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ACTIVE MAGNETIC CONTROL SYSTEM FOR 
GRAVITY GRADIENT STABILIZED SPACECRAFT 

by Francois Martel, Parimal K. Pal, ITHACO, Inc. 
and Mark Psiaki, Cornell University 

ABSTRACT 

Active magnetic control is studied as a means to improve the capabilities and 
perfonnance of gravity gradient stabilized spacecraft. 

Active magnetic control eliminates the need for a passive damper and can reduce 
significantly the costs and complexity of other functional parts of the spacecraft. 
The system under study includes three magnetic torquers, one three-axis 
magnetometer, and a control processor. It does not require any moving parts, 
and provides for rapid libration damping. tighter stabilization and active control 
of the yaw angle. 

Control algorithms are defmed. Results of the analysis of the control laws and 
computer simulations, including high-order models of the geomagnetic field and 
atmospheric disturbance torques, are presented. The algorithms perfonn well 
within a wide range of orbital inclinations and attitude angles and allow 
maneuverability and stabilization aroWld the yaw axis. 

A Kalman Filter is used to provide estimates of the attitude angles, the angular 
rates, and a global disturbance torque, based on measurements from the 
magnetometer. Results of simulations, including the attitude estimator in the 
control loop, are presented. The possibility of a fully autonomous acquisition, 
deployment, and stabilization sequence using the magnetic control system is 
discussed. 



INTRODUCTION 

Background on Gravity Gradient Stabilization 

The use of gravity gradient provides a simple way to stabilize a spacecraft in a Nadir pointing mode. An 
extendable boom is generally used to provide adequate moments of inertia and a damping mechanism is 
required to reduce the libration motions. 

A gravity gradient system is bi~stable. and the acquisition procedure must be carefully performed to avoid a 
stabilization upside-down. Since that does happen, the extendable boom is often designed to be retractable, 
to allow for the possibility of reversing the spacecraft. 

A momentum wheel is sometimes added to the system for three-axis stabilization and better pointing 
performance, with the additional benefit of providing a mechanism for stabilization in two possible 
opposite "yaw" angular positions around the Nadir direction. Proper ratios of the moments of inertia 
provide another way for stabilization in two possible fixed yaw positions. 

Generally a gravity gradient system is slow to stabilize, and has limited pointing capabilities; the boom 
structure is affected by thermal gradients which alters the overall attitude of the spacecraft; the maneuvers for 
capture of the gravity gradient require extensive ground support; there is very limited or no control of the 
yaw attitude angle around the Nadir direction. 

Arbitrary control of the yaw angle would be desirable for thermal management of the spacecraft (control of 
the orientation of spacecraft surfaces with respect to the sun direction; uniformization of exposure of the 
boom structure to solar radiation to avoid unwanted thermal gradients resulting in bending); or for 
improvement of the power or communication systems trade-offs through better capability for orientation of 
fixed solar panels or antennas; or for orientation of sensitive payload sensors away from the sun line, etc. 

Allllllcation of Active Maanetjc Control 

The addition of active magnetic control to a gravity gradient stabilized system appears as a means to 
increase the system capabilities and performance while improving the overall cost trade-offs. An active 
magnetic control system can provide very effective, rapid and tighter damping, and replace the passive 
dampers. It does not require any moving parts; it can provide for automatic initial acquisition and 
stabilization of the spacecraft in a spin control mode after launch; it can be used for attitude and angular rate 
measurements and automatic gravity gradient capture; the magnetic torqueing capabilities can be used for 
reversal for the spacecraft when necessary, and provide the capability for arbitrary control of the spacecraft 
yaw angle. 

In addition such an active control system allows a relaxation of the requirements on the gravity gradient 
boom; the boom does not need to be retractable and its thermal characteristics are less critical. 

The understanding of the advantages of such system led to detailed studies of adequate attitude determination 
and control algorithms for its implementation. These algorithms were specifIed to provide for attitude 
determination, automatic libration damping, and arbitrary yaw control with instrumentation limited to a 
three-axis magnetometer, three magnetic torquers, and a control microprocessor. 

