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Abstract

Carrier Frequency Offset Estimation for Orthogonal Frequency Division Multiplexing

by

Nagaravind Challakere, Master of Science

Utah State University, 2012

Major Professor: Dr. Jacob Gunther
Department: Electrical and Computer Engineering

This thesis presents a novel method to solve the problem of estimating the carrier

frequency offset in an Orthogonal Frequency Division Multiplexing (OFDM) system. The

approach is based on the minimization of the probability of symbol error. Hence, this ap-

proach is called the Minimum Symbol Error Rate (MSER) approach. An existing approach

based on Maximum Likelihood (ML) is chosen to benchmark the performance of the MSER-

based algorithm. The MSER approach is computationally intensive. The thesis evaluates

the approximations that can be made to the MSER-based objective function to make the

computation tractable. A modified gradient function based on the MSER objective is de-

veloped which provides better performance characteristics than the ML-based estimator.

The estimates produced by the MSER approach exhibit lower Mean Squared Error com-

pared to the ML benchmark. The performance of MSER-based estimator is simulated with

Quaternary Phase Shift Keying (QPSK) symbols, but the algorithm presented is applicable

to all complex symbol constellations.

(51 pages)
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Public Abstract

Carrier Frequency Offset Estimation for Orthogonal Frequency Division Multiplexing

by

Nagaravind Challakere, Master of Science

Utah State University, 2012

Major Professor: Dr. Jacob Gunther
Department: Electrical and Computer Engineering

The objective of the research for this thesis is to improve the performance of the Or-

thogonal Frequency Division Multiplexing (OFDM) system by minimising the impact of

frequency offset at the receive end. OFDM is a popular standard used in wireless commu-

nication systems such as cellphone networks and broadband internet. In an OFDM system,

the data symbols modulate the carrier signal at the transmitter. Usually, the receiver

function generator performs the demodulation task. In the absence of frequency offset com-

pensation, the transmitted symbols can not be effectively recovered upon reception. This

leads to packet loss and a degradation of the Quality of Service (QoS) offered by the service

provider.

Several approaches have been proposed to estimate the frequency offset at the receiver.

Estimators based on Maximum Likelihood (ML) principle offer good system performance

and are simple to implement. In this thesis an algorithm to estimate the frequency offsset

is proposed. The objective of the algorithm is to minimise the probability of symbol error.

The frequency estimate is chosen such that the probability of symbol error is minimised.

The run-time performance of the system is improved as a part of the thesis.
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Chapter 1

Introduction

With the advent of personal communications, the demand for mobile and broad-

band wireless access has been ever increasing. The requirement for higher data rates

has been met by the use of multicarrier techniques. Multicarrier techniques are partic-

ularly favored because of their robustness against frequency-selective fading encountered

in mobile communications [1]. Frequency Division Multiplexing (FDM), Direct-Sequence

Spread Spectrum (DSSS), and Orthogonal Frequency Division Multiplexing (OFDM) are

some of the commonly employed techniques for multicarrier transmission. OFDM is fa-

vored in several communication standards because of the simplicity of its implementation

and bandwidth efficiency. Fourth-generation (4G) systems, such as Mobile WiMAX and

Long Term Evolution (LTE), favor the use of OFDM over DSSS which was the prominent

choice in Third-generation (3G) systems such as Evolution-Data Optimized (EV-DO) and

High-Speed Packet Access (HSPA). OFDM is an integral part of several wireless (IEEE

802.11a/g/n, DVB-T, and WiMAX) and wireline (ADSL and ITU-T G.hn) transmission

protocols [2, 3].

1.1 Multicarrier Techniques

The basic idea of multicarrier transmission is to combat Intersymbol Interference (ISI)

of a channel. If τm is the delay spread of a channel and Ts denotes the symbol duration

then the transmission will be free of ISI if and only if the condition τm � Ts is met with

Rb = log2(M)T−1s being the maximum possible bit rate. In multicarrier transmission this

limitation on maximum bit rate is overcome by splitting the data into K substreams of

lower data rate and to transmit these substreams on adjacent subcarriers. The subcarrier

bandwidth is now B
K , allowing for K times higher bit rate for a given value of delay spread.
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This implementation with an FDM system is shown in figure 1.1.

