
An Innovative On-Board Processor for Lightsats

R. M. Henshaw, B. W. Ballard, J. R. Hayes, and D. A. Lohr

The Johns Hopkins University Applied Physics Laboratory

The Applied Physics Laboratory has developed a flightworthy
custom microprocessor that increases capability and reduces
development costs of lightsat science instruments. This device,
which APL calls the FRISC (Forth Reduced Instruction Set
Computer), directly executes the high level language called Forth,
which is ideally suited to the multitasking control and data
processing environment of a spaceborne instrument processor. The
PRlSC (which is available commercially as the SC32) will be flown
as the on-board EWCessor in the Magnetic Field Experiment on the
Swedish Space COrporations's Freja satellite. APL has achieved a
significant increase in on-board processing capability with no
increase in cost when compared to the magnetometer instrument on
Freja's predecessor, the Viking satellite. These advantages are
attributable to the high instruction execution rate, reduced software
development effon, and shortened system integration time made
possible by the nature of the microprocessor and the Forth language.

BACKGROUND

The Johns Hopkins University Applied Physics Laboratory (APL) has built a
variety of small satellites and space instrumentation since the launch of its first TRANSIT
navigational Satellites in the early 1960's. Although these satellites and instruments have
served a wide variety of functions, they share most of the following characteristics of small
satellite applications:

- limited power
-limited weight
- limited teleroetry data rate
• limited funds for development
- tight development schedules
• ever-increasing data processing requirements

APL has developed an innovative microprocessor called FRISC (Forth Reduced
Instruction Set Computer) which reduces the impact of these constraints on small satellite
applications. Its high speed, low power, space reliability, and programming ease suit it for
the multitasking real time control and computation environment of modern space

1

instrumentation. Because of these advantages, APL is using the FRISC in a magnetometer
instrument it is building at the invitation of the Swedish Space Corporation (SSC) for the
Freja satellite. This paper presents FRISC's technical features and shows how they apply
to smaIl satellite applications, using the Freja Magnetic Field Experiment (MFE) as an
example.

THE FREJA SPACECRAFT

Freja will orbit the Earth at high inclination to explore the physics of the auroral
zones. Its eight instruments will obtain high resolution measurements of the upper
ionosphere and lower magnetosphere to determine the fine structure of the particle and field
environment in the circurnterrestrial plasma. The best data currendy available was acquired
by the Viking satellite, Freja's predecessor from SSe. Freja will provide finer spatial
resolution and higher dynamic range in measurements of the distribution of charged
particles, waves, and electromagnetic fields.

Freja is very much an international venture. Instruments are being provided by the
U.S., Canada, West Germany, and Sweden. sse is purchasing several host spacecraft
subsystems from the U.S., West Germany, and the People's Republic of China. The 2.2
meter diameter spacecraft is scheduled for a 'piggyback' launch on a Chinese Long March
rocket in the summer of 1992 for a minimum one year mission.

Shown below are the key resources available for the Freja satellite, and the resource
allocation for the MFE in particular. All three of these resources restricted the design of the
MFE, creating a multitude of 'opportunities' for innovation.

FREJA SATELLITE RESOURCES

Resource

Weight

Power

Telemetry Rate

Spacecraft Total

230 kg

86.7W

256kb/sec
512kb/sec

FREJA MFE SCIENCE REQUIREMENTS

MFE Allocation

3.7 kg

4.5W

14.3 kb/sec
28.7 kb/sec

The MFE's primary objective is to collect and downlink: 16-bit magnetic field vector
samples at 128 Hz or 256 Hz, depending on which of the two spacecraft telemetry rates is
selected. Since there is no mass storage device on-board, the ground station only receives
these real time measurements during station passes.

Supplementary objectives are to make magnetic field measurements outside ground
station passes using burst and full orbit data collection modes. These modes complement
the real time function by storing data in the MFE's memory for downlink during a later
station pass. The burst function collects data at 128 Hz for 40 seconds upon command

2

-
-
-

-

-

-

from the spacecraft processor, while the full orbit function collects data continuously at a
low rate programmable from 0.0625 Hz to 16 Hz. The spacecraft processor will command
all the Freja instruments to execute their burst data collection functions simultaneously to
allow correlation between the instruments.