1 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

This document discusses the results of the study of the application of an active magnetic control to gravity 
gradient stabilized satellites conceived for a multiple satellite system. In the first part, the system and the 
control method are described and analyzed. The results of realistic simulations are then presented and 
discussed. Finally, the general description of a possible method for autonomous deployment sequence of 
the spacecraft is presented. 

SYSTEM DESCRIPTION 

The proposed system consists of three main parts: a magnetometer to measure the local magnetic field at 
the spacecraft. a set of three magnetic torquers, and a control electronics assembly based on a 
microcomputer. 

A general diagram of the system is shown in Figure 1. The three components of the magnetic field Bx, By, 
Bz are read and processed by the microcomputer. which then communicates control commands to the 
magnetic torquer driver. The magnetic torquer driver provides the selected current levels to the magnetic 
torquer coils, generating the desired magnetic dipole moments, Mx. My, Mz in the three axis. These 
dipoles interact with the earth magnetic field to generate a controlled torque to the spacecraft. 

III< .. 
MAGNBTOMIDllR llf -"" MAGNBlOMIDllR 

B< .. IN1ERFACl! 
MICROCOMPU1llR 

Mx • ORBlTPROPAOATION 
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+ 
My TORQROD • TORQROD COMMANDS ...;0 Mz ORlVFR 

COMMUNICATION POWER 
IN1ERFACl! SUPPLY 

~ 
COMMANDS 1EI..EMBTRY POWER 

MODES A TI11'UDB ESTIMA 'I1!S 
UPDA'I1!S , 

Figure 1: Magnetic Control System - Hardware Configuration 

The system communicates to the spacecraft telemetry to receive commands or data and send status and data. 
The control system is conceived to be as autonomous as possible and commands may be limited to mode 
selection, while the data consists of a periodic reset of the spacecraft orbital parameters for the propagation 
procedures. 

A TT11UDE DETERMINATION AND CONTROL ALGORITHMS 

Several approaches were explored to meet the goal of achieving three-axis attitude stabilization and control 
of the spacecraft yaw angle using the minimal amount of instrumentation of the system (a three-axis 
magnetometer and three magnetic torquers). 

Control Method 

Simple control algorithms were initially considered. The classical damping control laws simply based on 
the measurement of the magnetic field rates of change in the spacecraft reference frame are generally 
successful in damping relatively rapid motions. Such laws, with proper gains, are applicable in the initial 
attitude acquisition period. to despin or detumble the spacecraft 

The same simple laws are not effective for final three-axis stabilization of the spacecraft. because of the 
effect of the orbital rates. and the non-uniformity of the geomagnetic field. 
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If a perfect knowledge of the earth magnetic field is assumed, the spacecraft libration motion can be damped 
very effectively with a control law such as 

where M. is the dipole moment, II is the measured magnetic field vector, B.o is the magnetic field model 
vector in orbital frame, and Kl and K2 are restoring and damping factors. 

With such law the simulated attitude angles can be brought to null in three axes when no disturbances are 
considered. However, in these ideal conditions, the yaw axis although stabilized, is still not maneuverable. 
Moreover, the system does not handle large angular excursions well. 

One important requirement for the system is the capability for a good level of angular control about the yaw 
axis, in order to be able to rotate the satellite. Performing yaw control to various angles requires 
information on the spacecraft yaw angle in order to apply the proper torques to the platform. 

The actual attitude angles are not readily available from the field measurements. They can be extracted 
though, by proper filtering of the measurement data on extended time periods, especially if the spacecraft 
dynamic properties are known welL In particular, a Kalman estimator, using a good geomagnetic field 
model, can perform the task of estimating the three Euler angles and their rates from the magnetic field 
measurement only. 

Such an attitude estimator based on a Kalman filter was developed to provide estimates of the Euler angles, 
the angular rates and a slow varying disturbance torque, to the system controller. 

