
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations Graduate Studies 

5-2013 

Parallel Heat Transport in Magnetized Plasma Parallel Heat Transport in Magnetized Plasma 

Mukta Sharma 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Plasma and Beam Physics Commons 

Recommended Citation Recommended Citation 
Sharma, Mukta, "Parallel Heat Transport in Magnetized Plasma" (2013). All Graduate Theses and 
Dissertations. 1470. 
https://digitalcommons.usu.edu/etd/1470 

This Thesis is brought to you for free and open access by 
the Graduate Studies at DigitalCommons@USU. It has 
been accepted for inclusion in All Graduate Theses and 
Dissertations by an authorized administrator of 
DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F1470&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/205?utm_source=digitalcommons.usu.edu%2Fetd%2F1470&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/1470?utm_source=digitalcommons.usu.edu%2Fetd%2F1470&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


PARALLEL HEAT TRANSPORT IN MAGNETIZED PLASMA

by

Mukta Sharma

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Physics

Approved:

Eric D. Held
Major Professor

D. Mark Riffe
Committee Member

Joseph Koebbe
Committee Member

W. Farrell Edwards
Committee Member

James T. Wheeler
Committee Member

Mark R. McLellan
Vice President for Research and
Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2012



ii

Copyright c©Mukta Sharma 2012

All Rights Reserved



iii
ABSTRACT

Parallel Heat Transport in Magnetized Plasma

by

Mukta Sharma, Doctor of Philosophy

Utah State University, 2012

Major Professor: Dr. Eric D. Held
Department: Physics

A code that solves the coupled electron drift kinetic and temperature equations has

been written to study the effects of collisionality and particle trapping on temperature equi-

libration along magnetic field lines. A Chapman-Enskog-like approach is adopted with the

time-dependent distribution function written as the sum of a dynamic Maxwellian and a

kinetic distortion expanded in Legendre polynomials. The drift kinetic equation is solved

on a discrete grid in normalized speed, and an FFT algorithm is used to treat the one-

dimensional spatial domain along the magnetic field. The dependence of the steady-state

temperature on collisionality and magnetic well depths is discussed in detail. As colli-

sionality decreases (increasing background temperature), temperature variations decrease.

As magnetic well depth increases (at fixed collisionality), temperature variations along the

field line increase.

(86 pages)
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PUBLIC ABSTRACT

Parallel Heat Transport in Magnetized Plasma

by

Mukta Sharma, Doctor of Philosophy

Utah State University, 2012

A huge global increase in energy use is inevitable, so there is an urgent need to seek

cleaner ways of producing energy on large scales. Fusion is the energy source of the uni-

verse and a promising way to fulfill energy needs of mankind for many centuries to come.

It offers important advantages as a safe, sustainable, and environmentally friendly source

of energy. The International Thermonuclear Experimental Reactor (ITER) aims to demon-

strate magnetic fusion is an energy source of the future. The goal of ITER is to produce 500

MW of fusion power given 50 MW of input power—or ten times the amount of energy put

in. The plasma in ITER is contained in a doughnut-shaped magnetic confinement device

called a tokamak. It is important to understand heat transport parallel to the magnetic field

in devices like this, since this can lead to degradation in heat confinement or drive instabil-

ities that can cause the plasma to disrupt. This research contributes to our understanding of

the underlying physics involved in parallel transport. Using a computer code, we solve the

equations describing the plasma and calculate the parallel electron heat flow for different

collisionality regimes. We also investigate the effect of magnetic wells on parallel electron

heat flow.
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CHAPTER 1

INTRODUCTION

Long before man understood the concept of light and started harnessing energy for his

needs, nature provided tremendous sources of light and energy by a majestical process

known as fusion. Many decades ago, scientists understood the physics behind the transfor-

mation of hydrogen nuclei into helium atoms in the Sun and stars. This process releases

huge amounts of energy. The first fusion experiments took place in the 1950s and resulted

in a lot of information about the fusion process. After World War Two and the development

of nuclear weapons, nuclear technologies, in general, increased. A major breakthrough oc-

curred in 1968, when temperature levels in the KeV range and plasma confinement times in

milliseconds were achieved for fusion in a doughnut-shaped magnetic confinement device

called a tokamak. Many theoretical studies considered the tokamak as the most promising

design, and research continues on various tokamaks around the world. The ITER device

being built in France is an experimental reactor, which is expected to demonstrate an en-

ergy efficiency of 10 by confining hot plasma (T ∼ 10 KeV, n∼ 1020m3 ) with confinement

time of approximately four seconds generating fusion power at the 300-500 MW level.

The main objective of the controlled magnetized fusion program is the confinement of

thermonuclear plasma by means of strong magnetic fields. Challanges to confining plasma

have been plasma instability and transport. With advanced experiments, fast computing

techniques, and more accurate theoretical work, many problems have been resolved. Heat

conduction in the presence of a confining magnetic field of high-temperature experiments

has been of major interest for scientists and researchers.

This dissertation focuses on a quantitative study of parallel electron heat flow along

magnetic field lines. The plasma in most magnetic fusion devices is well magnetized, and

here only the magnetized limit will be considered. In these devices, the core of a fusion

plasma is nearly collisionless, whereas the colder edge region is (typically) moderately col-
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lisional; therefore, both high and low collisionality are of interest. Here collisionality refers

to the importance of binary Coulomb collision events between charged particle species in

our plasma, which we will assume is perfectly ionized. In this research, an analytical and

computational framework is developed for calculating the conductive electron heat flow,

q||, parallel to the direction of the confining magnetic field, B. This heat flow will be used

to close the electron temperature equation for plasmas of arbitrary collionality. The macro-

scopic fluid description of plasma is extended by using kinetic theory. Specifically, a code

that solves the coupled electron drift kinetic and temperature equations has been written to

study the effects of collisionality and particle trapping in magnetic wells on temperature

equilibration along magnetic field lines. Parallel computation is used to quickly determine

the steady-state, transport equilibrium that indicates the effect on temperature and heat flow

due to the presence of magnetic wells in different collisionality regimes.

In this work a Chapman-Enskog-like (CEL) approach is adopted with the time-dependent

distribution function written as the sum of a dynamic Maxwellian and a kinetic distortion

expanded in Legendre polynomials. The CEL approach has been used previously by Chang

and Callen [1, 2] and Wang and Callen [3] to develop hybrid fluid/kinetic models and ob-

tain transport coefficients. The drift kinetic equation, which is the magnetized limit of the

plasma kinetic equation, is solved on a discrete grid in normalized speed and an expansion

in Fourier series is used to treat the one-dimensional spatial domain along the magnetic

field. The dependence of the steady-state temperature on collisionality and magnetic well

depths is discussed in detail.

1.1 Overview

The state of an ionized plasma can be approximately described by using a fluid de-

scription in terms of macroscopic quantities like density, momentum, and energy for each

species of charged particles. However, the fluid equations are not closed. Kinetic theory
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is used to describe plasma in terms of the particle velocity distribution function, fs(x,v, t),

where fs is the exact microscopic phase space density of plasma species s, at point x, with

velocity v, at time t. For simplicity, the subscript s will be dropped.

The fluid equations can be closed by calculating higher-order velocity-weighted mo-

ments of f , and thus getting the desired relationships between known quantites, like den-

stity, n, flow velocity, V , temperature, T , and the unknown quantites, such as the viscosity

tensor, Π, and the conductive heat flow, q. A few low-order velocity moments of the distri-

bution function, f , are

number density, n≡
´

d3v f ,

flow velocity, nV≡
´

d3v v f ,

temperature, nT ≡
´

d3v mv′

3 f , with the relative velocity v′ ≡ v−V,

and conductive heat flux, q≡
´

d3v v′ mv′2

2 f .

All these fluid moment properties are in general functions of spatial position, x, and

time, t, that is, n = n(x, t). Details about the fluid equations are given in section 2.1 of

Chapter 2.

The conductive heat flux, q, is the random flow of thermal energy density. The the-

ory of classical transport in magnetized plasma due to Coulomb collisions was established

by Landshoff [4], Spitzer and Harm [5], Rosenbluth and Kaufman [6] and finally formu-

lated by Braginskii [7]. In 1965, Braginskii derived the form of the heat flux parallel to a

magnetic field, q||, for collisional plasma (it is typical to term plasmas satisfying the short

mean-free-path condition as collisional). His form was diffusive and proportional to the

local parallel temperature gradient, b̂ ·∇T = ∇||T . Here b̂≡ B
B , is the unit vector along B.

For the case of electrons,

q||e = −κ||(Te)∇||Te =−3.16
neTeτe

me
∇||Te, (1.1)
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where τe =
3
4

√
me
2π

T 3/2
e

λe4Z2ne
is the electron collison time, ne and me are the electron density

and mass, respectively, λ is the Coulomb logarithm, Te is the electron temperature in eV,

and κ|| is the conductivity.

Comparing κ|| in plasmas with the thermal conductivity in metals, in both the cases

κ depends on the temperature. In pure metals, the electrical resistivity often increases

proportional to temperature, and thermal conductivity tracks electrical conductivity. This

behavior is given by the Wiedemann-Franz Law, which states that the ratio of the thermal

conductivity to the electrical conductivity of a metal is proportional to the temperature,

κ

σ
∝ T , where σ is the electrical conductivity and 1

σ
is the resistivity.

Unlike the electrical resistivity of metals, the resistivity of a fully ionized plasma varies

inversely with T 3/2. As the temperature of a plasma is raised, its resistivity drops rapidly.

Plasmas at very high temperatures have negligible resistance and thus are highly conduct-

ing. The electrical conductivity in plasma, σ ∝ T 3/2.

As plasmas are heated, they become less collisional and the parallel thermal conduc-

tivity increases rapidly κ|| ∼ T 5/2. Braginskii’s theory works only in highly collisional

regimes where the temperature T ≤ 30 eV. Since present-day high-temperature fusion ex-

perminents operate in a regime where collisions are infrequent, there have been attempts

to calculate the parallel heat flow closure in the collisionless limit, as well. In particular,

Hammett and Perkins [8] proposed a collisionless heat flux, which involves kinetic free-

streaming of electrons along magnetic field lines :

q||(L
′) =

nevT

π3/2

∞̂

0

dL
T (L′−L)−T (L′+L)

L/2
(1.2)

.

Here L is the coordinate along the magnetic field. This form, too, is often unsatisfactory in
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practice because it is only approximate in moderate collisionality regimes and it does not

map onto the collisional version.

