
-

-

-

A Flexible Object Oriented Spacecraft Operating System (FOS) 

Dave Ladouceur 
Orbital Sciences Corporation 
Space Technology Laboratory 

3380 Mitchell Lane 
Boulder, Colorado, 80301 

Satellite Operating Software has trad,~ionally been 
highly specialized custom software which operates 
one satellite according to deterministic rules. 
Software changes are usually accomplished with a 
complete reload from the ground, and peiforming 
paiches require explicit knowledge of memory maps, 
variable locations, etc. and can often result in long 
term satellite down times. As computer, sensor and 
communication technology increases, more and 
more of the computing, routing and decision 
functions of small satellite systems are occuning on
board, and a need exists for adaptable flexible 
software. The object oriented approach to satellite 
operating systems provides a malleable system, 
resilient to failure, distributable across multiple 
satellites and easily adaptable to other applications. 
The Operating System acts as a switch for the 
distribution and execution of messages whether a 
command, code or data. Even operating system 
functions can only be executed by sending a 
message internally. These technUjues provide for a 
safe system and simplified software maintenance. 
Since software code is broken into objects, the 
particular application can be distributed amongst 
one or more processors, satellites, ground stations or 
remote terminals. This allows for multi-processor 
based communication load balancing algorithms, 
dynamic fail-over capabih'ty and compute bound 
resource sharing. Since no explicit hardware 
knowledge is required by the flight application code, 
most objects can be reused for other satellite 
applications. Such systems can be implemented on 
small satellites using current processor technology. 



INTRODUCTION 

Most spacecraft whether large or small have one main purpose to gather and 
distribute data of some kind. Housekeeping including power management, attitude 
determination and correction. and other Telemetry, Tracking and Control functions have 
to take place to insure the health and capability of the spacecraft. Traditionally, this has 
been accomplished with analog and digital systems in a rigid deterministic fashion. The day 
to day operations of the spacecraft or sequences are loaded up to the flight computer on a 
periodic schedule. These sequences contain commands and time tags and are executed as 
specified until the next load. Until recently, software for each spacecraft was crafted in 
assembly language. Memory margins and CPU speed were of greatest concern and just 
making it work was a huge accomplishment. The previous generation of flight hardware has 
been replaced with high speed CMOS microprocessors and high density memories that 
remove the software limitations of the past, and can now provide a host for a robust flexible 
Flight Operating System. 

OBJECT ORIENTED PROGRAMMING (OOP) 

Object Oriented programming is a programming methodology that simplifies software 
development and maintenance. By definition many programs developed over the course of 
the last three decades were object oriented; they just did not know it. To be Object 
Oriented. the software must contain one or more of the following characteristics. Objects 
must exist in software that have attributes and exhibit behavior. These can be any physical 
piece of hardware or a real·world item that can be represented or modeled in software. An 
object is fme or course grained and represents related pieces of data and code. One object 
could represent a Global Positioning System receiver (course grained) or one object could 
represent a five line algorithm to average an array of numbers(fine grained). An object can 
belong to a class of objects in a hierarchy where an object at a lower level will inherit all 
the attributes (variables and definitions) and code of all higher classes. The structures, 
variables and procedures are dynamically made available for the programmer to use without 
declaration. This capability allows you to develop re-useable software by having general 
solutions at a higher level and then the capability to specialize a particular problem at a 
lower class level. 

When an object is created, an instance( copy) of the object is made. This instance has 
attributes (local variables) that give the object its behavior. Each object has its own set of 
instance variables. The variables are completely contained within the object and can only 
be accessed hy another object by sending the object a message. 

Objects communicate with each other by sending messages. these messages can 
contain other objects. code or data. The destination object receives the message and takes 
the appropriate action based on the message content. Objects can be located anywhere. 
Each object can respond to the same message differently. A message may contain a 
command and that command can be responded to in a different way. This way, each 
application uses the same messages (commands) over and over again without knowing the 

-
-

-
-
-

-

-



-

-

-

-

-

specific commands supported by the destination objects. If a command is not understood by 
an object, it returns a message that it did not know how to interpret the command. This 
allows you to develop a system incrementally. This ability for an object to respond uniquely 
to messages is called polymorphism in object oriented programming. 

ADVANTAGES OF THE OOP INTERFACE 

Safe Systems 

Since objects can only communicate through messages, OOP promotes safe 
systems. Code and data are encapsulated in small chunks at the programmers 
discretion and can be made as safe, small grained and fe-usable as practical. 

Distributable Processim: 

The FOS provides the objects with a standard communication interface, this 
makes locality of an object immaterial. An object can exist on-board, at a 
Spacecraft Operations Center (SOC). in some remote groundstation or a user 
terminal. Therefore, a program can be executed partially on-board, on the 
ground or could be distributed amongst several satellites each contributing 
some data or code. 

