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Auroral Cluster is a space physics mission that has been identified by the NASA Space Physics 
Strategic Implementation Study as a candidate fur flight in the next decade. Auroral Cluster will 
employ multiple spacecraft outfitted with similar complements of science instruments allowing 
simultaneous multipoint plasma measurements in the Earth's auroral regions. Co-orbiting small 
satellites (mass < 400 kg each) that are electronically "tethered" to share distributed spacecraft 
systems represent an efficient approach for achieving the science goals of the Auroral Cluster 
mission. Multisatellite missions represent a new trend in gathering space science data and pose 
many new and difficult challenges for the space systems engineer. The results of an Auroral 
Cluster feasibility study, which discusses a variety of mission trade-offs, are presented. A 
discussion of the science background and mission goals is used to identify the technical drivers for 
the design of the multiple spacecraft system. A mission plan and some considerations for a 
Auroral Cluster satellite design are presented. Special consideration is given to the spacecraft 
subsystems that will allow the system to be operated as a network of electronically tethered 
interdependent small satellites. These subsystems include attitude determination, spatial sepamtion 
knowledge and control, data storage, and intersatellite communication. 

INTRODUcnON 

The Earth's magnetosphere is the site of many complex plasma phenomena which play central 
roles in solar-terrestrial physics and upper atmosphere geophysics and which have counterparts in other 
planetary and astrophysical environments. The aurora is one of the most dynamic phenomena in the 
magnetosphere and provides a visible manifestation of the final state of the energy transfer that results 
from the interaction of the solar wind with the magnetosphere. It is both interesting and important to our 
concepts of how magnetospheres work, and we do not fully understand it. Auroras are easily accessible 
to both sounding rockets and orbiting spacecraft, and the important parameters, which include suprathermal 
particle distributions, electric fields and magnetic fields, are measurable with high accuracy. Therefore, 
there must be some unresolved problem with our measurement techniques, which has hindered our ability 
to fully understand the physics of the auroral regions. This problem is driven by the fact that the aurora 
is formed by three-dimensional, time-varying phenomena that must be diagnosed with a three-dimensional 
array of spacecraft with high data rates. Sounding rockets cannot reach the altitudes where the auroral 
particle acceleration region is known to be (1 to 2 RJ, and auroral-physics spacecraft have been deployed 
singly and with low data rates. l 

To overcome the problems associated with using one spacecraft to resolve the dynamic phenomena 
occurring in the magnetosphere, a variety of multiprobe missions have been proposed which would allow 
independent spatial and temporal measurements of the plasma phenomena to be made. Several of these 
candidate multiprobe, or cluster, missions are proposed as future magnetospheric physics missions and are 
discussed in NASA's Space Physics Strategy Implementation Study.2 Among the several cluster programs 
identified in the study (each of which is designed to examine different regions of the magnetosphere), the 
Auroral Ouster mission presents a unique opportunity to apply small satellite technology and capabilities. 
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Although auroral phenomena are very prominent at low altitudes, we now know that the 
precipitating electrons are accelerated at higher altitudes of one RB or so. Cluster-type measurements are 
crucial for our understanding of these acceleration regions. While not universally accepted, the concept 
of an auroral potential structure, involving electric-field components both perpendicular and parallel to the 
magnetic direction, is used extensively in experimental and theoretical studies of the aurora. The spatial 
dependence of the auroral potential structures, their temporal variations, and the relationship between the 
resulting large-scale inverted-V electron precipitation patterns and the generally smaller-scale auroral arc 
structures are topics of fundamental importance to our eventual understanding of auroral particle 
acceleration and magnetosphere-ionosphere coupling. 

The prime objective of the Auroral Cluster mission will be to resolve temporally and spatially 
varying plasma phenomena in the auroral regions with a resolution that varies over the range of -.1 to 100 
kilometers. Some specific phenomena of interest include auroral electron acceleration, transverse and 
parallel ion acceleration, cusp plasma entry and transport, Birkeland current systems, ionospheric plasma 
outflow, the dynamics of ionospheric convection patterns, and the generation of auroral plasma waves. 
These phenomena all play an important role in the exchange of momentum and energy between the 
magnetospheric and ionospheric elements of the Earth system. By using four independent instrument 
platforms, it is possible to obtain multipoint measurements of E and B and then derive the vector 
properties of the auroral regions. Specifically, the measurements would entail deriving the curls, gradients, 
and time derivatives of B and E, as well as the convective derivatives of the bulk. plasma parameters. To 
accomplish these goals the mission's instrument complement must be capable of measuring electric fields 
(DC-IMhz), magnetic fields (DC-10kHz), 3-D electron distributions (-IOeV-30keV), 3-D ions with 
composition (-lOe V -30Ke V), and wave-particle correlations. 

MISSION REQUIREMENTS 

The Auroral Cluster (AC) mission requirements are determined by a unique set of scientific 
objectives and present novel engineering challenges that must be overcome in order to implement the 
program. A summary of the primary AC mission requirements is provided in Table I found at the end 
of this section. Foremost amongst these requirements is the need to use interdependent multiple science 
platforms capable of providing simultaneous multipoint plasma measurements. It is obvious that the 
multiplatform requirement will have a tremendous impact on the design and operation of all segments of 
the AC mission. Further complicating the mission requirements is the need to fly the platforms in a 
configuration that allows for adequate and variable interplatform separation and positioning while the 
cluster traverses the spatial regions of scientific interest. In addition, it is mandatory that the attitude, 
position, and operational sequencing of each science platform be known very precisely in order to generate 
the high-resolution plasma and field quantities, i.e., V x B, an/at + v.Vn, etc. Main science objectives 
of the Auroral Cluster mission which determine these mission requirements include (1) the determination 
of the current density and vorticity through measurements from the cluster configuration, (2) resolution 
of the ambiguity between temporal and spatial variations of plasmas and fields, and (3) investigation of 
the generation and propagation of plasma waves and their interaction with the plasma. 

Current Density and Vorticity 

Field-aligned currents playa central role in the transfer of electrical energy between the solar wind 
and the Earth's magnetosphere, ionosphere, and atmosphere. By measuring the perturbations in the 
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geomagnetic field produced by these currents, it has been determined that they are a pennanent feature 
of the auroral oval and that they tend to occur in upward-downward pairs in a longitudinally-extended 
current-sheet configuration. Any measurement of the actual current density using a single spacecraft has 
of necessity required assumptions concerning the spatial configuration of the current systems. Such 
assumptions break down completely in highly structured regions such as auroral arcs. 1bis difficulty can 
be overcome by making simultaneous measurements at several locations within a volume over which the 
current density is assumed to be relatively unifonn. A minimum of four such measurements is required 
to detennine the spatial gradients of the three magnetic field components, which can then be used to 
calculate V x B and the current using Ampere's Law, V x B = Pol; where the displacement currents have 
been neglected as a result of the macroscopic scale of the currents being measured. The optimum 
configuration for using four spacecraft to obtain measurements of three spatial gradients is one that places 
a spacecraft at each of the four comers of a tetrahedron, as shown in figure 1. 

