

activities on long-term C storage potential of managed forests compared to their 

unmanaged counterparts using the large comprehensive re-measurement data set 

described below from the Great Smoky Mountains. By pairing this data set with the 

readily available and easily used Forest Vegetation Simulator (FVS), we attempted to 

provide a straightforward demonstration that active management may well be a better 

strategy for C sequestration than passive management.  This may help to demonstrate 

whether and to what extent managed forests can to provide greater ecosystem services 

then their unmanaged (protected) counterparts.  

MATERIALS AND METHODS 

In order to address the specific goals stated above we needed a complete forest 

inventory (Wharton and Griffith, 1993) to estimate biomass of all growth forms present 

in this ecosystem including overstory and understory trees, shrubs and forbs.  To 

understand change in this system over time, the remeasurement of existing long-term 

monitoring plots was necessary.  This research built upon the long-term data set 

constructed and first measured in 1993.  While many equations existed in published 



17 

literature (Nicholas, 1992; Weaver, 1972; Whittaker, 1962) to estimate biomass for many 

forest components, biomass equations for some small trees, shrubs and forbs needed to be 

developed.  These relationships were derived using a double sampling approach with a 

combination of destructive and non-destructive vegetation surveys.  

Study Area 

As the majority of southern Appalachian spruce-fir forests are located within 

GSMNP, the park is the ideal location to study this forest type.  Due to the heterogeneity 

in stand structure, strong elevation gradient affecting species composition (Nicholas, 

1992) and the effects of these on nutrient cycling processes (Pauley and Clebsch, 1990), 

the Noland Divide Watershed (NDW) within the GSMNP was selected as an appropriate 

site for our study.  The NDW is a 17.4 hectare high-elevation catchment entirely within 

the spruce-fir zone of the GSMNP and lies on the North Carolina and Tennessee border.  

Clingman’s Dome road, built in 1938, divides the catchment roughly in half at 1800 m.  

The catchment has not been impacted by logging or fire (Pyle and Schafale, 1988) and is 

considered typical of the southern Appalachian spruce-fir ecosystem. 

The NDW is a well-researched watershed.  Experiments on forest dynamics (Nicholas 

et al., 1992), nutrient cycling (Johnson et al., 1991; Johnson and Lindberg, 1992; Van 

Miegroet et al., 1993; Barker et al., 2002), soil processes (Garten and Van Miegroet, 

1994; Van Miegroet, 1995), and watershed dynamics (Nodvin et al., 1995; Van Miegroet 

et al., 2001) have all been performed on this high-elevation catchment.  

In 1993, 50 permanent plots were established systematically along nine elevation 

bands ranging from approximately 1700 m to 1900 m in elevation (Figure 1.1).  Each of 
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the permanent plots (Figure 1.2) measures 20 x 20 m with 4 distinct corner posts and a 

center post as recommended by Zedaker and Nicholas (1990).  Plot edges were oriented 

in the four cardinal directions, north, east, south, and west and with plot corners pointing 

northeast, southeast, southwest and northwest.  The use of these existing long-term 

monitoring plots capitalized on an abundance of historic data sets collected within this 

watershed. 

This network of 50 plots formed the basis for this research.  The size of this 

catchment minimized variation due to differing parent material while being able to detect 

the fine scale nutrient uptake processes that have been shown in the NDW (Barker et al., 

2002).  Also, because slopes and aspects are relatively homogenous across the watershed, 

these factors were controlled for while we are trying to assess nutrient dynamics.  The 

entire spruce-fir ecosystem is marked with spatial heterogeneity in forest structure, which 

can affect understory vegetation composition as well as understory nutrient cycling.  In 

addition, this watershed provided a range of elevations, which has been shown to 

dramatically influence vegetation composition as well.  This variety of overstory 

conditions and other physical site factors reflected the diversity of understory plant 

associations.   
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Field Measurements 

Overstory 

An overstory inventory of all trees >5cm was completed in 1993 and 1998 for the 50 

NDW plots.  The 1993 and 1998 data sets were made available to us by the Tennessee 

Valley Authority (TVA) and the Environmental Protection Agency (EPA) and allowed us 

to measure changes in the forest such as tree increment growth, forest ingrowth, biomass 

acquisition, and mortality between measurement periods as well as standing biomass, 

nutrient pools and fluxes over time.   

The plots were remeasured in 2003.  Diameter at breast height (dbh, tree diameter at 

1.37m above ground level), species, unique identification number, and crown position 

(dominant, co-dominant, intermediate, or suppressed) of each live and dead overstory (≥ 

5 cm dbh) tree was recorded, using inventory protocol described in Zedaker and Nicholas 

(1990).  All overstory trees not included in the last inventory (ingrowth) were tagged with 

a uniquely numbered 1 ½” aluminum tag and a 2 ¼” aluminum siding shank nail.  Care 

was taken to ensure that the shank nails were not fully driven in to give overstory trees 

room for 10 cm of radial growth.   

Using the predictive equations of Nicholas (1992) biomass of foliage, live branches, 

dead branches, bole bark and bole wood were determined using dbh as the independent 

variable.  Individual tree component masses were summed to equal total tree biomass.  

These equations were used for red spruce, Fraser fir and yellow birch to estimate biomass 

of tree species within our plots.  Biomass of other species was estimated similarly with 

the predictive equations of Weaver (1972).  C content of individual tree components were 

determined by multiplying component biomass values times the component C 
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percentages of Barker et al. (2002).  Data collected during stand inventories in 1993 and 

1998 as well as the overstory inventory performed in 2003 was used to calculate standing 

biomass and nutrient pools as well as fluxes over time.  The Nicholas (1992) equations 

were shown to be reliable for some spruce-fir populations but may need a correction 

factor for use in the GSMNP (Barker et al., 2002) due to the fact that spruce and fir in the 

GSMNP are generally shorter than spruce and fir in the rest of the Southern 

Appalachians.     

Understory Trees and Shrubs 

Within each of the permanent plots, four 4 x 4 m subplots were established in the 

manner shown in figure 1.2 (gray boxes).  The diagonals of these 4 x 4 m square plots 

were measured to ensure that each plot was plumb and square.  All shrub and tree stems 

less than 5 cm dbh but greater than 2 cm were included in this survey.  Species was 

recorded and caliper measurement was taken 15 cm above ground level.  Using the 

predictive equations of Nicholas (1992) and Weaver (1972) biomass of foliage, live 

branches, dead branches, bole bark and bole wood was determined using caliper at 15 cm 

above ground level as the independent variable.      

Herbaceous Vegetation and Seedlings 

There are no published equations relating herbaceous vegetation and seedling 

biomass to a nondestructive vegetation parameter.  These equations were generated for 

the most common species listed in table 1.1.  A two-part double sampling approach was 

used to estimate herbaceous vegetation and seedling biomass (Forman, 1969).   Such an 
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approach will created a valuable set of allometric equations for future use while 

protecting the permanent plot system. 

The method consisted of a nondestructive survey coupled with destructive sampling 

outside the permanent plots.  For the non-destructive survey of the permanent plot 

system, sixteen 1 x 1 m sub subplots were delineated with a 1 x 1 m PVC square within 

each of the permanent plots.  The sub subplots (four in each 4 x 4 m sapling and shrub 

plot) were arranged in the manner shown in figure 1.2 (black boxes).  Percent cover of all 

herbaceous plants present within each sub subplot was estimated ocularly and recorded.  

Herbaceous vegetation was defined as all herbs, grasses and mosses.   Because of the 

relatively short growing season (May through September) only one sampling was made 

in 2003 (Yarie, 1980).  Aboveground herbaceous biomass was assumed to be the peak 

standing biomass at the end of the growing season and our estimate of net primary 

production (NPP).   

 Concurrent with the non-destructive sampling in the permanent plots was a 

destructive sampling of herbaceous plants in temporary 1 x 1 m plots established in the 

fall of 2003 outside of the permanent plots.  Each of these temporary plots was centered 

10 m west of the northwest corner of the permanent NDW plots.  Plots were located in 

this manner in order to represent the entire watershed, also to ensure that temporary plots 

did not interfere with the permanent plot system.   

At each of these temporary plots, percent cover by species was assessed by ocular 

estimation to the nearest percent.  After cover of each individual plant species was 

measured, it was clipped at ground level and placed in a uniquely numbered plastic bag 

until adequate samples (n=12) of all species present were measured and collected.  If 
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additional samples were needed, they were selectively sampled in order to obtain 

adequate observations of all species.  Rare or protected species were not sampled (Table 

1.2).   

Once removed from the field in individually labeled and sealed Ziploc bags, plant 

specimens were dried in a 65-degree C° oven for 24 hours and then weighed.  Recorded 

dry weights were used to develop a set of species-specific predictive equations to 

estimate dry plant biomass from recorded plant parameters.  This set of equations was 

derived by regressing percent cover against individual dry weight, using the PROC REG 

procedure in SAS.  Dried plant specimens were then ground through a 40-mesh screen in 

a Wiley mill. The ground and dried plant samples were sent to the analytical laboratory at 

Colorado State University (CSU) for C and N analysis. 

Although mosses contribute little in terms of ecosystem biomass, their high turnover 

rates and high nutrient content make them important in biogeochemical cycling (Tamm, 

1953; Binkley, 1981).  Moss was destructively and non-destructively surveyed similar to 

forbs and estimated by percent cover.  Net primary productivity (NPP) will be estimated 

as 1/3 of the estimated biomass following Tamm (1953).   

Predictive biomass equations were produced for seedlings as well in a manner similar 

to that for herbaceous cover above.  Seedlings were defined as woody plants that have 

stem diameters <2cm at 15 cm above ground level.  All destructive seedling sampling 

was performed in the nearby Pisgah National Forest, NC.  12 individuals of each of four 

woody species, red spruce, Fraser fir, yellow birch and viburnum were measured at 15 

cm above ground level, clipped at ground level, dried and weighed.  Allometric 

relationships between stem diameter and aboveground mass were developed using the 
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PROC REG procedure in SAS.  Within the plots, seedlings were measured within the 1 x 

1 m sub-sub plots along with herbaceous vegetation.  Seedling biomass was determined 

using derived predictive equations described above. 

Site Characterization 

As the 50 NDW plots are part of a permanent plot system that dates back to the early 

1990’s, site classification and characterization variables were previously collected.  

Included in these data are elevation, aspect, slope, landform, slope position and 

microrelief of each plot (Zedaker and Nicholas, 1990).  Site data for individual plots were 

remeasured only upon evidence of an event that may have changed the site classification 

such as a landslide or other severe disturbance.  

Instrument and Personnel Calibration 

Research protocol including site classification and characterization as well as quality 

assurance / quality control procedures were based on Zedaker and Nicholas (1990) except 

where noted.  Tools and instruments used in the inventory such as compasses, diameter 

tapes and fiberglass distance tapes and all other field gear was regularly cleaned and 

maintained following Zedaker and Nicholas (1990).  Field technicians responsible for 

individual mensurative procedures were trained before entering the field.  Technicians 

were required to be comfortable with all instruments and tools and meet measurement 

accuracy tolerances (Zedaker and Nicholas, 1990) before measuring plots.   
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Data Manipulation 

We compared hypothesized scenarios of overstory forest conditions and trajectories 

to our 1993-2003 data set.  In order to understand current stand conditions we determined 

biomass allocation by species across elevation bands by applying existing and developed 

allometric equations.  This gave us a picture of forest conditions across the forest in 2003.  

From this we developed an understanding of the current forest trajectory by tracking 

individual trees through a ten-year time step by monitoring growth of trees into the stand, 

growth increment of existing trees, and mortality of existing trees (a negative value).  

Summing these three values at the stand level gave us a picture of how species acquired 

or lost biomass across the elevation gradient and allowed us to compare our observations 

with published hypothesized forest trajectories.   

We described the relative contribution of understory and overstory in terms of the 

cycling of C, N and biomass by determining nutrient content of all growth forms and 

their uptake by applying existing and developed allometric equations.  This gave us an 

understanding of the distribution of biomass, C and N throughout the system and allowed 

us to calculate fluxes in these growth forms.  Comparing the understory contribution to 

nutrient and biomass cycling to the overstory gave us a clearer picture of the value of the 

understory to this important ecosystem service. 

We demonstrated the effects of active management on the sequestration of C by 

producing a long-term predictive model that compared the C dynamics of applying a 

management action against a no action alternative using the Forest Vegetation Simulator 

(FVS, Dixon 2002).  The FVS is an individual-tree distance independent growth and 
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yield model that is widely used by managers and researchers to model forest change and 

stand dynamics over time in response to management activities.  This tool predicted 

whether the active management of forests sequestered more C than their undisturbed 

counterparts when standing forest carbon as well as the fate of forest products were 

considered. 

PRODUCTS GENERATED  

The following products were designed to meet the objectives outlined above:  

 Synthesis paper co-authored with Dr. Helga Van Miegroet and Chloe Tewksbury 

on the overall ecosystem C balance of the southern Appalachian spruce-fir forest, 

including overstory, understory, litter and soil components, published in 2007. 

 Manuscript comparing hypothesized scenarios of forest conditions and trajectories 

to our 1993-2003 data set, published in 2008 (Chapter 2).    

 Manuscript describing the relative contribution of understory and overstory in 

terms of the cycling of C, N and biomass 1993-2003, published in 2007 (Chapter 3). 

 Manuscript describing application of FVS to produce long-term predictive model 

of the effects of active management on the sequestration of C, published in 2012 (Chapter 

4). 
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Table 1.1:  Habitat, growth habit, taxon and survey code for species found during our 

vegetation surveys of the Noland Divide Watershed of Great Smoky Mountain National 

Park 

Habitat 
Growth 

habit 
Taxon Code 

Forest Woody Abies fraseri ABSFRA 

Forest Woody Acer spicatum ACRSPC 

Forest Woody Amalanchier laevis AMLLVS 

Forest Woody Betula alleghaniensis BTLALL 

Forest Woody Cornus alternifolia CRNALT 

Forest Woody Hydrangea arborescens HYDARB 

Forest Woody Picea rubens PICRBN 

Forest Woody Prunus pensylvanica PRNPNS 

Forest Woody Rhododendron catawbiense RHDCTW 

Forest Woody Rhododendron maximum RHDMXM 

Forest Woody Ribes rotundifolia RBSRTN 

Forest Woody Rubus canadensis RBSCND 

Forest Woody Rubus idaeus RBSIDS 

Forest Woody Sambucus pubens SMBPBN 

Forest Woody Sorbus americana SRBAMR 

Forest Woody Vaccinium corymbosum VCCCRY 

Forest Woody Vaccinium erythrocarpum VCCERY 

Forest Woody Viburnum alnifolium VBRALN 

Forest Herbaceous Aconitum uncinatum ACNUNC 

Forest Herbaceous Arisaema triphyllum ARSTRP 

Forest Herbaceous Aster acuminatus ASTACM 

Forest Herbaceous Aster divaricatus ASTDVR 

Forest Herbaceous Chelone lyoni CHLLYN 

Forest Herbaceous Cimicifuga americana CMCAMR 

Forest Herbaceous Clintonia borealis CLNBRL 

Forest Herbaceous Dryopteris campyloptera DRYCMP 

Forest Herbaceous Eupatorium rugosum EUPRGS 

Forest Herbaceous Galium triflorum GALTRF 

Forest Herbaceous Houstonia serpyllifolia HSTSRP 

Forest Herbaceous Impatiens pallida IMPPLL 

Forest Herbaceous Laportea canadensis LPRCND 

Forest Herbaceous Lycopodium lucidulum LYCLCD 
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Table 1.1 continued.  Habitat, growth habit, taxon and survey code for species found 

during our vegetation surveys of the Noland Divide Watershed of Great Smoky Mountain 

National Park 

Habitat 
Growth 

habit 
Taxon Code 

Forest  Herbaceous Lycopodium selago LYCSLG 

Forest  Herbaceous Monarda didyma MNRDDY 

Forest  Herbaceous Oxalis acetosella OXLACT 

Forest  Herbaceous Rudbeckia laciniata RDBLCN 

Forest  Herbaceous Solidago glomerata SLDGLO 

Forest  Herbaceous Tiarella cordifolia TRLCRD 

Forest  Herbaceous Trillium erectum TRLERC 

Forest  Herbaceous Trillium undulatum TRLUND 

Forest  Herbaceous Viola blanda VIOBLN 

Roadside Herbaceous Prunella vulgaris  PRNVLG 

Roadside Herbaceous Senecio smallii SNCSML 
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Table 1.2:  Rare or regionally rare vascular and nonvascular plant species associated with 

this community 

Taxon 

Betula papyrifera var. cordifolia 

Cardamine clematitis 

Glyceria nubigena 

Phegopteris connectilis 

Poa palustris 

Rhododendron vaseyi 

Stachys clingmanii 

Streptopus amplexifolius 

Botrychium oneidense 

Calamagrostis canadensis 

Carex projecta 

Carex ruthii 

Geum geniculatum 

Prenanthes roanensis 

Rhododendron carolinianum 

Rugelia nudicaulis 

Stellaria coreii 

Bazzania nudicaulis 

Brachydontium trichodes 

Leptodontium excelsum 

Metzgeria temperate 

Nardia scalaris 

Plagiochila corniculata 

Sphenolobopsis pearsonii 

Gymnoderma lineare 
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Figure 1.1. Location map of the Noland Divide Watershed and the 4 NAPAP plots in the 

Great Smoky Mountains National Park 
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Figure 1.2.  Schematic of a 20 x 20 m permanent plot with 4 x 4 m subplots (gray 

squares) for shrub and regeneration survey and 1 x 1 m sub subplots (black squares) for 

herbaceous and moss survey. 
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CHAPTER 2 

EXAMINATION OF FOREST RECOVERY SCENARIOS IN A SOUTHERN 

APPALACHIAN PICEA-ABIES FOREST 
1,2

 

ABSTRACT 

This study contrasts various forest recovery scenarios in a Picea rubens Sarg. Abies 

fraseri (Pursh.) Poir. forest 20 years after the onset of Adelges picea Ratz. and tests them 

against a 10-year data set from an intensive catchment study in the Great Smoky 

Mountains National Park.   Standing live biomass, increment, ingrowth, mortality and net 

change in live biomass are analyzed by species and elevation based on inventory data 

gathered in 1993, 1998 and 2003 at a network of 50 permanent plots stratified along nine 

elevation bands (1700-1900 m).  Total standing live biomass at the study site remained 

stable between inventories (~260 Mg ha
-1

).  Betula showed little, if any, response to the 

recent set of catastrophic overstory disturbances.  Biomass and increment of Picea 

increased somewhat; but overall, there is limited evidence that Picea is expanding.  Abies 

showed significant increases in standing live biomass (from 3.3 to 12.7 Mg ha
-1

), 

increment (380 to 850 kg ha
-1

 yr
-1

) and ingrowth (320 to 610 kg ha
-1

 yr
-1

) over time.  