In magnetized plasmas, the Larmor radii, ρ ≡ mv⊥
qB , are much smaller than the scale

length of variations in quantities, such as fluid variables. Here v⊥is the velocity perpendic-

ular to the magnetic field. For such plasmas, the Larmor frequency, Ω ≡ eB/m≈ 1010 for

electrons, which quantifies the frequency of particle gyration around magnetic field lines,

is much larger than any other characteristic frequency. Also, the dominant parallel closure

moments, which should capture all collisionality regimes are defined as [1]:

π|| = m
ˆ

d3v(v2
||−

v2
⊥
2
) f , (1.3)

q|| =−T
ˆ

d3v(
5
2
− v2

vT
)v|| f . (1.4)

Here the parallel stress tensor, Π|| ≡ (b̂b̂− I/3)π||, and the distribution function, f , come

from the solution of a kinetic equation that emphasizes the parallel dynamics and retains a

maximal ordering between parallel gradient scale lengths and collision lengths. Work by

Held [9] provides an integral form for parallel ion viscous stress Π|| and an analogous form

for q|| in a uniform magnetic field [10]. A unified closure for the conductive electron heat

flux along an inhomogeneous magnetic field lines was also derived for arbitrary collision-

ality by Held [11]. The closure was in the form of a generic integral operator involving the

electron temperature variation along a magnetic field line,

q||(L) =

∞̂

0

dL′[T (L−L′)−T (L+L′)]
∂K

∂ (lnL′)
, (1.5)

where the kernel, K(L′), contains information regarding the collisional effects of trapped

and untrapped particles. This was derived for the case when electron collision lengths

are long compared to the length of magnetic wells in which electrons can get trapped. In
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this dissertation, we describe a numerical solution to the problem of heat flow along an

inhomogeneous magnetic field, where sinusoidal variations in the magnetic field strength

|B| exists, making no assumptions about the ordering of various terms in kinetic equation.

Before discussing this solution, we first describe the basics of charged particle motion along

an inhomogeneous magnetic field.

1.2 Charged particle motion

In a uniform magnetic field, a charged particle gyrates around a magnetic field line and

the guiding center of the particle’s orbit moves with constant velocity along the field line.

In a tokamak, the nonuniformity of the magnetic field leads to drifting of the guiding center.

Since the toroidal magnetic field strength BT is proportional to 1/R, where R is the major

radius of the tokamak (Fig. 1.1), the field is smaller on the outside of the torus. Particles

in this region having a small velocity parallel to magnetic field undergo a magnetic mirror

reflection as they move along field lines into the region of higher field. In the absence

of collisions the particles are trapped in the low field region, bouncing back and forth

between the turning points. The mirror force responsible for trapping is F =−µ∇B, where

µ =
mv2
⊥

2B is the approximately conserved magnetic moment for a particle with perpendicular

velocity v⊥. Particles with large parallel velocity circulate continually around the torus and

are called passing particles. In axisymmetric geometery, particle orbits can be viewed in

the poloidal cross section at a fixed toroidal angle. The orbits of passing particles appear

as simple closed curves surrounding the magnetic axis. However, the trapped particles

reverse direction at bounce points causing a bounce motion, which in combination with

radial drifts, produces orbits whose poloidal cross sections have a crescent shape as shown

in Fig. 1.1.

At low collisionality, trapped particles dominate perpendicular transport, but do not

contribute to parallel transport. When the collisionality is sufficiently low, the particles



7
complete several bounce orbits before having their velocity vector change substantially

due to collisions, and the plasma is said to be in the banana regime based on the shape of

the trapped orbits projected onto the poloidal plane.

In this low-collisionality regime, averaging the kinetic equation for electrons over these

bounce orbits leads to a simpler equation to solve. In this work, we do not perform this

average and hence, obtain results for parallel heat transport for a wider range of plasma

collisionality and magnetic geometries. Compared to the previous theory, temperature gra-

dient scale lengths, LT ≡ (∇||lnT )−1 were considered much greater than the magnetic scale

lengths, LB. In this research however, the magnetic and temperature scale lengths are or-

dered arbitrarily with respect to each other (Figs. 1.2-1.3).

FIG. 1.1. Poloidal cross section showing the poloidal projection of the trapped banana
orbit. There are two types of particles, passing and trapped. The toroidal magnetic field
strength, BT , varies inversely with the major radius, R. As the particle goes from the outer
region towards the inner region, it faces a stronger magnetic field, and a particle having
small velocity parallel to the magnetic field gets trapped in banana orbits.



8

Before continuing, we present an outline of the remaining chapters. In Chapter 2,

we describe a novel treatment of the drift kinetic equation (DKE) and highlight the term,

which describes the effect of magnetic field wells (|B|) on the heat flow closure. The

closure problem is discussed, and the fluid model and kinetic approach to solve for the

distribution function to obtain the closure are presented. We also describe the Lorentz

collision operator used in this reasearch and how time-dependent effects are included. In

Chapter 3, we present convergence studies for 2D velocity space. Results of heat flow in

different collisionality regimes without the effect of the |B| term in the kinetic equation are

also presented. Chapter 4 focuses on the effects of magnetic wells on the heat flow, in

different collisionality regimes. Comparisions are made for the results obtained by using

linear versus nonlinear |B| terms. Chapter 5 provides a general overview of the analytical

and computational work done here and summarizes the key physics results obtained. Future

work to investigate additional transport properties is also discussed.
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FIG. 1.2. Temperature gradient scale length compared to the magnetic scale length for the
ordering used in Held [11]. This required LB� LT as shown above.



9

Distance along field line, L

T δB

0 20 40 60 80 100

0.96

0.98

1

1.02

1.04

0.9

0.95

1

1.05

1.1

T
δB

FIG. 1.3. The maximal ordering used in this dissertation permits the arrangement shown
above with LB ∼ LT .
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CHAPTER 2

COMPUTATION OF PARALLEL HEAT FLOW CLOSURE

In this chapter, a numerical method for computing the heat flow parallel to the magnetic

field is explained. In Section 2.1 we describe the plasma as a fluid and explain the transport

equations. Section 2.2 discusses the time evolution of the distribution function, described

by the plasma kinetic equation. A wide range of collision operators with varying degree of

difficulty and accuracy have been used over several decades. Most prominent is the original

form proposed by Boltzmann, which allows for hard (large-angle) scattering events, as well

as small angle, Coulomb scattering events. Section 2 introduces the Coulomb collision

operator used in this research, namely the limited Lorentz form of the Boltzmann operator

frequently used for ionized plasmas. In section 2, the kinetic equation is converted into

a drift kinetic equation (DKE) by averaging over the rapid gyromotion of electrons. The

DKE highlights the dynamics parallel to the direction of the magnetic field. In section

2, we rewrite the DKE upon expanding the distribution function in terms of Legendre

polynomials. Section 2 describes the numerical methods used to solve our coupled system

of equations and how the closure is obtained for determining the parallel heat flow.

2.1 Fluid description of plasma

A number of analytical approaches have been developed to study plasmas, one of them

being the fluid description [12]. The first step in the analytical fluid approach is to de-

rive the governing system of equations, which deal with the macroscopic properties of the

fluid. There are many ways to do this [13]. The five-moment method adopted in this work

describes the time evolution of the density, n, flow velocity, V, and temperature, T , and

includes the effect of collisional friction, R, collisional heating, Q, heat conduction, q, and

stress, Π, for each species.

The equation for density is
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∂n
∂ t

+∇ ·nV = 0. (2.1)

At a fixed position, evolution in the plasma density is caused either by advection of the

species (V ·∇n) or by compression of the flow (n∇ ·V). The first two terms on the right give

the average force density on the species that results from the Lorentz force [en(E+v×B)]

on the charged particles. The next two terms represent the force per unit volume on the

species that results from the isotropic pressure, p, and the anisotropic stress, Π. The R term

represents the frictional force density on a species due to Coulomb collisional relaxation of

its flow, V, toward the flow velocities of other species of charged particles in the plasma.

The equation for temperature is

3
2

n
(

∂

∂ t
+V ·∇

)
T = −p∇ ·V−Π : ∇V−∇ ·q+Q. (2.2)

The temperature, T , of a plasma species evolves due to adiabatic compression or ex-

pansion (−p∇ ·V), the divergence of the conductive heat flux (−∇ · q), dissipation due

to flow-gradient-induced stress (−Π : ∇V) and collisional energy exchange (Q), between

plasma species.

Equations (2.1)-(2.2) represent, respectively, the conservation of particles, momentum,

and energy. They describe how these quantities move about (i.e., are transported ) in the

plasma. Each moment is coupled to the next higher one. Density evolution depends upon

velocity. Evolution of velocity depends upon pressure gradients (∇p = ∇nT ) and stress,

and so on. Thus, the density, flow, and temperature equations require higher closure mo-

ments, namely the conductive heat flux, q, the stress tensor, Π, the collisional friction force

density, R, and the collisional energy exchange, Q, in order to be closed.

The system of fluid equations can be closed in number of ways. Accurate closure has
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proven beneficial for describing a wide varity of observed phenomema in plasma [14, 15].

One simple way to close fluid equations is by brute force truncation, simply ignore the

higher order moments. Another method of closing fluid equations is based on rigorous

exploitation of small parameters, called asymptotic closure. This method is more system-

atic, and provides an estimate of the error involved. The closure scheme developed here

involves a hybrid fluid/kinetic approach [1, 2]. The classic example of this approach is the

Chapman-Enskog theory of a gas dominated by collisions [16], details of it are provided in

section 2.4 of this chapter.

2.2 Plasma kinetic equation

Plasma kinetic theory, among other things, provides a method of investigating the in-

fluence of collisions among plasma particles. It also treats effects like free-streaming and

magnetic trapping, which play an important role in determining transport in magnetized

plasmas. Rather than tracking the position and velocity of every individual particle in the

plasma, which would be a daunting task, kinetic theory provides for each particle species a

distribution function, f (x,v, t), which represents the probable number of particles that will

be found at time t in an elemental volume of six-dimensional configuration space, dxdv.

The total number density (number of particles per unit volume) can be obtained by tak-

ing the integral of f over velocity space. Similarly, the bulk flow may be computed by

weighting the velocity space integral of f by the particle velocity, v. These two lowest

order moments give the desired constitutive relations: expressions for the charge density

and current density needed to close Maxwell’s equations. The distribution for each species

is determined by a single partial differential equation in the six variables x, v, and time t.

The original kinetic model is the Boltzmann transport equation [17, 18]. It achieved

great success in the late nineteenth century by accurately describing the kinetics of molec-

ular gases, and presents a natural starting point for a plasma kinetic equation. The Boltz-
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mann equation considers only binary particle interactions; that is, it assumes at a micro-

scopic level each particle interacts with at most one other particle at a time [19]. It is given

by

∂ f
∂ t

+v ·∇ f +a ·∇v f =C( f ), (2.3)

where C( f ) is the collision operator and a is the acceleration. If the collision operator is

neglected, and the acceleration is given by the Lorentz force, then the Boltzmann equa-

tion is referred to as the Vlasov equation [20]. Eq. (2.3) describes the evolution of the

distribution function, f (x,v, t), for particles of each species in the plasma. It provides a

statistical description of plasma dynamics in configuration space. The symbol ∇ stands for

the gradient in space and the symbol ∇v =
∂

∂v stands for the gradient in velocity space.

Solving the Boltzmann equation is extremely difficult. Much work has been done to ob-

tain analytical solutions for simple cases. Hilbert was first to obtain a result expressing the

solution of the Boltzmann equation as a series expansion [21]. Chapman and Enskog [16]

obtained a series solution valid for dense collisional gases. Grad [13] developed a system-

atic method of expanding the solution of the Boltzmann equation in a series of orthogonal

polynomials.

