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This paper summarises iii design study undertak~m as a final Yl:'ar 
proJect for the author's a.Eng, in Aero5pace SystQms Engineering. 
A spacecraft design IS outlined for a vehicle to perform iii. 

rendezvous 'With a Near Earth Asteroid after being launched as a 
secondary payload into Geosynchronous Transfer Orbit. The 360 kg 
(dry) spacecraft wOlJld use iii biproP4'llant chemical propuh.ion 
system to manoeuvre In. and escape from, Earth orbit. 
Interplanetary manoeuvring ""Quid be accomplished ""Ith an ion 
propulSion system. 

V!'rious mission and system design aspects are described. 
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Introductl0n 

The obJectlve of thm study was to determlne what kind of mission could be 
accomplished with a modest spacecraft using electric propulsion laUnched as 
a secondary payload. In particular it e~amined ~ Near Earth Asteroid 
Rendezvous (NEAR) mission. USlng a variety of advanced technologies anc 
techniques, a highly sophisticated and capable spacecraft can be constructed 
of a size SUltable for launch as a secondary payload. 

This paper summarIses the re~ults of the study report (ref.1) WhICh IS 155 
pages long. There is insufficient space here to repeat the details of 
"calculation methods and other background inform~tion, so if applying these 
results to other mISSions, take care! 

As an e~ercise. the mission was based around a number of components and 
technologies under development or manufactured in the U~. 

Launch 

The Ariane launch vehicle was selected as a baseline for a number of 
reasons:xt IS European, and therefore perhaps the least poiltically
senSItIve of available boosters; also it is launChed frequently (about 10 
tImes/year), and has a long hIstory of collaboration with secondary payloads 
(AMSAT OSCAR 10,13; UoSATs 3.4. Microsats; Viking etc.) 

The spacecraft IS designed as a 'satellite porteur' (ref.::) - built around 
the 1920mm/937mm launch adaptor (Just as the AMSAT Phase 4 spacecraft.) A 
cylindrical volume allocation (2.26m dia by 1m high) was o1.liIiiumed. No fi:led 
launch mass limit was taken, as thIS WQuld depend on the prlmary passenger 
on the launcher. A dry mass in the region 300-350 kg was aImed for, makIng 
the wet ma5S around 700-800 kg. This mass can be accommodateo by uprating 
the Ariane booster, WhICh is available 1n a number of verSlons wlth GTO 
payload masses from 1900kg to 4200kg. (see figures !!:,3) 

The mission analysis 1S effectively dlvided into two main parts: the Earth 
orbIt pha~e and the interplanetary cruise. lnltially, the Earth orbIt phase 
was r&go1.rded as a formallty, the intentlon beIng to escape immediately using 
a SOlld motor into a clrcular heliocentric orblt of radius 1 AU and use the 
electrlc propulsion system from there. However, when the effects of uSIng a 
slightly overslzsd motor were investigated, it was found that great 
improvements in V-infinity (the hyperbolic departure velOCity) can be 
obtained by slightly increasing the magnItUde of the escape burn due to a 
non-lInearIty in the celestial mechanics (see figure 4.) 

However, for the e~cess V-infinity to be useful, it must be in the correct 
directIon. This neceSSItates manoeuvring in Earth orbit - hen~e requirIng a 
restartable propulSIon system (i.e. not a solid.) Additionally, Oilnce the 
launch date is specihed by the pnmary passenger on the launCh vehicle, the 
spacicraft may have to wait in earth orbit for some months before departure. 
GTO is a most unfavourable orbit in which to spend such a period 
aerodynamlc drag, torques and heating, and most Importantly, the high 
radiation dose all degrade th. mission perform~ce. Therefore the craft 
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manoeuvres into .in expanded Or-blt (say 89(00)(500 km) for thll!! phasIng penod 
as suggested in (,-ef.3.) This orbit reducs$ the radiation dose considerably: 
it also breaks the escape burn into two smaller burns so that a smaller 
motor can be used. The perigee is raised slightly for safety but kept faIrly 
low to maximise the V-infinity performance of the escape burn. An 
inclInation change manoeuvre would be performed just after entering the 
waiting orbit to control apsldal precession and nodal regression of the 
orbit. Inclination would be adjusted agaIn a few orbits before departure to 
orient the departure direction. 