While some scenarios have not fully played out yet, at this time, total elimination of 

Abies is not indicated and there is considerable evidence to support the stable Picea and 

Abies scenario.  

                                                 
1
 This chapter appeared in the journal Forestry as: Moore, P.T., H. Van Miegroet and N.S. Nicholas.  2008.  

Examination of forest recovery scenarios in a southern Appalachian Picea-Abies forest.  Forestry 81(2): 

183-194 
2
 Coauthored by Patrick T. Moore, Helga Van Miegroet and Niki S. Nicholas 
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INTRODUCTION 

Red spruce (Picea rubens Sarg.) Fraser fir [Abies fraseri (Pursh) Poir.] forests of the 

central and southern Appalachian Mountains exist today as a series of high-elevation 

vegetation “islands” located above 1500 meters in elevation between 34 and 41 degrees 

north latitude (White and Cogbill, 1992), 74% of which are within the boundaries of 

Great Smoky Mountain National Park (GSMNP, Dull et al., 1988).  They are remnants of 

the original post-glacial range, representing the lower elevation limits of their high-

elevation ecological niche (Delcourt and Delcourt, 1988) and are highly disturbed due to 

anthropogenic stressors as well as recent widespread infestations by the balsam woolly 

adelgid (BWA, Adelges piceae Ratz.).  These recent disturbances have combined to form 

a sensitive ecosystem with an unknown future.  Many researchers have suggested that 

forest dynamics may permanently change due to these recent disturbances (Witter and 

Ragenovich, 1986; Busing and Clebsch, 1987; McLaughlin et al., 1987; Witter, 1988; 

Dale et al., 1991; Nicholas et al., 1992).   

Many disturbance agents are acting on this forest.  Windthrow has been responsible 

for significant mortality of overstory trees and the creation of larger overstory gaps in 

southern Appalachian Picea-Abies forests during strong windstorms (White and Cogbill, 

1992).  Within the past 25 years, for example, three extremely large storms, hurricanes 

Hugo in 1989, Opal in 1995 (Smith, 1997), and Ivan in 2004 have swept through the area 

causing significant tree mortality via windthrow.   Ice storms (Nicholas and Zedaker, 

1989) have also caused significant mortality of overstory trees. As a consequence of these 

disturbances and in concert with steep slopes and abundant precipitation, the landscape is 

susceptible to landslides (White and Cogbill, 1992).  While such disturbance is rare, it is 
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nevertheless highly destructive.  Logging has not been significant due to the historic 

inaccessibility (steep, high-elevation slopes) and current land management status 

(National Park, Pyle and Schafale, 1988).  Fires are rare in these forests due to year-round 

moisture and wet climate and lush understory vegetation (White and Cogbill, 1992).   

More recently, additional anthropogenic stressors are impacting these forests 

including infestations of exotic pests (Johnson et al., 1991; Nicholas, 1992) and air 

pollution (Johnson and Lindberg, 1992).  The invasion of the BWA has caused 

widespread mortality in even the most protected areas of the range of Abies.  BWA feeds 

at the base of needles and at fissures in Abies bark, where its saliva alters growth patterns 

within stems, killing trees 3-9 years after infestation (Amman and Speers, 1965).  This 

exotic pest was first discovered in the southern Appalachians in 1957 (Speers, 1958), 

GSMNP in 1963 (Ciesla et al., 1963).  Since then, BWA has invaded the entire range of 

Abies and has caused extensive mortality of this species (Johnson et al., 1991), killing 

over 90% of stems and virtually every individual fir tree >10cm DBH (Smith and 

Nicholas, 2000).  Though regeneration of Abies is occurring, it is patchy across the 

landscape (Smith and Nicholas, 2000).  The responses of the other woody species in this 

forest overstory as well as the role of BWA on the future of this forest are still unknown.   

The southern Appalachian Picea-Abies forest consists of three main overstory species 

as well as several minor hardwood species.  Elevation is the major driver of ecosystem 

composition in this forest (Whittaker, 1956).  Prior to the outbreak of the BWA 

infestation, Picea dominated slopes from 1500-1800 m, transitioning to an Abies-

dominated system at the higher ridges and peaks above 1800 m.  Yellow birch (Betula 

alleghaniensis Britt.) is a smaller component of the overstory at lower elevations along 
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with the shallow rooted (Burns and Honkala, 1990a) and windthrow-prone Picea.  Other 

hardwoods, including mountain maple (Acer spicatum Lam.), striped maple (Acer 

pensylvanicum L.), serviceberry [Amelanchier laevis (Weigand) Ahles.], pin cherry 

(Prunus pensylvanica L. f.) and mountain-ash (Sorbus americana Marshall) are minor 

components of the overstory and understory across elevations, with Sorbus extending into 

the highest elevations while the others are minor components at lower and mid 

elevations. 

Prior to the BWA, southern Appalachian Picea-Abies forests held considerable 

biomass in the form of live standing trees (200-310 Mg ha
-1

, Whittaker, 1966).  For years 

after the onset of the BWA, the mortality of insect-killed Abies trees, as well as the 

subsequent windfall of many large Picea trees due to exposure in a newly opened canopy 

(Busing, 2004), overwhelmed the ability of the existing trees (increment) and new trees 

(ingrowth) to compensate, causing the overstory biomass pool to shrink.  The ability of 

this forest to once again hold large amounts of biomass in the overstory is a critical step 

in the post-BWA recovery of this system.   

The future of this ecosystem is uncertain and many scenarios have been suggested 

ranging from a full forest recovery of Abies to the extinction of the species.  Witter 

(1988) predicted that Abies would persist to some degree in the overstory based solely on 

the fact that trees currently survive to cone-bearing age, but said little regarding the stand 

structure of the Abies component of future Picea-Abies forests.  McLaughlin and 

coworkers (McLaughlin et al., 1987; McLaughlin and Tjoelker, 1992) predicted that the 

effects of acidic precipitation on soil processes and nutrient availability would lead to 

slower growth rates of overstory tree species.  Subsequent increased susceptibility of 
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Picea and Abies to pathogens and mortality is possibly the cause of regional Picea 

decline observed in the 1980s (McLaughlin et al., 1987).  It has also been suggested that 

Abies may evolve resistance to the effects of the BWA (Witter and Ragenovich, 1986) 

and that the forest may return to pre-BWA conditions.   

Dale et al. (1991) used Leslie matrices to forecast four possible scenarios of Abies 

response to the BWA including the complete extinction of Abies under repeated attacks 

of the BWA, complete recovery of Abies after the BWA dies off, stable coexistence of 

BWA and Abies, and finally persistent oscillations in space and time between the 

populations of BWA and Abies.  The predictions of Dale et al. (1991) did not incorporate 

information regarding the indirect response of other important forest species, Picea, 

Betula, and other hardwoods, to the BWA-induced Abies mortality.  Nicholas et al. 

(1992) stressed that not enough is known to adequately predict the future of Abies in the 

overstory and that researchers will learn much by the second, imminent wave of BWA-

induced mortality.   

Busing and Clebsch (1987) used a FORET gap model to predict several possible 

outcomes based on the combined impacts of BWA and acid deposition.  If BWA 

negatively affected Abies while acid deposition negatively affected Picea (McLaughlin et 

al., 1987), a decline in both species as well as the potential for the release of Betula may 

occur.  This scenario may also be supported by the release of other minor understory 

hardwood species into the overstory.  However, if BWA causes significant damage to 

Abies populations without the negative effect of acid deposition on Picea, then Picea may 

increase its dominance at higher elevations.   
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Based on the above literature, future Picea-Abies forests may comply with one of 

several forest change scenarios: 

1) Expansion of Betula  

2) Introduction of other hardwoods as overstory species 

3) Increased dominance of Picea at higher elevations 

4) Elimination of Abies 

5) Stabilizing populations of Picea and Abies over time 

To date, reliable data on forest dynamics of southern Appalachian Picea-Abies forests 

has been largely lacking (Peart et al., 1992) for a variety of reasons, i.e. unrepresentative 

sampling design, small sample sizes, lack of permanently marked plots and trees, too 

brief a monitoring period and the use of subjective measurements.  Reliable data are 

difficult to collect because vegetation characteristics and composition can vary greatly 

from peak to peak and even between stands on the same peak. 

While many scenarios have been advanced in recent years regarding the future of this 

forest (Witter and Ragenovich, 1986; Busing and Clebsch, 1987; McLaughlin et al., 

1987; Witter, 1988; Dale et al., 1991; Nicholas et al., 1992), an analysis of the viability 

of these scenarios has not been performed.  The objective of this study is to analyze these 

individual forest change scenarios (expansion of birch and other hardwoods, increased 

dominance of Picea, elimination of Abies, and the stabilization of Picea and Abies) 

proposed by others and determine whether current forest dynamics in a forested 

watershed within the GSMNP support any of these projections.   

This research examined current biomass pools of a southern Appalachian Picea-Abies 

forest, as well as changes over a 10-year period in order to determine the present status of 
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these forests.  We then examined the nature of recent biomass changes in terms of 

increment, ingrowth, mortality, and overall mass balance and assess if there is evidence 

to support any of the scenarios relative to the major overstory species.  Biomass 

dynamics (pool size, changes in increment, ingrowth, mortality and overall balance) over 

a 10-year period were used to examine significant shifts in each species over that time 

period.  We used changes in standing live biomass pools and as well as changes in 

increment, ingrowth, mortality and overall mass balance as indicators of overstory 

change because this method is able to differentiate between the individual components of 

forest growth.  We used dynamics in one watershed to understand some of the processes 

that may be occurring at larger scales. 

MATERIAL AND METHODS 

Because 74% of existing Picea-Abies forest land area in the southern US exists within 

GSMNP, conducting this research within the park is appropriate.  This study was 

performed at the Noland Divide Watershed (NDW, 35°34’N, 83°29’W) a 17.4 ha, high-

elevation catchment within GSMNP, because of the broad elevation gradient (1700-

1910m) and resulting variability in overstory species composition, thought to represent 

much of the range of forest conditions occurring within the park.  Pre-existing plot 

infrastructure, as well as access to previously collected data, and similar parent material 

allowed analysis of forest dynamics over a 10-year period while controlling for some 

confounding factors (parent material, aspect, and climate).  The study area has not been 

impacted by logging or fire (Pyle et al., 1988), but has been severely impacted by the 

BWA (Barker et al., 2002; Pauley and Clebsch, 1990).  The soils are mainly Inceptisols, 
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occasionally with spodic characteristics (McCracken et al., 1962; Van Miegroet et al., 

1993), and are underlain by Thunderhead Sandstone (King et al., 1968).  They are 

generally shallow, (<50 cm depth to bedrock) and have a silt loam to sandy loam texture 

(Van Miegroet et al., 2007).  Precipitation is >200 cm annually and is distributed evenly 

throughout the year (Johnson and Lindberg, 1992).  Ten percent of annual precipitation 

falls as snow and covers the ground for an average of 50 days per year (Johnson et al., 

1991).  Mean air temperatures range from -2
o
C in February to 17

o
C in August with a 

frost-free period from May through September (Johnson et al., 1991; Shanks, 1954).   

In this study, we used a repeated overstory inventory of 50 20 x 20 m permanent plots 

in and around this high elevation catchment placed systematically along nine elevation 

bands (1700, 1725, 1755, 1785, 1800, 1835, 1865, 1890 m, Figure 2.1).  Overstory tree 

inventories were conducted at the NDW in 1993, 1998, and 2003, using protocols 

described by Zedaker and Nicholas (1990).  In 1993, all trees ≥ 5 cm diameter at breast 

height (DBH, 1.37m) were measured and tagged with a permanent and unique ID tag.  

Species and DBH of each live and dead overstory tree were recorded.  In 1998 and 2003, 

ingrowth was tagged as they entered the stand.  Live trees that had fallen over since the 

last inventory were considered windthrow.   

Biomass of foliage, live branches, dead branches, bole bark, and bole wood of each 

tree were calculated from DBH using allometric equations developed for Picea, Abies 

and Betula by Nicholas (1992).  Biomass of other overstory species and shrubs were 

estimated with the predictive equations of Weaver (1972).    

Standing live biomass at each time period was estimated by summing individual tree 

biomass values across individual plots.  In order to investigate dynamics between time 
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periods, we divided annualized change in live overstory biomass into three components; 

live increment, ingrowth, and mortality. Increment was defined as the positive difference 

in individual tree biomass between inventory periods, ingrowth was defined as the mass 

of a tree that grew to >5cm DBH since the previous inventory, and mortality was defined 

as the whole tree biomass of a tree that died since the previous inventory.  Summing plot-

level increment, ingrowth, and mortality provided a mass balance for each plot and a 

picture of the biomass dynamics across the entire watershed.  A positive mass balance 

corresponded with a biomass gain for the period, while a negative mass balance indicated 

that the site had lost biomass during the period.   

Differences in standing live biomass between 1993 and 2003 were determined for 

each of the three main species, Abies, Betula and Picea as well as the group of other 

hardwoods, using a series of repeated measures ANOVAs (SAS Institute, 2002).  

Analyses were performed across the watershed as well as by elevation band to determine 

changes at each elevation.  Due to the fact that there was only one plot in the highest 

elevation band (1910 m), making analysis of this band impossible, data from that band 

were pooled with the data from the next highest band (1890 m), for a total of eight 

elevation bands.  We were interested in how biomass dynamics for the entire overstory 

and individual overstory species changed over time, rather than how species composition 

changed across the elevation gradient.  Temporal trends were tested with simple one-way 

repeated ANOVAs, using 1993 and 2003 biomass values, with no test for interactions 

because they were not germane to our study question  and the effect of elevation on 

species composition and standing biomass has already been documented (Whittaker, 

1956).  With eight elevation bands, and four species groups, the analysis of standing live 
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biomass required more than thirty separate analyses.  Statistical analysis and model 

construction was adapted from Cody and Smith (1997). Change in increment, ingrowth, 

mortality, and overall mass balance was determined by species during the 1993-1998 and 

1998-2003 time periods using a repeated measures ANOVA (SAS Institute, 2002), 

similar to the method used for standing live biomass.  Significant change in ingrowth, 

increment, mortality and overall balance from the first time period to the second time 

period was determined for each species group at each elevation band.  Differences 

between the means were tested for significance by Duncan’s mean comparison test.  

Significant changes over time will be used to determine whether evidence exists to 

support the postulated scenarios about declines and/or increases in the major overstory 

species.   

RESULTS 

Overall, average standing live biomass for the NDW did not significantly change over 

the 10-year period from 267 Mg ha
-1

 in 1993, to 260 Mg ha
-1

 in 2003 (Table 2.1).  When 

analyzed individually, however, all three main species changed significantly over this 

time period; Abies (P<0.0001) from 3.3 Mg ha
-1

 to 12.7 Mg ha
-1

, Betula (P<0.0013) from 

56 Mg ha
-1

 to 61 Mg ha
-1

, and Picea (P<0.0344) from 206 Mg ha
-1

 to 184 Mg ha
-1

.   

Standing live biomass across a 10-year period increased for Abies across four of the 

eight elevation bands (Table 2.1), not only at the high elevations but at middle and low 

elevations as well.  Significant increases ranged from 156% to 631%.  No significant 

changes in Picea and Betula standing live biomass occurred at any elevation over a 10-

year period.  Standing live biomass of “other hardwood species” did not increase from 
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1993 to 2003 at any elevation band.  Density and basal area information are presented in 

Table 2.1.  

Across the watershed and across species, increment, the growth of existing trees, 

increased significantly (P<0.0001) from 4,100 to 5,500 kg ha
-1

 yr
-1

 from the 1993-1998 to 

the 1998-2003 time periods (Table 2.2).  Across all elevations, increase of Abies 

(P<0.0001, 380 to 850 kg ha
-1

 yr
-1

) and Picea (P<0.0022, 2,800 to 3,700 kg ha
-1

 yr
-1

) 

increased significantly, while Betula remained unchanged.  The combined increment of 

the three main species increased significantly at one low and two high elevation bands.  

When analyzed by elevation band, overstory species responded differently, but no 

specific elevation trend consistently stood out.  Increment of Abies increased by 75%-

190% over the 10-year period at three elevation bands in the middle and upper watershed.  

Increment of Picea significantly increased at one lower elevation band by 36%.  

Increment of Betula showed no significant change in increment from the first to the 

second inventory period at any elevation band. 

Ingrowth, the growth of new trees, also increased significantly (p>0.0001) across the 

watershed and across species, from 450 to 840 kg ha
-1

 yr
-1

 between the two inventory 

periods (Table 2.2).  Across elevations, ingrowth of Abies increased significantly 

(P<0.0001) from 320 to 610 kg ha
-1

 yr
-1

.  Ingrowth of Picea also increased significantly 

(P<0.0005) from 100 to 180 kg ha
-1

 yr
-1

, while ingrowth rates of Betula (28 to 44 kg ha
-1

 

yr
-1

) remained unchanged.  The combined ingrowth of the three main species increased 

significantly at two middle and two high elevation bands.  When analyzed by elevation 

band, the rate of Abies ingrowth increased significantly between the two time periods at 

four elevation bands in the lower, middle and upper watershed.  Significant increases 
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ranged from 92% to 347%.  Betula ingrowth rates significantly increased at one middle 

elevation band by 743%.  Picea ingrowth increased significantly at two elevation bands 

in the middle and upper watershed by 80% and 144%, respectively.   

Overall, mortality was similar for the 1993-1998 time period (5,900 kg ha
-1

 yr
-1

) and 

the 1998-2003 time period (5,700 kg ha
-1

 yr
-1

).  Across elevations, mortality of Abies 

increased significantly (P<0.0285) from 60 kg ha
-1

 yr
-1 

to 220 kg ha
-1

 yr
-1

 while Betula 

and Picea mortality remained constant.  Inventory data and field observations of downed 

wood indicated that windthrow was responsible for the virtually all Picea mortality.    