Another science objective is to provide spectral data of magnetic fields up to
frequencies near the bandwidth cutoff of the magnetic detection circuit. This spectral data
cannot be derived by processing the real time data samples because telemetry bandwidth
limitations do not permit adequate sample rates. Therefore, high rate samples must be
processed on-board to generate spectra to downlink selectively at a lew rate.

ON-BOARD PROCESSING REQUIREMENTS

The following processing requirements are necessary for the Freja MFE to meet the
science objectives discussed above:

1. Provide anti-alias low pass fIlters for DC and AC channels
- 64 Hz cutoff during normal telemetry rate operations
- 128 Hz cutoff during high telemetry rate operations

2. Digitize X, y, Z AC and DC magnetic field measurements to 16 bits
- 128 samples/sec during nonnal telemetry rate operations
- 256 samples/sec during high telemetry rate operations

3. Oversample and average X, Y and Z DC measurements

4. Anti-alias filter one DC channel with 256 Hz cutoff and sample at 512
samples/sec

5. Provide amplitude spectrum 0 to 256 Hz for the above DC channel
- send raw 512 sps samples for ground processing, or
- perfonn FFT on-board and send amplitude infonnation

6. Collect and digitize housekeeping and status data

7. Format and output telemetry

8. Interpret and execute commands

A conventional design approach for fulfilling these requirements might include a
switchable hardware anti-aliasing filter (for the two different sampling rates), a 160bit AID
converter, and a general purpose processor, with spectral analysis perfonned by post
processing on the ground.. The processor would be programmed in assembly language or a
high level language, cross-assembled or cross-compiled on a separate machine. The object
code would be downloaded to the target hardware for deoogging using in-circuit emulators
or other suppon equipment

Unfortunately, this configuration does not fit within the spacecraft resources
allocated for the Freja MFE. First, there is neither the power, the circuit board space, nor
the noise floor margin for switchable hardware anti-aliasing filters. Second, telemetry data

3

rate limitations preclude sending the one 512 sps channel to the ground for spectral
processing. Although a separate on-board digital signal processing device could perfonn
this processing, it too would exceed the available power and board space, and would add
significantly to the hardware and software design time required. Finally. the conventional
embedded system software development approach, with cross-development tools and in
circuit emulators. is extremely inefficient due to its long edit, compile, download, and
emulate cycles.

The Freja MFE solves these resource limitation problems using simple, fixed
hardware anti-aliasing filters. a 16-bit AID converter, and the single-chip FRISe
microprocessor. The PRISe performs data acquisition and averaging, digital anti-alias
filtering. FFf computation, telemetry fonnatting. command interpretation and execution,
and other instrument control functions. Furthermore, software development and debugging
are performed interactively on the actual target hardware in high level language via a
standard computer tenninal.

MFE DESIGN OVERVIEW

Fig. 1 is a block diagram of the Magnetic Field Experiment, which consists of a
probe and a magnetometer signal processor containing five electronics boards. The probe
is roounred on a 2-meter boom to avoid spacecraft-generated magnetic fields, and measures
magnetic fields with its three mutually perpendicular coils. The sensor electronics board
processes and fIlters analog signals from the probe and then sends them to the Filter - NO
board. This board fIlters them funher, converts them to digital fonn and buffers them in a
FIFO under control of the on-board sampling sequencer unit (SSU). The CPU board reads
the data from the FIFO, performs the FFr and digital filtering tasks, fonnats the resulting
data and sends it to the telemetry interface board, which buffers it and sends it using a serial
protocol to the Freja spacecraft electronics for transmission to the ground. Concurrent with
the data handling tasks, the CPU controls the sampling sequencer, collects and fonnats the
housekeeping data, and executes uplinked commands. The telemetry interface board also
receives serial commands and selected telemetry words from the spacecraft. It converts
them to parallel and passes them to the CPU board for interpretation andlor execution.