The Earth orbIt manoeuvres are ~ummarised in figure 5. 

Mission - Deep Space Phase 

A number cf potential targets were examined, selected by eye from the TRIAD 
(Tucson Revised Index of AsterOId Datal TIle (ref.4l and other asterOId 
mission studies (refs.5,6,7l. Delta-V requirements were evaluated assuming 
Hohmann transfer~ (not strictly correct given that some of the manoeuvres 
are conducted with a low-thrust propulSion system, but accurate enough for 
the purpose of this study.) 

Thus two velOCIty changes, dslta-V-one and -two, are required for the 
misSion. These can be traded off against each other by varYIng the fraction 
of the Inclination change that is performed at rendel-yeus (parameter alpna.) 
The delta-V requirements fer some of the easIer targets are plotted 1n 
hgl.!re 6 with the effect aT varying alpha shown; actual figures for 
alpha=O.7 are given in table 1. 

The 
plus 
after 

delta-V-one requirement is met by the hyperbolic departure velOCIty, 
a velocity increment from the ion propulSion system if necessary just 
departure; delta-V-two is met by thii ion propulsion system In deep 

space. 

The nomln.l targets selected are mildly inclined (less than 10 degrees to 
the ecllptic). and have apheli~ 1.BAU or closer. The three prlncipal targets 
are Eros, Anteros and Bacchus. 

The capabllities of a combined chemical-electric and a chemIcal-only 
spacecraft of the seme launch mass are shown in figure 7. By comparing 
figures ~ and 7 ,it is seen that a chemical-only vehlcle is only just 
capaDle of performing a rendezvous mission with the easIest-reached target, 
1982 HR. A chemical-electric vehicle~ as proposed here, has a much larger 
performance envelope and allows far more flexibility in target selectlon. 
Gi.ven the launch as a secondary payload, this flQxibility IS vital. 

An all-electriC yehtCle would be capable (at first Inspection) of performlng 
mlSSlons of even Wider scope. Howevl!'r~ in this case, the thruster llfetlme, 
rather than propellant supply, becomes the limiting parameter. Escape from 
GTO using electric propulSion would be a nightmare from an attItude control 
point of vleW, wouid Incur substantial radlation damage, and would take over 
one year (USlng the two UK-to thrusters with 2kW of available power.) 
Further, since a slow, spIral escape leaves the craft with a hyperboliC 
departure velocity of zero, the actual propellant mass savlng for a typical 
III1$S10n (wlth delta-v-one equal to about 4 km/s) will be very small. 



Accordingly, the combined chemical/electric mission is retained. 

ConfIguration 

The configuratlon driver~ are principally the volumetric constraint 
by the launch vehlcle, and the cruise pointing requirements of 
thrusters, solar arrays and communlcatlons antenna. A number of 
configuratlons were trIed but reJectea on the grounds that they 
complIcated mechanlsms. 

imposed 
the ion 
posslble 
reqUIred 

)he configurahon that finally evolved has a body-fi:~ed payload, chemical 
motor and communlcatlons antenna. The vehlcle 1S an octagonal prism, sized 
to fIt the envelope 1n flgure :. A cruciform solar array 15 deployed by 
unfolding four four-panel 'wings' from the sides of the probe. These arrays 
are body-fixed and do not artlculate about any rotahng jOlnts. (In some 
respects, the probe resembles the Mariner Mars probes.) The only mechanisms 
used are booms for two of the Instruments. gImbals for the ion thrusters, 
and one-shot mechanlsms to deploy the solar arrays and antenna feed. 