The overall stand biomass balance for the overstory, consisting of increment, 

ingrowth and mortality for each species, reversed from a negative value in the 1993-1998 

time period (-1,350 kg ha
-1

 yr
-1

) to a positive value in the 1998-2003 time period (610 kg 

ha
-1

 yr
-1

) across the range of elevations and species, though this change was not 

statistically significant.  Abies showed a significant increase in mass balance (P<0.0001) 

from 640 to 1,240 kg ha
-1

 yr
-1

 across all elevations, as well as a significant positive 

change in mass balance in four middle and lower elevation bands (121% to 262%).  

Betula had small rates of ingrowth, moderate rates of increment, and low rates of 

mortality of existing trees, and these rates showed no significant increase between the 

two time periods.  In Picea, higher elevation bands showed a decline in biomass during 

the first time period while the lower elevation bands showed a net increase.  The opposite 

was true during the second time period where high elevations corresponded with positive 

mass balances and low elevations corresponded with negative mass balances.   

Variability was very large in these analyses, and coefficients of variation were often 

over 100%.  Thus, while trends can be observed, it is obvious that results are not uniform 
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across this watershed.  Nevertheless, significant differences between time periods for 

biomass pools and fluxes existed, despite the large degree of variability.  These 

differences can be interpreted as general temporal trends within this watershed.  

DISCUSSION  

The methods and data presented here provide a framework for testing specific 

scenarios against a current 10-year data set.  In general, there is no evidence that this 

forest is declining.  In fact, many components of this forest are aggrading in terms of 

standing live biomass and growth, especially Abies and at low, middle and high elevation 

bands.  Overstory standing biomass estimates were similar to other post-adelgid research 

in the southern Appalachians (260 Mg ha
-1

 in this study compared to 258 Mg ha
-1

 

measured in the mid-1980s at the nearby Spruce “Becking” Site and 265 and 308 Mg ha
-1

 

at the two nearby Smokies “Tower” sites, Johnson and Lindberg, 1992).  

Betula Expansion 

There is no evidence that Betula is becoming more dominant or expanding into higher 

elevations.  There is considerable standing live biomass, especially at the lower 

elevations, however, higher elevations continue to carry little standing live biomass of 

Betula.  Also, there has been no increase of standing live Betula at any particular high 

elevation band.  While standing live biomass increased significantly across the entire 

watershed, this accounted for only a 10% increase.  While there is considerable increment 

of existing trees, this does not result in an increase in net biomass balance over the 

measurement period.  Ingrowth of Betula was generally quite small, and did not 

significantly increase over time.  The magnitude of Betula ingrowth does not seem 
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sufficient to dramatically alter future stand composition, because Betula ingrowth is 

dwarfed by the magnitude of Abies ingrowth across elevations.  The capture of new 

spaces in the overstory would be a critical step in the expansion of this species, but that is 

not occurring in this watershed.   

Though more shade tolerant than other Betula species in North America, Betula 

allegheniensis is reported to be a fast growing tree species and capable of capturing 

moderately sized gaps in the overstory (Burns and Honkala, 1990b).  Relative to the 

shallow-rooted Picea and slightly deeper-rooted Abies, Betula has a more extensive and 

deeper root system (White and Cogbill, 1992).  This would decrease the likelihood of this 

species succumbing to windthrow unlike the other major overstory species.  We are 

suggesting that while Betula may acquire limited additional spaces in the overstory at 

mid elevations (as exemplified by the 1785-m elevation band, Table 2.2), we find no 

evidence for the expansion of Betula, especially at the higher elevations. 

Other Hardwoods 

A set of other hardwood species including Acer spicatum, Acer pensylvanicum, 

Amelanchier laevis, Prunus pensylvanica, and Sorbus americana may, under some 

conditions, be able to compete for overstory positions (Burns and Honkala, 1990b; Eyre, 

1980).  Growth characteristics of these species suggest that they may become more 

important in terms of overstory live biomass.  Over our 10-year study period, these 

hardwood species did not significantly change standing biomass at any elevation band.  

None of these species captured canopy openings created by BWA.  In addition, though 

these species may be more competitive under other edaphic conditions, in the Picea-
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Abies system they likely do not have the growth form necessary to successfully compete 

with Picea and Abies trees that have faster growth rates and are taller.  A shift in canopy 

species composition might have resulted if both Picea and Abies were experiencing 

significant and repeated disturbance (Busing and Clebsch, 1987).  However, there is little 

evidence to suggest that the disturbances acting on Picea and Abies will be repeated and 

significant enough to cause long-term forest change.  Due to the complete lack of change 

in standing live biomass of “other” tree species, robust presence of Abies in the 

understory, apparent resiliency of and strong increment of the major overstory species, 

there is no evidence to support the Other Hardwoods scenario. 

Picea Dominance 

The Picea dominance scenario suggested the possibility of Picea responding to an 

open canopy by becoming more dominant, especially at high elevations where Abies was 

more prevalent pre-BWA.  In our analysis, this scenario would manifest itself by large 

amounts and increasing standing live biomass, a positive change in increment and 

ingrowth from the first to the second inventory period, as well as an overall positive mass 

balance for the overstory.  Picea did not meet all of these criteria, but met some.  Picea 

accounted for the majority of standing live biomass; however, unlike Abies, this standing 

stock did not significantly increase over the 10-year period from 1993-2003.  The 

majority of increment was also dominated by Picea, but increment significantly increased 

at only one low elevation band between the two time periods.  Ingrowth of Picea 

increased at two elevation bands but was considerably less than that of Abies, even at 

lower elevations.   
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Large amounts of Picea died during our survey period.  Picea accounted for 95% and 

89% of all mortality in the two time periods; however, due to the large between-plot 

variability in mortality, likely driven by the heterogeneity in forest structure, no 

statistically significant differences in mortality between time periods emerged for any of 

the species at any elevation.  It appears that extensive mortality of Picea followed that of 

BWA-induced Abies mortality by 15-20 years. Though some degree of windthrow 

mortality was anticipated and observed in several studies (Hollingsworth and Hain, 1991; 

Peart et al., 1992; Busing and Pauley, 1994; Busing, 2004), the magnitude of this 

mortality in our study area was unexpected.  Scenarios of increased Picea dominance 

were based partially on the expectation that the Picea overstory would sustain little 

mortality via windthrow after the initial catastrophic Abies mortality.  This did not occur, 

however, and the biomass and growth dynamics of both Picea and Abies have been 

considerably reduced.  

Windthrow-induced Picea mortality appears to have moved from higher elevations to 

lower elevations.  This mortality started first in the higher elevations with lower Picea 

dominance (fewer, more spread out Picea trees) during the 1993-1998 time period and 

was observed later at  the lower elevations with high Picea dominance (stands of more 

dense Picea trees) during the 1998-2003 time period.  In contrast, the wave of BWA-

induced Abies mortality began at the lower elevations of the Abies population and moved 

up to the mountaintops (White and Cogbill, 1992).  Because the Picea windthrow 

mortality did not follow the same spatio-temporal pattern as the adelgid mortality, we are 

suggesting that the large amount of Picea mortality is a function of canopy openness and 

exposure to winds and elements, rather than a function of time since BWA disturbance.   
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Mortality and the overall mass balance at the lowest elevation band seemed to 

emulate processes occurring at the highest elevations with higher levels of mortality from 

1993-1998 and lower levels of mortality from 1998-2003.  However, the four plots in this 

band showed some of the highest data variability.  One particular low elevation plot 

(C1700) lost over 70 % of its standing live biomass between the 1993-1998 surveys due 

to a very large multi-tree windthrow event.  The timing of this event coincided with the 

large amount of individual Picea stem windthrow occurring in higher elevations.  It is 

hypothesized that C1700’s location along a ridge position made it more vulnerable to a 

large windthrow event and may explain its temporal resemblance to the higher elevation 

bands.  Others have found that Picea on exposed ridges are more susceptible to mortality 

(Busing and Pauley, 1994).  The lowest band displayed the type of heterogeneity in forest 

structure that is very typical of this forest type. 

Despite considerable windthrow, Picea is still holding considerable biomass in the 

overstory and is contributing the majority of increment.  Picea shows some significant 

increases in increment and ingrowth.  However, it is not apparent that Picea is taking 

over many overstory positions previously held by Abies.  Picea will remain a 

considerable component of this forest overstory, but there is only limited evidence to 

support the Picea dominance scenario from above. 

Abies Elimination 

There is no evidence to support the elimination of Abies as suggested by Smith 

(1997).  While some aspects of the future of Abies are unknown, such as future 

interactions of Abies and the BWA, all evidence suggests that, in general, Abies is 
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currently making a rapid recovery.  Abies is again becoming a substantial part of the 

forest overstory in terms of standing live biomass.  This species is making significant 

gains in biomass acquisition over time and Abies seedlings are dominating ingrowth at all 

elevations, even surpassing those by Picea at the lower elevations.  Relatively large 

(several over 25 cm DBH) Abies trees are currently producing cones, though viability 

rates of those seeds may be significantly less than normal (Nicholas et al., 1992).  With 

the adequate regeneration we have observed, we have no direct evidence to support the 

Abies elimination scenario from above.   

Stable Picea-Abies 

Two important factors influencing the future of Abies are the nature and timing of the 

next, imminent wave of BWA-induced mortality.  The more time passes before the BWA 

returns, the more time this recovering forest has to return to pre-BWA conditions.  The 

nature of the next wave of BWA-induced mortality (i.e. number and size of trees killed) 

will tell us much about the long-term prognosis of this host-parasite relationship.  

Frequent and severe Abies mortality events will signal a dramatic departure of this forest 

type from pre-BWA conditions, while infrequent and mild mortality events may yield a 

forest that is quite similar to pre-BWA forests with stable populations of Picea and Abies.   

Across the watershed, standing live biomass of overstory trees is no longer in decline.  

Between 1993 and 2003, the forest has evolved from losing biomass each year in the 

1993-1998 time period to a forest that is positively accruing biomass in the 1998-2003 

time period.  Standing live biomass values are similar to measurements taken pre-BWA 

(200-310 Mg ha
-1

, Whittaker, 1966), though there is likely a difference in the diameters 
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of the trees where this biomass is stored.  The recovery of Abies is mainly responsible for 

this turnaround.  Many large Picea on the edges of overstory gaps, the most susceptible 

to windthrow, have fallen and the overall mass balance is expected to become 

increasingly positive in coming years due to the lack of additional Picea mortality.  Both 

Picea and Abies have asserted themselves in the mid-story by producing abundant 

ingrowth that is appearing in the smaller size classes, also indicated by higher tree density 

in the 1998-2003 time period.  Our biomass and growth trends support a recovery of 

Abies while Picea remains a solid component of the overstory.  These data indicate a 

stabilizing relationship between the two overstory species and support the stable Picea-

Abies scenario. 

Observations over 10 years from 50 plots in and around a catchment of the GSMNP 

do not support many of the scenarios that have been suggested in the literature about the 

future of this forest.  Though this high-elevation forest has possibly not seen the last of 

the exotic BWA; there is little, if any, direct evidence that the initial wave of adelgid-

induced mortality will have recurring catastrophic impact on this forest type.  Under 

current conditions, neither Betula nor any of the other hardwood species seem poised to 

take a more dominant role in the overstory of this forested watershed.  Picea will remain 

the dominant species at lower elevations, but will maintain a relatively low density in the 

higher elevations due to the prolific ingrowth of the next generation of Abies trees.  A 

wave of windthrow mortality has swept through the standing Picea trees here, but is 

unlikely to cause further large-scale damage in the near future due to the fact that the 

largest and most wind-prone stems have already fallen.  There is no evidence to support 

the possible extinction of Abies, only reason to suspect a slightly modified role in the 



57 

forest overstory.  Abies is now doing quite well across all elevations and can be expected 

to make a consistent recovery until the next wave of BWA induced mortality.  In spite of 

its limited inference space, valuable insights can be gleaned from the study of this 

Southern Appalachian forest. 
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Table 2.1. Standing live biomass (Mg ha
-1

), number of trees per hectare, and basal area (m
2
 ha

-1
) for four species groups at eight 

elevation bands at two time periods within the Noland Divide Watershed of Great Smoky Mountain National Park (± standard 

deviation)  

1993 2003

Elevation (m) Abies Betula Picea Other Combined Abies Betula Picea Other Combined

1700 0.4 ± 0.3 109 ± 131 229 ± 131 3.4 ± 5.8 341 ± 152 2.9 ± 1.8 121 ± 143 194 ± 109 2.0 ± 1.4 319 ± 153

1725 1.1 ± 1.8 113 ± 116 183 ± 125 1.8 ± 2.1 299 ± 81 6.5 ± 10 130 ± 134 163 ± 81 2.0 ± 2.1 302 ± 97

1755 0.5 ± 0.6#** 76 ± 79 215 ± 108 1.3 ± 1.6 292 ± 109 3.9 ± 2.7** 76 ± 74 214 ± 95 1.7 ± 2.7 296 ± 94

1785 0.9 ± 1.9** 43 ± 59 197 ± 111 3.0 ± 4.2 244 ± 73 5.7 ± 5.2** 47 ± 56 150 ± 88 3.1 ± 3.9 206 ± 64

1800 0.9 ± 1.8 64 ± 27 244 ± 66 0.4 ± 0.6 309 ± 77 5.3 ± 6.4 67 ± 25 275 ± 68 0.8 ± 0.9 349 ± 70

1835 1.6 ± 1.6** 39 ± 66 221 ± 75 0.5 ± 0.9 262 ± 64 12 ± 6.1** 45 ± 72 210 ± 136 0.5 ± 0.8 267 ± 119

1865 4.1 ± 7.1 10 ± 18 218 ± 106 1.9 ± 2.8 234 ± 107 21 ± 19 12 ± 21 182 ± 106 2.5 ± 3.8 216 ± 99

1890 18 ± 10* 1.4 ± 2.1 165 ± 56 1.3 ± 1.9 185 ± 60 46 ± 27* 2.6 ± 3.1 122 ± 70 1.9 ± 2.4 172 ± 71

overall 3.3 ± 6.8** 56 ± 78** 206 ± 97* 1.7 ± 2.8 267 ± 95 12.7 ± 18.2** 61 ± 85** *184 ± 99 1.9 ± 2.6 260 ± 105

1700 38 ± 25 131 ± 90 550 ± 134 100 ± 91 819 ± 247 250 ± 157 144 ± 99 706 ± 134 144 ± 107 1,244 ± 178

1725 82 ± 140 82 ± 55 314 ± 171 121 ± 134 600 ± 171 396 ± 620 89 ± 52 350 ± 164 100 ± 95 936 ± 521

1755 50 ± 60 281 ± 176 463 ± 144 75 ± 76 869 ± 222 294 ± 184 263 ± 156 556 ± 174 63 ± 81 1,175 ± 305

1785 75 ± 132 200 ± 210 397 ± 189 81 ± 72 753 ± 381 353 ± 278 209 ± 145 566 ± 377 125 ± 149 1,253 ± 463

1800 81 ± 146 163 ± 139 406 ± 83 44 ± 52 694 ± 234 319 ± 267 188 ± 153 650 ± 219 56 ± 66 1,213 ± 512

1835 125 ± 118 89 ± 64 307 ± 120 18 ± 37 539 ± 243 636 ± 379 129 ± 85 496 ± 136 39 ± 43 1,300 ± 455

1865 242 ± 336 46 ± 89 271 ± 81 33 ± 49 592 ± 287 1,175 ± 1,117 54 ± 75 388 ± 151 25 ± 27 1,642 ± 1,012

1890 925 ± 503 42 ± 79 233 ± 83 42 ± 49 1,242 ± 466 1613 ± 853 58 ± 85 308 ± 177 54 ± 53 2,033 ± 839

overall 199 ± 350 135 ± 147 362 ± 158 65 ± 79 760 ± 348 628 ± 708 146 ± 128 490 ± 236 75 ± 91 1,339 ± 631

1700 0.1 ± 0.1 14 ± 15 34 ± 18 1.7 ± 2.0 49 ± 18 0.9 ± 0.6 15 ± 16 30 ± 16 0.9 ± 0.8 47 ± 17

1725 0.3 ± 0.6 13 ± 13 28 ± 18 0.8 ± 0.9 42 ± 11 2.0 ± 3.2 15 ± 14 25 ± 12 0.7 ± 0.8 43 ± 9.1

1755 0.2 ± 0.2 11 ± 10 31 ± 13 0.9 ± 1.0 43 ± 13 1.2 ± 0.8 11 ± 8.6 31 ± 10 0.7 ± 0.9 44 ± 11

1785 0.3 ± 0.6 6.5 ± 8.5 30 ± 15 0.8 ± 0.9 37 ± 10 1.8 ± 1.6 7.0 ± 8.0 23 ± 11 1.1 ± 1.5 33 ± 8.0

1800 0.3 ± 0.6 8.9 ± 2.2 35 ± 8.3 0.2 ± 0.3 44 ± 9.0 1.6 ± 1.9 9.4 ± 2.6 39 ± 8.5 0.3 ± 0.4 50 ± 9.0

1835 0.5 ± 0.5 5.1 ± 7.9 32 ± 12 0.1 ± 0.2 38 ± 10 3.6 ± 1.9 5.8 ± 8.5 31 ± 19 0.2 ± 0.2 41 ± 18

1865 1.2 ± 2.1 1.7 ± 3.1 33 ± 14 0.5 ± 0.8 36 ± 14 6.3 ± 6.0 2.0 ± 3.5 27 ± 14 0.6 ± 0.9 36 ± 12

1890 5.2 ± 2.7 0.3 ± 0.4 25 ± 7.0 0.5 ± 0.7 31 ± 8.6 13 ± 7.6 0.5 ± 0.6 18 ± 10 0.5 ± 0.7 32 ± 11

overall 1.0 ± 2.0 7.4 ± 9.4 31 ± 13 0.7 ± 1.0 40 ± 12 3.8 ± 5.2 8.0 ± 9.8 28 ± 13 0.7 ± 0.9 40 ± 12

# bold indicates significant differences in standing live biomass for a given elevation range and species combination between 1993 and 2003  at the *0.05 and 

