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ABSTRACT 

TUBSAT-1 (Technical University Berlin Satellite) is an experimental low-cost 
satellite being financed by the German BMFT. 

The dimensions and weight are determined by the NASA Gas-Program and it will 
be ejected from the Space Shuttle within the German spacelab mission D2 by December 
19, 1991, into a 298 km circular orbit and at a 28.5° inclination. 

To enable a large variety of useful experiments to fly with TUSSAT, it was 
necessary to develop a rather precise attitude control and stabilization (ACS) system. 

The ACS should be low cost, flexible (in view of changing ACS modes and 
parameters during the mission time), minimum component number and a low power 
consumption. 

A sun/star orientation with an additional spin mode was chosen and developed. 
The system is based on a microcomputer, fixed momentum wheel (FMW), one magnetic 
torquer, one sun and two star sensors. The closed loop pitch control consists of FMW, 
sun and star (for the eclipse phase) sensors, achieving a pitch pointing accuracy of 
0.26° for any slew maneuver by using momentum transfer from the wheel to the satellite. 

Control of the wheel momentum (desaturation) without affecting the pitch axis 
orientation can be accomplished by executing a pitch slew maneuver. Positioning the 
magnetic torquer (which is mounted perpendicular to the pitch axis) to interact with the 
geomagnetic field vector. 

The pitch axis reorientation maneuver due to interaction between the magnetic 
torquer and the magnetic field vector component can be controlled by the one axis star 
sensor (roll/yaw rotation). A further pitch slew maneuver of 90° is necessary for 
pOSitioning the sensor (roll "" yaw). 

This means achieving the target attitude regardless of the momentum change. 
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TU8 SAT -1 \ Tee f,nical Unl" e,-s I ty 8 e,-Iln S a. U~II i t>!l J Is a" e~.pel"i'''',,;,'' ta.l low -cos t 

sa.teilite being fil1anc",d b} til", Get-ma.n 8MFT. The di,'1e"sior1s a.r1d w",igl1t are 

d.atennln>!ld by th.; t·JA.SA Ga.s-p,"og,-an1 and It will b>!l eject.a·j irom th.a spa.ce .. hut tie 

""lthil1 tl,e (:iien11an spacelab mission D2 by Febn..ra,')I 6th. 1':;;J92. into a 2':118 km 

cir-cular- or-bit and at a 28.50 inclInation. To ena.ble a lar-ge var-Iety of useful 

exper-iments to fly wIth TU8SAT. it was necassar-y to d ... velop a ... ather- pr-eclse 

attitude cont,'ol and stabilisation lACS) systam. The ACS should be 10 .... cost, 

flexible \ In" I",,,,, of cllangir1g ACS mod",s and par-am",te ... s dur-Ing the miSSion tIme). 

should ba.a a mlnlmun1 component numb.;r- and a 10"" power- consumption. A sun/star" 

or'Ientatlo'1 with an additional spl" mode was choser, and deHiioped. The system Is 

ba.s..;,d c·" a miCt-ocomputer-, fixed momentum wheel IF!l.1WI. on.; magnetic tor-que ... , 

o"e SUl1- Q,1d tNO st'U·S""'SOr"s. The closed loop pitch contr-ol conslts of FM'N. 

sun - and so ta,' \ t' 0 r- the oi cl ips e ph ase) se 11 S'.:. r-s ,ac I' I",,, in gap I tel, po i'1 tl " 9 ac cur- acy 

of Co :213"':' f';)r- 3.ny SI<e'N n"I,!neU'I<er" by 1)51ng n"lon"le.,tun"I tr-ansfer- frofT! t.he whe<el to 

the s a tell! te. (.0 r1 t"ol 0 t' tl,e \-'Id,eel mon, e n tum Id ... s a tu,' a tion I "" i tho u t sign Ifi Ca,ltl y 

at' t ec tin g t IH, P Itch a;,., i s 0 r-I ... " tea ion can be ac cell"~ p lis hed by e:><.ecu tI t1 9 a pi tch sl evv 

maneu·,e,", posltiOI,ir'9 tt, ... mag"etl..: tOI'que," \ .... hich Is mounted p",r-p ... "dlcular- to 

th ... pitcf, axis.) to hltliwact witf, the gecma.gt1etic field vecto .... The Pitch axis 

,"eCI'i",ntatiOl1 ma.neuv .. r- due to inter'action between the magnetic tor"que," a"d th,", 

mag"etlc field vecto," compO'1ar1t can b.; contr-ollad by th ... 0" ... axIs star- sensor-

f r"oll /y3.'N '-otatfon). A furt.her pitch slew maneuver" of 900 
is necessary for positioning 

--' the sensor- lroll { __ . yaw). This means achieving the tar-get attitude ... egardles.s of 

the momentum change. 