In Eq. (2.3), v ·∇ f , refers to the free streaming of particles. For many laboratory and

astrophysical plasmas, the Lorentz acceleration dominates and is given by

a =
e
m
(E+v×B), (2.4)

where e and m are the particle charge and mass, respectively. It is the magnetic portion

of the Lorentz force that acts on the particles and localizes them in the magnetic field,

forcing them to approximately follow the field lines in magnetized plasmas. In the absence

of an electric field, E, the magnetic component of the Lorentz force acts to restrict the
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motion of particles across B. As a result they execute localized gyro-orbits (characterized

by very small gyroradii) around the magnetic field lines. The gyroradius is submillimeter

for a 1keV electron gyrating in a 1T magnetic field. In steady state, the free streaming

of particles (v ·∇ f ≈ v|| ·∇ f ) balances collisional effects and the thermodynamic drives

associated with gradients in temperature, density and flow. The transit timescale associated

with the free-streaming of particles is fast compared to resistive and transport timescales of

fusion and astrophysical plasmas. As a result, this term, v ·∇ f , is difficult to treat generally.

Special emphasis is made in this research to incorporate the effect of an inhomogeneous

magnetic field, which is present in v ·∇ f on the conductive heat flow, by treating this term

using a novel method. Additional complication in solving Eq. (2.3) is provided by the

collision operator, C( f ).

2.3 The Lorentz collision operator

Charged particles in fully ionized plasmas interact with each other primarily through

binary Coulomb collision events. These collisions are important when describing diffu-

sion, mobility, resistivity, and conductivity in a plasma. Coulomb collision effects cause

diffusion and deceleration of a particle’s velocity vector as it passes near individual charged

background particles, and gets deflected by the electric force from them. Three properties

of the Coulomb collision operator, (i) no particles are created or destroyed via Coulomb

collisions, (ii) momentum, and (iii) energy is conserved, should be preserved when con-

structing numerical solutions to Eq. (2.3).

One of the simplest models with which we can approximate these Coulomb effects is

the Lorentz collision model. It contains the basic effects of momentum loss and velocity-

space diffusion. Its simplest form assumes the plasma consists of positively charged ions

and negatively charged electrons. The background ions are considered infinitely massive

(stationary) and randomly distributed in space. Hence the Lorentz collision operator de-
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termines how the electron distribution function evolves due to collisions with one or more

stationary, background ion species. The spatial position of the test particle is not signif-

icantly affected by collisions, which generate random, small kicks to a particle’s velocity

vector. Spatial scales are assumed to be larger than the Debye length, λD = 10−4m, in a

typical tokamak plasma. Time scales are assumed to be longer than the time required for a

test particle to traverse a Debye sphere. There is also no energy exchange, and hence, no

energy diffusion in this model.

For electrons, the form for the Lorentz scattering operator used in this research is

C (F) = L(F) =
νL(v)

2
∂

∂ (
v‖
v )

(
1− (

v‖
v
)2
)

∂F

∂
v‖
v

. (2.5)

The above equation represents diffusion in pitch angle space,
v||
v , where v|| = v · b̂ is the

component of the velocity vector along the magnetic field and v = |v|. The Lorentz speed-

dependent collision frequency, νL, is [22]

νL = νei +νee =
νee

s3

[
Ze f f +φ (s)−G(s)

]
, (2.6)

where φ is the error function, G = 1
2

(vT j
v

)2
(φ − ( v

vT j
)φ
′
), is a function first introduced by

Chandrasekhar [23], νee is the reference collision frequency, and Ze f f = ∑
j
n jZ2

j/∑
j
n jZ j,

with the sum performed over all ion species. The collision frequency, νL, characterizes

the time over which a particle’s velocity vector scatters through 900 in pitch angle, due

to multiple small-angle scattering events. The eigenfunctions of the Lorentz scattering

operator are Legendre polynomials (see the Appendix), hence the operator, L(F), can be

written as

L(F) =−νL(v)
2 ∑

n
n(n+1)Fn(x,v, t)Pn(

v||
v
), (2.7)
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where n(n+1) are the eigenvalues and the distribution function, F , has been expanded in

Legendre polynomials, F = ∑
n

FnPn. Orthogonality is applied (see the Appendix) as part of

an effort to convert the PDE in Eq. (2.3) into a linear system of coupled ordinary differential

equations.

2.4 Chapman-Enskog Drift Kinetic Equation

The fluid treatment of plasma is useful for characterizing large scale-length, slower

plasma phenomena. However, as mentioned in section 2.1, serious extensions of the fluid

model are required in order to fully understand some plasma behavior. Often these exten-

sions come from the kinetic description of plasma. A practical approach is to use both

the fluid and kinetic models, and combine them into a unified model. We develop a hy-

brid fluid/kinetic model for describing a magnetically confined plasma via a five moment

Chapman-Enskog-like (CEL) procedure. This approach uses the density, n, flow, V, and

temperature, T , evolution equations, and recasts the plasma kinetic equation into a partial

differential equation for the kinetic distortion, F , which evolves according to thermody-

namic drives.

The fundamental idea of the Chapman-Enskog method is to suppose the distribution

function evolves in time only, or primarily (to lowest order) as a result of changes in

the fundamental parameters of the Maxwellian distribution function, n(x, t), V(x, t), and

T (x, t):

f (x,v, t) → f [x,v;n(x, t),V(x, t),T (x, t)]. (2.8)

In the CEL approach, we make the Ansatz the distribution is to lowest order a Maxwellian,

with important corrections that will give rise to the parallel heat flux, q||. In the origi-

nal treatment of Chapman and Enskog, the ratio of mean-free-path to scale size provides

a small parameter for systematic expansion of the kinetic equation. Here we relax that
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assumption, and hence, refer to our approach as Chapman Enskog like. The Chapman-

Enskog Ansatz [16] posits the distribution function, f , may be written as a sum of a

dynamic Maxwellian fM , which represents the physics of a fluid model, plus a kinetic

distortion F :

f = fM +F = n(x, t)(
m

2πT
)

3
2 exp

(
−mv′2

2T

)
+F, (2.9)

where v′ ≡ v−V is the random velocity and the density, temperature and flow moments of

fM are n, T , and V, respectively. The parallel heat flow moment of fM vanishes, hence our

expression for q||, which is needed to close the temperature equation, depends strictly on

the kinetic distortion, F , which is obtained by solving our approximate kinetic equation.

Substituting Eq. (2.9) into our plasma kinetic equation [Eq. (2.3)] leads to

∂ ( fM +F)

∂ t
+v ·∇( fM +F)+a ·∇v( fM +F) =C( fM +F), (2.10)

which may be written simply as

dF
dt
−C( fM +F) =−d fM

dt
. (2.11)

Here

d
dt

= ∂

∂ t +v ·∇+a ·∇v, (2.12)

is the total time derivative. Writing out the total time derivative explicitly for F terms yields

∂F
∂ t

+v ·∇F +a ·∇vF−C(F + fM) =− d fM

dt
. (2.13)

The right side of the above equation can be written as



18

d fM

dt
=

(
d ln(n)

dt
+

(
mv′2

2T
− 3

2

)
d ln(T )

dt
+

mv′2

T
·
(

dV
dt
−a
))

fM. (2.14)

Equation (2.13) shows how the kinetic distortion, F , is driven by spatial and temporal

variations of the fluid variables parameterizing fM. In this research, F is obtained by solv-

ing an approximate form of Eq. (2.13). Taking the q|| moment of F , we get the desired

closure for the temperaure evolution equation.

In magnetized plasmas, it is possible to average Eq. (2.13) over the rapid gyromotion

e
m(v×B) because the frequency of gyromotion about the magnetic field, Ω = qB

m , is higher

than other frequencies of interest. Gyroaveraging reduces velocity space from three di-

mensions to two dimensions and highlights the dominant parallel dynamics of magnetized

plasmas as mentioned in section 2 of this chapter.

Averaging over the rapid gyration of electrons about the magnetic field, ignoring ac-

celeration effects due to an electric field, and assuming the magnitude of the flow |V| is

small compared to the thermal speed, vT , yields the lowest-order CEL drift kinetic equa-

tion (CEL-DKE) [1, 20]:

∂F
∂ t

+ v||b ·∇F−〈C(F + fM)〉 =

(a)︷ ︸︸ ︷
2
3
(

v2

v2
T
− 3

2
)[∇ ·q−Q+∇V : Π||]

fM

p

+

(b)︷ ︸︸ ︷
v||(b ·∇ ·Π||−R||)

fM

p
−

(c)︷ ︸︸ ︷
(

v2

v2
T
− 5

2
)v|| · (∇||T )

fM

T

−

(d)︷ ︸︸ ︷
m
T
(bb− I

3
) : ∇V(v||−

v2
⊥
2
) fM, (2.15)

where ∇|| = b̂ ·∇ is the gradient in the direction of the magnetic field. The over-braced

term (a) in the above equation is due to heat conduction and viscous and collisional heat-
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ing. Term (b) represents stress and collisional friction drives. Term (c) is the temperature

gradient drive and term (d) is the flow gradient drive. Also, 〈C(F + fM)〉 is the gyroaver-

aged collision operator, which for our purposes, is the Lorentz form given in Eq. (2.7).

In this research, we assume the magnitude of the flow velocity |V| to be small compared

to the thermal velocity, vT =
√

2T/m. We also ignore the stress, Π||, flow gradient drive,

∇V, and collisional friction, R||, drive in order to focus only on how parallel gradients in

temperature, ∇||T , drive parallel conductive heat flow. Under these assumptions, Eq. (2.15)

becomes

∂F
∂ t

+ v‖b ·∇F−〈C(F + fM)〉= L
3
2
1 v||∇‖T

fM

T
− fML

1
2
1

1
T

∂T
∂ t

, (2.16)

where L3/2
1 = (5

2 − s2) and L1/2
1 = (3

2 − s2) are Laguerre polynomials (see the Appendix),

s ≡ v/vT is the normalized speed variable, and we have used our temperature evolution

equation to rewrite term (a) in Eq. (2.15).

Again, Eq. (2.16) emphasizes the dominant parallel dyanmics of magnetized plasmas.

The other important equation of interest, for calculating parallel heat transport, is the sim-

plified temperature evolution equation [Eq. (2.2)]:

3
2

n
∂T
∂ t

=−∇ ·q||b̂+S, (2.17)

where S is a heat source which, for our purposes, varies spatially but is constant in time.

In this research, Eq. (2.16) and Eq. (2.17) are the two important coupled equations.

They are advanced in time in order to study the temperature distribution along magnetic

field lines, given a time-independent, spatially varying heat source, S.
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2.5 Novel approach to solving the CEL-DKE

The evolution equation for F is a PDE in four independent variables,
v||
v (pitch angle),

s (normalized speed), L (distance along field line), and t. This couples to the T evolu-

tion equation, which has two independent varibles, L and t. We simplify the geometry by

considering a 1-D periodic domain with L ε [0,Lmax].