**0.01 levels  
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Table 2.2.  Rates (kg ha
-1

 yr
-1

) of biomass ingrowth, Increment, mortality and overall balance for three species at eight elevation bands 

at two time periods within the Noland Divide Watershed of Great Smoky Mountain National Park (± standard 

deviation)

Elevation (m) Abies Betula Picea Combined Abies Betula Picea Combined

1700 125 ± 155 10 ± 20 101 ± 99 236 ± 244 279 ± 109 27 ± 32 243 ± 117 549 ± 176

1725 181 ± 374 6.1 ± 16 38 ± 37 225 ± 370 441 ± 675 36 ± 37 83 ± 92 560 ± 654

1755 83 ± 80#* 34 ± 67 128 ± 134 246 ± 184 373 ± 271* 19 ± 26 96 ± 66 488 ± 307

1785 175 ± 161 15 ± 30** 128 ± 197* 319 ± 344* 458 ± 419 130 ± 93** 231 ± 259* 819 ± 574*

1800 100 ± 90** 20 ± 23 164 ± 141 284 ± 227* 307 ± 151** 57 ± 89 196 ± 143 560 ± 311*

1835 356 ± 283* 77 ± 76 81 ± 96 514 ± 369* 684 ± 364* 22 ± 41 301 ± 345 1,007 ± 531*

1865 684 ± 911* 8.6 ± 21 80 ± 68* 773 ± 923* 1,371 ± 1,236* 19 ± 30 196 ± 142* 1,586 ± 1,217*

1890 888 ± 642 39 ± 69 99 ± 113 1,026 ± 659 904 ± 458 26 ± 42 148 ± 155 1,079 ± 596

overall 323 ± 488** 28 ± 51 100 ± 119** 451 ± 520** 611 ± 635** 44 ± 64 182 ± 195** 837 ± 683**

1700 22 ± 17 876 ± 910 3,827 ± 2,864 4,724 ± 2,819 141 ± 122 1,996 ± 1,987 3,721 ± 2,013 5,858 ± 1,826

1725 152 ± 257 1,564 ± 1,788 2,971 ± 1,282 4,687 ± 1,424* 358 ± 637 2,468 ± 2,464 3,281 ± 1,400 6,107 ± 1,340*

1755 67 ± 74 1,385 ± 1,010 3,193 ± 1,117* 4,645 ± 808 193 ± 234 1,137 ± 1,064 4,350 ± 1,631* 5,680 ± 1,668

1785 119 ± 197* 1,006 ± 1,275 3,247 ± 1,913 4,372 ± 1,689 314 ± 344* 775 ± 850 3,200 ± 1,376 4,290 ± 1,209

1800 135 ± 249 605 ± 404 3,152 ± 1,798 3,891 ± 1,977 352 ± 508 841 ± 1,180 5,572 ± 1,879 6,766 ± 2,328

1835 274 ± 212* 659 ± 776 2,500 ± 1,572 3,433 ± 1,549 794 ± 447* 396 ± 357 4,073 ± 3,613 5,264 ± 3,712

1865 423 ± 610 228 ± 520 2,509 ± 1,477 3,160 ± 1,620* 1,449 ± 1,550 302 ± 553 3,331 ± 1,579 5,081 ± 972*

1890 1,887 ± 1,167* 109 ± 145 1,552 ± 759 3,548 ± 1,266** 3,292 ± 1,981* 134 ± 165 2,318 ± 1,675 5,745 ± 2,037**

overall 379 ± 728** 853 ± 1,087 2,842 ± 1,599** 4,074 ± 1,598** 851 ± 1,323* 986 ± 1,411 3,659 ± 2,045** 5,496 ± 2,011**

1700 -32 ± 64 0 ± 0 -13,242 ± 25,650 -13,274 ± 25,628 -34 ± 49 -37 ± 74 -698 ± 1,288 -769 ± 1,241

1725 -8.1 ± 22 -26 ± 68 -2,338 ± 6,186 -2,372 ± 6,171 -46 ± 121 -348 ± 920 -7,787 ± 12,292 -8,180 ± 12,174

1755 -5.6 ± 16 -364 ± 754 -1,362 ± 3,496 -1,732 ± 4,250 -43 ± 64 -1,750 ± 3,296 -6,440 ± 10,957 -8,232 ± 10,251

1785 -9.3 ± 26 -743 ± 2,026 -4,278 ± 6,605 -5,031 ± 6,375 -83 ± 224 -297 ± 699 -11,311 ± 13,100 -11,691 ± 13,001

1800 0 ± 0 -384 ± 767 -1,045 ± 2,089 -1,428 ± 1,971 -26 ± 53 -10 ± 20 -1,265 ± 2,487 -1,301 ± 2,463

1835 0 ± 0 -22 ± 58 -7673 ± 12,741 -7,696 ± 12,725 -85 ± 127 0 ± 0 -1,412 ± 3,476 -1497 ± 3443

1865 -59 ± 99 -169 ± 415 -9,696 ± 9,628 -9,925 ± 9,645 -531 ± 911 0 ± 0 -2,421 ± 5,894 -2,952 ± 6,790

1890 -379 ± 536 -37 ± 91 -8,068 ± 8,264 -8,484 ± 8,214 -929 ± 1,033 -34 ± 84 -4,560 ± 9,308 -5,523 ± 9,428

overall -59 ± 213* -239 ± 890 -5,579 ± 10,204 -5,877 ± 10,187 -219 ± 547* -384 ± 1,452 5,123 ± 9,369 -5,725 ± 9,370

1700 115 ± 175* 886 ± 909 -9,314 ± 27,180 -8,313 ± 27,448 386 ± 182* 1,986 ± 2,030 3,267 ± 2,682 5,639 ± 2,664

1725 326 ± 615 1,544 ± 1,815 670 ± 6,014 2,540 ± 6,831 753 ± 1165 2,157 ± 2,223 -4,422 ± 11,803 -1,513 ± 12,109

1755 145 ± 133** 1,056 ± 1,529 1,959 ± 3,384 3,159 ± 4,405 523 ± 364** -594 ± 2,285 -1,994 ± 10,804 -2,065 ± 10,634

1785 284 ± 292* 279 ± 1,283 -903 ± 7,245 -340 ± 7,198 689 ± 502* 608 ± 1,117 -7,880 ± 12,824 -6,582 ± 12,665

1800 235 ± 332 241 ± 732 2,271 ± 3,396 2,747 ± 3,786 633 ± 599 888 ± 1,145 4,504 ± 3,006 6,025 ± 3,907

1835 630 ± 393* 714 ± 798 -5,092 ± 13,923 -3,748 ± 13,944 1393 ± 767* 418 ± 360 2,963 ± 5,648 4,774 ± 5,800

1865 1048 ± 1,239 68 ± 106 -7,107 ± 10,470 -5,992 ± 9,735 2,289 ± 2,809 321 ± 548 1,106 ± 5,214 3,716 ± 6,637

1890 2,396 ± 2,060 111 ± 119 -6,416 ± 8,721 -3,910 ± 8,252 3,268 ± 2,559 126 ± 111 -2,094 ± 9,246 1,300 ± 8,861

overall 644 ± 1,090** 641 ± 1,181 -2,636 ± 10,879 -1,352 ± 10,888 1,243 ± 1,640** 646 ± 1,640 -1,281 ± 9,487 608 ± 9,667
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# bold indicates significant differences in growth characteristics (ingrowth, increment, mortality and overall balance) for a given elevation range and species 

combination between the 1993-1998 time period and the 1998-2003 time period at the *0.05 and **0.01 levels  
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Figure 2.1. Map of the Noland Divide Watershed of Great Smoky Mountain National 

Park and the systematic network of 50 permanent plots. 
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CHAPTER 3 

RELATIVE ROLE OF UNDERSTORY AND OVERSTORY IN CARBON AND 

NITROGEN CYCLING IN A SOUTHERN APPALACHIAN SPRUCE-FIR FOREST 
3,4

 

ABSTRACT 

This study investigated post-disturbance aboveground pools and fluxes of biomass, 

carbon (C) and nitrogen (N) in overstory and understory vegetation in a southern 

Appalachian red spruce (Picea rubens Sarg.) Fraser fir [Abies fraseri (Pursh.) Poir.] 

forest in a small catchment of Great Smoky Mountains National Park.  Using 50 20 x 20 

m plots, stratified by elevation (1700-1900 m), we estimated standing biomass pools and 

fluxes of all growth forms from periodic stand inventories (1998-2003) and plot 

vegetation surveys and existing or derived allometric equations.  Total C and N pools and 

fluxes were calculated from plant- and tissue-specific C and N concentrations.   

Total aboveground biomass ranged from 313 Mg ha
-1 

at the lower elevations to 204 

Mg ha
-1 

at the upper elevations; 96% contained in live overstory trees (>5cm DBH).  

Understory woody and herbaceous vegetation comprised 7.8 Mg ha
-1 

(3%) and 1.7 Mg 

ha
-1 

(1%) of biomass, respectively.  Despite recent disturbance-induced mortality, forest 

productivity was high, averaging 7.7 Mg ha
-1

 yr
-1

, with overstory accounting for 73%; 

understory woody vegetation, 10%; and herbaceous plants, 27% of total productivity and 

C sequestration.     Aboveground N uptake in the catchment was estimated at 37 kg ha
-1

 

yr
-1

, with > 50% of N uptake (18-21 kg ha
-1

 yr
-1

)  by the herbaceous understory and ~7 kg 

                                                 
3
 This chapter appeared in the Canadian Journal of Forest Research as: Moore, P.T., H. Van Miegroet and 

N.S. Nicholas.  2007.  Relative role of understory and overstory in carbon and nitrogen cycling in a 

southern Appalachian spruce-fir forest.  Canadian Journal of Forest Research 37:2689-2700. 
4
 Coauthored by Patrick T. Moore, H. Van Miegroet and Niki S. Nicholas 
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ha
-1

 yr
-1

 by woody understory. Overstory biomass increment and N uptake (11-15 kg ha
-1

 

yr
-1

) had increased over earlier reported values and was highest at the upper elevations 

where mortality had been most severe.   

INTRODUCTION 

Southern Appalachian red spruce (Picea rubens Sarg.) Fraser fir [Abies fraseri 

(Pursh.) Poir] forests, 74% of which are located in Great Smoky Mountain National Park 

(GSMNP), receive some of the highest amounts of atmospheric N deposition (~30 kg ha
-1

 

yr
-1

) and are considered N-saturated (Nodvin et al. 1995).  The N retention capacity of 

these systems is limited and significant amounts (~15 kg ha
-1

 yr
-1

) of inorganic N leave 

the system via streamwater (Nodvin et al. 1995; Van Miegroet et al. 2001).  In the 

Noland Divide Watershed (NDW) of GSMNP, Barker et al. (2002) found that the 

overstory of this system had an uptake rate of approximately 8 kg ha
-1

 yr
-1

, though rates 

were spatially variable.  Since that time, productivity in this forest has significantly 

recovered and the uptake rate of the overstory may be considerably higher.   

Increased N deposition in forested ecosystems can cause increased nitrate leaching 

and  streamwater  export (Aber et al. 2003), decreased mycorrhizal community diversity 

(Egerton-Warburton and Allen 2000; Lilleskov et al. 2002), changes in lichen 

communities (Nash and Gries 2002), and decreases in net primary productivity and foliar 

biomass (Aber et al. 1998).  In the western U.S., low background levels of atmospheric N 

deposition coupled with ‘hotspots’ of elevated N deposition have caused significant 

impacts on ecosystem function (Fenn et al. 2003).  In northeastern forests, N deposition is 

altering N status, expressed by increased N in surface water, increased nitrification, and 
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decreased C:N ratios in soil (Aber et al. 2003). The role of vegetation and soil in the 

uptake and storage of N has been the subject of some debate (Aber et al. 1989; Fenn et al. 

1998).  Nutrient uptake and sequestration by vegetation can retain large amounts of 

increased N deposition inputs within forest ecosystems (Aber et al. 1989, 1998; Fenn et 

al. 2003).  However few, if any studies have considered the role of understory in N 

uptake and retention.     

Recent disturbances in high-elevation spruce-fir forests of the southern Appalachians 

have reduced the ability of this forest to take up N (Barker et al. 2002).  These 

disturbances include the infestation of the balsam wooly adelgid (BWA, Adelges picea 

Ratz., Nicholas et al. 1992), atmospheric pollution (Johnson et al. 1991), ice storms 

(Nicholas and Zedaker 1989), and gap dynamics (White et al. 1985; Busing and Clebsch 

1987).   The disturbance that has caused the most widespread and catastrophic damage to 

these forests is the infestation by the BWA.  Prior to the onset of the BWA, these forests 

contained large amounts of biomass in the overstory (Whittaker 1966).  After the BWA, 

which killed most mature fir, only 12% of fir stems remained alive, and these remaining 

individuals were exclusively in the smaller size categories (Smith and Nicholas 2000).  In 

the years following the BWA-induced thinning of fir stands, many remaining dominant 

and co-dominant spruce were subject to windthrow as a result of exposure to the more 

open canopy conditions (Hollingsworth and Hain 1991; Busing 2004).  Since that time, 

the forest has shown signs of recovery, as indicated by increased standing live biomass, 

increased growth, and conifer regeneration.   

Overstory vegetation characteristics and nutrient dynamics have been documented for 

spruce-fir (Johnson and Lindberg 1992; Nicholas et al. 1992; Busing 2004), with the 
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most intensive determination of nutrient storage and uptake in southern Appalachians as 

part of the Integrated Forest Study (IFS) in the mid-1980s (Johnson et al. 1991; Johnson 

and Lindberg 1992).  In that study, the standing live biomass of two post-adelgid red 

spruce plots was estimated at 273 Mg ha
-1

 and 314 Mg ha
-1

 for the Smokies Tower site 

(ST), located just outside of the NDW at 1740 m, and at 264 Mg ha
-1

 for the nearby 

Becking site (SS).  Corresponding biomass production ranged from 1,360 to 4,530 kg ha
-1

 

yr
-1

 and uptake of N from 7 to13 kg ha
-1

 yr
-1

 (Johnson and Lindberg 1992).  Pauley et al. 

(1996) provided an estimate of post-BWA biomass and N pools within the NDW of 

GSMNP.  They found that spruce contained over 70% of overstory N, while fir contained 

less than 2%.  Spruce needles accounted for over 35% of overstory N but represented 

only 6% of overstory biomass, showing that biomass and nutrient dynamics are not 

necessarily congruent.   

Compared to the overstory, the understory of this forest has received little attention 

and is not well understood (Barker et al. 2002).  Several authors have characterized the 

pre-BWA understory of this forest (Oosting and Billings 1951; Crandall 1960; Ramseur 

1960; Whitaker 1962), but this was done in a taxonomical or botanical manner and 

without much regard to nutrient cycling or ecosystem function.  Smith and Nicholas 

(2000) analyzed regeneration of spruce and fir, but only focused on woody seedlings, 

saplings and trees in the highest elevations.  Johnson and Lindberg (1992) provided an 

estimate of understory pools but did not attempt to estimate understory C and N fluxes.  

Since the IFS analysis, the structure and function of the understory trees, shrubs and 

herbs may have changed. With many young spruce and fir entering the stand since the 

BWA onset, and with those small trees containing higher foliage to stem mass ratio 
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(Waring and Schlesinger 1985), understory nutrient dynamics may have changed 

considerably.    

We hypothesize that this disturbed forest may be recovering its ability to sequester 

and store excess N.  The majority of research on this system so far has dealt with 

overstory response to these disturbances (Nicholas et al. 1992; Pauley et al. 1996; Smith 

and Nicholas 2000; Busing 2004) and not much is known about the role of understory 

nutrient cycling.   A complete understanding of how nutrients are cycled within the living 

components of this ecosystem requires the inclusion of the understory, especially when 

this ecosystem is in transition.  We hypothesize that the understory is cycling a 

considerable portion of total ecosystem N.  The objectives of this paper are to determine 

(1) the role of understory versus overstory in sequestering biomass and cycling N; (2) 

whether overstory N and biomass dynamics have recently changed from prior 

measurements; and (3) whether current biomass, and C and N dynamics show elevational 

patterns. 

METHODS 

Study Area 

This research was conducted at the NDW (35°34’N, 83°29’W, 1700-1910m), a 17.4 

ha catchment within GSMNP.  The broad elevation gradient, resulting variability in 

overstory species composition, similar parent material, and pre-existing plot 

infrastructure give us the ability to study watershed-level dynamics.  Because of prior 

research at this site by others (Pauley et al. 1996; Barker et al. 2002), as well as access to 

data previously collected by collaborators (repeated 1993 and 1998 overstory 
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measurements), we are able to evaluate changes in nutrient dynamics over time.  While 

our analysis was done within only one watershed and thus has a somewhat limited 

inference space, the intensive sampling scheme and plot layout captured much of the 

variability existing at the larger landscape, and may thus reveal some general patterns and 

lead to conclusions that may also apply to spruce-fir forests within the GSMNP and the 

southern Appalachians.  

Average annual precipitation is >200 cm and is distributed evenly throughout the year 

(Johnson and Lindberg 1992).  Ten percent of annual precipitation falls as snow and 

covers the ground for an average of 50 days per year (Johnson et al. 1991).  Mean air 

temperatures range from -2
o
C in February to 17

o
C in August with a frost-free period from 

May through September (Shanks 1954; Johnson et al. 1991).  The soils are mainly 

Inceptisols, occasionally with spodic characteristics (McCracken 1962; Van Miegroet et 

al. 1993), and are underlain by Thunderhead Sandstone (King et al. 1968).  They are 

generally shallow and have a silt loam to sandy loam texture, and are rich in N and C but 

low in exchangeable bases (Johnson and Lindberg 1992).  This catchment has not been 

impacted by logging or fire (Pyle and Schafale 1988), but has been severely impacted by 

the BWA beginning as early as 1977 (Pauley et al. 1996; Barker et al. 2002).  A full 

description of current forest composition can be found in Van Miegroet et al. (2007). 