To perform attitude estimates from the magnetic field measurements, a model of the local geomagnetic field 
is used for comparison with the measured values. Such a model can be accurately computed by the system 
microcomputer, if the spacecraft position is known. The spacecraft position is calculated by propagation 
from initial orbital parameters. Because of aerodynamic drag the orbit decays in time. The on-board 
propagation algorithms need to be updated periodically to compensate for the unpredicted orbital 
disturbances. Updates can be provided from a ground station or derived from a GPS receiver on-board the 
spacecraft. 

The Kalman filter is described in Reference 1. It was tested in simulations including atmospheric, solar 
radiation and residual magnetic disturbance torques, as well as realistic parameter and measurement errors. 
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To define and test control algorithms suitable for the control goals, it can then be assumed that estimates of 
the Euler angles and their rates and of a global disturbance torque are available to the control system. 
Effective control rules can be developed on this basis as described in the following section. Figure 2 shows 
a conceptual diagram of such system. 
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Figure 2: Conceptual Diagram of the Magnetic Attitude Detennination and Control System 

Description of the Proposed Control Laws 

Using the assumption that reasonable values for the three Euler angles, roll (cp), pitch (0), and yaw ('I'> and 
their rates are available, a straightforward control method can be devised. The convention used here assumes 
the roll angular motion around the X body axis (nominally along the velocity vector), the pitch angular 
motion around the Y axis (nominally along the negative orbit nonnal) and the yaw angular motion around 
the Z axis (nominally in the Nadir direction). The selected Euler rotation sequence is 3-1-2 (i.e., Z-X-Y) 
with the respective angles 'P, <p, O. 

An "error correction" vector is defined as: 

ill :: Kp . !a -JlliW. + Kct . i 

where Kp and Kct are the diagonal matrices of the proportional and derivative gains associated with the 
restoring and damping torques. The vectors a and it have for components the Euler angles and their rates 
respectively. i.e., 

and the vector lilil.s. includes typically a pitch equilibrium offset based on the estimated offset disturbance 
torque CID) and a yaw command: 

Bias :: ~itch Off~t an) 
~aw command} 
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The desired correction torques expressed in m can only be actuated inasmuch as the local magnetic field 
direction is favorable. The local field vector B.B is measured by the on-board magnetometer. To take the 
magnetic field direction into account the commanded dipole moment vector is defmed as: 

mxBa 
M=

IBBI 

The local field vector where 1m is measured by the on-board magnetometer. 

The actual torques applied to the spacecraft are generated by the interaction of the dipole moment vector M 
with the earth's field vector llB and are given by the components of the vector 

I=MxllB 

As shown in a next subsection. these control laws apply torques with proper polarity about all the three
axes. The relation between the desired torques and the actual torques depend on the field orientation. Since 
the field orientation vary along the orbit, favorable configurations can be found for period of times. 
allowing the system to stabilize. in a wide range of orbital inclinations. 

Wnear Analysis of the Magnetic Control Laws 

An analysis of the control law was done with linearized equations of motion. assuming small angular 
excursions. 

The linearized equations of motion are given by: 

~cp+4Ob 2~-IJ<P-~-ly+lJOb'" = Tcx+Tox: 

ly9+3Ob 2 (Ix-1J9 = Tcr+TDY 

Iz'V+Cl\) 2(ly-lx)"'+~-ly+IJCl\)ip = Tcz+TIJZ 

where 

Ix. Iy, Iz are the Moment of Inertia about X. Y, Z axes respectively. 
«Q is the orbital rate. 
Tcx. Tcy. Tcz (as derived below) are the magnetic control torques, and 
TDX, TDY, TDZ are the disturbance torques about the X. Y and Z axes respectively. 