The FDM system requires K separate RF modulators for transmission. The guard

bands add to the bandwidth requirement of FDM, thus making it inefficient. These disad-

vantages can be overcome in OFDM by the use of orthogonal subcarriers to eliminate guard

bands.

1.2 Overview of OFDM

OFDM is a bandwidth efficient multicarrier technique. The idea that orthogonal sub-

carriers can be used in multicarrier transmission was first proposed by R. W. Chang [4].

The requirement for guard bands is eliminated by the use of orthogonal subcarriers. Using

the DFT to modulate the low rate data streams with orthogonal subcarriers was put forth

by Weinstein and Ebert [5]. Figures 1.2 and 1.3 show the basic structure of the OFDM

transmitter and receiver in IEEE 802.16e. The functionality of various subsystems will be

revisited in section 2.1.

1.3 Impact of Frequency Offset

The spacing between adjacent subcarriers in an OFDM system is typically very small,

and hence accurate frequency synchronization is very important. Carrier Frequency Offset

(CFO) is introduced in the system due to local oscillator inaccuracies and Doppler Shift

in the case of receiver motion. Due to the the residual frequency offset the orthogonality

between transmit and receive pulses will be lost and the received symbols will have a time-

variant phase rotation [6]. In figure 1.4 we see the effect of normalized residual frequency
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Fig. 1.1: Frequency division multiplexing system.
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Fig. 1.3: OFDM receiver structure in IEEE 802.16e.

offsets of 0.05 and 0.1 on the received symbols at the zeroth subcarrier of 100 OFDM symbol

blocks each with 256 subcarriers. The rotation of the constellation is due to the phase offset

and the spreading of the symbols can be attributed to the presence of ICI. The addition of

noise (AWGN) at the channel complicates the recovery even further. Figure 1.5 shows the

same symbols with AWGN noise at 10 dB added in the channel.

1.4 Mitigating the Effects of CFO

Sathananthan and Tellambura [7] obtained analytical expressions for the computuation

of probability of error due to CFO in OFDM systems in the presence of AWGN channel

noise. With the increasing use of OFDM in most modern wireless and broadband access

protocols CFO mitigation has been an active research domain. The approaches to mitigat-

ing the effects of CFO in OFDM tranceiver can be broadly classified into two categories.
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Fig. 1.5: Effect of normalized frequency offset = 0.05 on received symbols in the presence
of noise with SNR = 10 dB.

In the first category the objective is to design the OFDM system, usually via subcarrier

positioning, repetition of symbols and increasing block length using prefix data, such that

even as CFO manifests in the system the symbols can be recovered. Several methods have

been developed to reduce the effect of carrier frequency offset on OFDM. These approaches

generally introduce analytical relationships between consecutive symbols to combat Inter-

carrier Interference (ICI). Self-ICI cancellation schemes and windowing are some of the

proposed approaches [8–10] to combat ICI. These approaches suffer from the disadvantage

that they use a significant part of each OFDM block for ICI cancellation thereby reducing

throughput.
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The second approach is to estimate the value of the carrier frequency offset which

can be used to recover the transmitted symbols. The major advantage of CFO estimation

techniques is the increased throughput as the number of known symbols per block is re-

duced. CFO estimation strategies are evaluated based on the Mean Squared Error (MSE)

of the CFO estimate and their performance in presence of a time-varying frequency offset.

The attributes of the OFDM tranceiver structure can be used in estimating CFO. Liu and

Tureli used polynomial root finding to estimate CFO in OFDM system with Cyclic Prefix

(CP) [11]. The L subcarriers used for cyclic prefix are orthogonal to the N subcarriers that

carry data symbols. In the presence of CFO the projection of the received vector onto the

space of orthogonal subcarriers is nonzero. The CFO can be estimated by forcing the pro-

jection to zero. The method proposed by Liu and Tureli does not require the transmission

of pilot symbols. Such methods belong to the class of blind estimation techniques. Roman

et al. [12] propose a blind estimation technique using the cost function that minimizes the

total off diagonal power induced by ICI in the received signal pseudo-correlation matrix.