ChemIcal PropulSion, 

Imtially the concept of the mission was to use the electric propulsion 
system to the full. Since a spiral escape from GTO 15 not easy, It was 
inltlally proposed to use a SOlId motor to e~cape from the Earth. However, 
~nen the escape manoeuvre was considered in more detail, bearing in mind 
that the launch date and orbit parameters would be dictated by the primary 
passenger, a more fle~:ible propulsion sy~tem. capable of multiple burns, was 
reqUIred. ThIS necessltated a storable bipropellant system: thiS comprises a 
500N motor, (the Leres 1 engine manufactured by Royal Ordnance) I'll th four 
titanlum 1(1) litre tanks with capillary propellant management devices 
<manufactured 1n the Uk by Dowty, under licence from Manetta. The Leros 
motor uses m1;-:ed OXides of nitrogen and ordinary hydrazine (rather th .. n the 
more usual monome>::hyl hydraZlne.) thus the hydraZlne can also be used tar 
the attltude control thrusters in .. monopropellant mode Without haVIng to 
carry separate tankage and pressurant. 

The noz::le of the 500N motor projects from the centre of the 937mm adaptwr 
ring an the nomlnal antl-sun face of the spacecraft. The volume allocatIon 
for the nozzle would have to be negotIated with the launch authol'"lt/' The 
tankage is mounted inslde the adaptor rIng, such thaL the chemIcal 
propuls10n system \e;~cept for the attitude control thrusters! can be kept 
separate from the rest of the vehicle untIl final integration. The ITiodular 
construction of the probe 15 shown in figure 8. 

AnalYSlS Indicates that for the spacecraft mass considered here, 500 N IS 
adequate thrust to prOVIde Sufflcisnt delt3.-v aver the permItted thrust arc. 
Lower thrust levels would extend the required arc to the pOInt where 
pOIntIng losses durlng the spln-st.abI11sed burn would degrade the ,USSlon 
performance unacceptaoly. 

El~ctric Propulsion 

The electrIC propulslon system is built around 
thrusters (ref.a). In order to eli.llinate disturbance 
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thruster mIsalIgnment and movement of the spacecraft centre of mass during 
the ffilssion the twa thrusters are mounted on gimbals which allow the thrust 
vector of each to be tIlted +/- 4.2 degrees. Additionally thrust vectoring 
over a wideI"' range ( ... /- 20 degrees) is possible about one a:ds by 
dlfferentially throttling the two thrusters - this allows optimal thrustIng 
WhIle maintainIng earth-pointing. This configUration also allows at least a 
minimal mi 3 sion to be accomplished even if one of the thrusters fails. 

The thrusters are run an Xenon stored near its critical pOint: the 50kg 
propellant capacity requires 100 litres of storage; unfortunately the tanks 
used far the bipropellant do nat have t~e pressure ratIng requIred land 
indeed anether tank of this si=e would be difficult to fit In the avaIlable 
volume) so the Xenon would be stored in two or feur sll',aller tanks. 

'The Ion thrusters are run with an acceleration voltaJ;;e of 940V - thIS gl'19S 
a speCIfic Impulse of 3160 seconds. The thrusters can be throttled over a 
range 10-:25 mN each, WIth corresponding power consumption of 275-001) W. Some 
of thIS power is diSSIpated in the thruster power condltl00l,'g Unlts~ wnich 
have an area on the anti-sun face of the craft to radIate away thIS waste 
heat. 

Power 

The power demands of the spacecraft are somewhat hIgher than usual tor Its 
SIze thIS is clearly due to the power required by the Ion propulSIon 
system. To slI1lplify construction (and to avoid potenbal elastIcl ty problems 

c.f. Hubble Space TeleSCOpe) the solar arrays are of the rIgId toldout 
type. ThlS also allows the possibility of withst~nding shocks due to lanCIng 
on the asterOId surface if this IS to be attempted. 