As discussed earlier, we expand the kinetic distortion, F , as

F =
N

∑
n=0

Fn(s,L, t)Pn

(v||
v
(L)
)
, (2.18)

where Pn are Legendre polynomials parameterized by
v||
v . Here

v||(L)
v =±

√
1− µB(L)

w with

w = 1
2mv2, the kinetic energy and µ =

mv2
⊥

2B , the magnetic moment. Here
v||
v = ±1 means

there is no magnetic moment and
v||
v = 0 indicates all of the electron’s energy is devoted to

gyromotion.

Upon substituting the above expansion for F into Eq. (2.16), one must be careful to

have the parallel gradient operator act on both the coefficients of the distribution function,

Fn, and the Legendre polynomials, Pn(
v||
v ):

∂

∂ t

N

∑
n=0

FnPn + v‖b ·
N

∑
n=0

[(∇Fn)Pn +Fn (∇Pn)]−

〈
C(

N

∑
n=0

FnPn + fM)

〉

= L
3
2
1 v||∇||T

fM

T
− fML

1
2
1

1
T

∂T
∂ t

. (2.19)

Here, the term ∇||Pn(
v||
v ) simplifies to (see the Appendix) :

∇||Pn(
v||
v
) =

[(v||
v

)2
−1
]
(∇||lnB)P

′
n

(v||
v

)
. (2.20)

Using the recurrence relations of Legendre polynomials
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P
′
n(

v||
v
) = n

(v||
v

)
Pn−nPn−1.

Substituting Eq. (2.20) into Eq. (2.19), multiplying by Pm(
v||
v ), and integrating over

´ 1
−1 d(

v||
v ) gives

∂

∂ t

1ˆ

−1

d(
v||
v
)Pm ∑

n
FnPn +

1ˆ

−1

d(
v||
v
)Pm

(
νL(v)

2 ∑
n

n(n+1)
)

FnPn

+v

1ˆ

−1

d(
v||
v
)Pm

v||
v ∑

n
Pn∇||Fn + v

1ˆ

−1

d(
v||
v
)Pm

(v||
v

)
∑
n

[
n
(v||

v

)
Pn−nPn−1

]
(∇||lnB)Fn

= v

1ˆ

−1

d(
v||
v
)PmL

3
2
1

v||
v

∇||T
fM

T
−

1ˆ

−1

d(
v||
v
)PmL

1
2
1

∂T
∂ t

fM. (2.21)

Applying the orthogonality properties of Legendre polynomials yields a set of N + 1

equations for the vector of coefficients, F = (F0,F1,...,FN):

[I∂t +
νL

2
Γ]F+Av∂LF+Mv(∂LlnB)F = δl1L

3
2
1 v(∂LlnT ) fM−δl0L

1
2
1 (∂t lnT ) fm. (2.22)

Here I is the N +1×N +1 identity matrix, Γ is diagonal with n(n+1) in the nth row and

column and zeros elsewhere, A represents the free-streaming coupling, and M captures the

effect of magnetic wells, which can trap particles. Both A and M come from the v‖b ·∇F

term in Eq. (2.16). The vector F is made up of the expansion coefficients Fn(s,L, t). The

parallel derivative is written as ∇|| = b ·∇ = ∂L, where again, L is the coordinate along the

magnetic field line, and δln is the Kronecker delta, denoting the ∂t lnT drive appears only

in the equation for F0 and the ∂LlnT drive appears only in the F1 equation.

2.6 The evolution of temperature

The temperature evolution equation can be written as
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∂T
∂ t

=
2

3nT0
(−∂Lq||+q||∂LlnB+S), (2.23)

where we have normalized temperature to a constant background temperature, T0, which

will be used to control the collisionality of the plasma. Here we have also used, ∇ · B
B =

B ·∇ 1
B = − B

B2 ·∇B = −b ·∇lnB = −∂LlnB. With the definition of F in Eq. (2.18), the

parallel heat flow moment can be written as

q|| = −T
ˆ

dvv||L
3/2
1 F =−T

4π

3
v4

T

∞̂

0

dss3L3/2
1 F1, (2.24)

where our three dimensional velocity space has dv→ 2πs2ds d
(

v||
v

)
.

The terms Mv(∂LlnB)F in Eq. (2.22) and q||∂LlnB in Eq. (2.23) determine the effect on

heat flow due to the inhomogeneous magnetic field. After the heat source, S, is switched

on, the temperature evolves until the system reaches the steady state, ∂T
∂ t = 0. At that time,

the flow of heat balances the spatially varying heat source, which satisfies
´ Lmax

0 dL S = 0.

In the absence of the ∂LlnB term,
∂q||
∂L = S in steady state. In the presence of magnetic wells

the steady-state form of Eq. (2.23) is
∂q||
∂L − q||∂LlnB = S, and the heat source is balanced

not only by the parallel heat flux, but also by the magnetic well term.

2.7 Numerical Solution of the coupled F and T equations

As we know, solving the kinetic equation numerically can be a daunting task. There-

fore, in this research we use parallel computing to solve our time-dependent coupled system

of equations. We use a discrete grid in the normalized speed variable, s, which allows for

parallel computation over our radial coordinate in velocity space. The work is distributed

over multiple processors, which communicate using MPI (Message Passing Interface) [24]

in order to solve our coupled system of equations [Eqs. (2.22) and (2.23)] efficiently. We
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also use finite differencing in time, and an efficient Fourier series representation in space,

L. In this section, we give details about the various numerical and computational tecniques

used to obtain the desired closure in this research.

2.7.1 Spatial representation using complex Fourier series

The spatial dependence of the coefficients, Fn(s,L, t), can be represented using a com-

plex Fourier series. The 1-D Fourier representation for the coefficients of the Legendre

expansion used in this research is

Fn(s,L, t) = Fn0(s, t)+
mmax

∑
m>0

[Fnm(s, t)eimφ +F∗nm(s, t)e
−imφ ]. (2.25)

Here φ = 2πL
Lmax

is the phase angle. Similarly, ∂LlnB and T may be expanded as

∂LlnB =
mmax

∑
m>0

(Bmeimφ +B∗me−imφ ), (2.26)

and

T = T0 +
mmax

∑
m>0

(Tmeimφ +T ∗me−imφ ). (2.27)

Fourier series are useful in solving partial differential equations because they convert

them into algebraic equations. A Fast Fourier Transform (FFT) is used to form nonlinear

products and go between real (L) and Fourier (m) space.

Substituting Eqs. (2.25-2.27) into the equation for the evolution of the distribution

function, Eq. (2.22), multiply by e−im′φ

2π
and integrating over φε[0,2π] (Lε[0,Lmax]) yields

[I∂t +
νL

2
Γ]Fm′ +

(
2π

Lmax
im
′
)

AvFm′ +Mv(FB)m′ =

δl1L
3
2
1 v
(

2π

Lmax
im
′
)

Tm′ fM−δl0L
1
2
1 (∂tTm′ ) fm, (2.28)
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where Fm′ = (F0m′ ,F1m′ , ....,FNm′ ) and

(FB)m′ =
1

2π

2πˆ

0

dφ e−im
′
φ

[
F0 +

mmax

∑
m>0

(Fme−imφ +F∗me−imφ )

]
(

mmax

∑
m′′>0

Bm′′e
im
′′

φ +B∗
m′′

e−im
′′

φ

)
. (2.29)

The product of ∂LlnB and F in Eq. (2.22) is treated as a nonlinear term and a forward

FFT is applied to this term, by which real space data is converted into Fourier harmonics,

(FB)m′ . The FFT of a two-dimensional array over the second dimension, for all points in

the first dimension, is performed.

Similarly for temperature

∂Tm′

∂ t
=−

a︷ ︸︸ ︷
8π

9
vT T0

ˆ
dss3L3/2

1 (F1B)m′

+
2

3nT0
Sm′ +

b︷ ︸︸ ︷
8π

9
vT T0

ˆ
dss3L3/2

1

(
2π

Lmax
im
′
)

F1m′ . (2.30)

Terms a and b in Eq. (2.30) are from the terms |B| and ∂Lq|| in the temperature evolution

equation, Eq. (2.23), with the parallel heat flow defined in Eq. (2.24).

2.7.2 Speed dependence

The normalized speed dependence is also crucial in this research. We solve for F [Eq.

(2.28)] on a grid in normalized speed, s. Since s is only a parameter in this equation, each

processor can solve for F at independent values of s, which are determined by a numerical

quadrature scheme used to compute the parallel heat flow:

q|| =−T
4π

3
v4

T

∞̂

0

dss3L3/2
1 (s2) F1 '−T

4π

3
v4

T

ns

∑wis3
i

i=1
L3/2

1 (s2
i ) F1(si). (2.31)
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This approximation is a weighted sum of function values at ns specified points (si) within

the domain of integration.

2.7.3 Finite difference in time

A first-order finite-difference method is used to advance the system of equations in

time until the steady state is reached. Approximating
∂F

m′

∂ t as
Fk+1

m′
−Fk

m′

4t we may rewrite Eq.

(2.28) as

(I+
νL

2
4tΓ)Fk+1

m′ =−Fk
m′
−4t

[(
2π

Lmax
im
′
)

AvFk
m′
+Mv(FkB )m′

]
+

[
4t δl1L

3
2
1 v
(

2π

Lmax
im
′
)

T
k+ 1

2
m′

fM−δl0L
1
2
1 (∂tT

k+ 1
2

m′
) fM

]
, (2.32)

and Eq. (2.30) as

T
k+ 3

2
m′

=−T
k+ 1

2
m′
−4t

8π

9
vT T0

ˆ
dss3L3/2

1 (Fk
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2
3nT0

Sm′

+4t
8π
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ˆ
dss3L3/2

1

(
2π

Lmax
im
′
)

Fk
1m′

. (2.33)

The right side of the Eq. (2.32) is divided by the diagonal term on the left in order to

provide some implicit stabilization and thus allow the system to reach steady state faster

numerically. In addition, Eqs. (2.32) and (2.33) are staggered in time to allow for larger

time steps. Staggering in numerical methods generally enhances accuracy and stability.

Time staggering in our research means approximating F and T at interlaced time levels,

one after the other.

In Eqs. (2.32) and (2.33) we choose integer levels tk for Fm′ and half-integer levels

tk+ 1
2

for Tm′ . Level tk denotes time, tk = k4t, with constant step size, 4t . This method

thus steps from (Fk
m′

, T
k+ 1

2
m′

) to (Fk+1
m′

, T
k+ 3

2
m′

) with step size 4t. The initial value T
1
2

m′
is

provided by the background temperature, T0.
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CHAPTER 3

RESULTS WITHOUT |B| WELLS

In this chapter we present a computational investigation of heat flow transport in mag-

netized plasmas for different collisionality regimes. This chapter is divided into two parts.

The first part, sections 3.1-3.2, presents convergence tests of the standard deviation in tem-

perature as we refine our velocity space grid by increasing the number of Legendre poly-

nomials and the number of speed points for different collisionality regimes. The goal of a

convergence study is to minimize error and get an idea of how much resolution is needed

to obtain a reliable numerical solution. The second part, sections 3.3-3.4, reports on the

parallel electron heat flow in different collisionality regimes. Chapter 4 has similar studies,

as in the second part of this chapter, but with the presence of the |B| term in the F and T

equations. All of the following studies are done assuming the plasma is in the steady state

with heat flow parallel to the magnetic field balancing the static heat source.