Tureli et al. have proposed an ESPRIT-like algorithm to estimate CFO from the correlation

of received symbols [13]. Statistical functions of the equalized vector such as kurtosis have

also been used in blind CFO estimation by Yao and Giannakis [14].

Blind techniques using a maximum likelihood (ML) cost function have been proposed

for CFO estimation. These techniques usually rely on the symbol correlation to estimate

the CFO. Symbol correlation in OFDM block using cyclic prefix was used in the estimation

of CFO by van de Beek et al. [15]. This algorithm yields CFO estimate with low MSE and

has the added advantage of low computational complexity.

Pilot symbols in transmitted OFDM block can be used in estimating the CFO. An

ML estimation algorithm with the repeated use of a single data symbol was developed by

Moose [16]. A rapid synchronisation method for CFO estimation with just two pilot sym-

bols was developed by Schmidl and Cox [17]. Morelli and Mengali [18] extended upon this

method by the use of multiple pilot symbols to obtain the CFO estimate with improved ac-

curacy. Recent WLAN standards such as IEEE 802.11a allow for the use of four subcarriers
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to carry pilot symbols within a block length of 48 symbols [19]. The use of null-subcarriers

and their positioning in the OFDM block for CFO estimation is discussed by Ghogho et

al. [20].

Minimum Symbol Error Rate criterion developed as an alternative to traditional Min-

imum Mean Square Error (MMSE)-based equalization techniques. Adaptive Minimum Bit

Error Rate (MBER) equalization was introduced by Yeh and Barry for binary modula-

tion schemes [21]. An Adaptive Minimum Symbol Error Rate (MSER) algorithm was later

proposed by them to include pulse amplitude modulation (PAM) and quadrature ampli-

tude modulation (QAM) constellations [22]. The notion of minimizing the probability of

error was extended to include Bayes Risk (BR) in the Adaptive Minimum Bit Error Rate

(AMBER) Equalization algorithm developed by Gunther and Moon [23].

1.5 Overview of Thesis

In this thesis, the MSER criterion will be used to estimate and compensate for carrier

frequency offset at the receiver. The organization of the thesis is as follows. Chapter 2

provides an introduction to the OFDM data model used in the thesis and the development

of expressions for the probability of error and its derivative. It also provides a discussion of

the ML-based algorithm for CFO estimation from the approach proposed by van de Beek

et al. [15]. Chapter 3 presents the implementation of the MSER-based CFO estimator

followed by a discussion on the performance of the estimator. The estimator performance

is contrasted vis-a-vis the ML-based CFO estimator particularly with respect to the MSE

and BER. Chapter 4 presents the conclusion of the thesis with a discussion on the relative

merits of the algorithms and defines the scope of future work to be done on this topic.
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Chapter 2

CFO Estimation

This chapter discusses the development of an algorithm to estimate CFO in an OFDM

system and forms the crux of this thesis. The first section of the chapter, derives the

equations for the received symbol vector in the presence of noise and Carrier Frequency

Offset (CFO). Section 2.2 defines a function that provides a measure of the impact of CFO

on the average probability of error in the received symbols. The nature of such an error

function provides the means to identify the magnitude of CFO based on observed symbols.

In the subsequent sections, observations are made about the analytical nature of such an

error function and how it improves the performance of the estimation algorithm.

2.1 Data Model

Chapter 1 (Figures 1.2 and 1.3), discussed the implementation of an OFDM transmitter

based on IEEE 802.16e standard. While that diagram illustrates the components that

would make up the OFDM transmitter, in formulating a model to reduce Carrier Frequency

Offset it would be reasonable to eliminate the components that do not necessarily affect

the estimation of the CFO. The randomizer eliminates long runs of 0s and 1s, in addition

to adding to the security of the system by making the coded bitstream unintelligible to

eavesdroppers. In an analysis of the impact of CFO on the demodulation of the received

bits it may be safely assumed that the received bits are time-synchronised with the receiver

clock.