Measurement of field-aligned currents 
is certainly one of the most powerful uses of 
closely-spaced spacecraft arrays. However, it 
places stringent requirements on measurement 
accuracy and on spacecraft position and 
attitude knowledge, upon which measurement 
accuracy directly depends. To illustrate this it 
is necessary to express Ampere's law in the 
fonn: 

J = (V x B)/JIo "'"' ~B/{JIod), (1) 

where d is the spatial separation over which 
the magnetic field perturbation is observed. 
The ability to detect a distributed current 
density by direct measurement of the curl of B 
among multiple spacecraft in a background 
magnetic field Bo is governed by the accuracy 
of the spacecraft attitude determination, ex 
(measured in degrees), and the ability to 
determine the inter-spacecraft range, and can 
be stated as 

z 

+.I-+---~+-... Y 

x 

FIgure 1: Auroral Cluster Spacecraft 
Flight Configuration 

Combining the above two formulas, the minimum current density detectable is 

(2) 

(3) 

Using values of 7000 nT for Bo, d=lO km, and a.=.01 gives a minimum current density of 100 nA/m2, 
which is appropriate to the auroral zone and implies that an attitude knowledge of at least .01 degrees is 
required for each instrument platform. 
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I 
Spatial/Temporal Variations I 

Due to the quantitative nature of the Auroral Ouster mission, the observations will deal directly I 
with the underlying physics and hence moments of the kinetic equation for a distribution function f: 

at +v- at +~_ df = rat], 
at ar m av lat c 

(4) 

where the collision term on the right hand side may be due to wave-particle interactions. Maxwell's 
equations with their spatial variation may also be used to examine mesoscale and microscale processes 
directly. 

VxE(r,t) = aB(r,t) 

at 

aE 
VxB(r,t) = fl; + floeJ­at 

v -E(r,t) "'" 0 (quasineutrality) 

V-B(r,t) = 0 

(5) 

(6) 

(7) 

(8) 

In the case of electric and magnetic field variations the kinetic equation may be used directly with 
Maxwell's equation and the effects of spatial inhomogeneities may be considered. 

Separation of space and time variation in these plasma and field quantities requires measuring 
transported quantities such as electron and ion density in the convecting plasma frame, i.e. the use of the 
convective derivative dn!dt + v·Vn. Assuming that the velocity is on the order of the spacecraft velocity, 
-5 kIn/so and that the minimum separation distance of the spacecraft is d -10 kIn, measurement of the ion 
convective derivative requires a time resolution .1t of the order 

1 v 5 _ -- = _ = 0.5; At-2, 
At d 10 

(9) 

which is accomplished by a spacecraft spin rate of 20 rpm and a 2-dimensional ion detector mounted with 
its axis of symetry perpendicular to the spacecraft spin axis. Higher convection velocities require larger 
separation distances of the spacecraft to maintain proper temporal resolution with respect to the ion 
distribution function. However, in the case of electrons, where higher temporal resolution for measuring 
the distribution function may be available (-10 ms). the use of multipoint measurements by a single 
satellite may be desirable to resolve properly the terms from equation (9): 

.1t ~ 0.01 = d'/v => d' - 5Om, , (10) 
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Plasma Waves 

The generation of plasma waves is of fundamental importance in dissipating and redistributing the 
free energy of auroral processes. These waves appear to playa role both in ion and electron acceleration 
processes and in the electromagnetic transport of energy into and out of the auroral system. Several 
possible examples (and the mission requirements that they suggest) are discussed below. 

Electron acceleration is a key factor in auroral processes. Many suggestions for how this 
acceleration takes place have been proposed. One such example is double layers, which can be detected 
by their effects on the electric fields and electron distributions. The detection of these structures requires 
that simultaneous electron and wave measurements be carried out at frequencies near the plasma frequency 
(3-10 kHz in the high-altitude auroral region). This implies pitch angle measurements of electrons with 
time scales of the order of 1 ms and scale lengths for electric field measurements on the order of 100 m. 
Propagation of these structures along the magnetic field is expected to occur at the ion sound speed, which 
is of the order of 10 km/s. This implies an interspacecraft delay of -1 s for a 10 km separation distance. 

Although the use of interferometric methods for the various wave antenna on a given spacecraft 
is adequate for determining the wave propagation vector for plasma waves with wavelengths of the order 
of the antenna lengths (100-200 m), other waves such as the Auroral Kilometric Radiation and Alfven 
waves have much larger wavelengths (AKR 50-600 kHz; wavelengths -6,000 to 500 m). In the case of 
AKR, the wave propagation vector can be studied if the separate spacecraft clocks are synchronized to 
provide timing information on the order of 100 ns. Away from the auroral source region, the 
interferometric wave detection can give information about the characteristics of the source location and 
time variability. For Alfven waves, the wavelengths are much larger (-1000 km) and their frequencies 
lower (100 Hz); however, their propagation along the magnetic field can be studied by interspacecraft 
correlation of the observed waves. Interspacecraft separations of 10 km imply again an interspacecraft 
temporal resolution of 100 ns to study Alfven propagation. 

Ion cyclotron waves have spatial scales of the order of the ion gyroradius (10 km for a keY 0+ 
ion) and frequencies of -10 Hz for 0+ (100 Hz for H+). The spatial structure and wave-particle 
interactions can be studied by interspacecraft correlations of the plasma wave and ion detector data if the 
temporal resolution of the measurements is on the order of 1-10 milliseconds. 

In summary, plasma waves require synchronized sampling/timing on the order of 100 ns and 
interspacecraft corre1ators if fundamental questions about the microphysics of auroral processes are to be 
addressed. 

MISSION DESIGN 

The goal of the mission design process is to formulate a system architecture that can meet or 
exceed the stated mission requirements at a minimal cost. It is both possible and desirable to achieve the 
AC mission objective by employing four. small, "electronically tethered" satellites. Each of the satellites 
would be fully equipped to serve as a science instrument platform from which the desired simultaneous 
multipoint auroral plasma measurements would be made. The keys to employing a cost effective small 
satellite architecture, however, will be the judicious selection of a science payload capable of obtaining 
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Table I Auroral Ouster Primary Mission Requirements Summary 

PARAMETER/CONSTRAINT/REQUIREMENT/DESIGN SPECIFICATION 

General Configuration 

Orbir/Dynamics 

Mission Life 

Launch Vehicle 

Communications 

Attitude 

Position 

Electrostatic Cleanliness 

Command and Data Handling 

4 "electronically tethered" spacecraft 

High-altitude, high-inclination orbit maximizing time spent in 
auroral regions 

1 year design life 

Desire single launch for all 4 satellites 

System must provide the intersatellite electronic tether and the 
ground link 

Knowledge to .01 (>, control to 1 (> 

Intersatellite position knowledge to 1% or 100m 

Minimize charge build-up. All surfaces exposed to plasma to 
be conductive 

Multiple data taking modes 

the desired measurements and the limited use of advanced spacecraft subsystem technology. To 
demonstrate the feasibility of using small satellites for the AC mission, the following sections will discuss 
the orbital options considered for the mission, a strawman science payload for the mission, and the 
possible configurations of the AC spacecraft's subsystems. 

Orbital Considerations 

The ideal orbit for the AC mission should maximize the frequency at which the cluster traverses 
the Earth's auroral acceleration regions, while simultaneously allowing for the minimal cluster velocity 
when passing through those regions. There are also a variety of possible mission-driven constraints on 
the longitudes of the orbit's nodes, which would control the relative times that the cluster traverses the 
auroral regions. In addition, the various engineering issues, i.e., thermal management, power generation, 
RF link considerations, etc., must be factored into the orbital design process. Finally, the optimum orbit 
will maximize the mission's science return while minimizing the launch vehicle requirements. Three 
likely orbital candidates were arrived at after these constraints and issues were considered. These 
candidate orbits are (1) high-apogee, high-perigee, polar (HAHPP) orbit; (2) high-apogee sun-synchronous 
(HASS) orbit; and (3) sun-synChronous, fixed line of apsides (SSFLA) orbit. The pertinent orbital 
parameters for these orbits are listed in Table II and a brief discussion of them follows. 