In this study, we used a repeated overstory inventory of 50 20 x 20 m permanent 

plots, placed systematically within this high elevation catchment, along nine elevation 

bands (1700, 1725, 1755, 1785, 1800, 1835, 1865, 1890 and 1910 m, Figure 1).  We 

determined watershed biomass and N dynamics of all vegetation strata, including 

overstory trees, understory woody trees and shrubs, herbs and mosses.  In analyzing the 
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data for elevational patterns, the nine elevation bands of the NDW were split into three 

elevation ranges; low, the lowest three bands (1700, 1725 and 1755 m), totaling 19 plots; 

middle, the middle three elevation bands (1785, 1800 and 1835 m), totaling 19 plots; and 

high, the highest three elevation bands (1865, 1890 and 1910 m), totaling 12 plots.  One-

way analysis of variance (PROC ANOVA) was be used to determine significant 

differences in biomass, N pool, and uptake values across the three elevation ranges (SAS 

Institute 2002). 

Overstory measurements 

Barker et al. (2002) estimated overstory N uptake using repeated measurements (1993 

and 1998) of individual tree diameter at 1.37 m above ground level (DBH) at each of the 

50 permanent NDW plots.  A similar methodology was used to determine overstory N 

uptake and production for the 1998-2003 period for each of the 50 NDW plots.  DBH, 

species, and unique identification number of each live overstory (≥ 5 cm DBH) tree were 

recorded, using inventory protocol described in Zedaker and Nicholas (1990).  As the 

NDW plots are part of a permanent plot system where individual trees are tagged and 

cataloged, and since an inventory had not been performed since 1998, new ingrowth was 

measured and tagged for future measurements. 

Biomass of foliage, live branches, dead branches, bole bark and bole wood were 

determined from DBH using the predictive equations of Nicholas (1992).  Individual tree 

component masses were summed to equal total aboveground tree biomass.  These 

equations were applied to red spruce, Fraser fir and yellow birch (Betula lutea F. Michx.) 

to estimate biomass of tree species within each plot.  Aboveground biomass of other 
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species was estimated similarly with the predictive equations of Weaver (1972).  The C 

and N content of individual tree components was determined using the nutrient 

concentration values in Barker (2000).  Current standing live biomass and N pools were 

determined using 2003 inventory data.  Uptake fluxes were determined by mass 

difference of individual trees from the 1998 to the 2003 inventory (Clark et al. 2001).  

This allowed us to quantify how much N dynamics within those five years had changed 

relative to earlier studies (Johnson et al. 1991; Barker et al. 2002) 

Nutrient uptake can vary considerably from one forest type to another and spatially 

within the same forest type and watershed (Barker et al. 2002).  Also, various uptake 

calculation methods can produce dramatically different results (Bockheim and Leide 

1990; Barker et al. 2002).  Because we were interested in change over time, and 

consistency in methodology is essential, the simpler of the eight N uptake determination 

methods (U2, net aboveground increment) was used to compare our current uptake values 

with those of Barker et al. (2002).  Belowground biomass and N content are not 

addressed in this study.  Van Miegroet et al. (2007) provided an analysis of belowground 

biomass and C for this area.   

Understory Woody Vegetation 

Within each of the 50 permanent plots of the NDW, four 4 x 4 m subplots were 

established as shown in Figure 2 (gray boxes).  In 2003, large understory woody 

vegetation (<5 cm but >2 cm DBH) was measured at 15 cm above ground level, and 

species-specific predictive equations of Nicholas (1992) and Weaver (1972) were used to 

calculate biomass of individual tree components based on this stem diameter as the 
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independent variable.  The C and N content of individual tree components of 

aboveground biomass were determined from values in Barker (2000).  Production of 

other woody understory vegetation was determined using biomass accumulation ratios 

(BAR) of woody understory plants, i.e., empirical relationships between standing 

biomass and productivity (Whittaker 1962).  They generally range from 1-3 in grasslands, 

2-10 in deserts, 3-12 in shrublands, 10-30 in woodlands, and 20-50 in mature forests 

(Whittaker 1975).  We used a conservative value of 10 based on Whittaker’s reported 

findings from understory shrubs in the southern Appalachians (7.0, Whittaker 1966), and 

general shrub communities (3-12, Whittaker 1975), and Alaback’s values for forest 

understory of disturbed Sitka spruce sites in eastern Alaska (8, Alaback 1984). 

Due to the lack of existing allometric equations for biomass and nutrient content of 

small understory woody vegetation (stems <2 cm DBH), a two-part, destructive/non-

destructive double sampling approach was used to derive these equations.  All destructive 

sampling was performed in the nearby Pisgah National Forest, NC.  Twelve individuals 

of each of four woody species  [red spruce, Fraser fir, yellow birch and hobblebush 

(Viburnum alnifolium Michx.)] were measured with a caliper at 15 cm above ground 

level, clipped at ground level, dried and weighed.  These four species were chosen 

because they were, by far, the most common understory woody vegetation.  Allometric 

relationships between stem diameter and aboveground biomass were developed using the 

PROC REG procedure in SAS (SAS Institute 2002).  Diameters of all small woody 

understory plants were measured in 16 1 x 1 m subplots within each of the 50 permanent 

plots (Figure 1.2; black boxes) and converted to biomass values using the calculated 

allometric equations.  For species other than the four most common, the equation with the 
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species most similar in growth form was applied.  Seedling biomass increment was 

determined using a BAR of 10, similar to larger understory vegetation.   

Herbaceous Vegetation  

Predictive biomass equations were produced for herbaceous vegetation in a manner 

similar to that for understory woody vegetation above, i.e., nondestructive survey within 

the NDW plots was coupled with destructive sampling outside the permanent plots to 

protect plot integrity (Forman 1969).  In the non-destructive herbaceous survey of the 

permanent plot system, the 16 1 x 1 m subplots used for the small woody vegetation 

survey were used.  Percent cover of all herbaceous plant species present within each 

subplot was estimated via ocular estimation to the nearest percent.  Herbaceous 

vegetation was defined as all non-woody herbs, grasses and mosses. Concurrent with the 

non-destructive sampling in the permanent plots was a destructive sampling of 

herbaceous plants in temporary 1 x 1 m plots established in the Fall of 2003 outside the 

permanent NDW plots but still within the NDW.   Each of these temporary plots was 

centered 10 m west of the northwest corner of the permanent NDW plots in order to 

capture the entire watershed yet not interfere with the permanent plot system.  Percent 

cover by species was assessed by ocular estimation to the nearest percent.  Then each 

species was clipped at ground level and placed in a uniquely numbered plastic bag until 

adequate samples (n=12) of each species present in our surveys were measured and 

collected.  If additional samples were needed, they were selectively sampled randomly 

from populations throughout the watershed in order to obtain adequate observations and 

ranges of all species.   
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Once removed from the field in individually labeled and sealed Ziploc bags, plant 

specimens were individually oven dried at 65 C
o
 for 24 hours and weighed.  Dry weights 

were then used to develop species-specific predictive equations to estimate dry plant 

biomass from percent cover estimate using the PROC REG procedure in SAS (SAS 

Institute 2002).  Dried plant specimens were then ground through a 40-mesh screen in a 

Wiley mill, and  analyzed for C and N using a LECO CHN analyzer (LECO Corp. St. 

Joseph, MI).   

Because of the relatively short growing season (May through September) only one 

sampling period was necessary during the year (Yarie 1980).  Therefore, aboveground 

herbaceous biomass was assumed to be the peak standing biomass at the end of the 

growing season.  It was assumed that herbaceous biomass and N are cycled annually; 

therefore, pool estimates were used as N uptake values as well, with two exceptions: 

Rubus and moss species.  Since the aboveground portion of Rubus is semelparous and 

each stem usually survives for two seasons, flux of biomass and N into the herbaceous 

pool was estimated to be one-half of the live biomass pool.  Although mosses contribute 

little in terms of ecosystem biomass, their high turnover rates and high nutrient content 

make them important in biogeochemical cycling (Tamm 1953; Binkley and Graham 

1981).  Mosses were destructively and non-destructively surveyed similar to forbs and 

estimated by percent cover.  Production was estimated as one-third of the estimated 

biomass following Tamm (1953).   
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RESULTS 

Distribution of Biomass, Carbon and Nitrogen in Live Vegetation 

These forests contained large amounts of biomass in the live aboveground vegetation 

components (Table 3.1).  Biomass values averaged from 313 Mg ha
-1

 in the lower 

watershed to 204 Mg ha
-1

 in the upper watershed.  The vast majority (96-97%) of 

aboveground live biomass was in trees larger than 5 cm DBH.  Woody vegetation <5 cm 

DBH contained 7.8 Mg ha
-1

, a considerably smaller proportion of aboveground biomass 

(2.7-3.9%), with smaller understory woody vegetation (<2 cm DBH) concentrated in the 

lower watershed and larger understory woody vegetation (2-5 cm DBH) concentrated in 

the upper watershed.  Understory herbaceous vegetation, on average 1.7 Mg ha
-1

, 

represented only a small proportion (0.6-1.0%) of total aboveground live biomass.   

Allometric equations for the relationship between herbaceous plant percent cover and 

standing herbaceous biomass are shown in Table 3.2, with nomenclature following 

Radford et al. (1968).  Linear relationships were most effective in describing this 

relationship, with R
2
 ranging from 0.76 to 0.98.  Allometric equations for understory 

woody vegetation <2 cm DBH are shown in Table 3.3 and required a correction factor for 

logarithmic bias (Spruegel 1983).  Log-linear relationships were most effective in 

describing this relationship, with R
2
 ranging from 0.78 to 0.93.  Aboveground C pools 

were on average 48.2% of biomass values and the distribution of C in the ecosystem was 

very similar to that of biomass.  Therefore, for the remainder of this paper, biomass and C 

dynamics will be discussed simultaneously.   
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Aboveground N pools were on average 0.22% of biomass values, but the N 

distribution did not follow that of biomass and C.  Overstory trees contained on average 

489 kg N ha
-1

, a smaller proportion of aboveground N (78-84%) compared to biomass 

and C; however, the overstory still contained the majority of N in this system.  

Understory woody vegetation contained a considerably smaller amount (70 kg ha
-1

) and 

proportion of aboveground N (10.8-14.4%), but this was four times higher than the small 

woody vegetation proportion of biomass and C pools.  Herbaceous vegetation represented 

the smallest absolute (34 kg ha
-1

) and relative N pool (4.7-7.7%) of any of the vegetation 

strata.  However, total live aboveground N in the herbaceous layer was disproportionately 

higher (eight times) than biomass and C pools. 

The amount of biomass and nutrients contained in the forest differed among 

elevations bands.  Total live ecosystem biomass, C and N content were highest at lower 

elevations compared to mid and high elevations.  Overstory biomass, C and N pools also 

tended to be higher at the lower elevations but the differences were statistically 

significant for N pools only.  Elevation patterns, however, varied by overstory species.  

There was significantly more overstory fir biomass, C and N in higher elevations while 

biomass, C and N of pools in birch were significantly greater in lower elevations than 

higher elevations.  There were no distinct patterns for spruce overstory; however, more 

biomass, C and N was stored in small understory spruce at lower elevations.  No other 

differences could be detected, possibly due to the high degree of variability that is 

common in these forests.  Coefficients of variation (CV) for pool size of individual forest 

components across species were often high (37-95%) and by species even higher 

(routinely >100%).    
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Carbon and Nitrogen Fluxes 

Over the last five years this system has produced large amounts of new biomass, 

~7,370 kg biomass ha
-1

 yr
-1

, with the highest levels of net production, 7,730 kg ha
-1

 yr
-1

 in 

the lower elevation range (Table 3.4).  Most biomass production occurred in the 

overstory, 5,650 kg ha
-1

 yr
-1

, accounting for 75-78% of the total.  Woody vegetation <5 

cm DBH produced 824 kg ha
-1

  biomass annually, 11% of aboveground live production, 

with small woody understory vegetation (<2 cm DBH) production concentrated in the 

lower elevations and larger woody understory vegetation (2-5 cm DBH) production, 

mostly fir, concentrated in the higher elevations.  Herbaceous vegetation produced 933 kg 

ha
-1

 yr
-1

 live aboveground biomass, 11-14% of total, concentrated in the upper elevations. 

Total aboveground N uptake was 37 kg ha
-1

 yr
-1

 across the watershed with the highest 

uptake values, 43 kg ha
-1

 yr
-1

, in the higher elevations.  The distribution of N uptake 

across overstory components did not follow biomass and C increment patterns.  

Overstory took up 11-15 kg ha
-1

 yr
-1

, or about 31% of total aboveground N uptake.  

Understory woody vegetation took up an additional 7 kg ha
-1

 yr
-1

 or about 19% of total N 

uptake, with generally higher N uptake values for smaller understory woody vegetation 

(<2 cm DBH) in the lower watershed and larger understory woody vegetation (2-5 cm 

DBH) in the upper watershed.  Herbaceous vegetation, despite the modest biomass pools 

and fluxes, took up 18-21 kg N ha
-1

 yr
-1

, exceeding that of overstory.  The herbaceous 

vegetation was responsible for 51% of total aboveground N uptake by vegetation 

annually,  disproportionately high for its relative pool size.  There were some patterns in 

N uptake with elevation, although many were not statistically significant.  Total 
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ecosystem N and overstory N uptake rates were highest in the high elevation band.  

Patterns by overstory species were consistent with those of biomass and C increments: 

highest for fir at highest elevations and for birch at the lower elevations, with no 

discernible pattern for spruce.  For the other overstory components, N uptake also 

generally followed spatial patterns in biomass increment.  

DISCUSSION 

Distribution of Biomass, Carbon and Nitrogen in Vegetation  

The majority of biomass and C was contained in the overstory of this system.  

Biomass values in the lower elevations have attained pre-BWA levels (>300 Mg ha
-1

), 

but aboveground biomass and C pools decreased sharply with increasing elevation where 

the BWA had a greater effect (Smith and Nicholas 1999).  Recent forest recovery is also 

indicated by the higher overstory biomass than those reported around 20 years ago for 

nearby lower elevation (ST, 252-261 Mg ha
-1

) and middle elevation (SS, 223 Mg ha
-1

) 

(Johnson and Lindberg 1992). Higher elevation spruce-fir stands contained less biomass 

than the lower elevations, even before the onset of the BWA, but present biomass levels 

at upper elevations are still at the very lowest of pre-BWA historic observations (200-310 

Mg ha
-1

 Oosting and Billings 1951; Whittaker 1966).   This elevational pattern is likely a 

result of the initial wave of fir mortality, heaviest at the higher elevations, and one would 

expect the loss of overstory biomass and C with elevation to be a response to the greater 

amounts of disturbance at higher elevations as well as the naturally lower historic levels 

of aboveground biomass and C in the higher elevations.  Prevalence of fir increased with 
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elevation while prevalence of birch decreased with elevation, a trend that is typical of 

southern Appalachian spruce-fir forests (Whittaker 1966).  

In general, understory spruce biomass was concentrated in the lower elevations and 

fir seedlings and saplings in the higher elevations, reflecting pre-adelgid composition.  

However, biomass of fir trees 2-5 cm DBH was greater than that of spruce even at the 

lower elevations.  Fraser fir is a prolific sprouter and responds well to release under a 

spruce mid-story.  It is possible that fir claimed understory positions before understory 

spruce responded to the recent canopy openings, especially at the higher elevations where 

disturbances were most severe.  These stands are currently well stocked with small fir 

trees, i.e., advanced regeneration is present, ensuring that fir will be an important 

component of future spruce-fir forests, at least until the next wave of BWA-induced 

mortality. 

The shifts in composition and distribution of the small woody understory (<2 cm 

DBH) with elevation closely resemble the pre-BWA overstory distribution of spruce and 

fir, where spruce is more abundant at lower elevations, while fir dominates higher 

elevations (Oosting and Billings 1951; Whittaker 1956).  This supports the hypothesis 

that this forest may be returning to pre-BWA conditions, at least in the immediate future, 

in absence of further BWA-induced mortality.  The large amount of “other” species in the 

small woody understory size class represents the abundance of shrubs and other small 

diameter woody plants across elevations. 

The herbaceous biomass in NDW was substantially higher than values reported for 

various conifer systems (30-200 kg ha
-1

).  Among the ecosystems cited only woody 

understory biomass in Douglas-fir forests in Oregon (8,700 kg ha
-1

) approximated values 
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our values for herbaceous biomass (Muller 2003).  Though the herbaceous vegetation 

represented a rather insignificant amount of biomass, this stratum contained a far greater 

proportion of N-rich foliage and green stems, similar to an observation made by Welch et 

al. (2007) for the herbaceous layers in eastern deciduous forests. As a result, the 

herbaceous layer in this system contained a disproportionately high amount of N (4.7-

7.7% of total N pool).   

Our understory biomass and N pools exceeded values recorded during IFS in the 

spruce-fir forest ( 5.8 –8.7 Mg ha
-1

 for biomass, 48–85 kg ha
-1

 for aboveground N pool)  

(Johnson and Lindberg 1992), indicating a denser understory and possibly signaling 

dynamic changes in ecosystem structure over  the last two decades.  Huber (2005) 

observed a similar temporal trend in understory biomass and N accumulation in the wake 

of massive Norway Spruce [ Picea abies (L.) Karst.] dieback caused by bark beetle 

attacks in Bavaria, Germany.  As in this study, understory N pools in the German 

chronosequence study were substantially higher 15-20 years after the disturbance (100-

126 kg N ha
-1

), compared to intact (65 kg N ha
-1

) or more recently disturbed spruce 

stands (44-66 kg N ha
-1

) (Huber 2005).      

Despite large variations among individual ecosystem components, overall biomass, 

and C and N content were remarkably similar among elevation bands.  The coefficient of 

variation (CV) for overall biomass, 37%, was lower than the CV of individual forest 

components; overstory, 38%; small woody understory, 74%; large woody understory, 

95%; herbaceous vegetation, 46%; and total understory, 56%.  The CVs for N pools were 

lower, 27% for total N pools, and followed a trend similar to that of biomass.   
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Carbon and Nitrogen Fluxes 

Current net biomass production rates of this system (7.3-8.0 Mg ha
-1

 yr
-1

) were 

considerably higher than post-adelgid measurements at the Tower site (1.4-4.5 Mg ha
-1

 

yr
-1

, Johnson and Lindberg 1992), and reached the high end of pre-BWA measurements 

(4.5-8.5 Mg ha
-1

 yr
-1

, Whittaker 1962, 1966).  This would indicate that the overstory in 

this forest has recovered, or even increased its productivity since the mid-1980s.   

