CELL-BASED GAAS MMICS FOR SMALL SATELLITE APPLICATIONS

S. P. MacCabe D.G. Lockie Pacific Monolithics, Inc.

microwave integrated, reliable Highly components are needed for small satellite The GaAs integrated circuit applications. industry has been developed largely due to military electronic requirements. In particular, the library cell approach by Pacific Monolithics holds promise for making complex simple and microwave systems available at a cost not prohibitive for small satellite applications. This paper outlines the cell library approach, cells now in the library and some microwave systems built by integrating components from the cell library.

INTRODUCTION

Í

The small satellite concept will extend the demand for wellcharacterized semicustom electronic components for satellite applications. As with any industry, availability of satellite launch opportunities, and lowered life-cycle costs will dramatically increase the commercial demand for satellites. applications under Commercial are now consideration would and development that have been unthinkable only a few years ago. With the proper nurturing both from the logistics and design aspects, this process will accelerate.

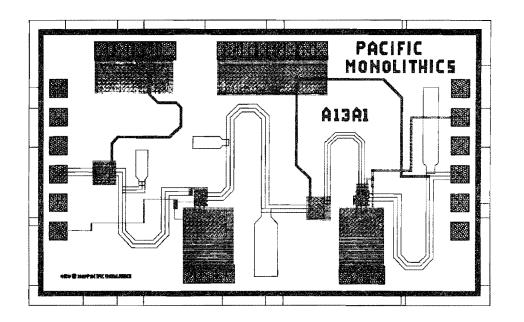
The electronics area is key to the lowered costs necessary for the development of the satellite industry. All satellites rely upon electronic systems to provide the backbone of the operational concept. The widespread availability of PC-based information processing, for instance, has made possible very low-cost satellite housekeeping and information storage systems, as well as ground stations.

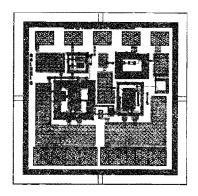
Microwave electronics is used for all information processing functions with which the satellite communicates with groundbased equipement, or other satellites. These include command and control telemetry reception, data gathering and data transmission. However, a new approach to electronics is necessary for the new satellite industry.

The traditional method of building satellite electronics is to specify and develop a full custom design for each individual satellite system, with a concentration on groundbased reliability documentation and testing. Each system is complex and expensive for two reasons. First, it is made of expensive microwave components, and second, each component and subassembly, as well as the entire system, is exhaustively tested for reliability reasons before delivery for launch.

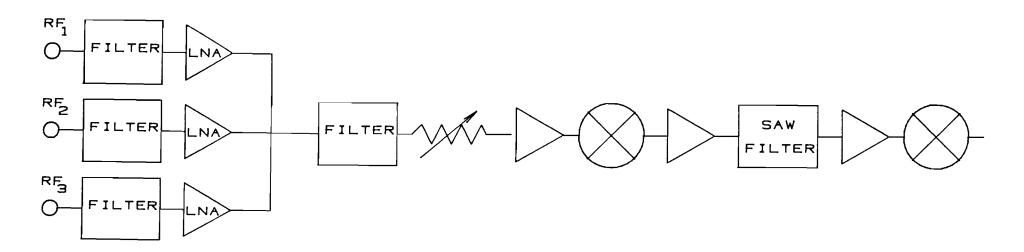
While the traditional approach is sufficient for construction of high cost military satellite systems, a new design philosophy is better suited to the small satellite concept, that is GaAs monolithic circuits

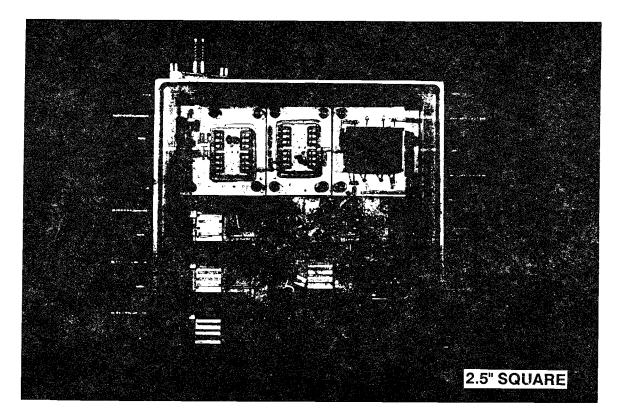
Currently available monolithic GaAs cell-based electronics addresses performance, cost and reliability issues. GaAs monolithic technology has been developed to the point where low-cost circuits can be designed, developed and produced with performance which in many cases exceeds that of the hybrid circuitry it replaces in applications such as the small satellits.