1. TUBSAT program 

TU8S,AT-1 can be defined as a first step into the direction of multimission flight vehicle 

which is particularily suited for educational purposes and student e:,<periments with the 
following aims; 

- Demons tration of a modUlar experimental platform which is adaptable to low cos t launch 

opportunities for achieving high launch frequencies. 

- Te~;.t of a "self rilade" h)'N-cost digital ,A,CS concept ·,,\tit.hin a small space craft to 
implement a fail"f precise orientation in orbit. 

- E;<e.:ution of a pilot proJect for observing the migratory routes of white storks from 

EW'ope t,) Africa and/or back, 
- Stol'e and fQrward communication experiments between student groups. 
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2. ACS system and components 

TU8SAT-'1 should bv defillition have a 3-axis stabilisation and control system with the 

following requirements: 

- Use uf space enli(onli",ent influence only 

- Low-cost 

- A minimum number of components with a relatively low mass. power consumption and 

volume 

- Fairl! precise pointing accuracies 

[Jifferent possibilities of ACS concept have been discussed. The final decision was made 

aft€!' quite a !c.nq period according to the results of the components which were de'/eloped 

Ju,'iI19 th·,?1t time, Finall, a 1110mentUr11 bas~d .~CS cunfiguration ''<'Ias chosen .. A. single fixed 

momentulll wheel and single torquer as actuators. star and sun sensors as sensing devices 

and LvoJ microcomputers as contre,ilers. see fi9.1. ;-\.11 used units are "self-made". utilizing 

Cu(,',I"t',el'dll cOlr,ponents for ·:ost reduction. (Unfortunately it is not yet pussible to fly our 

own developed wheel. because of the GAS safety requirements.! 

2.1 Fixed Momentum Wheel (FMW) 

The primary function of the Fixed tvlomentum Wheel is to stabilise the satellite in its roll 

and ya',v axis by the gyroscopic effect. and to control the satellite in its pitch a><is by wheel 

acceleration and de·:eleration (reaction torque). A fixed tnomentum wl",eel type DR 50-2 

(Teldix) is being used. It is oversized but it was available for a "special price". 

2.2 Wheel Drive Electronic 

As the wheel motor" torque is proportional to the motor current. the main function of the 

',VC'E is to control the motor current.For acceleration a positive motor current is fed into 

the m·.:.tor, deriied f,'om the main pO'Net" supply. Fur deceleration no current is supplied, 

so that a negative reaction torque is provided. dLle to the friction of the wheel bearing. 

The '.i-/DE output current is linear to the input voltage and limited to 0,5 A, for avoiding 

dam 39-2 to the m 0 tot' co iI s" Tlie tot" que c ontl"ol s ig nal Ustell 0- 5 './ is fed fr om the tv1 PU to 

the 1/-I[lE. Therefore the motor torque is proportional to the control si9nal.see fig. 2. 

2.3 Microcomputer 

The closed loop pitch control and the open loop roll/yaw control are each based on a 

micro'.:omputer unit (CPUi. It is an 6 bit Ovt05 singie chip microcomputer of the type 

HD63701'(OF (Hitachi) and contains 11 k bytes of PROM, 256 bytes of RAM. serial cornmu

nicatj.:)Il intedace and 53 parallel input/output pins. 

Pitch CPU: It is collecting and distributing the following signals: 

Input: - corrected Ft...,1Vv', taclio Signal 

- solar sensor panel Signal 

- star sensor signal 

- pitch mode command from the roll/ya·· ... i CPU 



OutpUl:- wheel tor'que control signal to wDE U:;tEiIl 

- reset signal to the star sensor I 
- status information to the roll/ya.w CPU 

Roll/,vaw CPU: It is actLlal'y the onboard data handling computer but also responsible for I 
co<)rdination and control of the pitch axis reorientation maneu'/er. 