Though the overstory contained the vast majority (97%) of living ecosystem biomass 

and C, it was responsible for only 77% of the biomass production, the majority as 

nonphotosynthetic tissues (bole, bark and branches) with relatively long turnover time 

(i.e., C sequestration).  Overstory uptake of N also increased since the Barker et al. 

(2002) estimates (from 7.8 kg ha
-1

 in 1998 to 11.5 kg ha
-1

 in 2003).  Productivity 

increases in aggrading forests or after disturbance due to the rapid expansion of foliage to 

capture critical light resources (Waring and Schlesinger 1985).  The increased ability to 

take up N, an increase of 47% in 5 years, was another important sign that this system is 

recovering not only standing biomass and N, but also ecosystem processes.     

Understory played an important role in N cycling, accounting for two-thirds of annual 

aboveground N uptake, especially by the herbaceous layer.  There is only limited 

published understory N uptake data against which to compare our estimates, but the 18-

21 kg N ha
-1

 yr
-1

 for the herbaceous uptake  and 25-30  kg N ha
-1

 yr
-1

 for total annual 

understory N uptake were within the range of values (8-106 kg N ha
-1

 yr
-1

) reported for 

these forests (Johnson and Lindberg 1992).  Compared to mature trees, the  woody 

understory had a higher proportion of their mass  as photosynthetic needles and leaves 
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and were therefore more important to the N pools and fluxes in this system than to 

biomass.   Herbaceous vegetation contained only a small proportion of total aboveground 

biomass (0.7%) and N (5.8%), but accounted for a disproportionately large amount of N 

uptake (51%) and was actually responsible for much of the annual N cycling in this 

forest.  This was due to the fact that herbaceous vegetation must produce new 

aboveground tissue each year and this tissue contains a higher proportion of N-rich 

foliage compared to the other forest components. Through this seasonal biomass 

accumulation and turnover pulses, understory may stimulate internal N cycling (Welch et 

al. 2007) and curtail N leaching losses (Muller 2003) . In Bavarian spruce forests subject 

to similar stressors and disturbances as the high-elevation spruce-fir in the Appalachians 

(high atmospheric N inputs, insect-induced dieback), Huber (2005) had similarly noted 

while the net N uptake by understory vegetation was generally limited, this stratum 

nevertheless had a significant role in curtailing NO3-N leaching losses.  Lower NO3-

leaching in beech gaps at the Solling site in Germany, was similarly associated more 

abundant ground vegetation  (Bauhus and Bartsch 1995). However, the small amount of 

biomass held in the understory makes this vegetation stratum less important in terms of 

long term sequestration of C or retention of N.  

It appears that different elevation bands cycled biomass and nutrients differently.  

Similar to the pools, fir was more important to the sequestration of biomass and N at 

higher elevations, while birch showed the opposite trend.  Overall, the overstory and the 

total live ecosystem uptake of N was significantly higher at the higher elevations, while 

biomass and C increments showed no trend with elevation.   
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The CV for ecosystem biomass production, 24%, is considerably lower than the CV 

of individual forest components; overstory, 35%; small woody understory, 95%; large 

woody understory, 79%; herbaceous vegetation, 46%; and total understory, 37%.  Thus, 

the overall plot productivity appeared spatially more uniform than the productivities of 

the individual forest components or the distribution of standing biomass.   

Estimates of productivity required several assumptions in the calculations.  Error in 

overstory productivity (>5 cm DBH) is likely relatively small because we had discrete 

measurements at two time periods.  The mass difference approach of determining 

production and uptake (Clark et al. 2001) was previously used in this watershed by 

Barker et al. (2002) in their analysis of variability in  N pools and fluxes within the 

NDW, and it was necessary to use the same approach to compare our results to prior 

research.  Production values for understory woody plants (<5 cm DBH) were determined 

using a BAR of 10, i.e. production was calculated as 10% of current biomass.  This value 

was a conservative estimate based on the BAR of woody forest understory plants 

(Whittaker 1966, 1975; Alaback 1984).  Actual production may have been somewhat 

higher depending on light and nutrient resources due to canopy openings.  When 

estimating understory production, we assumed  moss production to be one third of live 

biomass following Tamm (1953).  We further assumed that because Rubus is 

semelparous, it generally produces total plant biomass over the course of two seasons; 

annual production was one half of total standing biomass.  Realistically, individual Rubus 

stems may sprout, flower, set seed and die within one year or it may take three to five 

years depending on the individual.  Hence, assuming production as 50% of standing stock 

may be an underestimate, but it seems to be the best available data. 
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Another source of potential error in our N uptake estimates is the resorption of 

nutrients between the aboveground and belowground portion of perennial herbaceous 

plants.  Understory N uptake values may be overestimated because uptake rates 

calculated here are actually estimates of N requirement and assumed that N requirement 

was met entirely by N uptake.  In reality, N requirement could have been met by N stored 

in their root systems as well as N assimilation from the soil and atmosphere.  We need to 

account for N resorption to more accurately assess uptake by perennial forbs.  Resorption 

rates of N during drought periods have reached 31-41% for grasses in a tallgrass prairie 

(Heckathorn and DeLucia 1994) and 58% for foliage of dry tropical tree species (Lal et 

al. 2001).  Aerts (1996) performed a meta-analysis of nutrient resorption in forbs (n=33) 

and determined a N resorption efficiency of 41%.  Based on these studies, as well as the 

fact that not all understory species in the southern Appalachian spruce fir are perennials, 

a broad assumption of 50% N resorption across all herbaceous species (annual and 

perennial) is probably a conservative estimate, as it is unlikely that herbaceous resorption 

would exceed that value.  Even these conservative estimates of herbaceous N uptake (9.3 

kg ha
-1

 yr
-1

 at 50% resorption) still approach our estimates of overstory N uptake (11.5 kg 

ha
-1

 yr
-1

), and when other woody understory components are included, understory N 

uptake (16.3 kg ha
-1

 yr
-1

) exceeds the overstory estimates.  Though the ability of the 

understory component of this system to permanently sequester N may be limited, its 

ability to take up and recycle large amounts of N may keep these nutrients on site and 

represents a dynamic mechanisms of N retention.  What is not known at this time is to 

what extent the high N deposition regime may alter the composition and the 

biogeochemical functioning of the understory in the future (see Gilliam 2006).   
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CONCLUSIONS 

Nutrient cycling in this forest has changed, with 2003 overstory N uptake rates 

considerably greater than the 1998 rates reported by Barker et al. (2002).  Neither the 

BWA nor other disturbances have significantly suppressed productivity of this site; 

production values are as high as or higher than pre-adelgid values.  Forests in lower 

elevations appear to have completely recovered from the catastrophic effects of the BWA 

in terms of biomass and productivity.  Upper elevation stands still have much recovery 

ahead of them, but the destructive effects of the BWA as well as subsequent windthrow 

mortality of exposed overstory spruce stems have decreased for now.  It is hypothesized 

that the overstory will not decline below present biomass and C levels in the near future, 

and that this stratum has indeed begun to rapidly sequester more biomass and C.   

Though conducted in a small catchment, this research provides important insight into 

the C and nutrient dynamics of post-BWA southern Appalachian spruce-fir forests.  The 

understory of this system, especially the herbaceous layer, is very important to the overall 

productivity of this system.  It serves a vital role in cycling nutrients as well as keeping 

nutrients on site.  Though this understory offers little long-term storage of C, biomass and 

nutrients, the continual uptake and cycling of N are preventing additional N from being 

leached to streamwater.  As this forest returns to pre-disturbance stand dynamics, the 

relationships between overstory and understory communities may shift.  Future work 

should address the relationships between overstory, understory and site variables to 

determine how nutrient cycling in this forest may change in the future.   
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Table 3.1.  Aboveground live pools of biomass (Mg ha
-1

), carbon (Mg ha
-1

) and nitrogen (kg ha
-1

) for different forest components at 

three different elevation ranges within the Noland Divide Watershed of Great Smoky Mountain National Park (± standard deviation) 

Biomass Carbon Nitrogen

Lower Middle Upper Lower Middle Upper Lower Middle Upper

Overstory Abies 4.63 ± 6.46b* 7.80 ± 6.24b 33.3 ± 26.0a 2.27 ± 3.17b 3.83 ± 3.06b 16.3 ± 12.7a 18 ± 25b 30 ± 24b 127 ± 100a

Vegetation Betula 105 ± 111a 50.6 ± 56.1ab 7.26 ± 14.9b 51.6 ± 54.3a 24.8 ± 27.5ab 3.54 ± 7.28b 240 ± 246a 118 ± 128ab 18 ± 36b

>5 cm DBH Picea 191 ± 90.6† 198 ± 111 152 ± 91.4 91.3 ± 43.3 94.9 ± 53.2 72.6 ± 43.7 307 ± 132 317 ± 166 243 ± 138

Other 1.88 ± 2.15 1.70 ± 2.79 2.20 ± 3.02 0.901 ± 1.03 0.815 ± 1.34 1.05 ± 1.45 5 ± 5.6 4.6 ± 7.4 5.8 ± 8

Overstory Total 303 ± 103a 259 ± 102ab 195 ± 84.5b 146 ± 50.2a 124 ± 48.8ab 93.5 ± 40.3b 570 ± 206a 469 ± 160ab 394 ± 128b

Understory Abies 1.73 ± 1.40 2.08 ± 2.93 3.35 ± 4.95 868 ± 702 1.050 ± 1.470 1.68 ± 2.49 17 ± 14 21 ± 29 33 ± 49

Vegetation Betula 0.106 ± 0.463 0.294 ± 0.491 0.201 ± 0.431 55 ± 238 151 ± 253 0.103 ± 0.221 1 ± 4.3 2.8 ± 4.6 1.9 ± 4

2-5 cm DBH Picea 1.01 ± 1.16 1.24 ± 2.28 1.07 ± 1.28 517 ± 593 637 ± 1.170 0.550 ± 0.654 8.4 ± 10 10.3 ± 19 8.9 ± 11

Other .928 ± 1.16 .930 ± 1.89 0.481 ± 0.613 463 ± 578 465 ± 940 0.242 ± 0.312 7.6 ± 9.4 7.7 ± 15 4.1 ± 5.5

Total 3.77 ± 1.53 4.55 ± 4.45 5.10 ± 5.71 1.900 ± 776 2.300 ± 2.250 2.58 ± 2.88 34 ± 14 41 ± 41 48 ± 56

Understory Abies 0.479 ± 0.779 0.795 ± 1.05 1.05 ± 1.41 0.241 ± 0.392 0.400 ± 0.527 0.525 ± 0.711 4.8 ± 7.7 7.9 ± 10 10 ± 14

Vegetation Betula 0.031 ± 0.063 0.013 ± 0.040 0.013 ± 0.039 0.016 ± 0.032 0.006.8 ± 0.021 0.0067 ± 0.020 0.3 ± 0.6 0.1 ± 0.4 0.1 ± 0.4

<2 cm DBH Picea 1.71 ± 2.09a 0.752 ± 1.10ab 0.196 ± 0.139b 0.875 ± 1.07a 0.386 ± 0.563ab 0.100 ± 0.071b 14 ± 17a 6.2 ± 9.1ab 1.6 ± 1.2b

Other 2.46 ± 3.21 1.06 ± 1.18 1.57 ± 2.67 1.23 ± 1.61 0.527 ± 0.586 0.779 ± 1.32 20 ± 27 8.6 ± 10 12 ± 21

Total 4.68 ± 4.44 2.62 ± 1.73 2.83 ± 3.96 2.36 ± 2.24 1.32 ± 0.873 1.41 ± 1.97 39 ± 37 23 ± 15 25 ± 34

Herbaceous 1.64 ± 0.518 1.74 ± 1.04 1.98 ± 0.897 0.745 ± 0.239 0.815 ± 0.503 0.946 ± 0.438 32 ± 10 34 ± 20 39 ± 17

Understory Total 10.0 ± 4.90 8.91 ± 4.95 9.90 ± 6.84 5.00 ± 2.49 4.43 ± 2.50 4.94 ± 3.44 105 ± 41 99 ± 48 112 ± 64

Ecosystem Total 313 ± 102a 267 ± 101ab 204 ± 83.3b 151 ± 49.7a 129 ± 48.5ab 98.4 ± 39.8b 675 ± 198a 567 ± 153ab 506 ± 128b  

* Different letters indicate statistical differences (p<0.05) among elevation bands for each species or forest component 

† When there were no statistical differences, no letters were used



92 

 

Table 3.2.  Predictive biomass equation for herbaceous vegetation in the form y = ax 

where y = species biomass (g), a = coefficient, and x = estimated percent cover 

Species 

Number of 

observations a r
2
 

Standard 

error of 

Estimate 

(g) 

Aconitum uncinatum 7 1.293 0.980 0.076 

Arisaema triphyllum 12 0.504 0.760 0.085 

Aster sp. 15 0.919 0.907 0.079 

Chelone lyoni 13 1.439 0.794 0.211 

Clintonia borealis 15 0.699 0.950 0.043 

Cimicifuga americana 12 0.590 0.932 0.048 

Dryopteris campyloptera 16 1.257 0.883 0.118 

Eupatorium rugosum 14 1.294 0.856 0.148 

Galium triflorum 12 0.583 0.912 0.055 

Grass 16 2.012 0.891 0.182 

Houstonia serpyllifolia 12 1.246 0.973 0.063 

Impatiens pallida 13 0.865 0.872 0.096 

Laportea canadensis 12 0.723 0.865 0.086 

Lycopodium sp. 12 4.793 0.946 0.346 

Monarda didyma 12 1.466 0.941 0.111 

Moss 16 4.636 0.942 0.298 

Oxalis acetosella 14 0.309 0.968 0.016 

Prunella vulgaris  13 0.910 0.886 0.094 

Rubus canadensis 15 9.108 0.900 0.811 

Rudbeckia laciniata 12 2.395 0.965 0.138 

Solidago glomerata 13 0.939 0.833 0.121 

Sambucus pubens 12 1.410 0.863 0.169 

Senecio rugelia 21 0.979 0.960 0.045 

Tiarella cordifolia 11 0.666 0.930 0.058 

Trillium sp. 8 0.634 0.927 0.067 

Viola sp. 12 0.403 0.972 0.021 
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Table 3.3.  Predictive biomass equation information for small woody understory 

vegetation in the form y = ln(a+bx), where y = biomass, a = intercept, b = coefficient, and 

x = stem caliper at 15 cm above ground level 

Species 

Number of 

observations a b r
2
 

Standard 

error of 

Estimate 

(g) cf 

Abies fraseri 10 3.199 1.144 0.780 0.215 1.02 

Betula lutea 8 1.148 2.435 0.879 0.368 1.07 

Picea rubens 10 2.269 1.755 0.876 0.234 1.03 

Viburnum alnifolium 10 1.512 2.143 0.930 0.207 1.02 
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Table 3.4.  Aboveground production of biomass and carbon and uptake of nitrogen (kg ha
-1

 yr
-1

) for different forest components at 

three different elevation ranges within the Noland Divide Watershed of Great Smoky Mountain National Park (± standard deviation) 

Biomass Carbon Nitrogen

Lower Middle Upper Lower Middle Upper Lower Middle Upper

Overstory Abies 280 ± 800b* 550 ± 754b 2,480 ± 2,410a 137 ± 393b 270 ± 370b 1,220 ± 1,180a 1.1 ± 3b 2.1 ± 2.9b 9.7 ± 9.3a

Vegetation Betula 1,810 ± 1,870a 656 ± 774b 220 ± 395b 889 ± 922a 321 ± 380b 108 ± 193b 4.1 ± 4.1a 1.5 ± 1.8b 0.5 ± 0.9b

>5 cm DBH Picea 3,840 ± 1,610† 4,050 ± 2,440 2,840 ± 1,640 1,830 ± 769 1,930 ± 1,160 1,360 ± 785 5.9 ± 2.2 6 ± 3 4.3 ± 2.3

Other 80 ± 114 71 ± 152 57 ± 106 38 ± 54 34 ± 73 28 ± 51 0.2 ± 0.3 0.2 ± 0.4 0.2 ± 0.3

Overstory Total 6,010 ± 1,530 5,320 ± 2,660 5,600 ± 1,670 2,900 ± 748 2,560 ± 1,280 2,710 ± 820 11.2 ± 3.5b 9.8 ± 4.6b 14.6 ± 7.5a

Understory Abies 173 ± 140 208 ± 293 335 ± 495 87 ± 70 105 ± 147 168 ± 249 1.7 ± 1.4 2.1 ± 2.9 3.3 ± 4.9

Vegetation Betula 11 ± 46 29 ± 49 20 ± 43 5 ± 24 15 ± 25 10 ± 22 0.1 ± 0.4 0.3 ± 0.5 0.2 ± 0.4

2-5 cm DBH Picea 101 ± 116 124 ± 228 107 ± 128 52 ± 59 64 ± 117 55 ± 65 0.8 ± 1 1 ± 1.9 0.9 ± 1.1

Other 93 ± 116 93 ± 189 48 ± 61 46 ± 58 47 ± 94 24 ± 31 0.8 ± 0.9 0.8 ± 1.5 0.4 ± 0.6

Total 377 ± 153 455 ± 445 510 ± 571 190 ± 78 230 ± 225 258 ± 288 3.4 ± 1.4 4.1 ± 4.1 4.8 ± 5.6

Understory Abies 48 ± 78 79 ± 105 104 ± 141 24 ± 39 40 ± 53 53 ± 71 0.5 ± 0.8 0.8 ± 1 1 ± 1.4

Vegetation Betula 3.1 ± 6 1.3 ± 4 1.3 ± 4 1.6 ± 3 0.7 ± 2 0.7 ± 2 0 ± 0.1 0 ± 0 0 ± 0

<2 cm DBH Picea 171 ± 209a 75 ± 110ab 20 ± 14b 88 ± 107a 39 ± 56ab 10 ± 7b 1.4 ± 1.7a 0.6 ± 0.9ab 0.2 ± 0.1b

Other 246 ± 321 106 ± 118 157 ± 266 123 ± 161 53 ± 59 78 ± 132 2 ± 2.7 0.9 ± 1 1.2 ± 2.1