3.1 Convergence of the Legendre polynomial expansion

The number of terms in the expansion of the distribution function [Eq. (2.18)] required

to obtain convergent results depends on the number of Legendre polynomials, N. In prac-

tical calculations, one has to use a truncated expansion with a finite N. In this section we

investigate the convergence of the Legendre polynomial expansion by computing the con-

vergence of the standard deviation in temperature, σT , as Legendre polynomials are added

to the expansion of the distribution function.

The standard deviation in temperature is defined as

σT =

√
1
n

n

∑
i=1

(Ti−
1
n

n

∑
i=1

Ti)2 , (3.1)

where T is the dedimensionalized temperature and n = 100 uniformaly spaced points in

the domain. Fig. 3.1 shows the convergence of σT as Legendre polynomials are added to
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the expansion for a nearly collisionless case with the ratio of collision length, Lν , to source

gradient scale length, Ls, of Lν/Ls = 10. The number of Legendre polynomials required to

obtain converged results in this regime where collisions are infrequent is around N = 16.

In the limit where collisions dominate (small collision length Lν/Ls� 1), convergence

is obtained even for as few as two Legendre polynomials, N = 2 (see Fig. 3.2). This agrees

with previous work [10, 25, 26]. In the collisional limit, collisions easily destroy the details

in the pitch-angle direction of velocity space, but in the nearly collisionless limit, more

Legendre polynomials are required to obtain a converged solution.

Number of Legendre Polynomials, N

σ Τ
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1.6

1.8

2

2.2

2.4

2.6

2.8

FIG. 3.1. Plot shows convergence of the standard deviation in temperature, σT , in the nearly
collisionless limit as Legendre polynomials are added to the expansion. Convergence in this
limit with Lν/Ls = 10 requires N = 16.
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FIG. 3.2. Convergence of the standard deviation in temperature, σT , in the collisional limit
as Legendre polynomials are added to the expansion. Convergence in this limit is rapidly
obtained and requires only N=2. Here Lν/Ls = 10−3 and the results for N = 2 and higher
are identical.

To determine how large the error is in the variance of temperature, we define the relative

error as

εσT ≡
|σT −σT (exact)|
|σT (exact)|

, (3.2)

where σT (exact) is the standard deviation in temperature for the highest number of Legendre

polynomials, i.e., our most refined case.
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In the collisional regime, σT was converged for only N = 2 Legendre polynomials, so

we are interested only in the low-collisionality regime to find the relative error. Fig. (3.3)

reveals spectral convergence with the relative error of the standard deviation in temperature,

εσT , decreasing exponentially with increasing number of Legendre polynomials. In the

collisionless regime, the N = 16 case has an error roughly two orders of magnitude smaller

than the N = 2 case.

As mentioned previously, convergence occurs more quickly as the collision frequency

increases. This is expected since weak collisionality is associated with fine-scale structures

in pitch angle, v||/v. At very low values of the collision frequency, the structure in v||/v

becomes more complex, thus requiring more Legendre polynomials.

Number of Legendre Polynomials, N

ε σT

5 10 15 20

10-3

10-2

10-1

FIG. 3.3. Relative error, εσT , of the standard deviation in temperature, defined in Eq. (3.2)
in the nearly collisionless limit. Plot shows spectral convergence with the error decreasing
exponentially with increasing N.
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3.2 Convergence of the speed representation

As a further test to determine whether velocity space is well-resolved, we check for

convergence in our speed representation by adding grid points until quantities of interest

are unchanged. Again this test involves computing the standard deviation in temperature

for different collisionality. Because this process can be computationally time consuming,

we do parallel computations on a multiprocessor system by assigning each processor a

speed grid point, s = v/vT .

In this section, we evaluate the number of speed points, ns, required to obtain converged

results in the collisional and nearly collisionless regimes. As mentioned above, processors

can solve for the distribution function at their s values independent of the other processors.

They must communicate, however, in order to compute the parallel heat flow moment,

which is needed to advance temperature. Here all the results are obtained by keeping the

number of Legendre polynomials at N = 16.

As a reminder, the parallel heat flow moment can be written as

q|| =−T
ˆ

dvv||L
3/2
1 ∑

n
FnPn

(v||
v

)
=−4π

3
v4

T T

∞̂

0

dss3L3/2
1 (s2)F1(s,L, t)

' 4π

3
v4

T T
ns

∑
i=1

wis3
i L

3
2
1 (s

2
i )F1(si,L, t), (3.3)

where wi and si are the weights and nodes of an ns point Gaussian quadrature scheme. Each

processor solves for one coefficient F1(si,L, t) needed to compute q||. Such problems in par-

allel computing where the communication time is miniscule compared to the independent

processor computation time are referred to as embarrassingly parallel. This behavior makes

convergence test in speed relatively quick and easy.
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3.2.1 Speed convergence in the collisional regime

Fig. 3.4 shows the convergence of the standard deviation in temperature defined in

Eq. (3.1), as more speed points are included in the velocity grid for the collisional regime,

Lν/Ls = 10−3. In this case the background temperature, T0 = 10eV , and the corresponding

thermal speed is vT = 1.8× 106m/s. In this short mean-free path regime, although high-

energy electrons are responsible for carrying the heat flow [27], convergence is rapidly

achieved with ns = 4. In terms of Gaussian quadrature, which is exact for integrands that

are polynomials of order 2ns− 1 or less, this implies the F1 coefficient in the Legendre

expansion for the distribution function is well approximated by a relatively low-order poly-

nomial in s.
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FIG. 3.4. Convergence of the standard deviation in temperature, σT , in the collisional
limit as speed points are added to the expansion. Convergence in this limit, Lν/Ls = 10−3

requires ns = 4.
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The relative error in σT for the collisional limit is shown in Fig. 3.5. In this short

mean-free path case, collisions again smooth out details in velocity space and aid rapid

convergence. There are approximately three orders of magnitude reduction in the error

between the ns = 2 and ns = 4 cases.
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FIG. 3.5. Relative error, εσT , of the standard deviation in temperature defined in Eq. (3.2)
as a function of the number of speed grid points, ns. The error falls rapidly with increasing
ns in the collisional regime.

3.2.2 Speed convergence in the nearly collisionless regime

In the regime where collisions are infrequent, it becomes more difficult to show uniform

convergence as ns is increased. Compared to the collisional and moderately collisional
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regimes, the high temperature in nearly collisionless regimes also delays achieving the

steady state, thus making these convergence tests more costly computationally. Fig. 3.6

shows the convergence of σT when the background temperature is high, T0 = 1KeV . At

such a high temperature, convergence of σT is difficult to obtain. A possible improvement

may be to adjust the number of Legendre polynomials, N, and ns simultaneously so velocity

space refinement happens uniformly in two dimensions. Here we have fixed N at 16. In

this regime, the heat is carried by the thermal electrons.

Number of speed points, n s

σ T
x1

0
-4

0 2 4 6 8 10 12

1.8

1.9

2

FIG. 3.6. Check for the convergence of the standard deviation in temperature, σT , in the
nearly collisionless regime as speed points are added to the expansion. Convergence in this
limit is harder to obtain.
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Compared to the value of σT in collisional regime, see Fig. 3.2 where σ ≈ 10−3, the

standard deviation in temperature for this regime is much smaller in value. This arises from

the fact parallel heat transport is more robust in high-temperature plasmas, and hence the

perturbations/fluctuations in T are smaller. As we add more speed points to the grid, σT

tends towards a converged value. However, it is hard to maintain steady state at such high

temperatures, therefore complete convergence of σT in this regime is also hard to achieve.

Fig. 3.7 shows the relative error in σT for the nearly collisionless limit. Compared to the

collisional regime, the relative error is not a smooth curve; and it shows some fluctuations

with increasing number of speed points.

Number of speed points, ns

ε σT

2 4 6 8 10

10-3

10-2

FIG. 3.7. Relative error, εσT , of the standard deviation in temperature in the nearly colli-
sionless regime. In order to achieve a uniform convergence it may be necessary to refine our
velocity space representation in two dimensions simultaneously or include speed diffusion
and drag effects in our collision operator.
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As suggested earlier, it may be necessary to refine velocity space representation for

F in v||/v and s simultaneously in order to see more uniform convergence in these nearly

collisionless cases. Another area of improvement would be to use a more accurate collision

operator that includes speed diffusion and drag effects. This could smooth out details in the

speed direction in the same way the Lorentz pitch angle scattering operator smooths out

the distribution function in v||/v.

3.3 Heat flow in different collisionality regimes without magnetic wells

One main motivation for this work was to discover how the physics of parallel elec-

tron heat flow changes for various collisionality regimes. In order to simplify the problem,

we have solved the equation for the distribution function, Eq. (2.22), along with the tem-

perature equation, Eq. (2.23), without |B| effects, that is, without magnetic wells, which

complicate the heat transport by trapping electrons locally in our 1-D spatial domain. The

effects of magnetic wells will be discussed in Chapter 4.

3.3.1 Temperature-dependent heat flow

In a collision-dominated plasma, parallel heat flow is driven by local parallel gradients

in temperature. In this limit, the general, nonlocal heat flow closure reduces to the diffusive

form, which defines the parallel heat-flow at any point in the plasma as being proportinal

to the minus local parallel temperature gradient, that is, q|| ∼−∇||T . This behavior can be

seen in Fig. 3.8 where the solid curve represents normalized steady-state temperature for

a heat source, S = S0cos
(

2πL
Ls

)
, with the heat source scale length, Ls = 100m. Regions of

higher (lower) temperature are where the plasma is being heated (cooled) and the heat flow,

q|| ∼−∇||T , maintains the steady state. The heat flow is given by the dashed curve in Fig.

3.8. The direction of heat flow in the collisional regime is down the temperature gradient.

In moderate-space and low-collisionality regimes, the gradient in temperature again

plays an important role in determining the parallel heat flow. In these regimes, the heat
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flow and the temperature profile look similar to that shown in Fig. 3.8, but the fluctuation

in the temperature, δT , is smaller compared to the collisional case. This result is shown in

Fig. 3.9 where the solid curve represents the normalized steady state T for the moderate

collisionality regime (T0 = 100eV ) and the dashed-dot curve represents the normalized T

for the nearly collisionless regime (T0 = 1KeV ). Comparision of Figs. 3.8 and 3.9 reveals

with decreasing collision frequency, the variance of temperature decreases. This is due to

the fact more energetic electrons are able to smooth out temperature perturbations along

field lines in higher-temperature plasmas.
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FIG. 3.8. Variation in normalized parallel electron heat flow and the normalized steady-
state temperature. For this collisional regime the background temperature T0 = 10eV. Par-
allel heat flow is proportional to the parallel temperature gradient. Here the |B| term is not
used in the equations.
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FIG. 3.9. This plot for higher-temperature, lower-collisionality regimes looks similar to the
one for higher collisionality, but with a smaller fluctuation in temperature.

3.3.2 σT decreases with decreasing collisionality

At low temperatures and high densities, plasmas are collisional. In the collisional

regime heat flow is diffusive in nature. At higher temperatures, the plasma becomes less

collisional and the free streaming of the electrons dominates the heat flow. As the back-

ground temperature increases from 10 eV to 1000 eV, the variance in temperature decreases

due to more energetic electrons carrying heat more effectively along field lines.