2.4 Sunsensor (SS) 

Ther'e are t'NO Qptions tor 5ensinq tlie sun dire,:ti')n, 

1. T.,.·,o small solarcells. mOI.Jnted on the surface of the aLiter shell with an angle of 90° or 

135 0 . rl.;, ~,it.:I'1 err'or is pl'O'iided if the satellite surface (in the case of 90°) ot" 
th-e s::1tellitE edge '.in the ;::ase cf 135 0

) is pointing towards the sun. 

2, The pitel1 er'ro,' si9nal can be sensed by c?mparing the outpLlt voltage of the relevant 

solar panel. 

2.5 Starsensor (STS) 

There are two star sensors used, one for pitch and the other for roll/yaw attitude 

sensing. The STS is based on a 288 by 388 pixel CCD chip camera. and an 8 bit micro

computer Lmit and these provide a single axis measurement. The image of the star 

confi9~ration taken at the time to being reduced to a row of 288 pixel. The existence of 

at least one star is presented by logicai 1 or else O. The drift angle is provided by shifting 

the raw trom the image taken at the time tn against the first one until ct)rrelation is 

achieved. The STS can be operated in the folio'¥vin9 modes: 

- Rat.~ jlit~.:Jrat.i0n rnode"vhi·:,I'1 pr'ol/ides the dl'ift angle (op ) be t-Ne-er"1 the time to and tn. 

The resldts' are read:i after 220 ms. Using a 20 mm lens g1';;;s is 20"\ield of ','ie'N and 

ma:<,imLlm aIJ':)'Nable satellite anglilar rate of 45 u/$ 17.5 rpm l. 

- Rat.-e mode. wher'eb.v each image is compared with tile previous. one (tn. tn ... 1), Dividing 

this b.~ t.he tirne int-erval provides the angular rate. The result is read)i after 240 ms and 
the IlH.'.imLliH all0wable sat-ellite angular rate is 500""/$ (63 rpm). 

A. ml)de which provides tp and.p in every 440 ms 

- A mode 'which provides the position (one axis; and the size of the biggest star. 

- A, m0de 'Nhkh lIses the STS as a camera for attitude determination (by tt'ansmitting 
tile star image to the ground station) 
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The next generation of S TS with two axis information is being developed. The use of a I 
16 bit MCU will reduce the computation time to about 115 . A drastic reduction in power 

consumption can be achieved by not using the TV norm. 

2.6 Summary of Components 

components 

- FI·"rN (Teldix) 

Ftvf"V iT. U. Berlin) 

T orql.ler 

SS 

- 5T5 
- wOE 
- CF'U +electronil:s 

mass [kg] 

5.7 
2,5 
1.0 
0.1 
0,5 

0.3 
0.3 

power [wattl 

2.0 
~ 2.0 

2.0 
0.05 

2.0 
0.1 

';:; 0.2 

(1000rpm) 
C1000rpml 
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3. System Design 

The preliminary sign of tile nominal wheel mornentLim was based on its etfect on p')inting 

• error due to a stead,' rol; disturbance torque. as.3uming a worst case of dispiacement 

bet,·.oS--=1"1 th.; ·:entet" of pl"essure (CP) and tile cente( of mass (er ... !) and a high atmosplH~ric 
densitv (I) 

2 
r'.laer' = mae" 0.5 p \/ 

with maliir = Cd F d since 

ghes disturbance torqu.a of 2.6110 -5 Nrn. Th;? design pitch pointing error is 0.26 . so: 

Hg = lvIaQr/ wo IjJ 

gives the bias momentLlnl reqUirement of 5 N ms and via: 

we qet the nominal wheel speed of 460 rpm and the e::<pected nutation frequency of: 

• ....J U· <: 

Wn = Hg /( 1;....1)') = 5.1 rad/s = 48.7 rpm 

Wheel momentLlt'I1 saturation/desaturation and reorientation of the momentum vektor is 

pedorm>:d by ma9netic torqLler. The maximum precession rate 

-4-
W = 6D/Hg = 2.22.10 rad/s = 0,76 deg/min 

',yith torquer magnetic dipole moment of 27. i' Am2 in ~ field of 4.10 is and wheel angular 

momen tum of 5 Nrns. 

the e;<pected satellite spin/despin rate with the torquer in a field of 2.10 T-Sis: 

- 4- 2 
cps = 6D/I)'-19 == 5.2.10 rad/s = 0.29 rpm/min 

and with 1$/19 == '11 follows the wheel acceleration/deceleration rate of 3.2 rpm/min. 