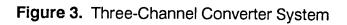

First, the design and recurring costs for highly complex, integrated subsystems is drastically reduced over that for a traditional microwave design. Second, the high integration level, and the high reliability features of the GaAs MMIC architecture cut both the number of test points required (due to the high integration levels possible), and the probable number of failures (due to parts count, high radiation tolerance and high junction temperature tolerance of GaAs MMICs).


GaAs CELL LIBRARY DESIGN

The use of GaAs MMICs facilitates the production of extremely small, highly integrated and reliable microwave electronics. A drawback of MMICs, in full custom design situations, is the substantial NRE required for the chip design. The use of a standard cell library design approach can substantially reduce the front-end cost and design time for satellite microwave electronics.


<u>Background - The Lumped-Element Approach</u>


The major technology advance that made a GaAs MMIC microwave cell library practical was the use of the lumped-element circuit components to replace conventional transmision line circuit components. Lumped element circuits are very compact. Fig. 1 is a comparison of a 2 gain stage amplifier realized in transmission line and in lumped element technology. The distributed design is 1.5 by 2.5 mm, and the lumped design is .9 mm square. A substantial reduction in size results from the use of lumped elements. The comparable lumped element design in this case requires



100 MILS

approximately 20 percent of the chip area of the distributed design.

The reduction in size permits a microwave cell library approach on a practical basis. It should be noted that a cell library approach uses more real estate than full custom. It is also important to realize that often, in order to obtain optimum microwave performance, active components must be placed very close to each other. By using a lumped element circuit design approach, the real estate inefficiency caused by using a cell library methodology does not cause a significant impact on chip size, and therefore, circuit performance or cost.

Fig.1(a) is a 2 stage amplifier using transmission line interconnects. Fig. 1(b) shows a comparable 2 stage amplifier using lumped element interconnects. The lumped element design is $.8 \times .8 \text{ mm}$. The lumped element design is 13.5 times smaller.

Microwave Signal Processing Functions - The Cell Families

Table 1 shows the major classes of microwave signalprocessing functions. The cell library has been designed to be very flexible in order to address a number of microwave signal processing systems and subsystems such as command and control telemetry, data links, radar transmitters and EW receivers, communications receivers, GPS receivers, and receivers, Microwave Landing System receivers, expendable counter measure systems.

Key elements in these families have been developed and tested, and are used routinely to develop semicustom GaAs MMICs. New cells are constantly being generated. Table II is a listing of the major cells in the PM Library at this time.

GaAs CELL-BASED ELECTRONIC SYSTEMS

A number of microwave electronic systems have been built at Pacific Monolithics using the GaAs cell library for military and satellite applications.

Fig. 2 shows a single-chip FM-CW radar subsystem developed by integrating microwave circuit cells onto a GaAs chip. The circuit includes many gain stages, a mixer, and a voltage controlled oscillator. The oscillator is externally controlled to sweep frequency, resulting in the FM-CW transmitted signal. The power amplifier for the transmitter as well as the receiving amplifier are both on chip. The transmitted frequency is used for the LO for the received