The IEEE 802.16e standard mandates the use of a Convolutional code, denoted as

FEC functions in Figures 1.2 and 1.3. It is interesting to couple the performance of an

MSER-based CFO Estimator that utilises the noise immunity offered by block turbo codes,

but the analysis of the MSER algorithm coupled with convolutional codes is beyond the
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scope of this thesis. The interleaver and subcarrier mapper ensure that the encoded

bits are separated in frequency space and constellation space. While these are practical

considerations in the implementation of the OFDM tranceiver, they may be omitted from

this discussion without loss of relevance. For the purposes of this section, and throughout

this work, we will assume that the conversion between Analog and Digital formats is lossless

(i.e., the ADCs and DACs are ideal).

Under these assumptions, the reference OFDM tranceiver can operate entirely in the

digital domain and is shown in figures 2.1 and 2.2.

2.1.1 Expressions for Transmitted and Received Symbols

Let s = [s1, s2, . . . sN ]T be the vector of symbols from the complex alphabet A =

{a1, a2, . . . aM} that have been mapped from the input bit vector b. Let t denote the

output of the IFFT block. Using the matrix notation W to denote the inverse Fourier

Transform we have

t = Ws. (2.1)

The subcarrier modulated symbol vector t is used to modulate the carrier signal at frequency

ft. This operation can be denoted using the vector notation as

u = Ftt

= FtWs, (2.2)

Symbol mapper

S
u

b
ca

rr
ie

r

M
a

p
p

in
g

Bits

⊗
b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b
b

P
il

o
t/

n
u

ll

in
se

rt
io

n

N
-p

o
in

t

IF
F

T

b
b

DDS(ωt)

sk
tk

exp(i2πωtk/N)

Fig. 2.1: OFDM transmitter - Modified to suit discussion about CFO estimation.
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Fig. 2.2: Simplified OFDM receiver designed to complement functionality of the OFDM
transmitter.

where Ft = diag(1, exp(iωt/N), exp(i2ωt/N) . . . exp(i(N−1)ωt/N)) denotes the modulation

by the transmitter-side Direct Digital Synthesizer (DDS) and ωt = 2πft is the frequency of

the transmit DDS.

In the presence of channel noise, the received symbol vector r can be represented as

r = u + z

= FtWs + z, (2.3)

where z denotes the complex circular white Gaussian noise added by the channel. At the

receiver, demodulation consists of translating the received signal to baseband frequency

followed by taking the DFT of the resultant signal. Let ωr = 2πfr be the receiver DDS

frequency.

The equalizer output y can thus be represented as

y = FFT{FHr r}

= WHFHr (FtWs + z)

= WHFHr FtWs + WHFHr z, (2.4)

where Fr = diag(1, exp(iωr/N), exp(i2ωr/N) . . . exp(i(N − 1)ωr/N)) denotes the modula-

tion by the receiver DDS. In the absence of CFO, the receiver DDS frequency ωr = ωt and

the equalizer ouputs are the transmitted constellation symbols in the presence of Gaussian

noise. The random vector z denotes a complex circular white Gaussian random vector, and
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hence multiplication by the unitary matrices WH and FR does not alter this property. Let

η = WHFHr z denote the noise component. Also, let P = FHr Ft denote the uncompensated

CFO matrix. Thus,

y = WHFHr FtWs + WHFHr z

= WHPWs + η. (2.5)

Since, W and P are unitary matrices η ∈ CN is a circular complex Gaussian random vector.

Let σ2I be the covariance matrix of η.

Denoting WHPW as H,

y = Hs + η. (2.6)

The demodulated symbol yi at the ith subcarrier is given by

yi = hTi s + ηi, (2.7)

where hi
T denotes the ith row of the matrix H.

Further, y ∈ CN . Let us define a mapping rule D : C 7→ A and ŷn = D(yn) be the

decision on yn. The error event for the nth symbol is thus,

en := {ŷn 6= sn}. (2.8)

The objective of the carrier frequency offset estimator is to minimize the error in

mapping the decoded symbol ŷn, under operating conditions defined by the noise variance

σ2 and the frequency offset ν.