4. Pitch Control 

4.1 ReqUirements and Design Philosophy 

Accordin9 to the already mentiOIl>:d general reqLlirements here high flexibilit.y means that 

the control system should be capable of performing different kinds of slew maneuvers, 

i. e. 

- for positioning the roll/yaw one axis S TS in any desired direction 

for pitch axis reorientation 

- fOI' positioniii9 the torquer for wheel momentum desatw'ation 
- for earth observation purposes. 
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To a..::hie'/e this hi9h de'~r'ee of fle",ibilitf a microcompLlter- based realisation is preferred 

Oier analog solutions. FLlrther on, the sysrtem shoLdd cont.ain as few components as 

~"j'3sitle;'iith preferelh:;e for simple ones ovel' highly sopl1isticated but less r.,::liabl.;: ones. 

The contl'ol st.r'ategies should be robLlst and simple and should not contain any highly 

s.::nsiti/e parameters, 

E:,1S.;:d on these c0(lsideratiof'ls, n0nlin.;:ax s'Nitching COlit!'01 law's ha'ie been adopted for 

the Cllrrent design of TU8SA T, that proved to be robust and simple. Minimum power 

consumption Is guaranteed because the drive, of the FlvrvV is switched with minimum 

h)sses. This is clearly an advantage over linear solutions. As can be seen in the functional 

blod di ram tfig, 3) the pitch control is organised in a cascade configuration. 

The inner loop realises the control of the anglilar velocity of the FMW (RPtv1 control) while 

the outer Ivvp controls the pitch angle, This scheme stabilises the momentum of the 

satellite even in caseS of failure in the oLlter,control loop. In these situations the outer 

loop is disactivated and the momentum stabilised by controlling the angular velocity of 

U"le n.1\'.! in tile inner loop {mode OJ, tv1vdes 1 and 2 indicate tliE: a..:tiyation of the sun- and 

stars-:nsor respectively. 

In the foilowing a mathematical model of the satellite - Flv!'"V' system. the functional 

pl"in,:i,:I-:~ of tl)e RPt"l- and pitel-l control and some asp.;.cts of tile actual implementation 

are ,jescribed. The section concludes with the presentation of some reSLdts that have 

been recorded from OLlr experiments with a laboratory prototype of TUSSAT. 

4.2 Mathematical Model of the FMW- Satellite System 

In the folk)wifl9 it is assumed, that only the momentum in the dire,:tion of the pit,:h axis 

is different from zero. In this case ELder's rotationalla'N for rigid bodies can be formLliated 

(1] : 

where 

d/dt H = Moist , H = Iy ws + Ig Wg ( 1) 

H 
1"ldist 

Ii. Ig 

Ws, Wg 

momentum in direc tion of the pitch axis 

torque that is induced by the disturbances (atmospheric forces etc.) 

mom.;.nts of inertia of tl1e satellite and tl1e Ftvl'N in the direction of 

the pitch a,:ds respectively 

angLtI ar velodties of the satellite and n.,fvV resp. 

From (1) it follows that 

Iy WS = - 19 wg + Mdlst ( 2) 

The dynamics of the FMW can be described (1] as 

Ig (ws ... wg) = Mdrille - Mrr 

torgue of the drive unit of the FIvlW 

torque that is induced due to the wheel bearing 
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Combining with (21, it follows 

11 W 9 .:: ~\i! d r I v e - tv! f r - k., ~J1 d l:a t 

where K, .:: 19/1;< (1 an<:! 11 (1-K1) 19 

In cOllcll.,Jsion. with <ps den·;)t.ing the pitch angle and keeping in mind that Ig = 
halt? the mathematical model 

tps ::: (.1ls 

Iyws = -l/(l-I<,) I,wg + t,lidist 

11wg = Mdrive - Mr'I- - K,tvldlst 

(3) 

11/t1-K1J we 

(4a) 