In Fig. 3.10, the ratio of collision length, Lν ≡ vT
νL

[νL is defined in Eq. (2.6)], to source

scale length, Lν/Ls defines the collisionality. In high collisionality regimes, collision length
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is very small compared to the source scale length and particles collide more frequently

leading to diffusive transport and larger variations in temperature. As the collision length

increases with increasing background temperature, collisions become less frequent and the

variation in temperature decreases.

3.4 Distribution function in different collisionality regimes

In this section, the computational results are presented in the form of contour plots of

the distribution function in various collisionality regimes without |B| effects. All results

here were obtained keeping the number of Legendre polynomials N = 16 and the number

of speed points ns = 5.

Lυ/Ls

σ T

10-3 10-2 10-1 100 101 102

10-4

10-3
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Collisional Collisionless

FIG. 3.10. This plot shows the standard deviation in temperature, σT , as collisionality
varies. σT decreases for less collisional regimes as hotter electrons more efficiently smooth
out perturbations in T along field lines. However, this effect seems to weaken as we move
to the nearly collisionless regime, something referred to as flux-limited transport.
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3.4.1 Collisional regime

Fig. 3.11 shows the distribution function, F , in the collision dominated regime, Lν/Ls <

10−3. The evolution equation for F involves four independent variables,
v||
v , s, L, and t. We

plot F in the steady state at the speed grid point s = 5. Along the vertical axis
v||
v takes on

the value +1 (−1) for electrons traveling parallel (anti-parallel) to the magnetic field and

0 for electrons whose motion is purely devoted to gyration about B. The horizontal axis is

our 1-D domain in space, Xε[0,1] where X ≡ L/Lmax.

In the collisional steady state with v ·∇F small, the Lorentz operator may be trivially

inverted. The thermodynamic drive of interest is from the n = 1 term on the right side of

Eq. (2.22) and we have

F1 '
2
νL

vT sL
3
2
1 ∂LT

fM

T0
. (3.4)

Consistent with Eq. (3.4), Fig. 3.11 shows the distribution function, F , vanishes where

the gradient in temperature is 0 and is maximum where the gradient in temperature is

maximum. The symmetery in F also reveals in the high-collisionality regime, there are

equal number of particles moving in opposite directions at a given time carrying heat past

a local point in a diffusive fashion. This is the up-down asymmetry in v||/v shown in the

contours of Fig. 3.11.

3.4.2 Moderate collisionality regime

Between the collisional and collisionless limits, there exists a wide range of interme-

diate collisionality relevant to fusion plasmas and many other applications. The regime

of intermediate collisionality, which is studied in this section, is between the long wave-

length classical Braginskii limit and the short wavelength regime of weak collisions. Fig.

3.12 shows contours of F at s = 5 for the moderatly collisional regime between 10−3 <

Lν/LS < 101.
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Compared to Fig. 3.11 for the collision dominated regime, contours of the distribution

function are slanted and suggest a nonlocal aspect to the transport. The tilt suggests the

particles carrying heat in opposite directions at a given time past a local point are not

exactally opposite to each other in velocity space. That is there is an asymmetery in the

distribution of the particles due to the nonlocal behavior of the transport which cannot be

accounted for in the local, collisional expression given in Eq. (3.4).
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FIG. 3.11. Contours of the distribution function at s = 5 in the collisionl regime with
Lν/Ls = 10−3. The variation in X = L/Lmax is due to the sinusoidally varying heat source.
The up-down asymmetry in v||/v indicates the local diffusive nature of transport down the
local T gradient.
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3.4.3 Nearly collisionless regime

Fig. 3.13 shows the contours of the distribution function in the high-temperature regime

with Lν/Ls ≥ 101. Here the tilted nature of the contours is even more evident than in the

intermediate-collisionality regime. The contours suggest the nonlocal effects are critical

in this regime. In the absence of collisions, the particles move freely along field lines and

the distribution of particles in velocity space can develop small scales in velocity space

[28]. Note the distribution function does not vanish in the region where the gradient in

temperature is 0, that is F 6= 0 even where ∂LT = 0, hence in the steady-state this effect must

be due to the advective term in our kinetic equation. Also, electrons with small v||/v seem

to be responsible for the transport. This makes sense if we consider them moving slowly

along field lines between regions of different T and hence, having time to irreversibly

deliver heat via collisions.
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FIG. 3.12. Contours of the distribution function at s = 5, in the regime of intermediate
collisionality with Lν/Ls = 10−2. Here we interpret the displaced asymmetry in v||/v as an
indication of nondiffusive, nonlocal transport arising from the v|| ·∇F term in our kinetic
equation.
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FIG. 3.13. Contours of the distribution function in the nearly collisionless regime with
Lν/Ls = 10. Evidence of nonlocality is apparent in the fact that F does not vanish where
the temperature gradient is zero near X = 0,0.5 and 0.1.
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CHAPTER 4

RESULTS WITH MAGNETIC WELLS

This dissertation focuses on the effect of an inhomogeneous magnetic field on parallel

electron heat flow and temperature equilibration along magnetic field lines. In this chap-

ter, the parallel electron heat flow in an inhomogeneous magnetic field is calculated for

arbitrary collisionality and compared to the results without magnetic wells presented in

Chapter 3. In order to quantify heat transport, we again compute the standard deviation

in the steady-state temperature with the term ∂LlnB acting in the F and T equations, Eqs.

(2.22) and (2.23), respectively. Section 4 reports on the steady-state temperature distribu-

tion along field lines in different collisionality regimes as we vary the magnetic well depth.

The results are obtained using the convergent values obtained in the first part of Chapter 3

with the number of Legendre polynomials, N = 16, and the number of speed points, ns = 5.

The term representing magnetic wells in the F and T equations is of much importance in

this work due to the fact variations in magnetic field strength lead to a population of trapped

particles in velocity space and have a squeezing effect on the heat flow. The sinusoidal

magnetic wells are defined as

B(L) = B0 +Bc cos(
2πL
LB

). (4.1)

Using the above definition of magnetic wells, the ∂LlnB term referred to as mod-B (|B|)

in our F and T equations becomes

∂LlnB =
1

B(L)
∂LB' 1

B0
∂LB =−Bc

B0

(
2π

LB

)
sin
(

2πL
LB

)
. (4.2)

Here LB is the magnetic field scale length. We define the magnetic well depth as δB =

Bc/B0 and from now onwards will refer to the approximation in Eq. (4.2) as a linear mod-B

case, since it uses B0 as opposed to B(L) in the denominator. The phenomenon of trapping
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may be illustrated by considering a particle’s pitch angle when it is at the minimum in the

magnetic field (L = nLB/2) where

v||
v

(
LB

2

)
=±

√
1− µBmin

w
, (4.3)

and n ranges from 1 to the number of magnetic wells in our domain. Here µ = 1
2mv2

⊥/B(L)

is the approximately conserved magnetic moment, w = 1
2mv2 is the approximately con-

served kinetic energy and Bmin = B0−Bc. As they travel away from a minimum in B,

particles with constant µ

w = 1
B(L) for Lε[0,Lmax] will have v||/v go to zero and be reflected.

This is what it means to be trapped.

A spatially varying heat source, S, is turned on and the temperature in the system starts

evolving with time. Fig. 4.1 shows the variation of S (dashed curve) and B(L) (solid curve),

defined in Eq. (4.1), with a source scale length, Ls = 100m, in the moderate collisionality

regime, Lν

Ls
= 10−1. Here the heat source is defined as

S = S0 cos
(

2πL
Ls

)
. (4.4)

For this case δB = 0.2, the source strength, S0 = 50, and again the sinusoidally varying

heat source satisfies
´ Lmax

0
dL S = 0. The source strength is kept the same for all the results

obtained in the following sections.

4.1 q|| in the presence of magnetic wells for various collisonality regimes

In this work, it is shown the steady-state temperature variations along magnetic field

lines in an inhomogeneous magnetic field are enhanced by the presence of magnetic wells.

In lower collisionality regimes, this may be attributed to the fact the trapped population does

not contribute to heat flow over gradient scale lengths in temperature longer than mod-B

well lengths. Compared to the previous theory, where LB was ordered small compared to

the temperature gradient scale length, LT = (∂LlnT )−1, in this work the ordering of LB is
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independent of LT (or Ls), thus making the results more general.
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FIG. 4.1. Plot shows variation in B and the spatially varying heat source, S, with a scale
length of 100m. The magnetic well scale length LB = 20m. For this moderately collisional
plasma, Lν/Ls = 10−1 and the well depth is δB = 0.2.

4.1.1 Temperature in the presence of magnetic wells

In a typical magnetized laboratory plasma, such as tokamaks, temperature can be a very

complicated function of distance along the magnetic field line. Fig. 4.2 shows the variation

in normalized temperature in the presence of magnetic wells with varying well depths. The

dashed-dot curve shows the variation in normalized T in the absence of |B| effects. This

curve is similar to the dashed-dot curve in Fig. 3.9 for the moderate collisionality regime

with Lν/Ls = 10−1. The dashed curve and the solid curve represent the variation in T for

magnetic well depth 0.2 and 0.4, respectively. The dotted curve shows mod-B as a function

of L. The source and gradient in magnetic field is same as shown in Fig. 4.1 and LB is
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comparable to the collision length, Lν = 10m, an ordering that is not possible in bounce-

averaged theories [11]. In this regime the presence of magnetic wells fundamentally alters

the temperature distribution along magnetic field lines.

In the absence of the magnetic wells, the fluctuations in temperature are more effec-

tively smoothed out because all electrons are passing and can carry heat along the field

line. With the presence of magnetic wells, particles get trapped and are unable to carry heat

over longer-scale lengths. This leads to larger temperature fluctuations. As we increase the

well depth, more and more particles get trapped and local perturbations in the temperature

are visible. From the curve with δB = 0.4, it seems the temperature profile has features

that are tied to the minima and maxima in B.
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FIG. 4.2. This plot shows the effect of the ∂LlnB term on temperature in the moderately
collisional regime. The magnetic well depths are δB =0.0, 0.2 and 0.4. The variance in
temperature increases as the magnetic well depth increases.
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4.1.2 σT increases with increasing well depth

As shown in Fig. 4.2, with increasing magnetic well depth the variance in temperature

increases and some distortion in the temperature profile occurs due to |B| effects. The local

effect of ∂LlnB determines the form for the temperature distribution along the field line

based on collisionality and trapped/passing effects. With increasing δB, more and more

particles get trapped in magnetic wells.

It can be observed from Fig. 4.3 that, in the collisional regime, the increase in σT with

increasing δB is purely a fluid effect. This case corresponds to the collisional result A as

shown in Fig. 4.5 for δB = 0.4. The red dashed curve in Fig. 4.3 is obtained by considering

the presence of the |B| term only in the temperature evolution equation. This corresponds

to adding the q||∂LlnB term in the T equation, which has a squeezing effect on the heat

flow, but not including the ∂LlnB term in our kinetic equation. With the |B| term in the

F equation, as well (green dash-dot curve) we see little change in σT from the previous

case. This implies trapped particles do not contribute to the transport. Here trapped is a

misnomer since collisional particles are unable to execute bounce orbits. In the collisional

regime, particles undergo frequent collisions and the transport is predominantly diffusive.

