DESIGN OF AN ELECTRICALLY-PROPELLED ASTEROID RENDEZVOUS PROBE LAUNCHED AS A SECONDARY PAYLOAD

Ralph D Lorenz*
Department of Aeronautics and Astronautics
University of Southampton
Southampton
UK

Abstract
This paper summarises a design study undertaken as a final year project for the author's B.Eng. in Aerospace Systems Engineering. A spacecraft design is outlined for a vehicle to perform a rendezvous with a Near Earth Asteroid after being launched as a secondary payload into Geosynchronous Transfer Orbit. The 380 kg (dry) spacecraft would use a bipropellant chemical propulsion system to manoeuvre in, and escape from. Earth orbit. Interplanetary manoeuvring would be accomplistied with an ion propulsion system.

Various mission and system design aspects are described.

[^0]
Introduction

The objective of the study was to determine what kind of mission could be accomplished with a modest spacecraft using electric propulsion launched as a secondary payload. In particular it examined a Near Earth Asteroid Rendezvous (NEAR) mission. Using a variety of advanced technologies ana techniques, a highly sophisticated and capable spacecraft can be constructed of a size suitable for launch as a secondary payload.

This paper sumarises the results of the study report (ref.1) whith is 155 pages long. There is insufficient space here to repeat the details of calculation methods and other background information, so if applying these results to other missions, take care!

As an exercise, the mission was based around a number of components and technologies under development or manufactured in the UK.

Launch
The Ariane launch vehicle was selected as a baseline for a number of reasons:it is European, and therefore pertaps the least politicallysensitive of available boosters; also it is launched frequently (about 10 times/year), and has a long history of collaboration with secondary payloads (AMSAT OSCAR 10, 13: UoSATs 3,4; Microsats; Viking ete.)

The spacecraft is designed as a satellite porteur" (ref.2) - built around the $1920 \mathrm{~mm} / 9 \overrightarrow{\mathrm{Jmm}}$ launch adaptor (just as the AMSAT Phase 4 spacecraft.) A cylindrical volume allocation (2.26m dia by lm high) was assumed. No fixed launch mass limit was taken, as this would depend on the primary passenger on the launcher. A dry mass in the region $300-350 \mathrm{~kg}$ was aimed for, making the wet mass around $700-800 \mathrm{~kg}$. This mass can be accomnodated by uprating the Ariane booster, which is available in a number of versions with GTO payload masses from 1900 kg to 4200 kg . (see figures $:, 2,3$)

Mission - Earth Orbit Phase

The mission analysis is effectively divided into two main parts: the Earth orbit phase and the interplanetary cruise. Initially, the Earth orbit phase was regarded as a formality, the intention being to escape imnediately using a solid motor into a circular heliocentric orbit of radius 1 AL and use the electric propulsion systen from there. However, when the effects of using a slightly oversized motor ware investigated, it was found that great improvements in v-infinity (the hypertolic departure velocity) can be obtained by siightiy increasing the magnitude of the escape burn due to a non-linearity in the celestial mechanics (see figure 4.)

However, for the excess V-infinity to be useful, it must be in the correct direction. This necessitates manoeuvring in Earth orbit - henge requiring a restartable propulsion system (i.e. not a solid.) Additionally, since the launch date is specified by the primary passenger on the launch vehicle, the spacecraft may have to wait in earth orbit for some months before departure. GTO is a most unfavourable orbit in which to spend such a period aerodynamic drag, torques and heating, and most importantly, the high radiation dose all degrade the misgion performance. Therefore the craft
manceuvres into an expanded orbit (say $99000 \times 500 \mathrm{~km}$) for the phasing period as suggested in (ref.3.) This arbit reduces the radiation dose considerably: it also breaks the escape burn into two smaller burns so that a smaller motor can be used. The perigee is raised slightly for safety but kept fairly low to maximise the v-infinity performance of the escape burn. An inclination change manoeuvre would be performed just after entering the waiting orbit to control apsidal precession and nodal regression of the orbit. Inclination would be adjusted again a few orbits before departure to orient the departure direction.