( 4-bl 
(4c) 

nH? str'l,rcture of the s.ystem n1()del is illustrated in the functional bl,')d diagram 

see fig. 3 (1/s denotes int.egration.vvith respect to timeL 

4.3 RPM Control 

In principle, the angular vek)citv of the Flvl'vV can be controlled using a simple on - off 

s'.vitcning law for the ' .. 'iDE. Define the error 

(51 

Wgr being a desired value that is assumed to be nearly constant (slowly varying>. Then it 

follows: 

ew;= - wg (6) 

The disturbance tvldlst and the friction ~"Ifr are assumed to be nearly constant in time 

'Nith 

M f t-) 0 an d - M f r - 1'" 1 ~,,1 dis t < 0 (7) 

[Iefining the control Ma 

M ... = { 
- Mfr ew < 0 (drive off) when 

(1..,1 d r i 'y e - M f r) > 0 when ew > 0 (drive on) 

then it follows from (3l and l6) 

ew = (K1Mdlst - Mal/11 (8) 

The phase trajectories of ew and ew can be seen in fig. 4, the arrows indicate the direction 

of movement. Stabilty for ew = 0 is guaranteed for all possible initial errors ew (to). 

pl'o·d.j.::.j that (7) holds. which is true for the expected disturbances. 
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4.4 Pitch Control Loop I 
As in the case of RPtvl control a nonlinear s'witching control law has been selected for the 

pitch con t ro I. f' j egl ec t ing th e dis tur ban ce rVld; stand subs tituting (4cJ into (4. bi gives I 
(9) 

oj 'i=':; 'd ll-" ,) I !' w s, t J 
I WS = l via 

( 10) 

Sill:>:? tile sNitched t'JI'que IvldrlvQ is constant betwe-:n two switching time points and the 

frictic,n f'.,lfr- is nearly constant. integration of (10) gi'ies 

~Aal ((j)s(U - tps\tijj 
l '1 - K , ) I v . '"\ • 2 . , 

-/ <:. t Ws l tJ (11) 
2, .. 

Ws l tiJ J = 

where tl denotes the i th switching point and Ivlai denotes the constant torqLle between 

the ith and 0+1) th switching point. 

t·Jow de fill e the er ror a f the pi tc h control to be 

e'.pltl := cpsltJ - cpsr. cpsr = const., e . .plU = ws(t) 

wile r'e tp s r deno tes th e de s ir-ed pi teh ang Ie. Subs ti tu ting th is in t.o (11) gives 

l 1 - ~ .. , ) I v . ,.., M ' • 2, . 
-/~ ai te't'ltJ (12j 

.2, .. 
E'.pltiJ J = 

This is a fall1i11 of parabolas dep-ending on e.p(ti). e..plti) and Mai and describes the phase 

traie,:t,:;r'ies of the pitch en-or e't' and its time derivative e.p. The pos'sible values for Mal 

::lIe lAir and (Llfr - r,,,ldri.e) Cur respundiny to an or) - off s'l/itching of the FM'vV. i.e. there 

are Lvo t.vpes of parab.:das according to the two possible values of IvL.I. this is illustrated 

in the phase-plane. see fig,S. To specify the switching points for Mai. we adopted a 

simple and familiar contt"ol law. see e.9. [2] . namely $· ... 'itching alon~ tl1e straight line 

e·p = - m e<p , m > 0 

see fig. 5. that means 

Mal = { 
Mf,- when 

Uvlfr - Mdrive) when 

e . .p (t) < - m e<p ( t) 

e.p ( t) > - m e.p (t) (13) 

A.s one can see from fig. 5. the stability of the point le<p =0, e<p = 0) is guaranteed for all 
possible initial disturbances e.p (toj. e.p (to i (fig. 5 shows one examplei. It remains to 

show how the pitch control law interacts with the RPM control. The pitch controller" must 

generate a signal r l t) that causes the RPtvl controller to switch to the desired Mai of 

(13). Since the inpLrt of the RPtvl control loop is Wgr (the desired value of the angular 

velocity of the Ft,...!'/v'). r (t) must take on the form: 
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r ( t) 

'/v'here mal = tv1 ai, I 
I 1 

mal d t , ti < t < ti+1 ( 14J 

see fig, 3. 