2.1.2 Note on Carrier Frequency Offset

As mentioned earlier, the digital frequencies ωt and ωr denote the transmitter and

receiver DDS frequencies. The following relations apply between the digital frequencies in
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figures 2.1 and 2.2 and the analog frequencies Ωt and Ωr in figures 1.2 and 1.3.

ωt = Ωt × Ts (2.9)

ωr = Ωr × Ts (2.10)

ν = 1
2π (ωt − ωr) (2.11)

= 1
2π (Ωt − Ωr)× Ts. (2.12)

As per the Nyquist criterion, the bandwidth required for N orthogonal pulses is B = N
2Ts

.

The Carrier Frequency Offset (CFO) can thus be expressed as

ν = 1
2π (Ωt − Ωr)× N

2B . (2.13)

2.2 Probability of Error under MSER Criterion

In this section, a general expression for the average probability of symbol error is

derived under the MSER criterion. The notations used in this section will be particularly

relevant in the subsequent sections where the OFDM data model will be considered. For

this discussion, we will assume a vector of transmitted data symbols s = [s1, s2, . . . sN ]

where each si ∈ A. Let y, yn,D : C 7→ A denote the output of the equalizer at the receive

end, equalizer output at nth symbol duration and the decision rule to classify symbols,

respectively. While discussing the data model in section 2.1.1, we defined A to be the

constellation of complex symbols which are to be recovered at the OFDM receiver. In the

traditional approach to classify a recovered symbol y ∈ C the decision rule divides the

constellation A into disjoint regions Ri, i = 1, 2, . . . ,M in which the individual regions are

given by

Ri = {y : |y − ai| < |y − ak| ∀k 6= i}. (2.14)
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Thus if the transmitted symbol sn is known to be ai, the error event in (2.8) can be expressed

as

en = {ŷn 6= sn}

= {yn /∈ Ri}. (2.15)

Lemma 2.1. The probability of error for a symbol in the nth location, which will be denoted

as P (en), can be expressed as

P (en) = Esn=aiEs[ai]P (yn /∈ Ri|s[ai]). (2.16)

Proof. The probability of the considered symbol being in error is an implicit function in

terms of the transmitted symbols, the magnitudes of additive noise and the frequency offset.

From (2.8),

P (en) = P (ŷn 6= sn).

The probability of error can be expressed as the piecewise sum conditioned on the probabilty

of occurence of the individual symbols, i.e.

P (en) =

M∑

i=1

P (ŷn 6= sn|sn = ai)P (sn = ai), (2.17)

P (en) =
1

M

M∑

i=1

P (ŷn 6= sn|sn = ai), (2.18)

assuming all symbols are equally likely. If the probability of symbol error can be expressed

as the marginal probability mass function by accounting for all possible combinations of the
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symbol vector s,

P (en) =
1

M

M∑

i=1

∑

s

P (ŷn 6= sn, s|sn = ai) (2.19)

=
1

M

M∑

i=1

∑

s

P (ŷn 6= sn|s, sn = ai)P (s|sn = ai). (2.20)

Here the law of conditional probability P (A,B|C) = P (A|B,C)P (B|C) and the notation

E[g(X)] =
∑

xi
g(xi)P (X = xi) for the expected value of a random variable have been used.

P (en) =
1

M

M∑

i=1

Es|sn=aiP (ŷn 6= sn|s, sn = ai) (2.21)

Since s|sn = ai implies the symbol vector s = [s1, . . . , sn−1, ai, sn+1, . . . sN ], we can denote

it as s[ai], as is the event {s, s = ai}.

∴ P (en) =
1

M

M∑

i=1

Es[ai]P (ŷn 6= sn|s[ai]) (2.22)

Substituting (2.15) in (2.22) and expressing the sum over symbol probabilities as an expec-

tation,1

P (en) = Esn=aiEs[ai]P (yn /∈ Ri|s[ai]). (2.23)

2.2.1 Alternative Decision Rule for Categorising Symbol Error

Decision regions Si and Sk can be defined for every pair of symbols ai and ak such that

Si = {y : |y − ai| < |y − ak|},

Sk = {y : |y − ak| < |y − ai|}. (2.24)

1 Even though it is customary to express the expectation as Esn , Esn=ai is used for notational clarity.
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These decision regions are shown for the case of 16-QAM as shown in figure 2.3.