The four arrays are each four panels long, each panel equal in area to one 
of the eight sides of the spacecraft. Taklng a packIng fractIon of ~.8~ thl~ 
gIves room for ':040') 2:::cm cells. Gallium Arsemde cells were s=lec~ed for 
their hIgher effIciency and Illore Important~v for thetr higher r~dIat1Qf1 

tolerance. 

The arrays prOVIde 1940W of power at BOL and 1AU; allOWIng tor pOIntIng 
canditloniny losses ,il;nd a 107. margin, this leaves 140()W~ permi.ttIng both Ion 
thrusters to be run at full power continuously. At 1.S AU, taken to be the 
design maximum solar distance, the available power IS about 4i"::W 
suffIcient to run one ion thruster at low power and run the other spacecraft 
systems. 

In Earth orbit, the arrays are folded against the sides of the craft. 
only the outermost panel exposed to the sun. Depending on solar 
angle, up to 140W can be generated. However, power requ1rements 1n 
orbit are low. 

WIth 
aspect 
E~rth 

When the power storage requirements (about 450 W-hours) are conSloereo, 
drtven mainly by ecllpse duration 1n orbit about the e~rth or the asterOId, 
it is found that Nickel-CadmIum batteries are uncomfortably maSSIve, :;0 
Nickel-Hydrogen cells are selected instead. The cells are arranged In two 
batteries of twelve celis. Each battery has a DC-DC converter to boost the 
battery voltage (nomInally 14V) to the bus voltage (28V). Should any cell 
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fail, it can be switched out of circuit and th~ battery wIll contInue to 
function: the lower battery voltage can be accommodated by the DC-OC 
converter. ThIS combi~atlon of redundancy (: batterIes) and the graceful 
degradatIon of the batteries themselves offers e~{tremely hIgh relIabIlity . 

• 
Since SUbstantial e:,:cess power is developed by the arrays if 
thrusters are not fIrIng, a shent dissipator is reqUIred: thIS IS 
on the anti-sun face of the spacecra~t. 

Communicationli 

the Ion 
sItuated 

The targets e):amined for the mission have aphelia up to 1.8 Astronomicai 
Units, so in principle, the Earth could be up to 2.8 AU dIstant from the 
spacecraft. However, this would make the line-of-sight pass very close to 
the sun resulhng In a poor link. An arbItrary limIt on the sightllne-to-sLln 
angle in the ecliptic plane of 20 degrees was set: this f1::es the ma:nmLlm 
design communications range at ~.5 AU. 

The primary communications link uses a 1.65m parabolIC S-cand antenna~ SIted 
inside the 19:0mm aoaptor nng an the nOmlnal sunSlde of the craft. A feee 
is mounted or. an arm which swings Into positIon (using a one-shot mechanIsm) 
after the escape burn. During thQ maIn cruise phase, the sun-spacecraft
earth phase angle is found to be less than about 30 degrees, so that the 
craft can be held Earth-pOinting with a 1O~~ or lesss COSIne lass in solar 
power generatIon. 

Using a lOW transmitter and convolutional slgnal encoding, the link can 
support 400 bIts per second downlink at a dIstance of :.5 AU. L,nlo: 
performance is lncre~sed at shorter ranges, hIgher transmItter power and 
with more elaborate coding. The nominal link budget is shown in table ~ 

During the Earth orbIt phase an omnidirectional antenna is used. 

Immediately after Earth de~arture. the sun-probe-earth angle IS found to be 
much greater than 3(1 degrees: the spacecraft is then sun-pennted a.nd 
communIcations ~ont1nue with the omni antenna. The ornni antenna is capable 
of supporting 400 bps until the Earth-probe distance exceeds 0.1 AU, by 
WhICh time the phase angle has reduced to a point where the hIgh-gain dlsh 
can be used wi thout incurri ng a:{cessi ve sol ar array Ini spOlntl ng 10SS9S. 