(1) 

The desired control torques for the three-axes are defined from the Euler angles and their rates using the 
ProportionaJ/Derivative (PD) law: 

ffiy = Kpy9+ Km-9 

mz = Kpz"'+~ 

(2) 

where (Kpx, KPY, KPi) and (KDX. KDY. KDz) are the proportional and derivative gains respectively, for 
the three axes. 
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To apply the magnetic torques about the corresponding axes, magnetic dipole moments (Mx, My. Mz) are 
distributed along the other body axes according to the following rule 

M =[~] =lJl.)th=[ ~::=~~] 
Mz mxby-mybx 

(3) 

wbereh{ is the desired dipole vector, m =[ ~] andh is the nonruiliz.edearth', magnetic field veclor in body 

framedefinedash(<p. e, ~ = II ~;' W 

Thus, the actual control torques about the body axes (Tcx. Tcy. Tcz) are given by: 

(4) 

1 
= iBi . LaD. m (5) 

Equation (4) shows that with the dipole moments defined by (3) the control torques have the right polarity 
associated with the diagonal term of the L(B) matrix. The off diagonal terms show some undesirable 
coupling effects due to torquing about the other axes. 

With a small angle assumption the body-fixed field vector II vector can be written as: 

(6) 

where A is the direction cosine matrix and IlO is the earth's magnetic field vector in the orbital frame. 

The lengths of IIlI and IIlOI are equal and the elements in the LCID matrix of equation (4) can be approximated 
as follows (because of the small angle assumption): 

S;+B; - ~)2+{B~2 BxBy - ~~ 
~+B; - ~)2+{B~2 BxBz - ~B~ 

~+S; - {Br;l+B~2 ByBz - BOBo 
y z 
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Thus, the matrix LaD can be approximated by L(l!0) and the control torque Ie in (4) using (2), can be 
approximated by the vector: 

Ic=L(B~' m/IBI (7) 

Using (7), the equations of (l) can be written as: 

(8) 

The vector n.0 is quasi periodic, at the orbital period Tp. The elements of ».0 may be replaced by their 
orbital averages to perform an approximate stability analysis, using standard linear time invariant 
techniques. (A Floquet analysis of the exact closed loop stability of this periodic system has been 
performed; it shows that parametric resonance instability can occur for certain gain values, for which the 
average analysis indicates stability with a low damping ratio. However, average coefficient analysis is 
adequate when the close loop time constants are not 100 fast.) 

(B?>2 + (B~)2 B~ B~ 
The quantities 1 0 J and...!-f can then be replaced by the orbital average values 

IB I IB I 

1 iTp (B~2 + (Bf>2 .. 
~j =T- 0. dt,l:;CJ=X,y,z 

P 0 111-' 

and, 

T. BO BO li Pi
' j .. I\j == -T ---0 dt , 1 :;CJ=X, y, Z 

P 0 Ill: I 
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Taking the Laplace transfonnation of the equations in (8) gives: 

L\(s) • a(s) = ID(s) 

where 

L1(s) = 
[

alls2+aI2s+813 

-(dll + dl2s) 

-(fll +fI2S) 

-(bll + bl2s) 

2 
821s +a22s+8:z3 

a(s) = [:~l' andID(S)=[~:~:~1 
'1(8) T oz(S) 

-(Cll +CI2
S

) 1 
-(ell + e12s) • 

a:ns2+a32s+a33 

(9) 

The a, b, c, d, e, f, g constants in L\(s) are functions of the spacecraft mass properties, aij, ~j. cJl and the 
controller gains Kp and Kd. 

Alternatively, (9) can be rewritten as: 

(10) 

It is to be noted from (8) that even though the linearized pitch equation of motion is not coupled with the 
rolVyaw motions in the absence of control torque, the magnetic control torques generate cross coupling and 
the characteristic polynomial is of the sixth order. 

For this analysis the atmospheric drag force is assumed to be a constant force F acting on the spacecraft 
center of pressure along the negative velocity vector with an amplitude F . With the small angle x 
assumptions, the force vector along the body axes is given by: 

!fib. offset """tor betWeen the cen""o! pressure and the center of gmvity is defined ~[ ~l 
the disturbance torques about the three axes are dermed by the vector 
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or taking the Laplace Transfonnation 

-{'Yy8(s) +'Yz · 'V(s)}Fx 

[

TOX(S)] 
ID(s)= .Toy(s) = 

Toz(s) 

- { ~z _ 8(s) . 'Yx} Fx 

{~ + 'V(s). 'Yx} Fx 

(13) 

From (11) we derive: 

Where the coefficients Aij(S) are the cofactors of A(s). 