Table 1 MICROWAVE SIGNAL PROCESSING FUNCTIONS

Amplifiers Low Noise Power

Converters Up/Down Image Reject High Dynamic Range

Oscillators SAW DRO VCO Phase Locked Oscillators

Modulators Amplitude Frequency Phase

Special Functions Detectors Switches Limiters Couplers Phase Shifters
 Table 2

 GaAs MMIC Cell Library

MMIC Cell #	Freq (GHz)	Gain (dB)	Cell Function	MMIC Cell #	FREQ (GHz)	Gain (dB)	Cell Function	
		C Amplifie	rs	Digital IC's				
AG01A	2-6	10	Amplifier, Gain Block	DD01A	DC-1.5	_	Divide by Two	
AL18A	2-6	~10	Amplifier, Low Noise	DT01A	DC-3		2:1 MUX	
AG1001G	2-6	10	Amplifler, Higher Power	DT01A	DC-3	_	2 Input NOR Gate	
AG1001A	2-6	10	Amplifier AGC	DT01A	DC-3		Inverter	
AG10A	2-6	10	Amplifier, Temp Comp	DD01A	DC-1.5	-	Master/Slave	
AP04C	3.7	10	Power Amplifier		00-1.5		D-Flip/Fkp	
AP04A	2-6	10	Power Amplifier	DCJ121A	DC-2		Dual Complementa	
AG03A	2-6	10	Amplifier, High Yield	DWIZIA	00-2	-	Clock Driver	
AG1003A	2-6	10	Amplifier, High Yield	DDJ121A	DC-2		Complementary	
AC161A	2.7	10	Power Amplifier	DUSIZIA	00-2	_	Divide by Two	
AGC151A	2.7	10	Amplifier, Ultra Flat	DDJ162A	DC-1.3		Lower Power	
AGC152A	2-7	10	Amplifier, Tilt	DUJIOZA	00-1.3		Divide by Two	
AGC153A	2.7	10	Amplifier, Higher Tilt	DDJ163A	DC-1.2		Lowest Power	
AGC154A	2-7	10	Amplifier, Negative Slope	DUJ103A	00-1.2		Divide by Two	
AGC155A	2-7	10	Amplifier, Low Current	DP02A	DC-100		7 to 20 Line	
AGC156A	2.7	10		DPUZA				
AGO ISBA AL95A	1-6	10-16	Amplifier, Unmatched Unmatched LNA		MHz		Phase Shifter Controller	
AL95A ALC121A	2-8		1				Controller	
AG1006A	2-8 2-6	>10	Low Noise Amplifier		Special B	ulidina B	locks	
NO TOVOA	2-0	20	Amplifier, Univ Gain Block					
	Oth	er MMICs	i de la companya de l	AL62B	0.18	15	Low Noise Amp	
500404	4.0			AGO6A	26	20	Limiting Amp	
FDG12A	1-6	6	Active Doubler	AL82C	2-12	8	Amplifier Distribute	
PDG12A	1-4	0	Active Splitter	AL82A	2-18	5	Amplifier Distribute	
CG141A	+5	10	Converter	CV0301	13	30	Downconverter	
CG142A	5	0	Converter	CV0201	13	25	Downconverter	
		I		C1070A	7–15	15	Downconverter	
	6-18 GHz	MMIC Ar	nplifiers	CV0801	58	25	Downconverter	
		1		M971B	0.01-2	25	VHF, UHF Convert	
AGR12A3	6-18	8±1	Amplifier, Universal Block	CV0601	36	40	Downconverter	
AGR12A2	5-28	10±1	Amplifier, Broadband	CV0602	36	20	Downconverter	
AGR12A1	6-18	9±1	Amplifier, Cascadable	DD01B	0-2	-	Flip Flop/Latches	
AGR12A4	6-18	12±2	Amplifier, Cascadable	DT01C	0-3.0		Random (glue)	
AG1072DR	6-12	6±0.5	Amplifier, Univ Gain Block				Logic Cells (NOR	
AG1073A	7-17	9±1	Amplifier, High Efficiency				NAND, INVERT,	
AG1073B	6-18	+ Slope	Amplifier, High Producibility	1000 A			AND-OFI)	
AG1073C	7-17	11±2	Amplifier, Low Noise	AL94C	8-12	-	Oscillator	
AG1073D	7-17	12±0.5	Amplifier, Low Noise	MBOA	0.01-2	-4	UHF, VHF Mixer	
AG1073E	7-17	9±1	Amplifler, High Efficiency	M82A	6-12	-10	Diode Mixer	
AG1073ER	6-18	9±1	Amplifier, High Efficiency	MB3A	1016	-10	Diode Mixer	
AG1073F	7-17	9±1	Amplifier, Matched	M84A	12-18	-10	Diode Mixer	
AG1073G	7-17	5±1	Amplifier, Matched	SW1201A	0.3-12	-3	SPDT Switch	
AG1073I	7-17	6±1	Amplifier, High Gain Match	AT1202A	1–12	-3.5	Attenuator	
AG1073IR	7-18	~6 dB±2	Amplifler	AT	2-18	-3	Attenuator	
AGR12A5	6-18	~8 dB±2	Amplifier	HWC	2-10	-4	Power Splitter	
ALF103A	6-12	5 dB±1	Amplifier, High Power	ним	5-10	6	Vector Modulator	
ALF104A	6-10	7±0.5	Amplifier	P01 A	5–10	6	QPSK Modulator	
AGF14A1	6-16	7±1	Amplifier	H18	2-12	-6	BPSK Modulator	
AGF14A2	8-14	8±0.5	Amplifier	IS01	2-12	-3	Active Isolator	
AGR12A5	6-18	8 Min	Amplifier	B971A	13	-2	Active Balun	
			<u> </u>	B02A	6-12	-2	Passive Balun	
6-18 GHz MMIC Converters					26	-2	90° Hybrid	
C1071A	7-17	12±4	Converter	B03A P1037A	36 16	-3 -8	Passive Balun 4-Bit Generic Pha	
C1071B	7-17	12±4 12±4		r IUS/A	1-0	-8		
	7-17		Converter				Shifter	
C10711 I		0	Converter		1	1		
C1071I		-						
C1071I CR12A1	10-15	-2	Converter					