Lemma 2.2. For the case of the decision regions defined in section 2.2.1,

P (yn ∈ Ri) ≤ P (yn ∈ Si). (2.25)

Proof. The proof is based on Ri ⊆ Si which follows from the definitions of the regions in

(2.14) and (2.24). Gunther and Moon [23] further note that equality is achieved in when A

consists of just two points. Furthermore, equality is approximately achieved when ai and

ak are neighbors in a large constellation and the signal-to-noise ratio is high.

2.2.2 Expression for Probability of Error

From (2.23) we have

P (en) = Esn=aiEs[ai]P (yn /∈ Ri|s[ai])

= Esn=aiEs[ai]

M∑

k=1
k 6=i

P (yn ∈ Rk|s[ai]) (2.26)

≤ Esn=aiEs[ai]

M∑

k=1
k 6=i

P (yn ∈ Sk|s[ai]) (2.27)

= Esn=aiEs[ai]

M∑

k=1

I(k 6= i)P (yn ∈ Sk|s[ai]) (2.28)

= Esn=aiEs[ai]

M∑

k=1

I(k 6= i)I(yn ∈ Sk)P (yn|s[ai]). (2.29)

The expectation over all possible equalizer output values can be completed to obtain the

probability of error as

P (e) = Esn=aiEs[ai]Eyn|s[ai]

M∑

k=1

I(k 6= i)I(yn ∈ Sk). (2.30)
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Fig. 2.3: Decision regions Si,Sk and Ri,Rk for the case of 16-QAM.

2.3 Probability of Error for the OFDM Data Model

In this section, we will simplify the expression P (yn ∈ Sk|s[ai]) from (2.28). Considering

(2.28), it can be seen that the conditional probability of error in the nth subcarrier can be

expressed in terms of the probability that the equalizer output for the subcarrier lies in a

different decision region than the transmitted symbol ai, i.e.

yn ∈ Sk
∣∣s[ai] ⇐⇒ |yn − ak|2 < |yn − ai|2|s[ai]. (2.31)

The event |yn − ak|2 < |yn − ai|2|s[ai] can be simplified as

{
|yn − ak|2 < |yn − ai|2

∣∣∣s[ai]
}

(2.32)
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=⇒
{
y∗n(ai − ak) + (ai − ak)∗yn <

(ai + ak)
∗(ai − ak)
2

+
(ai − ak)∗(ai + ak)

2

∣∣∣s[ai]

}

=⇒
{

(ai − ak)∗(yn −
ai + ak

2
) + (yn −

ai + ak
2

)∗(ai − ak) < 0
∣∣∣s[ai]

}

=⇒
{

2×<((ai − ak)∗(yn −
ai + ak

2
)) < 0

∣∣∣s[ai]

}
. (2.33)

Substituting for yn from (2.7),

{
2×<((ai − ak)∗(hn

T s + ηn −
ai + ak

2
)) < 0

∣∣∣s[ai]

}
.

Observing that {hn
T s |s[ai]} = hn

T s[ai],

yn ∈ Sk
∣∣s[ai] =⇒ <((ai − ak)∗(hn

T s[ai]−
ai + ak

2
)) < <(−(ai − ak)∗ηn) (2.34)

P (yn ∈ Sk
∣∣s[ai]) = P

(
<((ai − ak)∗(hn

T s[ai]−
ai + ak

2
)) < <(−(ai − ak)∗ηn)

)
. (2.35)

If ηn is zero-mean, circular, complex Gaussian noise with variance σ2, then (ak − ai)∗ηn ∼

N (0, |ak − ai|2σ2) and <((ak − ai)∗ηn) ∼ N (0, |ak−ai|
2

2 σ2).