HAHPP Orbit 
The high-apogee (-10,000 km), high-perigee (-5,000 km), polar (i=900) orbit is ideal for 

maximizing the time the cluster spends in the auroral acceleration regions because it provides a high-
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altitude (>5,000 km) traversal of both the north and south auroral regions during each orbit. 
Unfortunately, this orbit is obtainable only with considerable t1V cost and, therefore, is the most payload­
mass-restrictive orbital candidate. The cluster's velocity in this orbit will be 6.43 km/s at perigee and 4.47 
km/s at apogee. If the orbit is held at a 90° inclination there will be no nodal precession; this will 
influence the satellites' thermal management and power generation subsystems design because of the 
variable position of the solar flux vector over the mission. Since the orbit plane is fixed in inertial space, 
measurements of the auroral spatial regions can be made over all local times during the course of a one­
year mission. The orbit's line of apsides rotates at -.35° per day, allowing the cluster to traverse the 
auroral regions at altitudes that vary from 5,000 km to 10,000 km over the course of a year. 

HASS Orbit 
The high-apogee sun-synchronous orbit considered for Auroral Cluster is defined by a 500 km 

perigee altitude by a 6378 km (1 RP) apogee altitude. For this orbit to be sun-synchronous the inclination 
must be fixed at 111.77° to allow the nodal precession rate to match the average apparent solar precession 
rate of .986° per day. The t1V requirements for this orbit are the lowest of the three candidate orbits 
considered; thus this mission configuration is the least payload-mass-restrictive orbital option. The 
cluster's velocity in this orbit will be 8.68 km/s at perigee and 4.68 km/s at apogee. The initial argument 
of perigee would be 270°, establishing apogee and perigee above geographic latitudes of 68.23° north and 
south respectively. Since this orbit is sun-synchronous it will have a constant solar illumination vector 
over the course of a year; a significant benefit in the design of the power generation system and the 
thermal management system. The apsidal rotation rate of -.42° per day will effect the mission in two 
ways: (1) the apogee will eventually rotate out of the auroral region and the cluster will not be traversing 
the regions of interest at the desired altitudes; but (2) given enough time (-428 days), the apogee will have 
rotated 180° and will occur at a geographic latitude of 68.23° south, which will allow for sampling of the 
Earth's southern auroral regions. 

SSFLA Orbit 
The sun-synchronous, fixed line of apsides orbit possesses several properties that make it an ideal 

option for the AC mission. For the orbit to possess a fixed line of apsides and be sun-synchronous the 
inclination must be 116.6°. If a perigee altitude of 500 km is selected to minimize both launch vehicle 
requirements and atmospheric drag, then the apogee altitude must be 7903 km in order to obtain the sun­
synchronous nodal rotation rate of .986° per day. The orbit's argument of perigee would be established 
at 270°, causing apogee to occur at 63.4° north geographic latitude. The apogee altitude of -7,900 km 
is ideal since it coincides with the approximate center of the estimated auroral region's altitude range of 
5,000 to 10,000 km. The cluster's velocity in this orbit will be 8.84 km/s at perigee and 4.26 km/s at 
apogee. Of the three orbits considered, the SSFLA orbit allows for the smallest cluster velocity as it 
traverses the auroral regions. 

The SSFLA orbit is an attractive option for the AC mission for a variety of reasons. Since the 
orbit is sun-synchronous, the solar flux vector remains constant over the mission lifetime and eases the 
design constraints on the thennal management and power generation subsystems. The sun-synchronous 
aspect of the orbit also allows the cluster to sample the same region of the magnetosphere at the same 
local time for each traversal. The fixed line of apsides aspect of the orbit assures that the cluster traverses 
the auroral regions at the same altitude during each traversal, and also assures that the apogee will not 
rotate out of the auroral regions as was the case for the HASS orbit discussed above. It should be pointed 
out, however, that since the Earth and hence the magnetosphere is rotating with respect to the cluster's 
orbit, neither the SSFLA nor the HASS orbit will traverse the auroral region during each orbit. The 
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SSFLA orbit will, however, traverse some portion of the high-altitude auroral region during several orbits 
per day of the mission, whereas the HASS orbit will not traverse the high altitude auroral region every 
day of the mission because the orbit's apogee position will rotate out of the high geographic latitudes. 

Table n Auroral Ouster Candidate Orbit Parameters 

Perigee Apogee 
Altitude Altitude Period dro/dt dQ/dt 

Orbit .QQill .QQill Inclination (hours) (deg/day) (degfday) 

HAHPP 5,000 10,000 90° 4.52 -.350 0 

SSFLA 500 7,903 116.6° 3.00 0 .986 

HASS 500 6,378 111.77° 2.69 -.415 .986 

Cluster Dynamics 

The success of the Auroral Cluster mission is highly dependent upon the ability to arrange the 
four spacecraft in a configuration that accommodates the gathering of data that can be used to derive the 
vector properties of E and B. As stated in the mission requirements section, the desired arrangement for 
accomplishing this is to have each spacecraft positioned at the comer of a tetrahedron. Additionally, the 
interspacecraft range in the tetrahedron should be variable over the course of the mission from 10 km to 
100 kIn, i.e., the legs of the tetrahedron should be variable by an order of magnitude. To achieve a fixed 
tetrahedral configuration for the cluster at all times during the orbit is not possible without applying 
continuous thrust: an option well beyond the scope of this mission. It should be possible, however, to 
have the satellites obtain the desired tetrahedral configuration periodically, Le., once per orbit. Of course 
the challenge is to establish, and then maintain, the proper initial conditions so that the cluster is in the 
tetrahedral configuration as it traverses the auroral region. To solve for these initial conditions one could 
employ the Clohessy-Wiltshire equations and apply them to the relative motion of the spacecraft in the 
cluster.3 The relative motion analysis for the AC mission has yet to be done; however, the significance 
of such an analysis has not been overlooked, and it represents one of the primary undertakings that should 
be executed in a more detailed AC mission study. For the purposes of this paper, however, it is possible 
to present a brief discussion of how the tetrahedral cluster can be periodically obtained. 

The fundamental requirement for establishing the tetrahedral configuration is to place all four AC 
spacecraft in very similar but not identical orbits. One leg of the tetrahedron can be established by having 
two of the four spacecraft in identical orbits, but separated in the orbit plane by some difference in true 
anomaly_ A third spacecraft would be in an orbit almost identical to that of the first two, with the only 
exceptions being a slight difference in inclination and a true anomaly that places it between the first two 
spacecraft when the two orbit planes intersect at their common line of nodes. The results of this 
arrangement will be to have the third spacecraft oscillating back-and-forth between the first two spacecraft 
during each orbit. This motion will create an oscillating triangular base of the tetrahedron, and will 
occasionally (twice in each orbit) create a three satellite "string of pearls" configuration where the two 
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slightly different orbit planes intersect. The fourth spacecraft would be put into an orbit nearly identical 
to that of the first two, with the exception being a slightly different value of eccentricity. The difference 
in eccentricity will result in the fourth satellite oscillating in altitude with respect to the position of the 
two satellites in the first orbit. This motion will allow the fourth satellite to periodically occupy the apex 
point of the tetrahedron. All of the initial slight differences in the orbital elements for each satellite in 
the cluster can be established during satellite separation by applying some smallll V relative to the other 
satellites. This II V can be performed by either a spring ejection mechanism or a propulsion system in the 
satellite. To slowly expand the size of the tetrahedron out to 100 kIn over the course of the mission, and 
to provide station-keeping, will require a periodic II V of the satellites in the cluster. Thus, each satellite 
will need to have a small propulsion system capable of supporting the II V manuevers. 