Parallel Processins 

Multiple processors can be easily accommodated with FOS. Each processor 
can execute one or more objects in parallel with the other processors by 
sending messages through either a software or hardware communications 
interface. 

Phased Development 

The standard object interface also provides for the ability to migrate 
applications from the ground to onboard as they are developed. Experiments 
and one time operations can be run from the ground without uploading new 
flight code. 

Fli~ht Code Yerification 

Flight code simulations and testing are greatly simplified. Software drivers can 
be written to emulate any hardware component and respond with the 
appropriate. messages through the communication interface. Since the 
applications are broken into small chunks, they can easily be replaced or 
upgraded with later revisions without concern of external dependencies. Only 
the messages that the object is required to respond to, have to be verified. All 
internal code is encapsulated and protected. 



REAL TIME PROCESSING 

Smalltall<, Common Lisp Object System (CWS), C+ +, and Object Oriented Pascal 
are languages with built in Object Oriented constructs. Unfortunately, these fifth generation 
languages tend to require too much horsepower and memory to be an effective solution for 
small satellite real time processing. Therefore, the alternative is to implement the benefits 
of GOP techniques, namely code re-usability, malleability and safeness in a real-time 
communications environment. In order to perform high speed delivery of messages, the FOS 
messaging kernel behaves similarly to a PBX. It simply routes messages based on an objects 
address. 

USERS 

A User is defined as an object or chunk of memory that can respond, create or 
accept messages. Two types of Users can exist, synchronous and asynchronous. A 
synchronous User waits for a message and responds in a deterministic fashion. These Users 
are usually permanent (ie. telemetry frame builder). An asynchronous User is created 
dynamically as an instance of an object and has a lifespan as determined by the internal 
code executed by the object. These Users can be temporary or permanent(ie. a Fourier 
transform object). 

PRE·DEFINED USERS 

On most satellites several pre-defined users will exist such as transmitters, receivers 
and other intelligent hardware. These users will be at a fIXed address. Other fIXed Users will 
be defined as the software is developed. 

ADDRESSING 

Each User can belong to one or more classes of Users; in the FOS, the User/Class 
combination is made up of a sixteen bit address where ten bits are User (0 . .1023) and 6 bits 
are Class (0 .. 63). This is arbitrary for each application. A modified X.25 protocol is used 
with a source and destination address, control and data fields. This protocol is used 
throughout the satellite(s), SOC and User Terminals. It is also used as the message passing 
protocol on board the spacecraft between objects(Users). 

. Source Destination Control Information 

User Class User Class as per X.25 as per X.25 

10 Bits 6 Bits 10 Bits 6 Bits 8 Bits 0 .. 255 Octets 

Table 1. Message Specification. 

-
-

-

-

-

-
-
-

-
-

-



QUEUES 

Each User has associated with it one or more Queues. A queue is established for all 
incoming messages. Outgoing messages are placed in a Class Manager's Queue. A ~essage 
consist of a queue block which contains the source, destination, control and information 
fields specified above. The information fields may contain data or code and is application 
specific. The queues can be self relative or absolute and have forward links (FLINK) and 
backward links (BUNK) associated with them. A Queue Head is associated with each 
Queue; the Queue Head bas a pointer to the head of the queue (0 if empty), a count of the 
number of queue blocks in the queue, and an internal status word. A single user can control 
one or more queues as necessary to pipeline communications. 

Queue Head Type 

Pointer to Head of Absolute Address 
Queue 

Queue Block Unsigned Integer 
Count 

Status Unsigned Integer 

Table 2. Queue Header for each User, 

Queue Block Type 

Pointer to Next Element Relative or Absolute 
(0 if one element Queue) Address 

Pointer to Previous Element Relative or Absolute 
(0 if one element Queue) Address 

Internal Information Implementation Dependent 

Source Address Actual Packet Starts Here 
Destination's 
(User 10 bits, Class 6 bits) 

Destination Address Source's 
(User 10 bits, Class 6 bits) 

Control (filled in by protocol Users) 

Information Data or Code to send 

Table 3. Queue Block for Communication, 



OPERATING SYSTEM CALLS 

The FOS 
contains a kernel of 
prebuilt objects 
under Class (0), User 
(0 .. 1023). These 
Users perform 
executive functions 
and provide services 
for the application 
Users (software) on 
board the satellite, at 
aSOCorina 
remote terminal. 
Such services would 
include acquiring and 
disposing of queue 
blocks. timer 
functions, 
hibernation and 
multi-tasking 
requests. A basic 

Exlernal 
HsrClwere 

External 
Hardware 

• Users (0 .. 1023) 

Real-TIme 
Kernel 

Figura 1. Object Oriented FIi(Jht Op9fStlng System Model 

generic set of services are provided to make development of the application software of the 
satellite simple and straight forward. Any high level language can interface to FOS; only 
three direct subroutine calls are provided to the programmer Get ..J2Block, Send Message 
and Receive_Message. All other functions are supported only through the commuDications 
interface. 