The DC/DC converter board receives 28 volt DC power from the FSU and
generates ±5 volt and ±12 volt analog and +5 volt digital power for the other boards. It
also contains current monitoring and power interruption circuitry to provide latchup
detection and recovery.

Fig. 2 illustrates the hardware functions on the CPU board. A fusible link boot
PROM program loads itself into SRAM after any reset command, tums off the PROM to
save power, and waits for either a telemetry system command or a debug terminal
command. If neither of these occurs within 10 seconds, the boot program automatically
loads the application software stored in the ftrst EEPROM module. We included the
capability to uplink new application software into the EEPROM via the command system
for programming upgrades. One memory module slot on the CPU boan! can be chosen to
be used for more EEPROM or additional SRAM at the time the CPU is fabricated.

Other hardware functions on the CPU board include a prioritized interrupt
controller, a real time clock, telemetry timers, a housekeeping AID convener, and a

4

-
-
-

-
-

-
.-----•••••••• • o ___ w

- -"'" "---"

Pwho
>:· ... B

-
~ Filter I AID Board

,~ ,--, =a(~)

<="-'
I X d<c

XLowpu. ..r ~ Se '-1 -,;; :;;;;,;
YBandpass -Eledronks I y ""'og

'~
Boa'" Y 1"" 1-

Multiplexer

17.
t-M IZ_ I--

-"- I-- H "U

.,SV Spacecraft
AID u,...,

32K x32 Buffer Interface
DCIDC f-+SV EEPRO~~ 32K x 32 RAM Pon Spacecraft """og l...l2K"2 R Power Prognm

Subsystem r- _lSV
~

M="'Y
I- ·sv 32Kx 32 RAM Interrupt

Engineering Control
I D'~

!32K ,~f~ROM ",,""-""''' On-board Temperatures

C~~
Clock

""""""" - > PRISe
Telemetry < Microprocessor Power-on Subsystem

,"" Pon
Reset

CPU and Telemetry Interface Boards

IRS,232

b
I !S G, •• I Electronics Module

I S::~'Resources' I
i Ground s"W'lItWi= I

Co!piOllll for GroWKI Test4?nly

Fig. 1 Freja MFE Block Diagram

5

Processor bus I/O bus

'~ FRlSC
(SC-32) lnlerrupt ;

From CPU Controller ~ ~ .
Filter - AID

board

I/O
Pon Real

Time
Clock

boot PROM data I/O ... 2K ·32
Pon ;;0 Telem:o

Telemetry

EEPROM Timers

32K'" 32

UARTdata ToUARTGS E,
debug tenninal

EEPROM
'" SRAM :ouse- 'J From DC/DC,
32K'" 32 eepmg -, Filter AID,

AID Sensor boards

SRAM
64K'" 32 Watchdog

Timer

Fig. 2 CPU Board Block Diagram

waIchdog timer (used to confirm that the application software is running properly). A CPU
test port connects to a tenninal to provide communication and control functions via the
interactive Forth language interpreter during system development and testing.

THE FRISC

FRISC's power stems mainly from its direct execution of the Forth language.
Contributing to its capability are many interrelated aspects of its design. including device
architecture, execution speed, software structure, system test attributes, and other hardware
characteristics. APL engineers designed and developed it using a silicon compiler CAD
workstation, which allows specification of a custom integrated circuit design at a functional
level. The final chip design resulted from our past experience in designing on-board
processors for other space instruments with constraints similar to those described above.
The following discussion provides an overview of the Forth language and then describes
the main features of the PRISe design, illustrating why we are using it on the :MFE.

6

-

-
-

-

-

WHY FORTH?

Forth is an interactive, stack-based hierarchical language which is ideally suited for
embedded hardware control and processing applications. Astronomers and engineers at the
National Radio Astronomy Observatory developed it in the early 1970' s to control radio
telescope dishes. and it has since spread throughout the embedded systems world from its
original niche in the astronomical community. APL has used Forth successfully on several
space missions, for tasks ranging from relatively simple data acquisition functions to
control of the complex, space shuttle based Hopkins Ultraviolet Telescope (HUT). HUT is
part of the Astro shuttle payload, in which three of the four major telescopes use Fonh as
their instrument control language. The American National Standards Institute (ANSn is
currently developing a Fonh language standard (X3J14), and an APL engineer is serving
on the standards committee. Forth development systems are commercially available for all
commonly used processors.