To obtain these results, the depth of the wells is taken only up to δB = 0.4, since further

increasing the well depth causes a sudden increase in σT . The sudden increase in σT is

partially due to the fact that in obtaining the following results, we treated ∂LlnB linearly.

The difference here between linear versus nonlinear is we used the constant B0 instead of

the full B(L) in the denominator of Eq. (4.2). It can also be observed from Fig. 4.3 there is

a slight effect of the |B| term in the F equation for well depth in the range 0.1 < δB < 0.3.

The δB scan in Fig. 4.4 is done in the moderately collisional to nearly collisionless

regime, point B in Fig. 4.5. In this case, the |B| term reduces heat flow parallel to magnetic

field due to more particles getting trapped in the wells. This in turn causes more variance in

temperature. When the |B| term is not used in the F equation, then the heat flow is mainly
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due to particles free streaming along the magnetic field lines. Here also the dashed red

curve in Fig. 4.4 shows the standard deviation in temperature when the |B| term is not used

in the F equation and is present only in the T equation.
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A

FIG. 4.3. The standard deviation in temperature, σT , versus change in magnetic well depth,
δB, is plotted. This scan was done for the collisional case shown as A in Figure (4.5). The
fact that there is little difference between the cases with and without |B| in our kinetic
equation indicates that the transport is diffusive.

In the moderately collisional to collisionless regime, increasing magnetic well depth

again increases the standard deviation in temperature. Additionally, the presence of |B| in

our kinetic equation also increases σT unlike in the collisional regime where the |B|-in-F

and no-|B|-in-F cases were similar. We attribute the increase in σT when going from the

no-|B|-in-F case to the |B|-in-F case to the purely kinetic effect of particle trapping.
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FIG. 4.4. The standard deviation in temperature, σT , versus change in magnetic well depth,
δB, is plotted. Point B here corresponds to the point B in Figure 4.5. The entire scan is
done in the moderately collisional to collisionless regime. The dashed red curve shows the
standard deviation in temperature when |B| is not used in the F equation, but is present only
in the T equation. The green curve is the true result indicating particle trapping reduces
heat flow parallel to the magnetic field.

4.1.3 Effect of |B| on the σT for different collisionality regimes

Fig. 4.5 shows the plot of σT for varying collisionality with and without the |B| effect.

Here with |B| means the |B| terms are present in the F and T equations and without |B|

means no magnetic wells, as presented in Chapter 3. It is observed irrespective of the pres-

ence of magnetic wells, the standard deviation in temperature decreases for less collisional
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regimes because the fluctuations in temperature are more efficiently smoothed out by the

hotter electrons responsible for heat flow parallel to the magnetic field. In the presence of

magnetic wells, however, we see an increase in the fluctuation due to two effects: (i) the

squeezing effect caused by the q||∂LlnB term in the T equation and (ii) the particle trapping

effect due to F∂LlnB in the F equation. With Ls = 100m and LB = 20m, we estimate effect

(i) is dominant for Lν/Ls < 10−1 and effect (ii) becomes important for Lν/Ls > 10−1.

The red dashed curve in Fig. 4.5 represents σT without the presence of magnetic wells

and is the same as the red bold curve in Fig. 3.10. The green solid curve shows the effect

of |B| on σT . Here points A and B corresponds to the points A and B in the collisional

and low collisionality regimes shown in Figs. 4.3 and 4.4, respectively. The results in this

figure are obtained for the well depth, δB = 0.4.

4.2 Distribution function in different collisionality regimes with |B| effects

In the presence of magnetic wells, some electrons get trapped, while others are passing

and contribute to the heat flow along the magnetic field lines. However, the contribution to

temperature equilibration along magnetic field lines comes not only from the free streaming

of untrapped electrons in the F equation, but also from the ∂LlnB term in the steady-state

temperature equation, namely,

∂Lq|| = S+q||∂LlnB. (4.5)

In the collisional regime with collision length Lν=0.12 m, particles cannot execute

bounce orbits and transport can be understood in terms of a simple diffusion process. Con-

tours of the distribution function in steady state in this regime are plotted in Fig. 4.6 for

s = 5. It is observed, for the most part, in this short mean-free path regime, F is not affected

by the presence of magnetic wells and there are equal number of particles moving in oppo-

site directions. Because collisions are frequent, particles cannot get trapped in the magnetic
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wells. In the collisional regime, trapping applies only to high-energy (high s) electrons

whose bounce frequency in magnetic wells is higher than their collision frequency. Al-

though this is still possible in the collisional regime because of the 1/s3 dependence in the

collision frequency and the s dependence in the bounce frequency, the only slight distortion

in the contours suggests for s = 5, collisions are still dominant. We have chosen the well

depth, δB = 0.4 in this case, which corresponds to point A in Fig. 4.3.

Lυ/Ls

σ T

10-3 10-2 10-1 100 101 102
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10-2

Without |B|

With |B|

CollisionlessA

B

Collisional

FIG. 4.5. Standard deviation in temperature in various collisionality regimes, with and
without the |B| term in the F and T equations. As the temperature increases the standard
deviation in T decreases. The presence of magnetic wells, |B| term, causes more fluctua-
tions in T . Here δB = 0.4 and LB = 20m. Points A in the collisional regime and B in the
moderately collisional to collisionless regime, corresponds to points A and B in Figs. 4.3
and 4.4, respectively.

In the moderate collisionality regime, with collision length Lν=10 m, the effect of |B| is
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more easily observed in the distribution function. This arises from the terms Mv(∂LlnB)F

in Eq. (2.22) and q||∂LlnB in Eq. (2.17). Compared to Fig. 3.12 the presence of magnetic

wells distorts the F contours more. The nonlocal behavior of the transport, as shown in

Fig. 4.7, is still evident as in Fig. 3.12.

X

v ||/
v

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1
F

1.2E-06
1E-06
8E-07
6E-07
4E-07
2E-07
0

-2E-07
-4E-07
-6E-07
-8E-07
-1E-06
-1.2E-06

FIG. 4.6. Contours of the distribution function in the presence of magnetic wells with
δB = 0.4 in the collisional regime, Lν/Ls = 10−3. The variation in X = L/Lmax is due to
the sinusoidally varying heat source. The up-down asymmetry in v||/v indicates the local
diffusive nature of transport down the local T gradient. Compared to the case without the
|B| effects in Figure 3.11, we see a slight distortion in the contours here.

In the nearly collisionless regime with collision length Lν=800 m, the |B| effects are

even more apparent in the heat flow and temperature curves. When collisions are infre-

quent, Lν � LB, particles execute bounce orbits and get trapped in the magnetic wells.

Fig. 4.8 shows contours of the distribution function in the presence of magnetic wells

with δB = 0.4. Compared to Fig. 3.13, here we see a distribution of particles near the
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trapped/passing boundary (black horizontal lines at v||/v = ±

√
1−δB = ±0.77). A pop-

ulation of trapped particles is visible for |v||/v| < 0.5. Taking into account the large tem-

perature gradient regions shown in Fig. 4.9, we interpret the effect of magnetic wells as, in

part, localizing transport along the field line making it diffusive in nature, i.e., proportional

to the strong, local temperature gradient.
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FIG. 4.7. As the frequency of collisions decreases with Lν/Ls = 10−1, the effect of |B|
can be observed in the contours of the distribution function for s = 5. The plot shows that
in the presence of magnetic wells of depth δB = 0.4, the contours get distorted because
of the nondiffusive, nonlocal transport arising from the free streaming, as well as from the
trapping, in our kinetic equation.

Fig. 4.9 shows the temperature in the nearly collisionless regime with δB = 0.4. Con-

sidering Fig. 4.8 with this plot, it can be seen the distribution of particles is negligable in

the regions where temperature gradient is 0 and is maximum where the absolute value of

the gradient in T is maximum. Trapped particles do not contribute to the heat flow parallel
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to the magnetic field lines over the longest scale lengths. The contours in Fig. 4.8 also

show some particle distribution near the trapped/passing boundaries. To get more insight,

we have plotted the distribution function weighted by v|| in Fig. 4.10.
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FIG. 4.8. Contours of the distribution function at s = 5 in the nearly collisionless regime
with Lν/Ls = 10 in the presence of magnetic wells of well depth δB = 0.4. Here the hor-
izontal lines represent the trapped/passing boundary. In comparision with the contours in
Figure 3.13, there is a distribution of particles near the trapped/passing boundaries, but not
where v||/v= 0. We also see a distribution of trapped particles with |v||/v|< 0.5 responding
to the local temperature gradient.

Recall that q|| = −T
´

dvv‖L
3/2
1 F , hence the integrand of the parallel heat flow mo-

ment goes as v‖F . The contours of the distribution function (see Fig. 4.10) weighted by

v|| indicate a similar contribution to the heat flow from particles near the trapped/passing

|v||/v|= 0.77 and from a distribution of trapped particles near |v||/v|= 0.3. A final popu-

lation near |v||/v|= 1.0 is also apparent.
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FIG. 4.9. Plot shows gradient of temperature in presence of magnetic well with δB = 0.4
in the nearly collisionless regime. A bump is observed in the temperature profile because
of |B| effects. Also, T variations are larger over the Ls = 100m scale length because only
the small fraction of passing particles can carry heat over the entire domain.

4.3 Comparison of linear vs. nonlinear |B| results

Recall in evaluating ∂LlnB in our kinetic and temperature equations, we used the ap-

proximate form with B0 in the denominator of Eq. (4.2). In this section, we want to check

whether using ∂LB/B(L) instead leads to substantially different predictions for σT . Fig.

4.11 shows a plot of σT in the moderate collisionality regime as affected by the magnetic

well depth.
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FIG. 4.10. Plot shows distribution function weighted by v|| in the nearly collisionless
regime. The q‖moment has v‖F in the integrand. Here we see several populations in
pitch-angle space contributing to the heat flow at s = 5.

Here the ∂LlnB term is treated using the full B(L) in the denominator, represented in

the red solid curve and pink dashed curve. Again, as magnetic well depth increases, the

fluctuation in temperature increases. Furthermore, σT is larger for the case where ∂LlnB

term is used in the F equation [Eq. (2.22)] indicating particles get trapped in the magnetic

wells, which affects the heat flow transport parallel to the magnetic field line and ultimately

the steady-state temperature. Using the full nonlinear representation of ∂LlnB term slightly

increases the fluctuations in the temperature and brings into question the linearized ∂LlnB

treatment when δB≥ 0.4. For the result presented in this work, however, the linear approx-

imation to ∂LlnB is accurate.
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FIG. 4.11. Plot of standard deviation in temperature in moderate collisionality regime ver-
sus magnetic well depth with and without the affect of ∂LlnB term in our kinetic equation.
In the red solid curve and pink dashed curve, the full B dependence is used in evaluating
the denominator of ∂LlnB with red corresponding to |B| in the F and T equations and pink
to |B| in the T equation only. Note the full B(L) dependence in the denominator leads to
slightly larger T variation along field lines.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this chapter we focus on summarizing the key results obtained in this work, as well

as on the research path to follow in the future. The focus of this work was to incorporate

kinetic physics via a closure for the parallel electron heat flow into the evolution of electron

temperature. A Fortran code was written to solve the coupled kinetic/temperature PDE

system in an efficient manner. Computational studies were completed to understand parallel

heat transport in different collisionality regimes for magnetized plasmas.