The Earth orbit manoeuvres are summarised in figure 5.
Mission - Deep Space Phase
A number cf potential targets were examined, selected by eye from the TRIAD (Tucson Revised Index of Asteroid Data) file (ref.4) and other asteroid mission studies (refs.5,6.7). Delta-V requirements were evaluated assuming Hohmann transfers (not strictly correct given that some of the manoeuvres are conducted with a low-thrust propulsion system, but accurate enough for the purposa of this study.)

Thus two velocity shanges, deita-v-one and -two, are required for the mission. These can be traded off against each other by varying the fraction of the inclination change that is performed at rendezvous (parameter alpha.) The delta-v requirements for some of the easier targets are plotted in figure 6 with the effect of varying alpha shown; actual figures for alpha=0.7 are given in table 1.

The delta-v-one requirement is met by the hyperbalic departure velocity, plus a velocity increment from the ian propulsion system if necessary just after departure; delta- V-two is met by the ion propulsion system in deep space.

The nominal targets selected are mildly inclined (less than 10 degrees to the ecliptic), and have aphelia $1.8 A J$ or closer. The three principal targets are Eros, Anteros and Bacthus.

The capabilities of a combined chemical-electric and a chemical-only spacecraft of the same launch mass are shown in figure 7. By comparing figures j and 7 , it is seen that a chemical-only vehicle is only just capable of performing a rendezvous mission with the easiest-reached target, 1982 HR. A chemical-electric vehicle, as proposed here, has a much larger performance envelope and allows far more flexibility in target selection. Given the launch as a secondary payload, this floxibility is vital.

An all-electric vehicle would be capable (at first inspection) of performing missions of even wider scope. However, in this case, the thruster lifetine, rather than propeliant supply, becomes the limiting parametar. Escape from GTO using electric propulsion would be a nightmare from an attitude control point of view, wouid incur substantial radiation damage, and would take over one year (using the two Uk-10 thrusters with 2 kW of available power.) Further, since a slow, spiral escape leaves the eraft with a hyperbolic departure velocity of zero, the actual propellant mass saving for a typical mission (with delta-y-one equal to about $4 \mathrm{~km} / \mathrm{s}$) will be very smail.

Accordingly, the combined chemical/electric mission is retained.

Configuration

The configuration drivers are principally the volumetric constraint imposed by the launch vehicle, and the cruise pointing requirements of the ion thrusters, solar arrays and communications antenna. A number of possible configurations were tried but rejected on the grounds that they required complicated mechanisms.

The configuration that finally evolved has a body-tised payload, ehemical motor and communications antenna. The vehicle is an octagonal prism, sized to fit the envelope in figure 2. A cruciform solar array is deployed by unfolding four four-panel "wings' from the sides of the probe. These arrays are body-fined and do not articulate about any rotating joints. (In some respects, the probe resembles the Mariner Mars prodes.) The only mechanisms used are booms for two of the instruments, gimbals for the ion thrusters, and one-shot mechanisins to deploy the salar arrays and antenna feed.
-
Chemicai Propulsion.
Initially the concept of the mission was to use the electric propulsion system to the full. Since a spiral escape from GTO is not easy, it was initially proposed to use a solid motor to escape from the Earth. However, when the escape manoeuvre was considered in more detail, bearing in mind that the launch date and orbit parameters would be dictated by the primary passenger, a more flesible prapulsion system, capable of multiple burns, was required. This necessitated a storable bipropellant system: this comprises a 500 N motor, (the Leros 1 engine manufactured by Royal Ordnance) with four titanium 100 litre tanks with capiliary propellant managenent devices (manufactured 10 the Uk by Dowty, under licence from Marietta. The Leros motor uses mixed oxides of nitrogen and ordinary hydrazine (rather than the more usual monomerhyl hydrazine.) thus the hydrazine can also be used for the attitude control thrusters in a monopropellant mode without having to carry separate tankage and pressurant.

The nozzle of the 500 N motor projects from the centre of the 937 mm adaptar ring on the nominal anti-sun face of the spacecraft. The volume allocation for the nozzle would have to be negotiated with the launch authority. The tankage is mounted inside the adaptor ring, such that the chemical propulsion system (except for the attitude controi thrusters) can be kept separate from the rest of the vehicle until final integration. The modular construction of the probe is shown in figure g.