The Forth language uses a small number of primitive instructions (Forth words) to
fonn a kernel from which all other higher level Forth words are created. APL's FRISC
processor implements this reduced instruction set of Forth primitives directly in
hardware as its machine instruction set, hence the name - Forth Reduced Instruction Set
Computer.

Higher level (i.e., non-primitive) FOM instructions are defined as sequences of
lower level instructions, which can include both primitives and previously defined words.
Thus. programming in Forth consists of extending the language by adding definitions
specific to the application. This process thus creates a hierarchy consisting of both the
operating/development system and the application software. Since defmirions of higher
level words consist only of sequence lists of previously defined words, the final software
code is very compact. This attribute has allowed us to develop a combined operating
system and software development system that resides on the CPU board and incorporates
the constructs necessary for the real-time multitasking environment encountered on
spacecraft The fact that high performance and a self contained development system can be
contained on a compact CPU board makes the PRISC system ideal for lightsat applications.

DEVICE ARCHITECTURE

Fig. 3 is a block diagram of the FRISC architecture. Four features of the
architecture particularly enhance its capabilities as an on-board processor:

1. Single clock cycle execution of most Forth primitives

2. 32 bit data and address paths

3. On chip data and return address stack caches

4. Concurrency primitives and interrupt scheme to support multitasking

Ahnost all Forth instructions are executed in only one clock cycle, enabling high
performance with relatively slow clock rates. During this single clock cycle. a pre-fetched

7

-
I
N
T
E
R
N
A
L

D
A
T
A

B
U
S

-

I
X X I External
C C Program &. Data V V I
~ Data Stack. R

I
Memory

Pointer&. I
Control ------ -- --
J

Instruction
Register

",",S_ _S
I ""''''' Literal Field

T
A

LMchi
C

Lo"h K

• :-1 ILeft Shiftl
B A U D S ; D

onditionJ.. \. /
R

l Bit , \. ALU E
S
S

I Righi LolCh I Shift -' B

Rerum Slack
U

Pointer&. S
Control

Rerum Stack
c..ho

2U_
Registers

Pro,,,,,,,
Counter

Fig. 3 FRISC Architecture. All data and address
buses are 32 bits wide.

insuuction is decoded and Forth primitive instructions are executed directly in hardware;
simultaneously, the next instruction is being fetched. This architecture thus eliminates low
level assembly language, allowing high execution rates of programs written in a high level
language without compiling to machine code or the use of 'tricky coding' techniques. For
example, in the MFE case we found that running the FRISe at 4 MHz was adequate to
meet our real time processing requirements, eveD though the part is capable of running at 10
MHz. Using the lower clock rate saved power by allowing us to balf-cycle the main
memories. and gained additional timing margin against radiation-induced parameter shifts.

FRISC's 32 bit address space allows a directly addressed maximum memory size
of 4.3 GWords, without external memory management devices. In real applications.
however. the addressing scheme is optimized to accommodate memory mapped
input/output decoding, bootstrap memory. program memory. and data buffer memories.

8

-
-
-

-

-

-

-

-

-

The data buffers can be very large, which is useful when several image arrays need to be
manipulated, or when weight limitations preclude an on· board tape recorder. Many
scientific instruments are proposing large CCD detectors (1000 x 10Cl0, or larger) for data
acquisition, which will require large data buffers for storage and processing. When the full
complement of address bits are not required. the unused bits can aid the address decoding
process. On the MFE. for example, we set appropriate address bits to specify several
different bus wait state delays for various slow I/O devices.

The 32 bit data path is convenient for on~board data processing functions, since
roundoff error is reduced when performing accumulation or digital signal processing
functions. The 32-bit fixed point fonnat contains enough dynamic range so that floating
point operations (which usually imply a separate floating point device) can be avoided.
There is no hardware multiplier on the FRISC, but the software multiply operation can be
optimized for the number of bits required in the calculations.