Thereh)re. in addiU":)1l to the algot-ithm ('1.3) an inte,.;u-ator that ped()n11S the integration in 

\ I -+ I 1:; n e.: e s:; ar:, . 

4.5 Implementation 

The RFlvl and pitch contrl)1 laws that were gi'"en above in time- continol.ls form ha'ie been 

reformulated in discrete time and implemented with little changes on the t,ACU. The angular 

iekl..::it.; of the FLI'}/ is sensed using a stand;lrd. tacho signal by measuring the time between 

two SlJccesive edges of the wheel comLltation (8 pulses / rev.). So actually the equivalent 

time-peri,:;,d list(k) of the FM'lv' vvas c,)ntrolled instead of the angular velocity, but this is 

only a slight. dif renee. The distul'bances due to finite time resolution and commutator 

noise of the tacho are reduced using a moving -average filter (MAl the effect of which is 
apparent from fig.6 . V/ith a filter order of eight a reduction of the standard d.::viation of 

the dislurban..::e v (tl on the ol'der' of is is acl1ieved (upper' curve filtered, lower curve 
unfiltered) . 

The on - off RH/l control is slightly changed by including additional levels of the torque 

tvldrhe for small values of the RPtvl error ew, this gives a better performance of the 

o· .. el'all control. 

Tho::: inte9ration in ('14-1 is approximated by a discrete summation of the output of the 

sNit.:hing algorithm, the time deri'v'ative of eIP that is needed in (13) is appro)<imated by 

appr 0 pr ia te d iff e I'elices, 

The samplinq rate of the RPM control loop depends on the anaular velocity of the FMW 
.... ...... ..., "" 

and ran,:;!es from?5 ms (= 1000 RPM) to 18,7 ms (= 400 RPM). 

Til'::: s,?lrnpling rat.? of th.? pitd1 control loop is constantly 200ms 
The ci rcuit - plan of the pitch control loop is depicted in fig. 7. 
As can be seen. the starsensor is connected directly to one port of the MCU, while the 

signal of the sunsensor is preprocessed by IC5, IC6 and AID (lC2) conver'ted witll S bit 
accuracy, 
The INDE and tacho are connected to the MCU via a Schmitt trigger (1(1). 

The tvlCU delivers a signal to the watch dog timer every 250 ms; in case of absence of 

this signal reset of the tvlCU follows. In this case the MCU immediately measures the 

tacho velOCity and takes this value for the new reference. 

4.6 Results 

The pitch control unit was tested in a laboratory environment. suspending the TU8SAT 

protot) pe satellite using a thin rope. The rope indlJced a disturbance-torque rvldist on the 

s.a t . .;::lIit,.:: du.:: tv its i:lastic forCES. This distw'bance is rfluch l1ighi:r in absolute value than 
the e;<F·eded disturbances dLwing an outer space application of the satellite. so that our 

experiments can be seen as "worst case examples". Fig,8 shows how the satellite follows 

tl1,;:: sun in diff.:::rent positions duril1:~ a sun -Iocki:d operation. As can be se-an, a pointing 
a·::uracy of 0.15:'i3 achieved. In fig.9 the effect of an impulse-disturbance during star
IO(kl?d operation is prl'?sented. Here the pointing aCCLJracy is abol.lt 0.13':), Finally, an STS 

pitch slew maneuver of about 4° that is composed of two steps corresponding to two 

suc ces 5i'/e images of the starsensor is shown in fig .10. 



Acknowledgement 

Ivlan/ thanks t.) Frot". Or.-Ing. U. Renner" for his valuable ideas on developing and realising 

this concept. 

Nomenclature 

L<.ly.l:: Principal moments of inertia plus rnomenturn ·"vhe.;1 (O.9632.1.177.0.9632kg.m
2

) 

19 Momentum wheel spin a;'<is moment of inertia (0,1039 kg,m 2 ) 

Cd Coeffi..:ient of drag (2.2) 
Co Torquer magnetic dipoie moment (27,7 Amm) 

8 
d 

F 
V 

Hg 

!): 

Geomagnetic induction 

Displacement. bet'Neen CM and CP (SOmml 

Satellite cI·,a,'a.<:.teristic a,'ea ( 0.25 I-n::2) 

Satellite velocity l7.7km/sl 

~..r1omentum wheel angular momentum 

.A.ngle between aerodynamic and pitch vector 
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