Attitude Control 

DUrlng the Eal'th orbit phase~ the spacecraft is spin-stablllsed. Even wit~ 

the solar arrays folded up against the sides of the craft~ the moments 0+ 
Inertla are suited for spin stabilisatlon, which serves to Mold the atc.l"tude 
rIgid durIng motor fIrings. 

Attltude determlnatlon is by sun and earth sensors in this phase. In the 
event of a failure of any of th~se components, some aadIt.anai attItude 
informatton could be provided by the star sensors (If the spIn rate, 
~robably 10-15 rpm, is low enough for the sensors to c~pe) and a 
magnetometer carrIed as payload. Spin rate adJustments and slew manoeuvres 
are performed by monopropellant hydra.:lne thrusters. 

After depa.rture, t!'le craft is despun, the arrays are deployed and sun-lac:" 
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achieved. Thereafter the craft is three-axis stabIlised. 

The dom1nant torque in the cruise phase turns aut to be the ion thrusters. 
While the hydrazlne reqUirement to combat thiS torque IS not exceSSlve 
(although large) the number of thruster firings would exceed the rated life 
of the thrusters, so gimbals have to be used to orlent the lon propulSIon 
thrust vector to elimlnate disturbance torq~es. The gImbals are based around 
an e:nstlng antenna pOinting mechanism (by BADG) wlth a mass of 4.: kg and a 
power consumption of 8W (ref.9). Remember that gimbaillng WIll only be 
necessary when the ion thrusters are hring, when 'there w111 be plenty of 
power available. 

The use of reaction wheels was Investigated: these would ellminate 
propellant consumption during limit-cycling in cruise and sleWIng for 
imaging (the payload is body-fixed) at the target asterOld. Whether a 
reactlon wheel sUlte is less massive than the propellant otherwise reqUIred 
depends on the number of slews reqUired (the limit-cycllng fuel requIrement 
1S very low) - break-even occurs at about 2000 s1e ... s. A flgure of ::::500 slews 
was taken, maklng wheels slightly better in mass terms: however~ this ~rea 

needs more careful anal ysi s and whether the 5kg mass savi ng I s worth the 
addltll:lnal comple:dty 1S decatable. Nominally. then. no wheels are earned. 

Attltu~e determInation durlng cruise and rende=vous is accompllshed wlth 
star sensors (based on CCD cameras- ref. to) and sun sensors. -",ddl1:ior,al 
Information, 1n the event of sensor blinding, IS provlded by attltude 
references which could be based on a number of low-mass technologies (e.g. 
gas gyros. fibre-optic gyros or solid-state gyros.) 

It is acknowledged that the attitude control of a vehlcle on thlS sort ,~-t 

mission is lndeed complex and will demand substantlal on-board processlng 
capability. It is conjectured that the development effort involved would be 
considerable. 

Payload 

While the main alm of the study was to see what can De achleved 
avallable technology, clearly the misslon 1n practlce Will be dr!'1en 
large e:{tent by scientific objectives. These are to determlne 

wLth 
to " 

1. Global charactenstIcs: shape. si=e, mass distnbution, rotation a,:lS and 
penod 

Surface morphology: regolith structure and depth~ craterlng record e~c. 
~. Elemental and Mineral CompOSItion 
4. Dust and Plasma enVIronment; magnetic field if any 

A survey of previous asteroid misSlon proposals Irefs. 6,11,1:,1:::, 14i was 
undertaken to see what kind of instruments are carrIed to mee't these 
objectives. The instrument payload selected as baseilne resembles those of 
other missions: 

1. Optlcal C.9.meras based on CeD Imagers, ilrobably falrly rudlmen'tary by 
planetary e::plorAtlon standards. The e:{act design of the. optlCS was oeyono 
the scope of thIS study and would depend on the final mission plan. No'te 
that whIle provlding hlghly lmportant sCience data from orb1t about the 
asterOld. the cam~ras would also be ~ed to .S»ISt 1n the nav1gatlon oi the 
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spacecraft just prior to rendezvous. The cameras are fixed to the s.de of 
the spacecraft, which 15 slewed round to aim them • . 
2. Gamma Ray Spectrometer - to identify the elemental composition of the 
asterOld: resolution 15 of the order of the spacecraft-asteroid distance. 
The instrument is deployed at the end of a boom to reduce contamlnatlon of 
the measurements by the spacecraft material itself. 