The Fonh language uses data and return address stacks to simplify the number of
addressing modes needed to implement functions. Operands are popped off the stacks and
results are pushed back onto the stacks. Nonnally. Forth software uses external memory to
store these parameter stacks. Since APL's FRISC includes 16 word stack caches on chip,
the number of memory read and write operations is greatly reduced and the instruction
execution rate remains high. The stacks are automatically extensible to external data
memory when the caches become too full or too empty; this cache management is
perfonned in hardware and is invisible to the programmer.

SOFTWARE DEVELOPMENT AND SYSTEM TEST

The Forth language and the FRISC together provide an environment ideally suited
for hardware debug. software development, and system integration and test. Since the
small Forth operating I development system (under 7K memory words) is part of the flight
software. the prograrruner can create new Fonh words 'on the fly,' using only the flight
CPU and a terminal. This capability is invaluable for debugging new subsystem interfaces
during initial integration, and for 'glitch busting' the elusive, intermittent problems which
remain when system integration is '99% complete.' For simple tests the engineers can type
and execute new definitions directly, while they edit and save longer test routines and
fonnal system test code in files. In either case they shon circuit the traditional edit-compile
link-download-execute cycle and its usually agonizing slowness.

Development of flight software is similar to the development of fonnal test
software. since both consist of a fairly large number of soW'Ce code routines stored in fIles
under of configuration control. The primary difference is that flight software usually
contains many processes which must execute simultaneously at varying rates in response to
hardware and software interrupts. Development of concurrent software such as this
requires an envirorunent which allows the programmer to describe asynchronous processes
independently. and which also provides mechanisms for communication and
synchronization between them.

FRISC provides a simple interrupt structure with only one interrupt level, but
which is easy to expand with minimal external hardware. The Freja processor uses an eight
level priority encoder and eight flip-flops to provide eight prioritized levels for hardware
interrupt The Fonh operating system suppons concurrent software, containing words to
define software processes, to set their priorities and to activate and deactivate them. WAIT
and SIGNAL are primitives which synchronize these processes, either to hardware

9

interrupts or to software events generated by other processes. With these underlying
features it is easy for programmers to write independent processes and to implement mutual
exclusion and other constructs necessary for orderly interprocess communication.

With the help of these features, one programmer integrated and debugged the
prototype experiment and developed the flight code for the Freja MFE processor in about
two months. The code contains 8 concurrent processes, 2500 lines of application Forth
source code, and occupies 16 Kwords of memory (including the operating I development
system). When the engineering model was delivered to Sweden for an interface test with
the satellite processor prototype, the flight software worked perfectly without change.

HARDWARE CHARACTERISTICS

The FRISe is housed in an 84 pin grid array package. which represents a tradeoff
between desire for small package size and enough I/O pins for the 32 bit buses. The chip is
fabricated in 2 ~m fearure size CMOS technology, and dissipates 600 mW of power while
running at its maximwn 10 MHz rate. It should be noted that the hardware characteristics
described here apply only to the version of the FRISC that is currently being fabricated.
One of the attributes of our silicon compiled design is that it can be 'retargeted' without
modification to several different foundries that use different fabrication technologies. Thus,
the end product can be optimized for radiation hardness, power dissipation, speed, yield,
military specification compliance, and cost We chose European Silicon Structures (ESS)
as the fabrication house because of their low cost per device when ordering small quantities
to Mil-Std-883C.

RADIATION TOLERANCE

As of this writing. we have accomplished some, but not all. of the radiation tests
we wish to perfonn on the ESS version of the FRISC. The total dose specifications for the
expected Freja orbit are 7 krad/yr. Although the baseline mission duration is I year. we
have a 2 year lifetime design goal, and have set minimum total dose tolerances in the 15-20
krad range. APL has an in-house facility to perfonn total dose tests with a Cobalt 60
radiation source. Unfortunately, our results to date show a wide range of total dose
tolerance numbers. On two different fabrication lots that we used for breadboarding, we
obtained total dose numbers between 15 krad and 22 krad, while irradiating at high dose
rates (1 Kradlmin). All of these parts recovered within a few days due to an inherent stored
charge dissipation process (annealing). Our first flight lot showed a total dose resistance of
4 krad, which is unacceptable for the Freja mission without shielding. We are currently
working with ESS to tty to identify the source of the difference, and are simultaneously
starting to upgrade some of our breadboard parts to flight quality.