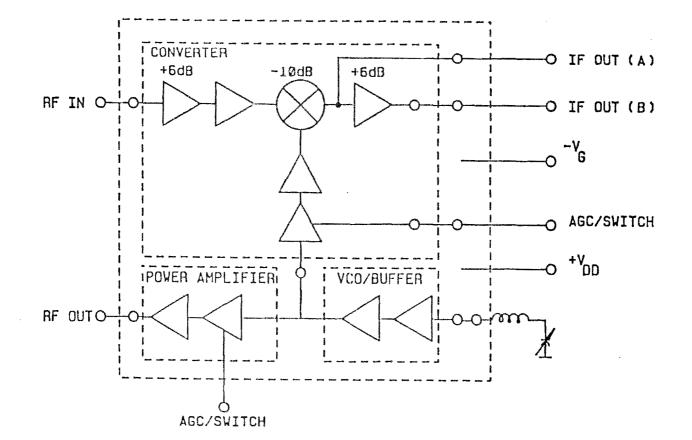
Table 2GaAs MMIC Cell Library
(cont.)

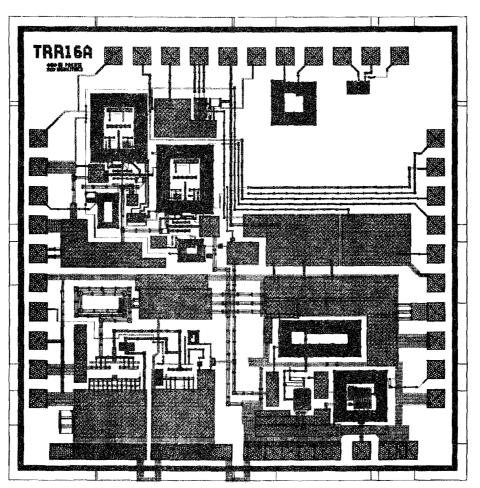
Ì

ľ

Ì

Î


ļ


Ì

. j

l,

MMIC Cell #	FREQ (GHz)	Galn (dB)	Cell Function	MMIC Cell #	FREQ (GHz)	Galn (dB)	Cell Function	
Low	Frequency	MMIC Am	plifiers	MMIC Control Elements & Phase Shifters (Cont'd)				
PM06				T01A	.5-12	-3	Single Ended Attenuator	
Al01A	.2-2	20	Low Noise Gain Block	T01C	.5-12	-3	Single Ended Attenuator	
AG971A	.03-1	20	Amplifier, Galn Block	SL124A	.5-12	2	Single Ended Switch	
AG971B	.03-1.5	26	Amplifier, Gain Block	SL125A	.5-12	-3	Single Ended Switch	
AG971C	.03-1.5	40	Amplifier, Gain Block	TA124A	.5-12	2	Single Ended Attenuator	
AL971A	.03-1	11	Amplifier, Gain Block	TA125A	.5-12		Single Ended Attenuator	
AL971B	.9-3	20	Amplifier, Galn Block		.5-12			
AL971C	0.3-1.1	15	Amplifier, Gain Block			her Mi		
AF971A	.3-1	25	Amplifier, Gain Block		01		wics	
AP971B	.5-1	25	Amplifier, Gain Block	HDG	6-10	4-20	Seg. Dual Gate	
AGB121A	.02-1	20	Low Noise Amplifier	1.50	0-10		FET Attenuator	
AGB122A	.02-2	29	Low Noise Amplifier	HOV	6-10	-4	Seg. Dual Gate	
ALB121A	.9-2.5	27	Low Noise Amplifier		0-10		Vector Modulator	
APB121A	.3-3	25	Low Noise Amplifier	AGS122A	2-6	11	Balanced, Amplifier	
APB122A	.3-1.1	25	Low Noise Amplifier	AGS162A	2-6		Balanced, Amplifier	
ALB141A	.9-2.5	22	Low Noise Amplifier	AGS121A	1-3		Balanced, Amplifier	
AGB141A	.05-2	7	Amplifier/Attenuator	AGS123A	1-3 3-9	10	Balanced, Amplifier	
AGB142A	.05-2	22	Amplifier/Switch	AGS123A	6-12	10	Balanced, Amplified	
ZB141A	dc1	L. L.	Operational Amplifier	AIP121E		8	IF Amplifier	
APB151A	.1-2	19	Power Amplifier	AFIZIE	.05-2	7	IF Ampiliar	
AGB161A	.03-2	16	Amplifier					
AGB161A	.95-1.05	20		1	MM	IC Uso	lliator	
ALB161A	.03-1.1	20 21	Amplifier	10744		1		
	.03-1.1	21	Amplifier	V971A	.05-2	-	Oscillator, for Use w/SAW	
10	w Frequenc			V971B	.05 -2	-	Oscillator/Low Phase Noise	
	in riedaauc	y manc m	IXela	GA9	3.5-6	-	Oscillator, Negative Bias	
PM08A				GA13S10	3.5-6	-	Oscillator, Negative Bias	
	000.14 0 0 14			V81A	16-18		Oscillator, Balanced	