Total 468 ± 444 262 ± 173 283 ± 396 236 ± 224 132 ± 87 141 ± 197 3.9 ± 3.7 2.3 ± 1.5 2.5 ± 3.4

Herbaceous 880 ± 303 925 ± 538 1,030 ± 479 396 ± 134 436 ± 258 491 ± 232 17.7 ± 6.3‡ 18.7 ± 10.4‡ 20.9 ± 9.5‡

Understory Total 1,730 ± 496 1,640 ± 706 1,830 ± 778 823 ± 245 798 ± 346 890 ± 388 25.0 ± 6.2 25.1 ± 11.2 28.2 ± 10.4

Ecosystem Total 7,730 ± 1,310 6,970 ± 2,500 7,430 ± 1,070 3,720 ± 638 3,360 ± 1,210 3,600 ± 522 36.2 ± 5.8b 34.9 ± 10.4b 42.8 ± 7.6a  

* Different letters indicate statistical differences (p<0.05) among elevation bands for each species or forest component 

† When there were no statistical differences, no letters were used 

‡ Values include potential resorption
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CHAPTER 4 

USING SILVICULTURE TO INFLUENCE CARBON SEQUESTRATION IN 

SOUTHERN APPALACHIAN SPRUCE-FIR FORESTS 
5,6

 

ABSTRACT 

Enhancement of forest growth through silvicultural modification of stand 

density is one strategy for increasing carbon (C) sequestration. Using the Fire and 

Fuels Extension of the Forest Vegetation Simulator, the effects of even-aged, 

uneven-aged and no-action management scenarios on C sequestration in a southern 

Appalachian red spruce-Fraser fir forest were modeled. We explicitly considered C 

stored in standing forest stocks and the fate of forest products derived from 

harvesting. Over a 100-year simulation period the even-aged scenario (250 Mg C 

ha
−1

) outperformed the no-action scenario (241 Mg C ha
−1

) in total carbon (TC) 

sequestered. The uneven-aged scenario approached 220 Mg C ha
−1

, but did not 

outperform the no-action scenario within the simulation period. While the average 

annual change in C (AAC) of the no-action scenario approached zero, or carbon 

neutral, during the simulation, both the even-aged and uneven-aged scenarios 

surpassed the no-action by year 30 and maintained positive AAC throughout the 

100-year simulation. This study demonstrates that silvicultural treatment of forest 

stands can increase potential C storage, but that careful consideration of: (1) 

accounting method (i.e., TC versus AAC); (2) fate of harvested products and; (3) 

                                                 
5
 This chapter appeared in the journal Forests as: Moore, P.T., R.J. DeRose, J. Long and H. Van Miegroet.  

2012.  Using silviculture to influence carbon sequestration in southern Appalachian spruce-fir forests.  

Forests 3:300-316.  doi:10.3390/f3020300 
6
 Coauthored by Patrick T. Moore, R. Justin DeRose, James N. Long and Helga Van Miegroet. 
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length of the planning horizon (e.g., 100 years) will strongly influence the 

evaluation of C sequestration. 

INTRODUCTION 

As global awareness of the effects of climate change increases (Metz et al., 2007), so 

will the importance of management strategies for terrestrial ecosystems that maximize 

atmospheric/global CO2 mitigation (Ryan et al., 2010). Though there is some debate over 

how managed forests sequester carbon (C) relative to their old-growth counterparts (Skog 

and Nicholson, 1998; Harmon and Marks, 2002; Luyssaert et al., 2008), managed forests 

have been shown to make valuable contributions to C sequestration efforts (Van Deusen, 

2010; Miner, 2006; Hoover and Heath, 2011). While managed forests are not expected to 

contain as much standing C as old-growth forests on similar sites, managed forests could 

potentially sequester more C when both live biomass and harvested biomass are 

considered, and depending on the fate of harvested biomass (e.g., biofuel versus 

structural wood products; Van Deusen, 2010; Sorenson et al., 2011). Furthermore, if the 

rate of growth for live biomass is increased by active management for wood products, the 

potential C sequestration rates in managed forests might be increased. This begs the 

question, what role can silviculture play in the long-term C sequestration potential of 

forests? 

Numerous factors influence growth and biomass accumulation as well as potential 

standing C pools in forested systems. These factors include site quality (Keyser, 2010), 

stage of stand development (Long and Smith, 1984) and stand composition (Long and 

Shaw, 2010), forest type and disturbance regime (Ryan et al., 2010).  Realistically, one 
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cannot control site quality; however, silviculturists can modify stand structure, species 

composition, and stand density. This allows the direct control of stand developmental 

stage and growing stock potential, and therefore rates of C sequestration. By maintaining 

stand stocking within a desired range of relative stand density associated with various 

levels of growth potential (i.e., maximum tree growth versus maximum stand growth; 

Long, 1985), silviculturists can potentially influence the rate of C sequestration. 

In the southeastern United States, southern Appalachian red spruce (Picea rubens 

Sarg.)–Fraser fir (Abies fraseri Pursh.) forests were historically heavily cut over 

(Korstian, 1937) and, although productive (7.7 Mg biomass ha
−1

 yr
−1

, see Chapter 2), 

these spruce-fir forests can either be C sinks or C sources depending on the management 

regime, the dynamics of snags or coarse woody debris (see Chapters 2 and 3; Fahey, 

2010) or natural disturbance regimes. Historically, hurricane-induced windthrow and ice 

storm damage were responsible for gap-phase dynamics in these forests (Nicholas, 1992). 

In the last two decades southern Appalachian spruce-fir forests have been heavily 

influenced by a catastrophic insect outbreak of the non-native balsam wooly adelgid 

(BWA; Adelges piceae (Ratzeburg)). As a result of the BWA the high elevation spruce-fir 

forests of the southern Appalachians have experienced higher disturbance-related mortality 

and have been set back to an earlier stage of stand development. In recent years the 

aboveground components of this system have shown a substantial increase in standing 

biomass (see Chapter 2). 

The vast majority (74%; Dull et al.,1988) of southern Appalachian spruce-fir forests 

are within the boundaries of Great Smoky Mountains National Park, where active forest 

management has been precluded since National Park designation in 1943. It is therefore 
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impossible to directly determine the effect of various management scenarios on C 

sequestration. However, modeling approaches provide an excellent vehicle to estimate 

the effects of hypothetical management treatments on C sequestration (sensu Harmon and 

Marks, 2002; Sorenson et al., 2011). There are several C accounting tools available to 

land managers and researchers and guidelines have been established to assist with field 

data collection and C accounting methods (Pearson et al., 2007; Hoover, 2008). Smith et 

al., (2006) provided estimates of standing C stocks for several forest types as a function 

of stand age and included a methodology for assessing the effects of harvesting on C 

sequestration. Although these estimates cannot incorporate stand-specific data, they are 

readily available and easy to use. The Carbon Online Estimator relies on USFS Forest 

Inventory and Analysis (FIA) data and can produce standing C pool as well as growth 

and yield estimates at the county scale and larger (Van Deusen and Heath, 2012). The US 

Forest Carbon Calculation Tool also relies on FIA data and can provide state and national 

estimates of stored C (Smith et al., 2006). The most recent version of the US Forest 

Carbon Budget Model also relies mainly on FIA data. This model generates easily 

interpretable and useful outputs but the data input process can be complicated and may 

require a user with advanced programming skills. 

The Forest Vegetation Simulator (FVS) is an individual-tree distance independent 

growth and yield model that is widely used by managers and researchers to model forest 

change and stand dynamics over time in response to management activities (Crookston 

and Dixon, 2005). FVS allows the input and analysis of user-collected stand data and 

produces easily interpretable output through the Suppose graphical user interface. In 

addition, FVS can track the simulation of various management scenarios at the tree- or 
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stand-level for a user-specified time interval. Recently, C accounting has been 

incorporated into FVS through the Fire and Fuels Extension (FFE; Reinhardt et al., 2007; 

Hoover and Rebain, 2011). Although publicly available and easily implemented, 

relatively few studies have utilized FVS-FFE to assess the long-term temporal dynamics 

of C sequestration at the stand-level (but see Hurteau et al., 2008; Hurteau and North, 

2009). 

The goal of this research is to simulate the possible effect of silvicultural activities on 

long-term C storage potential of managed forests compared to their unmanaged 

counterparts using a large comprehensive re-measurement data set from the Great Smoky 

Mountains. By pairing this data set with FVS, we attempt to provide a straightforward 

demonstration that active management may well be a better strategy for C sequestration 

than passive management. Current greenhouse gas accounting protocols require any 

management action intended to offset CO2 emission to exhibit “additionality”, i.e., to be 

additional to the “business-as-usual” scenario (Malmshimer et al., 2011). Carbon 

accounting protocols further require management-caused changes in carbon stocks to be 

assessed over a 100-year planning horizon (Broekhoff et al., 2009). The potential 

influence of silvicultural activities on the C sequestration potential of southern 

Appalachian spruce-fir forests was examined using FVS-FFE to simulate forest growth 

and associated C dynamics for 100 years under three scenarios: (1) a no-action scenario 

(i.e., business-as-usual); (2) an even-aged silvicultural system; and (3) an uneven-aged 

silvicultural system. Total C sequestration (TC) and the average annual changes in C 

sequestration (AAC; Hoover and Rebain, 2011) are calculated to compare the three 

scenarios. While TC demonstrates the overall difference in C sequestration between 
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management practices over the life of a project or rotation, AAC can be used to 

demonstrate the additional C sequestered on an annual basis and has application in C 

accounting protocols such as the Regional Greenhouse Gas Initiative (RGGI, 2012). We 

hypothesize the no-action scenario will exhibit the highest TC, but that the even-aged 

management scenario will exhibit the highest positive AAC. 

METHODS 

Study Area 

Data for the study were collected in the Noland Divide Watershed (NDW, 35°34’N, 

83°29’W) a 17.4 ha, high elevation catchment within Great Smoky Mountain National 

Park. This catchment was chosen because of the broad elevation gradient (1700–1910 m) 

and resulting variability in overstory species composition thought to represent much of 

the range of forest conditions occurring within southern Appalachian spruce-fir forests. 

Access to previously collected data as well as a pre-existing plot infrastructure allowed 

improved modeling and interpretation of model results through control of some 

potentially confounding factors (parent material, aspect, and climate). The NDW is 

dominated by red spruce at lower elevations transitioning into Fraser fir at higher 

elevations with a component of yellow birch (Betula alleghaniensis Britton) and various 

other hardwoods distributed across the range of elevations. The NDW has not been 

impacted by logging or fire (Pyle, 1988), but has been severely impacted by the BWA 

(Barker et al., 2002; Pauley and Clebsch, 1990) and wind related events (see Chapter 3; 

Nicholas, 1992). The soils are mainly Inceptisols, occasionally with spodic characteristics 

(McCracken et al.,1962; Van Miegroet et al.,1993), are generally shallow, (<50 cm depth 
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to bedrock) and have a silt loam to sandy loam texture (Van Miegroet et al., 2007). 

Precipitation is >200 cm annually and is distributed evenly throughout the year (Johnson 

et al., 1991). Mean air temperatures range from −2 °C in February to 17 °C in August 

with a frost-free period from May through September (Johnson et al.,1991, Shanks, 

1954). 

Data Collection 

Overstory forest inventories were performed in the NDW in 1993, 1998 and 2003 on 

a system of 50–400 m
2
 plots stratified along a series of nine elevation bands (1700, 1725, 

1755, 1785, 1800, 1835, 1865, 1890 and 1910 m, Figure 2.1). For the analysis, these are 

divided into three elevation groups; low (1700, 1725 and 1755 m, 19 plots), medium 

(1785, 1800 and 1835 m, 19 plots) and high (1865, 1890, and 1910 m, 12 plots). All trees 

≥5 cm diameter at breast height (DBH, 1.37 m) were measured using protocols described 

by Zedaker and Nicholas (1990), and tagged with a permanent and unique ID tag. 

Species, DBH, and status (live or dead) of each overstory tree were recorded. In 1998 and 

2003, ingrowth was tagged as trees entering the 5-cm diameter class. Live trees that had 

fallen since the last inventory were considered windthrow. On each plot in 2003, all trees 

>2 cm and <5 cm DBH were sampled on a system of 4–16 m
2
 subplots in order to estimate 

saplings. Trees <2 cm DBH were sampled on a system of 16–1 m
2
 nested plots within 

each 16 m
2
 sapling subplot and averaged across elevation bands in order to estimate 

natural regeneration (see Chapter 2). 

 



102 

 

Data Preparation 

Although the southern variant of FVS (SN-FVS) is capable of running simulations 

with very limited data (e.g., DBH, species; Keyser, 2008), additional tree and stand 

information can improve model estimates (e.g., height, diameter increment, site index; 

Dixon, 2002). Also, while included in the western variants, the eastern variants of FVS 

have not yet been modified to take into account forest dynamics under climate change 

(i.e., Climate-FVS). SN-FVS has not been explicitly evaluated for spruce, fir or yellow 

birch; however, it has been validated and analyzed for other species (DeRose et al., 2008; 

Vacchiano et al., 2008; Herring, 2007) that displayed its ability to effectively simulate 

stand dynamics. Trees in the NDW watershed are generally shorter than in other southern 

Appalachian (or nearby) spruce-fir forests (Barker et al., 2002). To estimate tree height 

for red spruce, Fraser fir and yellow birch, we used site-specific allometric equations fit 

from the height-diameter data from Barker et al. (2002). This resulted in at least three 

modeled individual tree heights for each species, on any given plot, the minimum 

necessary for SN-FVS to modify height growth to reflect local conditions. In addition, 

SN-FVS will modify the large-tree (>7.6 cm DBH) growth model to reflect local 

conditions if the user specifies the diameter increment for 3 or more individuals of a 

given species on a particular plot in the input data (Dixon, 2002). We calculated 1998–

2003 diameter increment for all live sampled trees measured during both the 1998 and 

2003 inventories, assuming bark thickness was constant, and included them in our FVS 

input tree list. While assuming constant bark thickness potentially introduces bias, this 

will not affect comparisons between scenarios. In addition, 5-year changes in bark are 
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likely to be marginal. To incorporate natural regeneration into each management 

scenario, when appropriate, we calculated average understory stocking (stems/ha) for 

each of the dominant tree species in each of the three elevation groups from the 1 m
2
 

subplots. SN-FVS uses site index (height in feet at base age 50, SI) to model the site 

productivity potential of individual stands. Because site index was not measured in the 

field, we incorporated the influence of site quality into the model simulations by 

identifying a range of SIs consistent with Nicholas and Zedaker (1992). Simulations for 

each elevation band (low, medium, high) were run for each of three SIs. The SI range for 

each elevation group was: low elevation (60, 65 and 70); medium elevation (55, 60 and 

65); and high elevation (55, 60 and 65). 

Silvicultural Scenarios 

We used the 2003 data as the starting point for each of the silvicultural scenarios and 

ran 100-year simulations (2003–2103). For each scenario the CarbCalc keyword was 

used to set C accounting parameters. Parameters selected included the base FVS biomass 

equations, default decay rates, and model output in Mg ha
−1

. The CarbRept keyword was 

used to generate a C report every 5 years for 100 years while the CarbCut keyword was 

used to generate a harvested C report every 5 years, and finally the SiteCode keyword 

was used to vary the SI above for each elevation group. 

In the no-action scenario, stands were able to develop without the effect of 

management activities. Stand density index (SDI) maximum was constrained at 460. All 

calculations of SDI were done within FVS, which uses a summation method (Dixon, 

2002). Standing dead trees fell and decayed according to default model parameters. 



104 

 

Although in this scenario the measured understory data from the 2003 inventory were 

included during the 2003 time step, no additional understory trees were added during the 

simulation period. Theoretically, fully stocked stands would not promote the 

establishment of understory trees, or allow their ascension to the canopy (Smith et al., 

1997). While in actuality some regeneration is likely to occur over a 100-yr scenario, we 

made the simplifying assumption that no disturbance or gaps promoting establishment 

would occur over the scenario in lieu of arbitrarily adding regeneration. 

Under the even-aged scenario we sought to control stand density so as to maintain 

“full-site occupancy” and avoid substantial density-related mortality (Long, 1985). Plot 

level SDI was maintained between 45% (207) and 60% (276) of maximum SDI through 

simulated harvesting using a conditional statement in the ThinSDI keyword. Although in 

this scenario we included the measured understory data from the 2003 inventory during 

the 2003 time step, we did not add any additional understory during the simulation 

period. This scenario simulates a series of commercial thinning, which should not 

typically result in establishment of understory trees, or allow their ascension to the 

canopy (Smith et al., 1997). 

For the uneven-aged scenario, we relaxed the constraint to maximize stand growth, 

while simultaneously seeking to build the structural attributes of an uneven-aged or late 

successional spruce-fir forest exhibiting gap-phase dynamics. In this scenario, the 

Uneven-aged Management Action option in FVS was used to implement an individual 

tree selection system that constrained SDI between 45% and 60% of maximum SDI 

(207–276). Residual stocking was distributed, expressed as SDI, relatively evenly across 

the DBH classes. Simply thinning within each DBH class to the desired SDI may 
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excessively reduce stocking over time because some DBH classes may be initially deficit. 

The Uneven-aged Management Action adjusts for this by detecting deficit size classes 

and allowing additional trees to remain in the adjacent lower DBH classes in order to 

achieve the target SDI for the plot. A Liocourt or diminution coefficient (q) of 1.3 

between each of the 8-12.7 cm DBH classes was used to push the stand DBH distribution 

toward a negative exponential or reverse J-shape over time. Our initial estimates of 

understory stocking were input into FVS on a 5-year cycle. 

Carbon Accounting 

Carbon pools were estimated from the Stand Carbon Report and the Harvested 

Carbon Report generated by FFE. These two reports include C pools consistent with the 

Intergovernmental Panel on Climate Change Good Practice Guidance (Penman et al., 

2000) for national greenhouse gas inventories (Hoover and Rebain, 2011). FFE C 

estimates are produced by multiplying standard FVS dry weight biomass estimates for all 

pools by 0.5 (assumed 50% C) except for the forest floor pool which is converted using 

0.37 (Smith et al., 2006; Hoover and Rebain, 2011). Soil C is not accounted for in FFE. 

TC was calculated as the sum of all reported forest carbon from the Stand Carbon Report. 