Send_Message places an outgoing message into the Queue Class Manager 
(QCM) for the message's destination address class. Each Class (0 .. 63) has 
associated with it a Queue Class Manager whose address is (CLASS #, User 
0). The QCM is responsible for the delivery of messages for that class 
including messages to other satellites and the ground. If the message is 
destined for an on-board User, it is simply stuffed in the tail of the User's 
queue, and then the User is scheduled for execution. 

Receive Message 

Receive Message takes the first message in the User's queue and returns a 
pointer to it. The User can then take the appropriate action based on the 
contents of the message. 

-
-
-
-

-

-

-
-
-

-
-

-



-
-
-

APPLICATION CODE 

Application software in a satellite is defined as any code that carries out the specific 
missio~ whether a store and forward system, a sensor package or experiments. First, the 
application code for a Satellite is broken up into different classes of users. After each class 
of U seT is defined, then common generic functions and services (algorithms) are defined for 
all Users. This code could be added directly to the FOS executive as generic routines. Then 
specialized algorithms are split into asynchronous/synchronous Users and the software is 
developed to carry out the particular function in a high level language at the choice of the 
Application Programmer or Scientist. This development requires the programmer to break 
down his/her application into practical pieces that are distributed across several objects 
(Users). This method of problem abstraction is a natural extension to human problem 
solving and will greatly enhance the development effort[21. 

PROCESSOR SmTABILlTY 

Almost any micro-processor can be used for this operating system. Processors with 
fast context switching and built-in high speed communication links would be greatly enhance 
total system throughput. 

FUTURE DIRECfIONS 

One of the problems with developing small code fragments is to get compilers to 
output relocatable code chunks without any dependencies on libraries. stack, heap and 
dynamic memory. To solve this. a fifth generation programming environment like Smalltalk 
that provides a generic language interface to sanitize standard C. Pascal or other 3rd 
generation language source code needs to be developed. This interface will compile or call 
the appropriate compiler and link the object code directly into the FOS. 

SUMMARY 

The Flexible Object Oriented Spacecraft Operating System can provide a building 
block by which software developed for space applications can be safe. malleable and re
useable. The flexibility of developing code piecemeal and testing it as you go. greatly 
enhances mission success. Proto-typing and simulations can be run using actual flight code. 
The ability to redistribute one or more pieces of an algorithm, greatly simplifies the 
development of experiments and applications that can not all be accomplished on-orbit. 
Another benefit of the system is simplicity; nOD-software engineering staff can successfully 
program flight code that operates under FOS. And of course, developing a command 
sequencer would be a trivial task. 



Get OBJQck 

Get_ QBlock simply returns a pointer to a free queue block. 

RUNTIME SYSTEM 

Task Scheduler 

The runtime system consists of a task scheduler, interrupt routines for 
hardware ports and timer related functions. The scheduler is a cooperative, 
queue-prioritized. round-robin scheduler. Basically when a user receives a 
message, it is placed in the scheduler process list. When a User executes a 
Receive_Message on an empty queue it is placed in an 1-0 wait state list. A 
task can avoid hibernation by checking its Queue Head to see if there is 
anything available for processing and perform low priority tasks until 
something is available. This is a permanent user acting in 3n asynchronous 
fashion. Active Users with empty queues are placed in a lower priority 
compute bound process list. However, each User C3n raise or lower its 
priority. 

Re-Entrancy 

In order to save memory and re-use as much code as possible, the FOS 
requires all code to be re-entrant and relocatable. The programmer must use 
queue blocks which are always relative to a single instance of a User object 
as the place to store local variables. No common stack operations are allowed 
due to the unpredictability of multiple high level languages accessing a 
common stack. Small work stacks are provided to each user as defined by the 
needs of the high level language. There are Executive Services for stack and 
queue operations in the traditional sense. 

Threads 

The creation of a message can create a task (execution thread) for each active 
User in the system based on the message type, either synchronous or 
asynchronous. Parallel programming techniques can be utilized if a multi
processor system was being used as in Transputers[Il. Each algorithm could 
be vectored out as appropriate to achieve satisfactory response. 

-
-
-
-
-

-
-

-

-

-
-

-
-



-

REFERENCES 

Smalltalk/V286 Tuton'al and Programming Handbook, Digitalk Inc., 9841 Airport Boulevard, 
Los Angeles, California 90045, 1988. 

G. Agha,Architectures for Object Based Concu"ent Programs, Object Oriented Programming: 
Systems, Languages and Applications (OOPSLA), Conference Proceedings, 1989. 

[1] - Transputers - an Inmos Processor based on CAR Hoare's concummcy model 
"Communicating Sequential Processes(CSP)" (Hoare, 1978) 

[2]- T. Winograd, F. Aores - Understanding Computers and Cognition, Addison-Wesley, 1987 