Launch Vehicle Considerations 

The ideal launch vehicle for the AC mission is the Delta II 7920 two-stage vehicle using the 2.9-
meter payload fairing. Although the Delta II is not typically used as a dedicated vehicle for small satellite 
missions, the vehicle is ideal for AC because its performance will allow four reasonably sized spacecraft 
to be deployed to any of the three candidate orbits with only one launch. Two of the technical arguments 
for launching all four satellites on one vehicle are (1) that the common launch assures that all initial orbital 
parameters are identical and (2) that the common launch eliminates the need to perform a complex 
rendezvous maneuver to configure the cluster on orbit. An additional advantage of the two-stage Delta 
is the ability to refire the liquid upper stage to trim the orbit to the desired orbital parameters before 
cluster deployment. The 2.9-meter payload fairing provides more than adequate volume to stack the four 
satellites and allows ample additional space for the many radially deploying appendages found on each 
spacecraft. The Delta II performance to the three orbits considered is: 973 kg to the HAHPP orbit, 1863 
kg to the HASS orbit, and 1641 kg to the SSFLA orbit.4 Dividing anyone of these mass numbers by four 
will yield the allowable individual wet spacecraft weight that can be delivered to the orbit of interest. 

STRAWMAN SCIENCE PAYLOAD 

The Auroral Cluster instrumentation is composed of an advanced set of representative sensors that 
will measure electric and magnetic fields, plasmas, and energetic particles. To fully resolve temporal and 
spatial features of auroral events, measurements will need to be made with a high degree of time 
resolution. This high time resolution requires that the instrument complement as well as the Command 
and Data Handling (C&DH) subsystem be capable of very high data rates. For the strawman payload a 
data rate of approximately 1 Mbps is required to meet the science objectives. Since it is impractical to 
support this data rate on a continuous basis, the instruments must be capable of both a low background 
data rate and a short-term high data rate burst mode. A third data taking mode, the "sleep" mode, where 
the scientific instruments will be turned off, will also be used to minimize telemetry, power, and memory 
requirements. 

At pre-programmed times or latitudes of the orbit, the C&DH subsystem will "wake up" the 
instruments and place them in the background data taking mode. Specific locations or times of auroral 
events of interest cannot be predetermined with sufficient accuracy to pre-program the high data rate 
intervals; thus the events must be identified in real time on the basis of in situ data. Each instrument will 
have a pre-defined trigger level programmed into the C&DH subsystem such that if that level is ever 
reached, the C&DH subsystem will shift all of the scientific instruments into the burst mode. It is also 
important that all spacecraft capture high rate data simultaneously; thus event identification trigger 
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commands must be broadcast between spacecraft. The instruments will stay in the burst mode until all 
instrument activity levels fall below their specified trigger levels. At that time, the C&DH subsystem will 
again restore the instruments to the background data taking mode which will remain in effect until the 
sleep mode region of the orbit is entered.s 

Since precise correlative measurements will be made between different satellites, timing and 
synchronization of instruments, power supplies and C&DH subsystems is mandatory. By using GPS 
timing signals, it should be possible to synchronize the Auroral Cluster spacecraft's clocks to within 100 
ns of each other.6 

Ion ~easurernents 

Two instruments will measure the ion plasma population. The Hot Plasma Composition Analyzer 
(HPCA), consisting of a toroidal top hat energy analyzer and a time-of-flight mass analyzer, will measure 
the high energy plasma particles. The cold plasma measurements will be made by a Cold Plasma 
Composition Analyzer (CPCA) such as the Toroidal Ion Dynamics Experiment (TIDE) currently being 
built for use on the ISTP POLAR spacecraft. The CPCA instrument uses a programmable electrostatic 
mirror and a retarding potential analyzer to perform the energy analysis of the ion spectrum and a time-of­
flight mass analyzer to determine the ion species. The time-of-flight portions of the HPCA and CPCA 
instruments could be identical. Table ill lists many of the key characteristics of the HPCA and CPCA 
instrument.7.8 To save resources, the CPCA instrument will only be installed on two of the AC spacecraft. 

Table m HPCA and CPCA Experiment 

Configuration 

Field of View 

Energy Resolution 

Mass range (AMU) 

MlQ resolution 

Energy Range 

Geometric Factor 

Telemetry 

Mass 

Power 

HPCA: Toroidal top hat energy analyzer w/time-of-flight 
mass analysis 

CPCA: Electrostatic mirror/retarding potential analyzer w/time-of-flight 
mass analysis 

Static: 180° X 10° 
w/spacecraft spin: 360° X 157,50 

0.1 

1 to 40 

2 (m/AIll at 1 %) 

HPCA: 1 to 50 ke V 
CPCA: .1 to 300 ev 

HPCA: 1.7 X 10-3 cm2sr per pixel (22.5° per pixel) 
CPCA: .1 cm2sr per pixel (22,50 per pixel) 

Background mode = 5 kbits/sec each; Burst mode = 50 kbits/sec 

16 kg each 

12 watts each 
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For the accurate measurement of cold plasma, the spacecraft potential with respect to the ambient 
environment must be maintained near the plasma potential. To actively control spacecraft charging, the 
satellite will be equipped with an ion emitter which will release indium ions to maintain the spacecraft 
charge at a neutral level. The ion emitter, which can emit a total current of 20 pA, will be hard-wired 
to the CPCA as well as to the electric wave experiment which will detennine the amount of ion current 
that needs to be emitted to maintain the neutral spacecraft charge. The ion emitter will only be installed 
on the spacecraft that have a CPCA.9 

Plasma Wave Measurements 

The electric wave experiment will consist of two booms and four antennas. The booms will be 
5 meter Weitzmann booms mounted parallel to the spin axis of the satellite. Each boom will have two 
10 cm diameter sensors, one at the end of the boom at 5 meters and one at 4 meters (1 meter from the 
end of the boom). The four antennas will be positioned perpendicular to the spin axis of the satellite. 
Each of the antennae will consist of a radial wire 45 meters long and will again have two 10 cm sensors. 
The sensors will be placed 10 meters apart with one at the end of the antenna. The electric field 
experiment is very similar to that flown on Viking and Frej a. 10. 11. 12 Potential difference will be measured 
between opposite booms, between adjacent booms, and between the sensors on the same boom. The 
electric wave experiment is vital for the mission as it will measure the plasma density, the K-vector, 
and polarization of the plasma environment. Key characteristics of the electric wave experiment are listed 
in the table IV. 

Table IV Electric Fields and Waves Experiment 

Configuration 

Measurement 

Telemetry 

Mass 

Power 

Electron Measurements 

4 radially mounted wire antenna, each 45m long, each w/2 10 cm dia 
sensors located 10 m apart 
2 axially mounted rigid booms, each 5 m long. each w/2 10 cm dia sensors 
located 1 m apart 

E, DC-1O MHz, total electron density, K vector, polarization 

Background mode = 40 kbits/s; Burst mode = 400 kbits/s 

7.0 kg for electronics and sensors; 
25 kg for total experiment 

15 watts 

The electron energy spectrum will be measured by two electron spectrometers. The spectrometers 
will consist of a spherical top hat energy analyzer and a micro-channel plate anode system. Key 
characteristics of the experiment are listed in Table V. The spectrometers will share a common data 
processing unit but will serve different functions. The top hat detector mounted with its acceptance 
"plane" parallel to the orbit plane will serve to provide very high-time-resolution energy spectra. An 
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elevation analyzer will be mounted before the energy analyzer to increase the angular acceptance of the 
instrument from 5° X 360° to 90° X 360°. The magnetometer located on the satellite will determine the 
position of the magnetic field in relation to the satellite in real time. With this knowledge the data 
processing unit for the electron spectrometer will adjust the voltage of the elevation analyzer to force the 
acceptance plane of the spectrometer to be in the plane of the magnetic field vector. 