This includes dynamic predictions for the following C pools: total aboveground live, 

merchantable aboveground, standing dead, belowground live, belowground dead, down 

dead, duff, litter herbs and shrubs using methods described in Reinhardt et al. (2007). 

Calculation methods for C pools were held constant across all scenarios in order to more 

fairly test the effects of silvicultural manipulation on C sequestration. Any C removed 

during thinning is reported in the Harvested Carbon Report including the following C 
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pools: forest products in use, products in landfills, and C emitted from combustion with 

and without energy capture. These pools were accounted for following the decay fates for 

harvested products in Smith et al. (2006). Although protocols exist to explicitly monitor 

the products and their inefficiencies (e.g., the CO2Fix model; Perez-Cruzado et al., 2012) 

the FFE accounting system is built-in to the FVS framework, follows international C 

sequestration protocols (Reinhart et al., 2007) and is most likely to be used by forest 

managers. 

To compare TC between silvicultural scenarios we added total standing carbon to 

harvested carbon in wood products for each plot and each 5-year time step before 

averaging over plots in each elevation and SI group. By only including the harvested 

carbon in wood products we effectively remove C that is only stored short-term or is 

released as emissions due to the decay of forest products and energy required to transport 

the C out of the forest. Average annual change in C sequestration (AAC) was calculated 

as the 5-year difference in total C (calculated above) for the 100-year simulation (Hoover 

and Rebain, 2011). Results for TC and AAC were plotted over time to compare potential 

C sequestration by management scenario. To account for additionality (Huang and 

Sorenson, 2011), we compared the AAC for the two management scenarios relative to the 

no-action scenario. This gives an indication of the patterns of relative increases (positive) 

or decreases (negative) in potential C sequestration when deviating from the  

no-action, or “business-as-usual” scenario. 
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RESULTS  

Total Carbon Sequestration 

Although we modeled a range of SIs within each elevation group to test the influence 

of site quality on C sequestration, the effect was minimal (coefficient of variation = 12.9–

17% by the end of the 100-year simulation) and the variation occurred in an expected 

manner. That is, between elevation bands productivity increased with decreasing 

elevation, and within each elevation band, productivity increased with increasing SI, as 

expected. Therefore, results are only presented for the middle SI value in each elevation 

group. TC in the no-action scenario increased rapidly during the first part of the 

simulation period for each elevation group before leveling off towards the end of the 

simulation (Figure 4.1). This value increased from 174, 152 and 132 Mg ha
−1 

in the low, 

medium and high elevation band, respectively, and approached a maximum in 2103 of 

242, 227 and 198 Mg ha
−1 

in the low, medium and high elevation band, respectively. 

In the even-aged scenario, initial TC (total C sequestered in biomass and forest 

products) was slightly lower than the no-action scenario due to the effects of harvesting at 

the beginning of the simulation. This value increased from 161, 141 and 123 Mg ha
−1 

in 

the low, medium and high elevation bands, respectively, and continued with a positive 

slope throughout the simulation period, reaching a value of 250, 231 and 211 Mg ha
−1 

in 

the low, medium and high elevation bands, respectively, by the end of the simulation 

period (2103). 

In the uneven-aged scenario, TC similarly began slightly lower than the no-action 

scenario due to the effects of harvesting at the beginning of the simulation. Sequestration 
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increased from 163, 143 and 124 Mg ha
−1 

in the low, medium and high elevation band, 

respectively, through the simulation period with 220, 204 and 193 Mg C ha
−1

 sequestered 

by the end of the simulation period in 2103. These values were well below those obtained 

in the even-aged scenario, which resulted in highest TC values by the end of the 

simulation period. 

Results from the even-aged scenario were further broken down into 3 major 

categories in order to demonstrate the fate of various C components in our accounting 

(Figure 4.2). The standing C category represented the C stored in the forest. The forest 

products category represented additional C stored in forest products produced from 

material removed from the forest over time. These two components together comprised 

the TC sequestration of the scenario. In addition, a cumulative emissions category 

represented C lost as emissions from the decomposition of the forest products category. 

Across the three elevation bands, standing C, products, and emissions accounted for 

approximately 51%, 34% and 15%, respectively, of the C accounted for over the 

simulation period. 

Average Annual Change in Carbon 

The AAC (average annual change in C sequestered in biomass and forest products) 

during the no-action scenario immediately decreased from 3.4, 3.5 and 3.7 Mg ha
−1

 yr
−1

, 

approaching zero in all elevation bands (Figure 4.3). In the even-aged scenario, AAC 

began low (0–1 Mg ha
−1

 yr
−1

) due to the effect of reduced stocking, and reached a 

maximum at 1.6, 1.6, and 1.2 Mg ha
−1

 yr
−1

 in the 2053–2058 time period, before they 

stabilized towards the end of the simulation at 0.8, 0.7 and 0.6 Mg ha
−1

 yr
−1

 at the low, 
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medium and high elevation bands, respectively. In the uneven-aged scenario, AAC also 

began low (−0.1 to 0.3 Mg ha
−1

 yr
−1

) due to the effect of reduced stocking, reached a 

plateau at 0.9, 0.9 and 1.3 Mg ha
−1

 yr
−1

 in the 2018–2033 time period, and stabilized at 

0.4, 0.5 and 0.4 Mg ha
−1

 yr
−1

 at the low, medium and high elevation band, respectively. 

DISCUSSION 

Using a forest growth and yield model (FVS) we have demonstrated that silvicultural 

manipulation can yield improvement in C sequestration over the no-action (i.e., business-

as-usual) scenario. By controlling stand density and stand development, it should be 

possible to increase C sequestration. The amount of predicted C sequestered varied by 

silvicultural scenario (i.e., even-aged or uneven-aged). It is especially noteworthy that 

whether a silvicultural scenario actually was predicted to have met the additionality 

objective (i.e., an improvement over no-action) over the mandatory 100-year planning 

horizon depended primarily on how additional C sequestration was assessed. For 

example, if just considering TC, i.e., C pool size, dense, older stands would likely be 

considered the largest C pools. On the other hand, if the focus was on AAC, i.e., the rate 

of C accumulation, young, rapidly growing stands are likely to accumulate C faster, even 

if their TC is lower (Kolari et al., 2004). Furthermore, accounting for the fate of 

harvested material (i.e., percent in long-term storage) will influence the assessment of 

managed and no-action scenarios with respect to long-term C sequestration. 

In this study the even-aged scenario marginally outperformed the no-action scenario 

in TC sequestration over the 100-year time period for all three elevation bands. This 

demonstrated that silvicultural manipulation including commercial harvest can be an 
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effective tool for sequestering C over time when wood harvested for long-term products 

is included in the analysis. Although the increased TC of this scenario over the no-action 

was manifest after nearly 100 years, it emphasizes the importance of timely 

implementation in order to achieve future results. The uneven-aged scenario did not 

outperform the no-action scenario during the simulation period in terms of TC 

sequestration. It did, however, come close, and would likely surpass the no-action 

scenario over a longer time period. 

In terms of AAC, both the even-aged and uneven-aged scenarios outperformed the 

no-action scenario within 20–30 years and continued to outperform the no-action 

scenario for most of the simulation period. While decay fates of forest products will 

likely determine how long AAC will remain positive, the end-of-rotation harvest in the 

even-aged scenario would temporarily create a carbon source (Kolari et al., 2004). Unlike 

comparisons of TC, calculating AAC takes into account the fact that the silviculture 

scenarios include periodic reductions in stand stocking due to thinning schedules. In 

contrast with TC, comparisons of AAC between the no-action and the silvicultural 

scenarios highlight the potential benefits of management. The somewhat modest gains in 

TC, which did not occur until well into the 100-year simulation, mask what were actually 

important management-induced changes in sequestration (wood products) and growth 

rate (increased subsequent growth due to density regulation) that translated into much 

higher AAC for the managed stands. In other words, by calculating AAC, we accounted 

for the fact that the no-action scenario, although starting with higher TC, had a relatively 

slow rate of C increase over time in comparison to managed stands. 
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That we found potential increases in C sequestration as a result of silvicultural 

intervention is especially noteworthy, as the spruce-fir forest type is likely not the ideal 

candidate for C sequestration. For example, the large amounts of decaying organic matter 

created as a result of the BWA has been documented for this spruce-fir forest (Van 

Miegroet et al., 2007) and could lead to the release of CO2 into the atmosphere. 

Therefore, if incorporated into the analysis, forest response to a disturbance like BWA 

could potentially affect C sequestration trajectories when compared to an undisturbed 

spruce-fir ecosystem. Therefore, other forest types with lower amounts of decaying 

organic matter might exhibit a stronger C sequestration effect in response to silvicultural 

activities. In general, decadent forests with high levels of standing C but little net C 

accumulation may provide the greatest potential for C sequestration through silvicultural 

intervention (Malmshimer et al., 2011; Odum, 1969); however, implementing 

management in older forests of all types may be difficult given their potential old-growth 

status. Converting decadent stands to younger and more vigorous stands (i.e., below the 

zone of imminent density-dependent mortality; Drew and Flewelling, 1977), could 

potentially increase sequestered C, in the form of both forest products and increased 

growth, from many currently unmanaged forests. In addition, Keyser (2010) determined 

that higher quality sites (high SIs) may sequester more C over time, which is consistent 

with our results. Therefore, potential C sequestration could be further maximized by 

focusing on higher quality sites; in this case high SIs and lower elevation sites (Figure 

4.3). 

In southern Appalachian spruce-fir forests, management which aims to reduce the 

occurrence or severity of disturbance can help moderate the fluctuation of C losses over 



112 

 

time. For example, the probability for recurrence of the non-native BWA might be 

minimized by maintaining lower stocking levels of suitable host (Fraser fir) thereby 

lowering insect hazard. Although the no-action scenario appears desirable in terms of TC, 

this comes with the increased probability of future BWA mortality and the associated C 

release that would ultimately threaten the long-term effectiveness of the no-action 

strategy for sequestering C. The same reasoning has been applied to southwestern forests 

threatened by wildfire. Hurteau et al., (2008) suggested maintaining low ponderosa pine 

(Pinus ponderosa Dougl.) stand densities via thinning and prescribed fire to reduce the 

risk of wildfire and subsequent release of large amounts of C into the atmosphere. Indeed, 

large-scale disturbances, although they occur at longer intervals, have the potential to 

drastically change C dynamics in forested systems. In particular, the effect of climate 

change-induced shifts in forest stand dynamics or disturbance processes on Appalachian 

spruce-fir C dynamics is a topic for future study. 

Historically, spruce-fir forests may have been C neutral or near-neutral as forest 

growth, mortality, and soil respiration fluctuated over time. Using in situ C estimates, 

Van Miegroet et al., (2007) found the NDW spruce-fir forest exhibited near-neutral 

ecosystem C over a 10-year period (1993–2003). The discrepancy between C neutrality 

observed by Van Miegroet et al., (2007) and these results, which suggest C is 

accumulating, is likely a result of precluding soil C dynamics in our modeling. Changes 

in soil C are very difficult to estimate and there are few studies that document soil C 

dynamics even though it is a large forest C pool (Van Miegroet et al., 2007; Birdsey, 

1992), which might explain why soil C models such as Yasso (Liski et al., 2005) are not 

yet supported in FVS. Van Miegroet et al. (2007) found soil C comprised >50% of 
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ecosystem C in our study area. Changes in soil C dynamics due to management actions 

(e.g., thinning) might alter interpretations of C sequestration potential, especially 

considering possible differences between active harvesting and no-action scenarios (Jandl 

et al., 2007). However, based on reviews of various disturbance regimes, including forest 

management strategies, soils were found to be generally less responsive to disturbance 

compared to the forest floor (Jandl et al., 2007; Van Miegroet and Olsson, 2011). In 

general, soil C changes tend to be large near the surface and diminish with depth 

depending on management-related disturbances to the soil (Jandl et al., 2007). With 

minimal soil disturbance both the no-action and uneven-aged scenario would reduce soil 

C loss over time compared to the even-aged scenario, which necessitates a regeneration 

harvest at the end-of-rotation. However, labile soil C after regeneration harvest under the 

even-aged scenario is likely to return to pre-harvest conditions in a relatively short time 

period (Jandl et al., 2007). 

Management Implications 

To mitigate the effects of climate change a diverse set of strategies will have to be 

implemented. One very important and effective strategy is silvicultural intervention that 

enhances the rate of forest C sequestration by actively managing forest stands. We have 

shown that silviculture can increase C sequestration rates in a southern Appalachian 

spruce-fir forest, and suggest similar outcomes could be achieved in other forest types, 

particularly more productive types. In general, results from our simulations are consistent 

with Hoover and Heath (2011), who proposed that stocking management could 

considerably increase C sequestration on a regional basis (northeast US). Our analysis 
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further demonstrated the tools and carbon accounting protocol that any silviculturist 

could use to model the effect of silvicultural activities on aboveground C sequestration. 

FVS is easily accessible, readily available to land managers and is part of a nationally 

supported framework. We suggest that FVS-FFE could be used in a variety of 

applications to evaluate whether active management may be a better strategy than passive 

management for aboveground C sequestration. Finally, we have demonstrated that 

whether the objective of additionality can be met is potentially influenced by: (1) the C 

accounting method (i.e., TC versus AAC); (2) the carbon-community dictated planning 

horizon of 100 years; (3) whether or not long-term storage (i.e., solid wood products) is 

considered. Therefore, silviculturists wishing to evaluate C sequestration potential would 

do well to consider these factors before evaluating the efficacy of their treatments. 
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Figure 4.1. Total aboveground C sequestered (Mg ha
−1

) for three elevation groups 

as a result of no-action, even-aged management and uneven-aged management in a 

southern Appalachian forest. 
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Figure 4.2. Cumulative aboveground live C, C stored in forest products and C 

released as emissions (Mg ha
−1

) for three elevation groups under the even-aged 

management scenario. 
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Figure 4.3. Average annual change in aboveground C (AAC; Mg ha
−1

 yr
−1

) for three 

elevation groups as a result of no-action, even-aged management and uneven-aged 

management in a southern Appalachian forest. 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

Using multiple approaches, a variety of ecosystem services were explored in this 

heavily disturbed southern Appalachian spruce fir forest.  Specifically, forest structure, 

function, nitrogen cycling and carbon sequestration were assessed.  Though the future 

interaction between the BWA and Fraser fir remains to be seen, this forest is on a 

trajectory towards recovery of forest structure and the reallocation of biomass into 

standing live trees of the historically predominant species.  A total forest inventory and 

the development of site specific allometric equations demonstrated that this forest has 

recovered productivity and that the forest understory is responsible for the uptake of a 

disproportionately large amount of nitrogen.  The active management of these forests was 

shown to be a tool for sequestering carbon in the long term as well as reducing risk of 

disturbance from insects in the shorter term.  Though the effects of the BWA on this 

forest were catastrophic, southern Appalachian spruce-fir forests have retained the ability 

to recover. 

FOREST TRAJECTORY 

Our measurements of stand structure and changes in forest biomass suggest that this 

forest in on a trajectory towards recovery of historic stand structure and function.  We 

found little evidence to support hypotheses of either an expansion of Betula or other 

hardwoods across our elevation gradient, an increase in dominance of Picea at higher 

elevations, nor the elimination of Abies from this forest.  Though this forest was heavily 

disturbed by the BWA, current stand structure suggests that this forest is recovering with 
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a significant and stable composition of both spruce and fir.  The potential effects of the 

BWA on current populations of Fraser fir will tell us much about the future of this 

sensitive forest type.  

NITROGEN CYCLING 

A total forest inventory of this southern Appalachian spruce fir forest has indicated 

that forest processes such as productivity have recovered.  Our estimates of productivity 

are similar to pre-adelgid levels.  The contribution of the forest understory to processes 

such as nitrogen cycling and retention was surprisingly high, suggesting that forest 

understory vegetation may be more important to these processes than was previously 

thought.  We detected a unique mechanism where in the absence of an intact overstory, 

forest understory vegetation can compensate by cycling and retaining nitrogen that would 

otherwise leach offsite and contribute to water quality degradation downstream.  Indeed 

the understory of this forest provides an important service in nitrogen cycling.   

CARBON SEQUESTRATION 

An application of the Forest Vegetation Simulator has demonstrated that silvicultural 

manipulation can provide increased carbon sequestration when compared to a no action 

alternative.  This suggests that active management of our forest resources may prove to 

be an effective tool in mitigating the effects of atmospheric carbon dioxide on global 

climate change.  Though it took nearly the entire 100 year simulation period to show the 

effects of management on levels of total aboveground carbon, the annualized rate of 

carbon sequestration (AAC) demonstrated the benefits of active management within 20 
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years.  Decadent forests with stable levels of total carbon would more likely show a more 

dramatic effect of management on total carbon as well annualized rate of carbon 

sequestration.  This research demonstrates the potential contribution of forests to 

addressing climate change and quantifies their carbon sequestration services.    

LOOKING FORWARD 

Land management agencies (primarily the National Park Service and United States 

Forest Service) charged with the stewardship of these forests have challenging decisions 

ahead of them.  Agencies can choose to do little to accelerate the recovery of these forests 

from the non-native BWA or they can decide to take steps to return these forests to their 

historic structure and function.  By neglecting to make a decision, agencies are choosing 

the former alternative and allowing a sensitive forest to remain in an unnatural condition. 

With the lack of active management these forests will slowly approach historic 

structure and function, though this may take hundreds of years.  Nitrogen retention will 

stabilize at a maximum and the role of the understory may diminish as productivity shifts 

to the overstory.  This forest will become carbon neutral within 50 years.  Without action, 

another possibility includes the potentially significant effects of the BWA.  With a high 

proportion of fir in the understory, these forests are at high risk for future and chronic 

BWA infestations that will make a return to historic conditions unlikely. 

Active management, similar to the uneven-aged silvicultural activities described in 

Chapter 4, would accelerate the recovery of forest structure and function dramatically.  

The 10 million visitors annually to GSMNP would experience a forest more similar to 

historic conditions than without action.  Continued thinnings would maintain understory 
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productivity and would contribute to net C sequestration far into the future due to the 

contribution of harvested products.  Treatments focused on minimizing stand level BWA 

hazard while maintaining individual tree vigor would create conditions less susceptible to 

future BWA infestations.  Regardless of their decision, it is recommended that agencies 

take a deliberate course of action. 
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