Analysis indicates that for the spacecraft mass considered here, 500 N 15 adequate thrust to provide sufficient deltave over the permitted thrust arc. Lower thrust levels would extend the required arc to the point where pointing losses during the spin-stabilised burn would degrade the mission performancョ unacteptady.

Electric Propulsion

The electric propulsion systen is built around two UK-10 senon ion thrusters (ref.a). In order to eliminate disturbance torques generated by
thruster misalignment and movement of the spacecraft centre of mass during the mission the two thrusters are mounted on gimbals which allow the thrust vector of each to be tilted $+/-4.2$ degrees. Additionally thrust vectoring over a wider range ($4 /-20$ degrees) is possible about one axis by differentially throttling the two thrusters - this allows optimal thrusting while maintaining earth-pointing. This configuration also allows at least a minimal misgion to be accomplished even if one of the thrusters fails.

The thrusters are run on Xenon stored near its critical point: the 50 kg propellant capacity requires 100 litres of storage: unfortunately the tanks used for the bipropellant do not have the pressure rating required (and indeed another tank of this size would be diffieult to fit in the avalable volume) sa the Xenon would be stored in two or four sraller tanks.

The ion thrusters are run with an acceleration voltage of g40V - this gives a specifie impulse of J 160 seconds. The thrusters cen be throttled over a range 10-25 mN each, with corresponding power consumption of 275-600 W . Some of this power is dissipated in the thruster power conditioning units, which have an area on the anti-sun face of the craft to radiate away this waste heat.

Power

The power demands of the spacecraft are somewhat higher than usual for its size - this is elearly due to the power required by the ion propulsion system. To simplify construction (and to avoid potential elasticity problems - c.f. Hubble Space Telescope) the solar arrays are of the rigia foldeut type. This also allows the possibility of withstanding shocks due to langing on the asteroid surface if this is to be attempted.

The four arrays are each four panels long, each panel equal in area to one of the eight sides of the spacecraft. Taking a packing fraction of 3.3 , this gives room for $204002 \times 2 \mathrm{~m}$ cells. Gallium Arsenide eells were selected for their higher efficiency and more importantiy for their higher radiation tolerance.

The arrays provide 1940 W of power at 80 L and 1 Al : allowing for pointing conditionint losses and a 10% margin, this leaves 1400 W , permitting both ion thrusters to be run at full power continuously. At $1 . G \mathrm{AL}$, taken to be the design maximum solar distance, the available power is about d75w sufficient to run one ion thruster at low power and run the other spacerratit systems.

In Earth orbit, the arrays are folded against the sides of the craft, with only the outermost panel exposed to the sun. Depending on solar aspect angle, up to 140 W can be generated. However, power requirements in Earth orbit are low.

When the power storage requirements (about 450 W-hours) are consicered, driven mainly by eclipse duration in orbit about the earth or the asteroid, it is found that Nickel-Cadmium batteries are uncomfortably massive, so Nickel-Hydrogen cells are selected instead. The cells are arranged in two batteries of twelve cells. Each battery has a DC-DC converter to boost the battery voltage (nominaliy 14 V) to the bus voltage (2gV). Should any eell
fail, it can be switched out of circuit and the battery will continue to function: the lower battery voltage can be accommodated by the DC-DC converter. This combination of redundancy (2 batteries) and the graceful degradation of the batteries themselves offers extremely high reliability.

Since substantial excess power is developed by the arrays if the ion thrusters are not firing, a shunt dissipator is required: this 15 situated on the anti-sun face of the spacecraft.

Comannications

The targets examined for the mission have aphelia up to 1.9 Astronomicai Units, so in principle, the Earth could be up to 2.9 AU distant from the spacecraft. However, this would make the line-of-sight pass very close to the sun resulting in a poor link. An arbitrary limit on the sightline-to-sun angle in the ecliptic plane of 20 degrees was set: this fixes the maximum design communications range at 2.5 AU .