The steady-state value of ql, say ~s is given by 

(16) 

where AQ, BO, Eo, FO are functions of the spacecraft mass properties, the field vector and the control gains. 
Oss and 'l'ss are the steady state values of 0 and 'If. 

Similarly the expressions corresponding to 0 and 'If are 

0ss (Ao+ (Go'Yy-Co'Yx)FItl+Fx(Go'Yx - Io'Yx)Vss = (Io'Yy-Co'Yz>F'x 

ass [(Ho'Yy -Jo'Yx)Fx]+ [Ao+ (lio'Yz- Do'Yx)FxWs. = (Do'Yy-Jo'Yz>F'x 

Once Oss and 'lfss are found from (15). ~s can be calculated from (14). 

For the present analysis the parameter values are assumed as follows: 

Ix = Iy = 250 Kg-m2 

Iz = 10 Kg-m2 

~ = 0.00107 tad 
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The a and ~ values are considered for three different inclination of 800 , 570 and 28.50 , at an altitude of 
364.5 run. These values are calculated from an eighth~order model geomagnetic field and are listed in Table 
1: 

a,~ i= 800 i = 570 i =28.50 

axy 1.37659 x 10-5 1.67488 x 10-5 2.43338 x 1O~5 
axz 3.50276 x 10-5 2.75481 x 10-5 1.08617 x 10-5 

ayz 2.78432 x 10-5 2.84181 x 10-5 2.83197 x 10-5 

~y -3.47527 x 10-7 -3.70462 x 10-7 -3.84555 x 10-7 

~ -8.55599 x 10-7 -7.26248 x 10-7 -5.05008 x 10-7 

~ 1.41729 x 10-6 9.64049 x 10-7 7.12059 x 10-8 

Table 1: a and ~ Values as a Function of Inclination i 

Using the characteristic equation 1,6,(s)1 = ° from (9) with no control (Kp = 0, Ko = 0), the roots of the 
system are: 

(± 2.105 x 10-3 j) 
(± 1.802 x 10-3 j) 
(0,0) 

associated with the roll, pitch, and yaw axes respectively. These roots indicate that in the absence of 
control the roll and pitch angles are undamped and oscillating and the yaw angle is unstable. 

With the proposed control laws for an orbital inclination of 570 and using the following gain values: 

KpX=Kpy=25 
Kpz=8 
KOX = KOY = KOZ = 25000 

the corresponding roots are: 

-1.747 x 10-3 ± 2.292 x 10-3 j 
-1.721 x 10-3 ± 2.022 x 10-3 j 
and (-3.224 x 10-4, -3.971 x 10-2) 

The negative real parts of all the roots show that the proposed magnetic control law makes the yaw angle 
stable with a time constant of 3100 see. The roll and pitch angle oscillations are damped with time 
constants of 572 sees. and 581 sees. respectively. The longer time constant for yaw can be seen in all the 
simulation plots. 
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With the same gains, similar results can be seen for other inclinations, viz., 

for i = 8oo , the roots are 

and for i = 28.50 , the roots are 

(-1.389 x 10-3 ± 2.30 x 10-3 j) 
~1~3xl~3±193xl~3D 
(-3.230 x 10-4 , -3.411 x 10-2) 

(-1.416 x 10-3 ± 2.278 x 10-3 j) 
(-5.422 x 10-3 ± 2.016 x 10-3 j) 
(-3.217 x 10-4, -6.050 x 10-2) 

With a constant disturbance force of 7.11 x 10-6 Newton and a CP-CG offset of 2.8 m along the z axis and 
6 cm along the other axes, i.e., Fx = 7.11 x 10-6 Newton and 'Yx. = 'Yy = 0.06 m, 'Yz = -2.8 m, the steady
state bias can be calculated from (15) and (17) and are found to be 

~ = 0.0024 rad 
ess = 0.0132 rad 
'Vss = -4.93 x 10-5 rad 

The pitch bias error ess is, of course, the most significant and can be noticed in the simuJation plots. 