The electron spectrometer, whose axis of symmetry is perpendicular to the spin axis of the 
spacecraft, will take advantage of the spin to obtain full 41t coverage of the environment. The two 
spectrometers will be identical except for the elevation analyzer attached to the front end of the high-time­
resolution instrument. The top hat detector is a proven design with much flight history.13 

Table V Electron Energy Spectrometer 

Configuration 

Field of View 

Energy Range 

Geometric Factor 

Telemetry 

Mass 

Power 

Auroral Imaging 

2 top hat analyzers; A) one deployed radially, B) one mounted such that 
sensor's axis of symmetry is parallel with the spacecraft spin axis. 
Sensor B is equipped with an electrostatic elevation analyzer. 

Sensor A: 
Static: 360° X 5° fan 
With spacecraft spin: full 41t coverage 
Sensor B: 
Static: 360° X 5° fan 
With elevation analyzer: 360° X 90° fan 

10 eV to 90 KeV, 10% energy resolution (ABlE) 

1.17 X 10-3 cm2sr per pixel (36 10° pixels) 

Background mode = 10 kbitslsec each; 
Burst mode = 100 kbits/sec each 

10 kg total 

10 watts total 

Two of the satellites will also be equipped with imagers. The baseline imager for the mission is 
the ultraviolet auroral imager that was used on the Viking spacecraft. The imager consists of two 
intensified wide-angle fll cameras. They are identical except in passband with electronic despinning 
providing exposure time of .15 second. The imagers take advantage of tapered fiber optic bundles to 
remove distonions that are generated when the spherical focal surface of the Burch configuration camera 
is projected onto the plane of the charge coupled detector.14 By equipping two of the satellites with 
imagers, not only is redundancy gained but also stereoscopic imaging of the aurora is now possible. Key 
characteristics of the imager can be found in Table VI. 
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Table VI Auroral Imaging Experiment 

Conftguration 

Field of View 

Image Speed 

Telemetry 

Mass 

Power 

Magnetometer 

Sensor composed of 2 fll cameras; 1240 - 1500 A and 1300 - 1900 A 

29° X 24° 

1 image per spin (.15 sec exposure time) 

Background mode = 10 kbits/sec; 
Burst mode = 100 kbits/sec 

8.5 kg 

5.3 W 

The final experiment of the Auroral Ouster program is the Magnetic Field experiment, which will 
consist of a three-axis fluxgate magnetometer mounted on a 5-meter rigid boom. The system has heritage 
to the Viking mission as well as numerous other flights.10 The magnetometer will function within four 
ranges from ±1024 (±O.125)nT to ±65,536 (±8)nT. Table VII gives key characteristics of the Magnetic 
Field Experiment. 

Table VII Magnetic Field Experiment 

Conftguration 

Measurement Range 

Sample Speed 

Resolution 

Telemetry 

Mass 

Power 

3-axis fluxgate magnetometer on 5m long rigid boom 

±1024 (±125)nT to ±65,536 (±8)nT 

53 samples per second 

;:::6 pT 

2.2 kbits/s 

2.1 kg 

1.lW 

SPACECRAFT CONSIDERATIONS 

The baseline configuration for the Auroral Cluster mission consists of four spacecraft that are spin 
stabilized with their spin axis nonnal to the orbit plane. Two of the four spacecraft are labeled as 
"mother" vehicles, because of their increased complement of science instruments. and because they provide 
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the cluster's RF Earth link. The remaining two spacecraft are labeled "daughter" vehicles because of their 
smaller instrument complement and because they depend upon the "mother" vehicles to downlink their 
telemetry. Each spacecraft is expected to carry approximately 60 kg of science payload. The design goals 
for each spacecraft are to have a wet mass less than 400 kg, generate a minimum of -200 W continuous 
power, determine attitude to .010 and control attitude to 10, and be capable of operating for a one year 
mission life. At this early stage of the AC mission design process, it is impossible to present a detailed 
and accurate spacecraft design. It is possible, however, to discuss some of the design options that exist 
for the subsystems that will make up the AC spacecraft Although not intended to be an exhaustive 
presentation of all options, the following discussion serves as a brief introduction to some of the trade-offs 
that will need to be addressed before the detailed design of the AC spacecraft begins. 

Position Determination 

The AC science requirements demand that the intersatellite (relative) position of each satellite be 
known to 100 meters or within I % of the cluster's intersatellite separation distance during auroral region 
traversals. The absolute position of the cluster in an Earth-centered frame must also be known to within 
10% of the cluster's size, Le., if the bases of the tetrahedron formed by the cluster are 10 kID, then the 
absolute position of the cluster should be known to within 1 kID. The ideal and most autonomous way 
to obtain this knowledge is to employ the capabilities of the Global Positioning System (GPS). 

GPS offers anew, very precise, and multipUlpose system for determining the position of a 
spacecraft in low Earth orbit (LEO). A variety of upcoming missions - most notably the 
TOPEX/POSEIDEN and the EOS programs - will be flown with onboard GPS receivers to demonstrate 
the system's ability to precisely determine a satellite's position in low-altitude orbits. The position 
determination capabilities made available by the GPS system are remarkable; TOPEX is anticipating the 
ability to determine the satellite's altitude to a sub-decimeter accuracy by employing differential GPS.1S 

Although sub-decimeter position knowledge is not required for AC, position knowledge accuracy on the 
order of one to ten meters is desirable. Therefore, the combination of GPS' capabilities makes its use 
ideal for solving a variety of the AC mission problems, which include the precise determination of 
absolute and relative spacecraft position, the determination of spacecraft attitude, and the ability to provide 
very accurate clock synchronization for all the spacecraft and instruments in the cluster. 

Employing GPS for the AC mission, however, is not as straightforward as it is for spacecraft 
residing in LEO. The AC mission's high-altitude excursions into the auroral regions will result in the 
cluster departing from spatial regions that are normally illuminated by the Earth-pointing beams of the 
GPS constellation; thus, traditional "up-looking" differential GPS is not always functional for the 
spacecraft in the proposed AC orbits. There are, however, two alternative GPS methodologies that may 
work: (1) "down-looking" differential GPS and (2) "inverted" differential GPS16

• Obtaining the desired 
relative and absolute position knowledge of the AC spacecraft using these alternative GPS methods 
appears to be a feasible option. By employing the "down-looking" differential GPS technique, and 
supporting the AC mission with a GPS ground station network (being developed to support the variety 
of upcoming GPS space borne user missions), it appears possible to obtain absolute AC spacecraft position 
in the 1 to 10 meter range. is. 16. If the AC cluster is to implement the GPS capabilities, a multichannel, 
differential-capable GPS receiver, as well as isotropic GPS antennas must be flown on each spacecraft. 
As a baseline system to support the early AC spacecraft sizing exercise, we have used the mass and power 
numbers for Motorola's Monarch Spaceborne GPS user receiver. This system weighs 4 kg and is expected 
to consume 30 watts. 17 
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Attitude Determination and Control 

Much of the success of the AC program will depend on the ability to determine the precise attitude 
of each spacecraft in the cluster. As explained earlier, the attitude of each spacecraft must be determined 
to within .01 0, a level of accuracy seldom, if ever, required on previous space physics missions. The 
selection of the attitude control configuration for the mission is reduced to a trivial exercise, since a 20 
rpm (1200 per second) spin-stabilized configuration is necessitated by the need to obtain the three­
dimensional high-time-resolution plasma environment data. Unfortunately, the combination of the 
spacecraft's relatively high spin-rate control configuration with the need to determine attitude to within 
.010 represents a significant technical challenge that must be overcome in order to implement the AC 
mission. 