Also at APL, we have a Californium facility that can be used for a limited iatchup
test. Heavy ions with a mean LET (linear energy transfer) of 36 Mev-cm2/mg are emitted
at a high flux rate. The FRlSC did not latch during a 30 minute exposure.

A third radiation test was performed at Brookhaven National Laboratory to detect
latchup susceptibility over a broad range of ion energies. Tests at Brookhaven indicated no
large increase in power supply current that would typify a latched device, but a failure of
the test circuitry created uncertainty as to whether the chip was running correctly. We
intend to retest at Brookhaven with a more rugged set of test suppon electronics in August.
1990. If time allows, we will also quantify single event upset (SEU) tolerance.

10

-

-
-
-
-

-
-
-
-
-
-
-

-

-
-

-

-

-

-

STATUS AND AVAILABILITY

Currently, there is an APL patent pending on the FRISC design. APL has licensed
the FRlSC to Silicon Composers, Inc., Palo Alto, CA, who offers the chip as a commercial
grade device designated the SC32, They also market a single board computer that plugs
into ffiM PC compatible computers, with their own operating/development system. The Ie
foundry CESS), recently established a Mil~Std-883 line which was used for our Freja
FRISe fabrication. Our reliability group perfonned a pre-cap visual inspection of the Freja
parts at the foundry and confIrmed that ESS has a high quality fabrication process.
Additionally. we have an internal testing and screening program at APL that upgrades the
parts to a reliability above MiI-Std-883 parts.

CONCLUSION

We have found that using the FRISC microprocessor Streamlined the hardware and
software development of the Freja Magnetic Field Experiment, and helped achieve
conformance to the overall MFE electronics design envelope. Further, the design
methodology of using a silicon compiler to pn:xluce a flightwonhy custom integrated circuit
has been validated. This technology allows the hardware designers to optimize the
conflicting factors of cost, reliability, performance, and power dissipation for their project's
needs.

ACKNOWLEDGEMENTS

We wish to thank. NASA Headquarters and the Office of Naval Research for
sponsoring the Freja MFE project We also thank Larry Zanetti of APL, the MFE Principal
Investigator, for his support and encouragement.

BIBLIOGRAPHY

1. B. W. Ballard, R. M. Henshaw, and T. Zaremba, "Development of Powerful Space
Qualified Computers," Applied Physics Laboratory Developments in Science and
Technology, 1983

2. B. W. Ballard and R. M Henshaw, "Forth Direct Execution Processors in the Hopkins
Ultraviolet Telescope," Proceedings of the 1984 University of Rochester Forth
Applications Conference

3. Philip 1. Koopman, Jr., Stack Computers - The New Wave, pp.87-97, Ellis Horwood
Limited, 1989

4. John R. Hayes, Martin E. Fmeman, Robert L. Williams, and Thomas Zaremba, "A 32
Bit Forth Microprocessor," Proceedings of the 1987 University of Rochester Forth
Conference

1l

5. John R. Hayes, Manin E. Fraeman, Raben L. Williams, and Thomas Zaremba, "An
Architecture for the Direct Execution of the Forth Programming Language," IEEE
Proceedings of the Second International Conference on Architectural Support for
Programming Languages and Operating Systems, October, 1987

6. J. R. Hayes and S. C. Lee, "The Architecture of the FRISC3: A Summary,"
Proceedings ofthe1988 University of Rochester Forth Conference

7. John R. Hayes and Susan C. Lee, "Stack Caching in the SC32 Fonh Processor," 1988
FORML Coriference Proceedings

8. John R. Hayes, "Multitasking: The Right Way," 1988 FORML Coriference Proceedings

9. John R. Hayes, "ANS Fonh: Hardware Independence," Forth Dimensions, Vol. XI,
No.4, 1990

12

-

-

-

-
-

-

-
-