A hybrid fluid-kinetic approach was used and the Chapman-Enskog Ansatz was ap-

plied to derive the lowest-order, time-dependent CEL drift kinetic equation (CEL-DKE).

The CEL-DKE was then simplified to address the coupled kinetic/temperature system and

the kinetic distortion, F , was expanded in Legendre polynomials parameterized by v||/v.

The temperature evolution equation was coupled to the F equation and the system was

solved for the kinetic distortion, whose velocity moment was taken to obtain the general-

ized parallel electron heat flow closure, q||. In this work, the Lorentz collision operator was

used, and results were obtained for various collisionality regimes. The analytical model

was then implemented in a Fortran code for studying the effects of collisionality and par-

ticle trapping on the heat flow along magnetic field lines. Results presented in Chapters 3

and 4 show the dependence of the steady-state temperature on collisionality and magnetic

well depths.

5.1 Summary of the results

The results obtained in this work can be divided into three important parts. One part is

comprised of convergence studies, which are important in order to obtain computationally

accurate results. Another part (Chapter 3) contains a study of the effect of collisionality on

heat transport and the steady-state temperature variations along magnetic field lines. The
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final part (Chapter 4) explored the effect of magnetic wells and particle trapping on the

steady-state distribution function and temperature.

The accuracy of the computationally obtained results relies on numerical convergence

of our treatment of the coupled kinetic/temperature system. In this work we check for con-

vergence of the truncated Legendre polynomial expansion for F which included N terms

and convergence in the number of speed points, ns, which were assigned to separate pro-

cessors in order to quickly reach the steady state. We check for convergence by studying

the effect of these parameters on temperature fluctuations in various collisionality regimes.

The key results obtained in achieving numerical convergence and in studying the effects of

collisionality and particle trapping are stated below.

• The number of terms in the expansion of F depends on the number of Legendre

polynomials, N. In collisional regimes, fewer Legendre polynomials are required

and convergence of the standard deviation in temperature, σT , is achieved even with

N = 2. This result agrees with previous work present in the literature. In nearly

collisionless regimes, σT decreases with increasing number of Legendre polynomials

and converges for N = 16. More Legendre polynomials are required for the nearly

collisionless case because the structure in pitch angle, v||/v , becomes more complex.

This is due to the fact details in pitch-angle are not destroyed completely by the weak

pitch-angle scattering process.

• In order to cut down on computational time for scans in the number of speed grid

points, ns, separate processors are assigned their own s value. Convergence in speed

points is checked by studying the behavior of σT as nS is increased for various col-

lisionality regimes. In the collisional regime, convergence is rapidly achieved for

nS = 5. In the nearly collisionless regime, it is difficult to show uniform conver-

gence, since at high temperature, it is difficult to achieve a true steady-state without

fluctuations in time. We speculate an improved collision operator with speed dif-
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fusion and drag effects might aid convergence studies in ns in nearly collisionless

plasmas.

• In the absence of magnetic wells, frequent collisions lead to heat flow proportional

to the local parallel gradient of temperature with the direction of q‖ down the lo-

cal temperature gradient. As the background temperature increases, variations in T

are reduced since more energetic electrons are able to smooth out temperature per-

turbations along the field lines. As the background temperature approaches 1Kev,

reduction in σT slows due to the flux-limited transport effect. In the presence of

magnetic wells, temperature variations increase. Recall in this work, no constraint

is applied to order the scale length of magnetic wells compared to temperature scale

lengths. Temperature variations increase for deeper magnetic wells due to both the

squeezing effect of heat flow in the T equation and due to the trapping of electrons

in local magnetic wells.

• As the collisionality decreases, σT decreases. However, σT increases with increasing

magnetic well depth, since more particles are trapped in magnetic wells. In the colli-

sional regime, a purely fluid effect is observed with q‖ being squeezed by variations

in |B|. In moderately collisional to collisionless regimes, passing/trapped particles

are influenced by magnetic wells, i.e, the |B| term, as evidenced by the v‖-weighted

contours in Fig. 4.10 at the end of Chapter 4.

• We have solved the coupled system of the CEL-DKE and temperature evolution

equations and studied the steady-state distribution function, F . Several contour plots

were presented to better understand the dynamics in our 2D velocity space. In the

collisional regime, there are equal number of particles moving in opposite directions

at a given time. Transport is mainly diffusive in nature and does not get affected

much by the presence of magnetic wells. In moderate collisionality regimes, nonlo-

cal transport comes into play, and the presence of magnetic wells becomes important.
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In this regime, particles carrying heat in opposite directions are not exactly opposite

to each other in space. In the high-temperature regime, a reduced population of pass-

ing particles move freely along field lines, while a larger population of particles are

trapped in magnetic wells.

• We have also determined using the full, nonlinear ∂LlnB in our kinetic and tempera-

ture equations increases σT in comparison to the linear cases which used the constant

B0 in the denominator. While this effect was slight for δB < 0.4, we note for cases

with δB > 0.4, it would be necessary to include the full B(L) in the denominator.

5.2 Future work

5.2.1 Improved collision operator for electrons

The physical effects of collisions of particles in ionized fusion plasmas are best treated

using the full Coulomb collision operator as opposed to the simplified Lorentz form. In our

work, the physics of particle diffusion in pitch-angle space is represented by the Lorentz

pitch-angle scattering operator defined in Eq. (2.5). As an important extension to our

work, we suggest including the speed diffusion and drag portions of the Coulomb collision

operator.

A form of the linearized, Coulomb collision operator that assumes a small mass ratio

(me/mi << 1) is the following moment form:

C(1)
e = ∑

a
[
−νLea

2

N

∑
n=1

n(n+1)Pn

(v||
v

)
Fn + ∑

k≥1

fMa

σ1
k
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(v||
v

)
M1k
||aν

1k
ea ]

+ fMa

νei

s2
e

P1

(v||
v

)
(V||i−V||e). (5.1)

Here, (V||i−V||e) is the difference in the parallel ion and electron flows, each normalized

to their respective thermal speeds. The k = 1 moment, M1k
||a, is related to the parallel heat

flow closure, q||. This form allows for speed diffusion and drag, as well as momentum

exchange, between flowing electron and ion species. Note the first term is the Lorentz
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operator used in this work. Implementation of this electron collision operator in our code

would be tedious but straightforward.

5.2.2 Full (nonlinear) temperature

In this research, we have normalized temperature to a constant background tempera-

ture, T0, in solving our system of coupled equations for q||. Future research could target

incorporating the full temperature into our equations. Full temperature means using T (L)

everywhere as opposed to just in the thermodynamic drive term, ∂LT . In section 2 temper-

ature is defined as

T = T0 +
mmax

∑
m>0

(Tmeimφ +T ∗me−imφ ).

By substituting the full T (L) into the F and T equations, we can write the dedimen-

sionalized CEL-DKE as

[I∂t̄ +
νL

2(v0/L0)
Γ]F+

√
T̄ s[A∂L̄ +M∂LlnB]F = δl1L

3
2
1

e−s2

π
3
2

s
v||
v

∂LT̄
T̄ 2 . (5.2)

The temperature evolution equation becomes

∂t̄ T̄ =
8π

9
T̄ 3[

ˆ
dss3L

3
2
1 [∂L̄ +∂L̄lnB]F1 + S̄, (5.3)

where ∂t̄ =
L0
v0

∂t , ∂L̄ = ∂L/L0 , and F =
v3

0
n F with normalized temperature T̄ = T

T0
.

With this definition of temperature we can write the full (nonlinear) temperature term

∂LT/T 2 in our F equation as

∂LT /T 2
=

1

T 2
(L)

∂LT =
∑

mmax
m>0

(
im2π

LT

)
(T meimφ −T ∗me−imφ )

(1+∑
mmax
m>0(T meimφ +T ∗me−imφ ))2

. (5.4)

By not using the full temperature dependence in our research, it has been hard to get

results in the nearly collisionless case for magnetic well depths δB > 0.4. Use of the full
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temperature would allow studies of more extreme δB (on the order of, but less than 1) with

stronger heat sources in higher-temperature plasmas. Preliminary work on such studies is

underway.
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A.1 Properties of Legendre polynomials

Legendre polynomials are solutions to Legendre’s differential equation :

d
dx

[
(1− x2)

d
dx

Pn(x)
]
+n(n+1)Pn(x) = 0. (5.5)

An important property of the Legendre polynomials is their orthogonality on the inter-

val −1≤ x≤ 1 :

1ˆ

−1

Pm(x)Pn(x)dx =
2

2n+1
δmn. (5.6)

Here δmn =


0 i f m 6= n

1 i f m = n
is the Kronecker delta.

Additional properties of the Legendre polynomials used in this research (Chapter 2) are

the following recurrence relations :

(x2−1)
d
dx

Pn(x) = nxPn(x)−nPn−1(x), (5.7)

and

(n+1)Pn+1(x) = (2n+1)xPn(x)−nPn−1(x). (5.8)

A.2 Definition of Laguerre polynomials

Laguerre polynomials are defined either by the series representation :

Lα
n (x) =

(−x)mΓ(n+α +1)
m!(n−m)!Γ(m+α +1)

, (5.9)

or by Rodrigue’s representation :
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Lα
n (x) =

1
n!

exx−α dn

dxn (e
−xxn+α). (5.10)

The first three lowest-order Laguerre polynomials are :

Lα
0 (x) = 1,

Lα
1 (x) = α +1− x,

and

Lα
2 (x) =

(α+1)(α+2)
2 − (α +2)x+ x2

2 .

A.3 Derivation of |B| coupling terms

Given the definition
v||(L)

v =±
√

1− µB(L)
w , we compute

d
dL

P(
v||(L)

v
) =

d
dL

(
v||(L)

v

)
d

dL
P
(

v||(L)
v

)
=± 1

2
√

1− µB(x)
w

(−µB
w

)(∂LlnB)P
′

d
dL

(
v||(L)

v

)
=

d
dL

[
±
√

1− µB(L)
w

]
(5.11)

d
dL

(
v||(L)

v

)
=± 1

2
√

1− µB(L)
w

(−µB
w

)(∂LlnB)

d
dL

(
v||(L)

v

)
=− 1

2
(

v||
v

) [(v||
v

)2
−1
]
(∂LlnB)
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1ˆ

−1

d(
v||
v
)Pm

(v||
v

)[
n
(v||

v

)
Pn−nPn−1

]
=

[
n(n+1)

(2n+1)(2n+3)
δm,n+1−

n(n+1)
(2n+1)(2n−1)

δm,n−1

]
.

This term leads to coupling of our expansion coefficients for the Legendre polynomials.

Physically, it contains the effects of trapped and passing particles in velocity space.
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