Attitude Determination 
Traditionally, a .010 level of attitude determination accuracy would be obtained by employing 

some form of star detecting device, e.g., a star scanner, star mapper, or star tracker. For a spin-stabilized 
spacecraft, such as the AC spacecraft, the star scanner would be the instrument of choice for obtaining 
.010 attitude knowledge. For a variety of reasons, however, a star scanning device may not represent the 
ideal technology for the AC mission. Some of the specific reasons for wanting to exclude a star scanner 
from use on the AC mission include: (1) star scanners tend to be massive, and voluminous, and they 
consume considerable amounts of power; (2) there do not appear to be any star scanners in production or 
design at the present time; and (3) modifying an old star scanner design or developing a new star scanner 
design capable of functioning on a spacecraft spinning at 20 rpm would entail a significant and costly 
development effort. The conclusion, therefore, is that star scanners represent a costly technology that 
could work, but if a functional alternative exists then it might be worth pursuing. 

The primary alternative to the use of a star scanner would be to employ the capabilities of the GPS 
system. This is an especially attractive option for the AC mission because some of the necessary hardware 
infrastructure will already be in place if GPS is used to determine the position of each spacecraft in the 
cluster. The direct approach to using GPS for determining a spacecraft's attitude entails the use of 
interferometric techniques on the signals transmitted by the GPS space vehicles. A considerable amount 
of work has been done to demonstrate the feasibility of this approach.6

, 18, 19,20 By employing two GPS 
antennas separated by a baseline of length L, and by interferometrically combining the signals received 
at the two antennas, it is possible to determine the attitude of the baseline.6 If three different baselines 
are used, it is possible to determine the attitude of a vehicle about three axes. It is estimated that the 
precision of such measurements can be made to below the desired .0 I 0, provided the system is configured 
properly; in fact, the Naval Research Laboratory is managing the Space Navigation and Pointing System 
(SNAP) program that hopes to be able to demonstrate 1 prad attitude determination capability using 
GPS.18 Although a variety of factors determine the accuracy of the measurement, e.g., system noise, 
dilution of precision, integration times, etc., one of the significant issues that will affect the ability to use 
GPS for attitude measurements on AC will be the ability to place the GPS antennas at a great enough 
distance apart (L) to obtain an attitude measurement of the desired accuracy. If a .010 attitude knowledge 
is desired, then the antenna separation distance, L, could be as small as 1 to 5 meters for the properly 
configured system.6

,20 By deploying two isotropic GPS antennas on the axially mounted plasma wave 
experiment booms, it should be possible to obtain a baseline length of anywhere from 2 to 5 meters. 
Although such a configuration will only yield one attitude vector via GPS, a narrow field-of-view, high­
accuracy sun sensor could also be employed to fully resolve the vehicle's attitude. 
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Attitude Control 
The AC spacecraft will be spin stabilized at 20 rpm. This configuration is optimum for allowing 

the science instruments to monitor the plasma's 3-dimensional properties with high time resolution. The 
additional benefits of using a spin stabilized design are: it minimizes the mass of the attitude control 
subsystem, it represents an approach that can be readily implemented and maintained, and it is a very 
efficient control technique for a mission like AC that does not require periodic slewing maneuvers. Initial 
spacecraft spin-up can be achieved by the launch vehicle's upper stage or by firing vernier thrusters. A 
spin control system will be required, and could consist of an appropriately configured arrangement of 
thrusters and a nutation damper. To minimize nutation, proper and precise balancing of the spacecraft will 
be mandatory. A significant amount of analysis to model, predict, and compensate for the dynamics of 
the radially deployed booms will be required. 

Command and Data Handling Subsystem 

The Auroral Cluster Command and Data Handling (C&DH) subsystem is composed of two main 
functional blocks, a Central Processing Unit (CPU) and a mass storage unit. Two different architectures 
distributed and centralized, exist for satellite command and data handling subsystems. Multiple-satellite 
missions such as Auroral Ouster provide yet another choice, distributing the C&DH system between 
satellites using electronic tethering. Further details about this intersatellite distributed system will be given 
in the following sections. 

The requirements of the command and data handling subsystem are:21 

1. Interface to the Communication and the Attitude Determination & Control subsystems. 
2. Provide on-board temporary mass data storage. 
3. Receive and issue commands for satellite and instrument mode changes or status changes. 
4. Run "standard" programs for control of the satellite and instruments. 
5. Provide on board processing, formatting, compressing and combining of data. 
6. Monitor the status of the satellite and instruments for health and safety. 

Instrument Interface 
The first interfaces that the C&DH subsystem must connect to are the instrument interfaces. 

Again, the question of where or how to distribute the system memory and data processing arises. One 
option, the distributed systems approach, uses "smart instruments" that have their own mass memory 
storage and microprocessors. This intelligence at the instrument level makes the commands and data that 
are transferred between the instrument and the C&DH subsystem relatively simple. Cabling is reduced, 
interfaces are simpler, and the possibility of noise pickup is reduced. 

The other extreme, a centralized C&DH system or nondistributed system, uses "dumb" 
instruments. With centralized systems, very little mass storage is available to the instrument at the 
instrument location. The instruments typically do not have microprocessors, and the commands and data 
that are shifted back and forth on the bus tend to be more complicated as well as in larger quantities. 
Advantages of centralized systems include simpler instrument design; economies of scale concerning 
storage, processing and compressing of data; and more control by the spacecraft. There are many trade­
offs and advantages for each of these different systems. 
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Spacecraft Interface 
The second interface that the command and data handling subsystem must be able to coordinate 

is the spacecraft interface. The role of the C&DH subsystem when dealing with the spacecraft system is 
one of monitoring and issuing commands. In many cases the monitors are analog in contrast to the 
instrument interface where the lines are typically digital. The command and data handling system will 
monitor temperatures, voltages, currents and limit switches. The C&DH subsystem will command the 
different operations of the satellite, such as boom deployments, and any ldnd of attitude or positional 
adjustment that the satellite needs to perform. 

Again, the amount of satellite autonomy is a question which must be addressed. Processing power 
can be distributed among the cluster of satellites or can be placed on one or two of the satellites and 
shared between the four satellites. A detailed study of these different trade-offs, which is beyond the 
scope of this paper, should be undertaken. The study must focus on cost, weight, power and other factors 
at a mission level. 

GPS Receiver Interface 
The GPS receiver, which is part of the Attitude Determination and Control subsystem, must also 

interface with the C&DH subsystem. The GPS receiver will provide many important pieces of information 
to the C&DH subsystem, including position and attitude determination of the satellite and a clock and 
timing signal. The timing signal will be used to synchronize all power supplies in the cluster to the same 
frequency, thus eliminating unwanted noise at random frequencies and making possible multipoint 
correlated wave-particle measurements. This synchronization is particularly important for the Electric 
Fields and Waves experiment ability to perform interferometric measurements. Specific details and 
specifications of the GPS receiver capabilities are found in the Attitude Determination and Control 
subsystem section. 

Data Storage 
There are three mass data storage options for the AC mission. The first option is to place all the 

memory at the instrument level. The instrumenters would likely be responsible for the purchase, design, 
fabrication and test of this memory. The second option, a centralized mass storage system per satellite, 
utilizes a single mass storage device on each satellite to which all instruments send their data. For the 
strawman list of instruments memory required for one orbit per satellite is approximately 200 Mbytes. 
The final option for the distribution of the mass storage is using one or possibly two centralized mass 
storage units for all four satellites. A possible scenario could be two "mother" satellites equipped with 
mass storage units, and two "daughter" satellites that would transmit all of their data to the mother for 
storage until the time to downlink the data. The advantages of this option include the elimination of the 
weight, power, and cost of separate data storage units on two of the satellites, while still retaining 
redundancy. 