The primary communications link uses a 1.65 m parabalic S-iand antenna, sited inside the $1920 m \pi$ adaptor ring on the nominal sunslde of the craft. A feed is mounted on an arm which swings into position (using a one-shot mechanism) after the escape burn. During the main cruise phase, the sun-spacecraftearth phase angle is found to be less than about 30 degrees, $s 0$ that the craft can be held Earth-pointing with a 10% or lesss cosine loss in solar power generation.

Using a low transmitter and convoiutional signal encoding, the link can support 400 bits per second downlink at a distance of 2.j AU. Link performance is increased at shorter ranges, ingher transmitter power and with more elaborate coding. The nominal link budget is shown in table 2.

During the Earth orbit phase an omnidirectional antenna is used.
Immediately after Earth departure, the sun-probe-earth angle is found to be much greater than 30 degrees: the spacecratt is then sun-pointed and communications continue with the omni antenna. The omni antenna is capabie of supporting 400 bps until the Earth-probe distance exceeds 0.1 Ab, by which time the phase angle has reduced to a point where the high-gain dish can be used without incurring excessive salar array mispainting lasses.

Attitude Control

During the Earth orbit phase, the spacecraft is spin-stabilised. Even with the solar arrays folded up against the sides of the eraft, the moments of inertia are suited for spin stabilisation, whigh serves to inold the at=itude rigia during motor firings.

Attitude determination is by sun and earth sensors in this phase. In the event of a failure of any of these components, some acditional attitude information could be provided by the star sensors (if the spin rate, probably $10-15$ rpm, is low enough for the sensors to cope) and a magnetometer carried as payload. Spin rate adjustments and slew manoeuvres are performed by monopropellant hydrazine thrusters.

After departure, the craft is despun, the arrays are deployed and sun-lock
achigved. Thereafter the craft is three-axis stabilised.
The dominant torque in the Gruise phase turns out to be the ion thrusters. While the hydrazine requirement to combat this torque is not excessive (although large) the number of thruster firings would exceed the rated life of the thrusters, so gimbals have ta be used to orient the ion propulsion thrust vector to eliminate disturbance torques. The gimbals are based around an existing antenna pointing mechanism (by BADG) with a mass of 4.2 kg and a power consumption of $3 W$ (ref.9). Remember that gimoalling will only be necessary when the ion thrusters are firing, when there will be plenty of power available.

The use of reaction wheels was investigated: these would eliminate propellant consumption during limit-cycling in cruise and slewing for imaging (the payload is body-fixed) at the target asteroid. Whether a reaction wheel suite is less massive than the propellant otherwise required depends on the number of slews required (the limit-cycling fuel requirement is very low) - break-even occurs at about $200051 \mathrm{ews}$. A figure of 2500 slews was taken, making wheels slightly better in mass terms: however, this area needs more carefill analysis and whether the 5 kg mass saving is worth the additional complexity is debatable. Nominally, then, no wheels are carried.

Attituze determination during cruise and rendezvous is accomplished with star sensors (based on CCD cameras-ref.l0) and sun sensors. Adcitional information, in the event of sensor blinding, is provided by attitude references which could be based on a number of low-mass tecthologies (e.g. gas gyros, fibre-optic gyros or solid-state gyros.)

It is acknowledged that the attitude control of a venicle on this sort ai mission is indeed complex and will demand substantial on-board processing capability. It is conjectured that the development effort involved wouid be considerable.

Payload
While the main aim of the study was to see what can de achieved with available technology, clearly the mission in practice will be driven to a large extent by scientific onjectives. These are to determine

1. Global characteristics: shape, size, mass distribution, rotation akis and period
2. Surface morphology: regolith structure and depth, gratering resord erc.
3. Elemental and Mineral Composition
4. Dust and Flasina environment; magnetic field if any

A survey of previous asteroid mission proposals (refs. 6,11,12,15,14) was undertaken to see what kind of instruments are carried ta meet these objectives. The instrument payioad selected as baseline resembles those of other missions:

1. Optical cameras based on CCD imagers, probably fairly rudimentary by planetary exploration standards. The exact design of the optics was beyonc the scope of this study and would depend on the final mission plan. Note that while providing highly important science data from orbit about the asteroid, the cameras would also be used to assist in the navigation of the
spacecraft just prior to rendezvous. The cameras are fixed to the side of the spacecraft, which is slewed round to aim them.
2. Gamma Ray Spectrometer - to identify the elemental composition of the asteroid: resolution is of the order of the spacecraft-asteroid distance. The instrument is deployed at the end of a boom to reduce contamination of the measurements by the spacecraft material itself.
3. Dust Detector - to investigate the dust particle ditribution about the asteroid. The detectors could use any spare 'real estate' on the spacecraft surface.
4. Magnetoneter - to investigate any possible remnant magnetism. This instrument too would be mounted at the end of a boom to minimise contamination.
E. Imaging Infrared Spectrometer - to identify surface mineral distribution. This instrument is optionai, subject to available mass; power and data budgets. Like the cameras, the instrument is body fixed.
5. Secondary Ion Mass Spectrometer - to study surface mineral and elemental composition. An experiment of this type was flown but not used befora the craft was lost) on the Soviet Phobos 2 mission: an ion baan is used to sputter material from the asteroid surface for analysis on-board in a mass spectrometer. Here an ion thruster would be used to generate the primary ion beam (ref.15). This instrument, too, is optional.

The science objectives met by the various instruments are summarised in table 3.

Although international collaboration is attractive, most of these instruments could be sourced in the UK. In particular, the teams at kent (Dust Detectors) and Imperial College, London (Magnetometers) have excellent reputations.

Groundstation

Overall programme costs can soar if missions are not managed correctly. It is proposed that most spacecraft operations be conducted autonomously, and that only one groundstation is used. Use of ESTRACK or DSN is not considerad in this report (except in contingencies) as they would be hideously expensive and, in the anticipated timeframe of the mission - the late 100 ol - these facilities will be in great demand for the many planetary and solarterrestrial physics programmes taking place.

A single, dedicated groundstation would be expensive to construct from scratch. However, there is a lom antenna and a control facility at the Rutherford Appleton Laboratory in Oxfordshire (figure 9): these have been unused since the US/Dutch/UK IRAS mission. Although the dish is old, and construction work has severed the cables connecting the dish to the controi

Conclusions

A viable asteroid rendezvous mission can be conducted with a spacecraft
launched as a secondary payload. In the case examined here, a combined chemicalelectric propulsion system is required to provide acequate performance: for other missions or launch orbits either all-chemical or allelectric venicles may be better.

While the venicle described is indeed comple: and uses many new tecinologies, no "magic' 15 required. Unilike a number of other proposals for planetary missions using small electrically-propelled vehicles (refs. ̇̈, 16) the technolagies and components suggested are in manufacture (or at least on the workbench) rather than being simply on paper.

While programme costs are notoriously difficult to estimate, launeh as a secondary payioad more than halves the price of the lanch. While most components will have flown at least once before the mission takes place, the technologies are still relatively new and favourable terms could probably be negotiated. The really difficult part to estimate is the cost of operations. software development and systems integration. If the programene is managea appropriately, with universities undertaking much of the work, overall programme costs could be kept down to the point where even the lk might be able to afford the mission.

Acknowledgements

The author wishes to record his thanks for the support of RAE Farnoorough and the Department of Aeronauties and Astronautics, University of Southampton. The support and encouragement of Dr Graham Swinerd, who supervised the project, is gratefully acknowledged.

Refarences

1. R D Lorenz 'Design of an Electrically-Propelled Asteroid Rendezvous Probe Launched as a Secondary Fayload' Eachelor of Engineering Third Year Honours Project, Southampton University, May 1790
2. Arianespace presentation at the IAA Small Satellite session at the 40 th Congress of the International Astronautical Federation, Malaga, Spain, 8-15 October 1999
3. A E Fietrass 'Trajectory Design for an Ion Drive Asteroids Fiendezvous Mission Launched into an Ariane Geostationary fransfer Orbit' AlAA-34-20ss. ALAA/AAS Astrodynamics Conference, Seattle, August 19.94
4. D F Bender 'Osculating Elements of the Asteroids' in T Genrele (ed) 'Asteroios', University of Arizona, 1078
5. C O Lau and N D Hulkower 'On the Accessibilty of the Near Earth Asteroids" AAS 85-352 AAS/AIAA Astrodynamics Specialist Conference, Vail, Colorado, August 1985
6. J E Fiandolph and D A Baker "Mission Candidates for the Second Planetary Observer' AAS 35-306 AAS/AIAA Astrodynamics Specialist Conference, Vait, Colarado, August 1985
7. F Eonneau ' Catalog of Asteroids or Comets in the Vicinity of Earth and