3. Dust Detector - to investigate the dust partlcle ditribution about the 
asteroid. The detectors could use any spare 'real estate' on the spacecraft 
surface. 

4. Magnetometer 
Instrument too 
contamination. 

to investigate any 
would be mounted at 

possible 
the end 

remnant magnetism. ThiS 

of a boom to mlnlmlse 

5. Imaging Infrared Spectrometer - to identify surface mineral dIstrlbutlon. 
This lf1strument IS optlonai ~ subject to available mass! power and data 
budgets. LIke the cameras, the instrument is body fixed. 

6. Secondary Ion Mass Spectrometer - to study surface mineral and elemental 
composlt1on'. An e;,~periment of this typs was Eown (but nat used before the 
craft was lost) On the Soviet Phobo$ 2 mIssion: an Ion beam IS used to 
sputter materIal from the asteroid surface for analysis an-board In a mass 
spectrometer. Here an ion thruster would be used to generate the primary Ion 
beam (ref.15). This 1nstrument, too, is optional. 

The science obJect1ves met by the varIOUS instruments are 5ummarlsed 1n 
table ~. 

Although international collaboration is attractIve, most 
instruments could be sourced In the UK. In partIcular, the teams 
(Dust Detectors) and ImperIal College, London (Magnetometers) have 
reputatIons. 

Groundstation 

of these 
at Kent 

excellent 

Overall programme costs can sOQr if missions are not managed correctly. It 
is proposed that most spacecraft operations be conducted autonomously, ana 
that only one groundstatl0n is used. Use of ESTRAC,< or DSN is not conSIdered 
1n ttns report (except in contingenCIes) as they would be hideously 
e:~pensive and, In the antICipated timeframe of the mIssion - the late 1'?9(ls 
- these facilities w1l1 be In great demand for the many planetar,' and salar
terrestrlal phYSiCS programmes taklng place. 

A single~ ded1cated ground5tatlon would be expenslve to construct from 
scratch. However, there is a 10m ~ntenna and a control faCIlity at the 
Rutherford Appleton Laboratory In Odol"dshlre (figure 91: these have been 
unused Slnce the US/Dutch/UK IRAS mission. Although the dish 1S old, and 
construct10n worK has severed the cables connecting the d1Sh to the controi 
room, the station could be restored to operation far about.f: mllllon. 

Conclusions 

A .... iable asteroid rendezvous mission can be conducted with a spacecraft 
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launched as a secondary payload. In the case examined here, a combIned 
chemIcal/electrIc propulsion system IS requIred to provIde adequate 
performance: 'or other mlSSlons or launCh orbits either all-chemical or al1-
electrIC vehIcles may be better. 

Whil e the vehi cl e deSCribed is 1 ndeed campI e:( and uses many new 
technologIes, no 'magic' IS required. Unlike a number of other proposals for 
planetary mISSIons using small electrIcally-propelled vehIcles (refs.:.16i 
the technologies and components suggested are In manufacture (or at least on 
the workbench) rather than being slmply on paper. 

While programme costs are notoriously dIfficult to estImate. launch as a 
secondary payload more than halves the p~lce of the launch. Whlle mast 
components 1'1111 have flown at least once befo~e the IIIlSSlon takes place, the 
technologies a~e still ~elatively new and favou~able te~ms could p~obably be 
negotiated. The ~eally difficult pa~t to estimate lS the cost of ope~atlons. 
softwa~e development and systems integration. If the prog~amme IS managed 
appropriately. wlth universlties undertaking muc:h of the work, overall 
p~ogramme costs could be kept down to the point whe~e even the Uf:'o mlght be 
able to affo~d the mission. 
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