In conclusion, he control laws defined in this section are shown as effective and stable from an analysis 
based on the linearized equations of angular motion, and average field parameters integrated along the orbit 
path using an eighth order geomagnetic field model. The system is applicable with identical gains at the 
three orbital inclinations proposed for the MSS satellites (28.50 , 570 and 800). Additional time domain 
simulations in the next section confirm this analysis and provide a more detailed description of the expected 
performance of the system. 
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TIME DOMAIN SIMULATIONS 

Time domain simulations were performed to assess the system capabilities in different configurations. A 
block diagram of the attitude simulation program is presented in Figure 3. 

Figure 3: Block Diagram of the Numerical Simulation Program 

The program allows for selection of the moment of inertia, initial attitude and angular rates, restoring and 
damping gains, orbital parameters, order of the magnetic field model, maximum magnetic moment, 
atmospheric disturbance torque coefficients, and components of the offset vector between the center of 
gravity and center of pressure of the spacecraft. Selected attitude offsets and measurement noises can be 
entered in the simulations. 

The program propagates the spacecraft orbital position, computes the local geomagnetic field in earth-flXed 
coordinates from an eighth-order magnetic field model, and calculates the field components in the orbital 
coordinate system and the spacecraft body fixed-coordinate frame. The gravity gradient and aerodynamic 
torques on the spacecraft are calculated and added to the magnetic torques generated by the magnetic control 
system. (Other disturbance torques such as solar radiation torque or residual magnetic dipole torques were 
not included in this study since their effect is secondary and system design dependent) The control system 
simulation modules have for inputs the local magnetic field model in orbital frame and the field vector as 
"measured" in the spacecraft body frame, and for output the dipole moments of the controlled magnetic 
torquers. 
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The shaded blocks in Figure 3 correspond to the functions which are to be performed on board the 
spacecraft. For the initial testing it was assumed that accurate estimates of the attitude angles and their rates 
were provided to the control algorithms. Subsequent testing included the extended Kalman filter estimator, 
as source of the attitude estimates within the control loop. 

Body rates and Euler rates are computed and integrated using a variable step Runge Kutta integration 
procedure. Fields and torques are computed for every substep of the integration. The control commands 
however, are computed at regular intervals of typically 20 seconds. 

The simulated atmospheric drag torques use a simple disturbance model. The simulated torque is either 
constant or made to vary at orbital rate between a minimum and maximum value. The selected values 
correspond to atmospheric densities at 364.5 nmiles in 1992, close to the peak of the solar cycle, derived 
from the Jacchia atmospheric model. They are very conservative, if not a "worst case". The geomagnetic 
field is computed through an eighth-order spherical harmonic model using coefficients listed in the IGRF 
tables. 

The selected spacecraft parameters are derived from estimates of the spacecraft mechanical design and mass 
properties using indications from the MSS program phase A report presentations. 

The spacecraft is assumed to be of cylindrical shape with a total weight of 136 Kg. The spacecraft's 
moment of inertia used for the simulations are (with no product of inertia); 

(Roll) 
(Pitch) 
(Yaw) 

Ixx = 250 Kg-m2 

Iyy = 250 Kg_m2 

Izz = 10 Kg-m2 

The cylinder has a height of 4 feet with a radius of 14". The spacecraft is assumed to be in circular orbit at 
the altitude of 675 Km and in three possible orbital inclinations of 28.50, 570, and 800. The maximum 
boom and boom mass area which are subject to aerodynamic pressure are assumed to correspond to 10% of 
the spacecraft body area similarly exposed. The torque generating aerodynamic force is assumed to be 
typically applied to a point 2.8 m (or 6 m) along the z axis from the center of gravity and generated by an 
effective area of 0.93 ft2 (0.0867 m2). From a conservative analysis of atmospheric density at the altitude 
of 675 Km, the mean, maximum and minimum atmospheric forces along the orbit are taken to be 
7.1 x 10-6, 10.65 x 10-6, and 4.7 x 10-6 Newtons respectively. The force is assumed to be periodic with 
periodicity equal to the orbital period of OU. The periodic force F is modelled as; 