M81A	200 X 0.5 μM		Mixer QUAD	V02A	3-6	—	Oscillator, Balanced GA9	
N971A	.01-1	25	Mixer/Amplifier	VH101B	3-6		Oscillator, No Neg Bias	
M971B MB121AM	.01-2	25	Mixer/Amplifier	VH102A	2-3	_	Oscillator-R, Low AM Noise	
	.01-1.2	11	Mixer/Amplifier	VH103A	6-12	-	Oscillator	
MB122AM	0.1-1.8	20	Mixer/Gilbert Cell	VH103B	12-18		Oscillator Idss	
MB151A	.01-2	14	Mixer/Gilbert Cell	VH120A	2-4	-	Oscillator/VCO Choke	
MB161A	.01-2	12	Mixer/Gilbert Cell	VH122A	11-18		Oscillator/Power Detector	
MB162A	.01-1.8	20	Mixer/Gilbert Cell	VH120B	2-4		Oscillator/Common Drain	
				VH1402	1-2		Oscillator/Common Drain	
LOW	Frequency	MMIC Com	ponents	VH1404	2-4		Oscillator/Common Drain	
10744				VH1408	4-8	_	Oscillator, Low AM Noise	
V971A	.2-2	11	Oscillator/Limiter	VH1412	6-12		Oscillator, Low AM Noise	
V971B	.2-2	11	Oscillator/AGC Amp	VH1418	9-18	_	Oscillator, Low AM Noise	
1/2 of ALB161A	.2-2	16	Oscillator	VBM1418	12-18		Oscillator, Balanced	
PSB141A	.18	0	Phase Splitter, 90°				L	
B971A	.03-1	0	Phase Splitter, 180*		MMIC	Conve	erter/Mixer	
ZB144A	.02-1.5	0	Phase Splitter, 180°			T		
ZB141A	.03-2	-6	Buffer Amplifier	C01A	.8-3		Converter, Balanced	
ZB164A	.03-4	0	Buffer Amplifier	C02A	1.2-2.6		Converter, Balanced	
ZB143A	.001-6	-1	Switch	C03A	1.4-2.8		Converter, Single-Ended	
ZB165A	.001-6	-1	Switch, Ultra Flat	C04A	3-6		Converter, Balanced	
			/	CR05A	3-6		Converter, LNB	
MMIC Control Elements & Phase Shifters				CI06A	3-6 3-5	-	Converter	
<u> </u>				CV07A			Converter, Dual "HV Chip"	
H90	6-10	-4	90° Phase Shifter	C11A	3-5		Converter, Balanced	
H150	2-18	-3-4	180° Phase Shifter	CI06C	5-8			
HAT	2-12	-1.5			3-5		Image Reject Mixer	
нsw	2-12	-1.5 -2.5	Push-Pull Attenuator	CQ08B	2-4		QPSK Demodulator	
H2B	6-10		Push-Pull Switch	CQ09B	2-4		OPSK Demodulator	
P01A		-10	2-bit 0 Shifter	CQ10B	4-5		QPSK Demodulator	
P02A	6-10	-10	Modified 2-Bit Ø Shifter	C12A	5-8	—	High Efficiency	
	6-10 .5-12	4 2.5-3	Modified 90° Ø Shifter Single Ended Switch	MH126B CIH140A	2-6	-	4 Diode Mixer Hi Dynamic Range IRM	
S01A					3-4			

(100 mils, edge-to-edge)

Figure 2. FM-CW Radar Chip