In today's technology, three options exist for large mass storage devices: Random Access Memory 
(RAM) chips; tape recorders, which have been successfully used for many years on numerous missions; 
and new, emerging technologies such as optical disks or magnetic disks. These new technologies are 
presently in the breadboard stage, but are expected to be space-proven within the next year or two. At 
the time of spacecraft design, a detailed trade-off study should be performed to fmd out what is the most 
cost-effective and reliable method to store a large quantity of data At present in the storage capacities 
needed, RAM costs approximately $20 k per megabyte, tape recorders cost approximately $.5 k per 
megabyte, and optical disk drives, though only in the breadboard stage are expected to cost approximately 
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$.3 k per megabyte.n . 23 Obviously, all of these costs will change within the next few years and should 
be carefully looked at when the mission is being designed. 

Communication Subsystem Interface 
The Communication subsystem is the subsystem that is responsible for sending and receiving data 

and commands away from and to the satellite. Other important pieces of infonnation that will have to 
be transmitted or received include clock timing signals, position and attitude data, and health and safety 
checks. One of the Command and Data Handling subsystem functions is to fonnat, combine, compress, 
and process the data into a fonn where the Communication subsystem can further transmit or receive it. 
In addition to data processing, these tasks will be the main function of the Central Processing Unit. 

Data Processing 
When one designs a satellite, one always faces the question of where best to perfonn the data 

processing, on-board or on the ground. The drastic cut in the amount of telemetry to be sent down to the 
ground each orbit is the key reason for perfonning data processing on board. However, on-board 
processing complicates the design of the satellite, increases the complexity of the command and data 
handling subsystem, and typically increases weight, power, and cost of the satellite. The advantage of 
doing the processing on the ground is unlimited, inexpensive power and computing. Large mainframe 
computers can be used for data processing in a non-rushed mode. The principle disadvantage to 
processing on the ground is, as stated, the large amount of telemetry and data which one receives and 
possibly does not need. 

With the Auroral Cluster mission, there is an additional choice: perfonn the data processing on 
board one satellite or on board each satellite. A detailed trade-off study should be perfonned to establish 
the optimum amount of processing and the location of this processing for the AC mission. 

Other considerations besides cost, weight, and power must be factored into the data processing 
decision. One such factor is redundancy and reliability. Again, a "mother-daughter" scenario could be 
used: the mother satellites would not only provide the mass storage, but would also provide all of the on­
board processing. The system would be configured such that if either mother failed the other would act 
as a backup and take over. 

Command & Data Handling Subsystem Tradeoffs 
The design of the C&DH subsystem contains more options than any other subsystem of the AC 

mission. A detailed mission utility analysis needs to be perfonned to determine the optimum configuration 
for the subsystem. Easily quantifiable factors that must be examined are how the different options affect 
program resources such as mass, cost, volume, and power. Other factors of at least equal importance that 
also need to be examined include system reliability and redundancy, required test and integration time, 
amount of needed program coordination, ability to meet the mission goals, system adaptability, system 
risk, and the potential engineering knowledge gained by the technology. The mission utility analysis is 
one the first steps in the implementation of the Auroral Cluster program. 

Communication Subsystem 

The Auroral Cluster Communication subsystem provides the link between the satellite and Earth 
and the satellite and the other AC satellites. The Communication subsystem interfaces to the Command 
and Data Handling subsystem, which directly controls the instruments and the spacecraft itself.21 
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Requirements of the Auroral Ouster communication system are: 
Command reception and detection 

acquire, track, and demodulate uplink carrier 
derive bit timing and detect data bits 
receive commands and signals from other Auroral Ouster satellites 

Telemetry modulation and transmission 
receive telemetry data stream from C&DH subsystem 
modulate downlink carrier with mission and science telemetry 
transmit composite signal (i.e., data, commands, clock, position, attitude, mode changes 
and commands) to Earth (or relay satellite such as TDRSS) and other AC satellites. 

Subsystem operations 
receive commands from the command and data handling subsystem 
provide health and status telemetry to the C&DH subsystem 
autonomously detect faults and recover communications using stored software sequence 

As stated in the strawman payload instrument section of this paper, the Auroral Ouster mission 
will utilize three different data taking modes, depending on location of the cluster in orbit, and also 
dependent on the amount of activity in the plasma environment. The three modes of data-taking are the 
burst mode, the background mode, and the sleep mode. If fifteen minutes of data-taking in the burst mode 
and one hour of data-taking in the background mode are assumed, each satellite will accumulate 
approximately 200 megabytes of telemetry per orbit including health and safety monitors and 
housekeeping data. This translates into 800 megabytes of data for the entire AC satellite complement per 
orbit. This amount of data will need to be telemetered to the ground at least once per orbit. 

Just as the Command and Data Handling subsystem has multiple options, so too does the design 
of the Communication subsystem offer options that must be considered. Under the first option, each 
satellite would be required to downlink its own data to the ground. Each satellite would be autonomous 
and create its own data stream. Each satellite would still need to be able to communicate with the other 
members of the cluster. 

A second option would be to use the "mother-daughter" scenario discussed above. The two 
mother satellites would be responsible for downlinking the data of the entire cluster. By having two 
mothers, the telemetry system would be redundant. One possible method of implementing and monitoring 
the health of the redundant telemetry system would be to switch every other orbit which of the two mother 
satellites transmits the data to the ground. 

By requiring that only two of the four satellites have the ability to transmit and receive data to 
and from the ground, it might be possible to use smaller, lower power transponders on the daughter 
payloads. Also receiving and transmitting only one data stream rather than four will place fewer demands 
on the ground station. Since GPS receivers will be utilized on each of the four satellites, position and 
attitude of the satellites will be known to a very high accuracy, so the traditional problem of tracking and 
ranging should be eliminated. 

With the AC mission, two different communication links exist. The first of these is between 
satellites. The second communication link is between the cluster and Earth. Both of these links have 
advantages and disadvantages for the design of an overall communication system. The advantage of the 
satellite-to-satellite communication link is the short path distance involved. The maximum separation 
distance is on the order of 300 kilometers. The advantage of the satellite-to-Earth or Earth-to-satellite 
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communication link is that it is very easy and cost-effective to use large high-gain antennas on Earth to 
send or receive signals to the constellation. The overall Communication subsystem must be designed to 
minimize on-board weight and power requirements. 

Another complication that the AC mission requirements place on the Communication subsystem 
is that attitude control is accomplished by using spin stabilization, rather than utilizing a three axis 
stabilized platform. Three-axis stabilized platforms are always easier for Communication subsystems 
because directional antennas can easily be pointed accurately. On spin-stabilized satellites, such as the 
Auroral Cluster satellites, a despun platform would be required to obtain this same antenna-pointing 
accuracy. For the AC mission the cost and complexity that come with the use of a despun platform are 
beyond the scope of the mission. Preliminary calculations show that two sets of omnidirectional 90° 
opposed short dipole antennas can be used on each satellite. The antennas would be designed to have a 
bidirectional cosine power pattern. This pattern should provide ample coverage for sending information 
between satellites and also for sending data from the satellites to the Earth. 

Preliminary communication link calculations show that for the satellite-to-satellite link, S-band is 
nearly optimum. This frequency provides enough bandwidth for the telemetry requirements. Downlink 
time per orbit using this frequency is roughly 10 minutes. Obviously, a detailed study of the 
communication system must be performed after a fmal orbit is selected and after a better definition of 
telemetry requirements has been obtained. 