F == FO "f0s(wot) , Y= 1.5 , FO = 7.11 x 10-6 N 

Simulation Results 

To test the performance of the proposed magnetic control law, a number of time-domain simulation runs 
were made under a wide variety of conditions. The configurations tested in the simulations include: 

- Different Orbital Inclinations 
- Different Initial Conditions for Attitude Angles and Rates 
- Different Initial Hour Angle 
- Yaw Angle Maneuver and Control 
- Stabilization with Large Aerodynamic Torques 

with the CP-CG vector along the yaw axis 
with the CP-CG vector tilted away from the yaw axis 

The nominal gains for the control laws were selected by iterative simulations. The chosen gains are 
applicable in a wide range of inclinations. The nominal gains may be adjusted sometimes, to handle the 
disturbance torque more efficiently in given inclinations. 

13 

I 
I 
I 
I 
I 
I 
I 
I, 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

The simulations confirmed the stability analysis. The magnetic control system is able to damp most of the 
libration motion within an orbit. Figure 4 and 5 show typical attitude angles trajectories for initial 
excursions in yaw, roll and pitch of 1 mdian and 0.1 radian in the absence of disturbance torques. 

Figure 4: 
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Figure 5: Attitude Histories for i = 570, No Disturbance, Initial Condition = 0.1 tad in Each Axis 
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The damping is less effective but still adequate for low orbital inclinations as witnessed in Figure 6 because 
the magnetic field configuration is less favorable at these inclinations. 
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Figure 6: Attitude Histories for i = 28.5°, No Disturbance Torque, Initial Condition = 0.1 rad in Each 
Axis. 

In the presence of strong atmospheric disturbance torques, there are times when the field configuration does 
not allow effective nulling of the pitch angle. To minimize limit cycle oscillations, an equilibrium offset 
bias can be calculated from the disturbance torque estimates. The controller then tries to achieve 
stabilization around the bias angle instead of null. Figure 7 shows the attitude angles histories for a 
confIguration including large variable atmospheric disturbances. A constant average bias is applied to the 
pitch command. The small oscillation around the pitch equilibrium could be further reduced by varying the 
bias command according to the estimated disturbance torque. 
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Figure 7: . Attitude Histories, i = With Disturbance, Cp..cO Offset = -2.8 m Along z axis, 6 em 
Along x, y, Pitch Bias = 0.02 rad. 
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An example of 1800 yaw maneuver is shown in Figure 8 and Figure 9 in the absence and presence of the 
atmospheric disturbances and with different restoring gains. 
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Figure 8: 
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Figure 9: Yaw Maneuver History with Disturbance Torque, i = 570, CP-CG Offset = -2.8 m Along z 
Axis, 6 cm Along x, y, Pitch Bias = 0.024 rad. 

The previous examples were assuming the availability of precise attitude estimates for the controller. 
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Conclusion 

Active magnetic attitude detennination and control can provide significant enhancement in the capabilities 
and performances of gravity gradient stabilized spacecraft Requiring no moving parts and no expendables, 
the method eliminates the need for passive damper and may relax the thermal and mechanical requirements 
on the gravity gradient boom. It provides the possibility for automatic ex.ecution of the attitude acquisition 
and boom deployment maneuvers and therefore can relieve the ground station of resource consuming tasks. 
The added abilities for attitude detennination, and control of the yaw angle open the system trade-offs for 
improved mission capabilities or reduced system costs. These advantages are achieved at the expense of 
additional on-board processing, with the need for periodic orbital updates. 

A set of algorithms for magnetic attitude control was defined, analyzed and tested in simulations. The 
results indicate that such algorithms can perform well the required tasks, in conjunction with previously 
designed attitude estimation algorithms. 
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