Mars' IAF-8日-381 Presented at the 39th Congress of the International Astronautical Federation, Eangalore, India, October 1988
8. D G Fearn, A R Martin and P Smith 'Ion Propulsion Research and Development in the UK. IAF-89-274 Presented at the 40th IAF Congress, Malaga, Spain, October 1990
9. H M Eriscoe 'Mechanisms' Chapter in Space Technology Eourge Notes, Southampton University, Easter 1988
10. P Butler and A Stein 'Deep Space Missions for Small Satellites' Proceedings of the 2nd AıAA/USU Conferance on Small Satellites, Utah State University, Logan, Utan, September 1988
11. A Brahic 'The Joint Working Graup Asteroid Mission" Advances in Space Research Vol. $5 \mathrm{Mu} .2 \mathrm{pp} .97-106,1985$
12. Various 'Asteroid Exploration Mission (ASTEREX)' Assessment Study No. 2 ESA-SCI(日1)1, ESA May 1981
13. Various :VESTA - A Mission to the Small Badies of the Solar System* ESASCI(98)6, ESA Octoter 1988
14. K J Cole, H Feingold, J McAdams, M L Stancati and J R French 'Small Spacecraft for Low-Cost Planetary Missions' Proceedings of the Jrd Annual AIAA/USU Conference on Small Satellites, Utan State University, Septemner 1999
15. R D Lorenz 'Remote Asteroid Surface Analysis Using Exhaust from an Ion Thruster' IAF-90-312, to be presented at the 41st Congress of the International Astronauticai Federation, Dresden, GDR, October 1790
10. W K Daniel and V C Gordon 'Small Satellite Design for inner Solar System Exploration' Proceedings of the Jrd AJAA/USU Conference on Small Sateilites. Utah State University, September 1989
Prneat mass to git (kg)

FIG 6 : Asteroid Rendezvous
Δv Requerments

Fic, 7 : MaXimum propulsion capability
(LAUNCH MASS 700 KB)

5169
THE EK-IRRS 12 m TRACKIMG AMTEWmA
ni

Table 3
aSteroid rendezvous probe
telemetry Link budget

Tx Pouer	10 W	10.00 dBU
Circuit Loss		2.00 dB
Modulation Loss		0.10 dB
Tx Antenna Gatn	1.65 . dia	28.91 dBi
Pointing Loss		9. 00 d8
EIRP		33.81 dBW
Space Loss	2.5 Al	229.89 dB
Atmospheric Loss		O. 30 dB
Boltzmann's Const		$228.60 \mathrm{dBJ} / \mathrm{K}$
Effective G/T	IRas groundstation	S. 29 dBK
Pobnting Loss	(see belou)	0.50 dB
Denod loss		3.50 dB
c/no		33.51 dBHz
Bit Rate	399 bps	26.01 dBHz
Required Eb/No	(see beloul	4.50 dB
Required C/NO		30.51 dillz
Hargin		3.00 dB

Notes:
Frequency
yfticient
Eb/HO for loE-5 Bit Error rate (Convolutional Code) Demod Loss includes Polarization loss
tatile 3 - Payldad scientific objectives

artenerx
Asterund fiendezvous Mass bungret firovistimal

\qquad

bornoweds	1 c	1. !	\cdots
	ins	.	. 8
that mant daxuce:	1	..'	4.4

[^0]: * The author is now with the

 European Space Technology and Research Centre (ESTEC),
 Postbus 299,
 2200 AG Noordwijk,
 The Netherlands