Power Subsystem 

The requirements imposed on the power subsystem for the AC mission are not unlike those that 
have been successfully met in many previous spaceflight programs. Some of these specific requirements 
for the AC configuration described here include: the generation of an anticipated minimum of 200 watts 
of continuous power throughout the mission, the regulation and distribution of power on a low noise 28 
volt bus, and the storage of adequate power for use during eclipse or to augment the solar arrays when 
peak loads exceed the array's nominal power output. Based upon the success of past programs with 
similar requirements, it is reasonable to expect that these requirements can be met by the use of existing, 
spaceflight-proven technologies. The challenge, however, will be to achieve the design of an adequate 
power system, while minimizing the mass and budget resources of the system. Since solar arrays and 
batteries represent a significant fraction of the mass and cost of the total power subsystem, the possible 
trade-offs associated with them merit a brief discussion. 

Solar Cells/Arrays 
The spin stabilized configuration of the AC spacecraft mandates that the solar arrays be distributed 

about the spacecraft's circumference and possibly on either of the two ends; the latter arrangement being 
dependent upon the cluster orbit chosen. The array performance, measured in output wattage, will depend 
upon a variety of factors, some of which are: active array size (highly dependent on spacecraft form 
factor), array temperature, array pointing with respect to the sun, and individual cell efficiency. Cell 
efficiency is usually dictated by the technology employed in fabricating the cell. Current technology 
narrows the selection of cells down to a choice between silicon or gallium arsenide cells. Silicon cell 
technology provides for flight worthy cells with efficiencies on the order of 15%. In contrast, GaAs cells 
can achieve an efficiency on the order of 17%, although at a significantly greater cost than that of silicon 
cells.24 The tradeoff is a straight-forward comparison of cost, mass, and performance issues. It is 
currently anticipated, however, that the goals of the AC program can best be met by employing the lower 
cost silicon cell option. Should the mission duration be extended considerably, or if the mission's mass 
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budget becomes very restricted, it might become necessary to reexamine the option of using GaAs cells. 

Batteries 
The present battery technologies under consideration for the AC mission include nickel-hydrogen 

(NiHz), nickel metal hydride, and nickel cadmium. The NiH~ battery configuration would provide a light­
weight, high-efficiency system, but at a greater cost than the latter two options. Since the true battery 
requirements are not yet fully determined, it is difficult to assess which design offers the best approach. 
Given the intended mission duration of only one year, however, it is reasonable to expect that a NiCd 
configuration will represent the lowest cost if the mission mass budget is not overly constrained. 

Propulsion Subsystem 

The propulsion requirements for the AC mission consist primarily of supporting the attitude 
control subsystem and providing the necessary IJ,. V to adjust the cluster's configuration over the course of 
the mission. If the launch vehicle is capable of injecting the cluster directly into the working orbit, then 
the AC spacecraft will not need to perform major, high impulse IJ,. V maneuvers. Although there are 
typically three choices when selecting an onboard propulsion system - cold gas, monopropellant, or 
bipropellant - the requirements for the AC mission are small enough that only cold gas and 
monopropellant are considered real options. Of these two remaining options, the monopropellant 
configuration is considered the best option. The reasons for proposing the monopropellant system include 
the higher specific impulse capabilities of such a system, and the ready availability of hardware. A single 
stage blowdown system using hydrazine will allow the propulsion system to support both the attitude 
control system and provide the necessary IJ,. V for cluster expansion. The exact sizing of the propulsion 
system will proceed after the final orbit for the AC mission is chosen. 

Thermal Design 

The design of the Auroral Cluster spacecraft will maximize the use of conventional passive 
thermal management techniques. When necessary, electronics and sensors will be thermally isolated from 
the body of the spacecraft with specifically designed mountings and multilayer insulation blankets. 
Radiative surfaces will control the temperature of the analyzers and electronics. Flexible resistive heating 
elements will provide heating if necessary at instrument tum on and for periods of the orbit when the 
spacecraft is eclipsed with the instrument power off. 

An analytical model needs to be made for the spacecraft, including booms and antennas, once the 
final orbit parameters are selected. The model will consider the orbital environments that the spacecraft 
will experience and will include all shields, insulation, radiative surfaces, and heaters. The model will 
have enough fidelity to predict temperature extremes for all critical surfaces and parts. The thermal design 
of the AC mission is straightforward and presents no new challenges to the system design engineer. 

Structure, Mechanisms, and Configuration 

The structures and mechanisms subsystem provides the common mechanical support for all the 
hardware that comprises the other subsystems and the instruments. In addition, the system provides both 
the structural load path for distributing the launch loads to the launch vehicle interface, and the hardware 
for ordinance-activated spacecraft separation. The system does not employ the use of moving devices, 
motors, despun platforms, or other hardware that traditionally complicates the system mechanical design. 
The booms and antennas will be "off the shelf' flight proven designs that will integrate easily with the 
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spacecraft's structure. Mechanically, the most complicated system is expected to be the deployment 
hardware for initial spacecraft release and cluster deployment. 

The structure of the AC spacecraft will not be unlike the structural configuration used on previous 
spin-stabilized spacecraft. The baseline form factor of the AC spacecraft is a cylinder with a height of 
.S-meters and a diameter of I.S-meters. The two circular deckplates forming the ends of the cylinder, will 
serve as mounting platforms for the various payload electronics boxes. A single tube or cone will run 
axially along the center of the cylinder, and serves as the primary load carrying element. Bulkheads will 
radiate from the central tube, and will provide the primary load path from the spacecraft's external 
structure into the central tube. Solar arrays will attach to the circumference of the spacecraft with 
stringers. The center of the spacecraft will contain the propellant tankage and the various other subsystem 
hardware. The design of the AC spacecraft's structure will strive to maximize integrity while minimizing 
structural weight. 

The sensitivity of the scientific instrument complement will mandate the use of specialized 
materials and coatings. When possible, time proven spaceflight materials will be used in the construction 
of all sensors and structures. Magnetic cleanliness will be adhered to as much as possible. To keep the 
overall magnetic field of the AC spacecraft to a minimum, AC will use only magnetically clean material. 
All materials used will be drawn from NASA Reference Publication 1124 and will have a Total Molecular 
Loss of less than 1.0% and a Collected Volatile Condensed Mass of no more than 0.10%. The particle 
instruments impose this outgassing requirement. Exposed dielectrics and potentials will be minimized. 
To minimize EMI/EMF, the cabling plan of the AC spacecraft will use a star-ground and be designed to 
eliminate potential ground loops. These stringent requirements are required by the electric fields and wave 
experiment 

CONCLUSIONS 

Auroral Cluster is a space physics mission of significant scientific merit, which will enhance our 
knowledge of the Earth's auroral regions and help us to further understand the coupling between the solar 
wind and the magnetosphere. This paper has identified many of the primary science mission requirements 
and demonstrated how these requirements manifest themselves as spacecraft subsystem requirements. It 
appears to be feasible to employ four small satellites that are "electronically tethered" to achieve the AC 
mission goals. Based upon the discussion of the possible subsystem trade-offs, it is reasonable to believe 
the AC mission could be implemented with existing "off the shelf' hardware. The next logical step in 
furthering the design of the AC program would be to conduct a mission utility analysis that would 
examine all possible design trade-offs and terminate with a phase A mission design study. 

Although the scope of the AC mission described in this paper is appropriate for a typical NASA 
Delta Class Explorer program, recent discussions within the scientific community have resulted in AC's 
being recommended for a new start as one of NASA's new Medium Class Explorer programs. To 
implement the AC program presented here as a Medium Class Explorer is highly feasible, provided that 
some descoping of science instrumentation be made, and the use of a launch vehicle smaller than the Delta 
II be considered. Even for a descoped mission, however, the basic engineering challenges and trade-offs 
remain the same as those discussed here. 
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