P (<((ak − ai)∗ηn) > x) = Q

(
x√

var(<((ak−ai)∗ηn))

)
(2.36)

Substituting (2.36) in (2.35) we get

P (yn ∈ Sk
∣∣s[ai]) = Q

(√
2<((ai−ak)∗(hn

T s[ai]−
ai+ak

2
))

|ak−ai|σ

)
(2.37)

P (en|s[ai]) =

M−1∑

k=0

I(k 6= i)Q

(√
2<((ai−ak)∗(hn

T s[ai]−
ai+ak

2
))

|ak−ai|σ

)
. (2.38)

The probability of error for the OFDM data model can thus be expressed as

P (e) = Esn=aiEs[ai]Eyn|s[ai]

M−1∑

k=0

I(k 6= i)Q

(√
2<((ai−ak)∗(hn

T s[ai]−
ai+ak

2
))

|ak−ai|σ

)
. (2.39)
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2.4 Derivative of Probability of Error

This section develops an expression for the derivative of the probability of error for the

OFDM data model. As mentioned earlier, the probability of error is implicitly a function

of the carrier frequency offset. Taking the derivative of probability of error with respect to

the CFO ν

∂

∂ν
P (e) =

∂

∂ν
Esn=aiEs[ai]Eyn|s[ai]

M−1∑

k=0

I(k 6= i)Q

(√
2<((ai−ak)∗(hn

T s[ai]−
ai+ak

2
))

|ak−ai|σ

)
(2.40)

= Esn=aiEs[ai]Eyn|s[ai]

M−1∑

k=0

I(k 6= i)
∂

∂ν
Q

(√
2<((ai−ak)∗(hn

T s[ai]−
ai+ak

2
))

|ak−ai|σ

)
. (2.41)

Lemma 2.3. The derivative of the Q-function with respect to ν is given by

∂

∂ν
Q

(√
2<((ai−ak)∗(hT

n s[ai]−
ai+ak

2
))

|ak−ai|σ

)
= −Q

(√
2<((ai−ak)∗(hn

T s[ai]−
ai+ak

2
))

|ak−ai|σ

)

×
√
2<((ai−ak)∗(ḣT

n s[ai]))
|ak−ai|σ . (2.42)

Proof. See Appendix A.

2.5 ML Estimation of CFO

In Chapter 1, various proposed approaches to estimate CFO in OFDM systems were

explained. The ML approach put forth by van de Beek et al. [15] is used to compare

the performance of MSER approach. Even though it is a blind estimation technique, this

approach yields CFO estimate with a low mean squared error along with a low BER for the

system, and thus can be a good benchmark against which the performance of MSER can

be measured. Given an OFDM block of length N +L where N is the number of subcarriers

for data and L is the length of the cyclic prefix, the ML estimate for the frequency offset

in the received baseband signal r is given by

ν̂ML = − 1

2π
∠

L∑

k=1

r(k)r∗(k +N). (2.43)
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Chapter 3

Implementation and Results

In this section, we will obtain the results of simulating an OFDM system. The system

model presented in figures 2.1 and 2.2 will be used withN = 256. For these simulations, it is

assumed that all the symbols are known a-priori and are taken from the QPSK constellation.

The simulation was carried out on the same OFDM block with the noise vector being

averaged out with approximately 100 trials.

3.1 Approximations to Probability of Error using MSER

Under MSER criterion we obtained the following expressions for the probability of error

and its derivative.

P (e) = Esn=aiEs[ai]Eyn|s[ai]

M−1∑

k=0

I(k 6= i)Q

(√
2<((ai−ak)∗(hT

n s[ai]−
ai+ak

2
))

|ak−ai|σ

)
(3.1)

∂

∂ν
P (e) = −Esn=aiEs[ai]Eyn|s[ai]

M−1∑

k=0

I(k 6= i)Q

(√
2<((ai−ak)∗(hT

n s[ai]−
ai+ak

2
))

|ak−ai|σ

)

×
√
2<((ai−ak)∗(ḣT

n s[ai]))
|ak−ai|σ (3.2)

In the absence of knowledge of the CFO matrix H, the term hn
T s[ai] can be replaced by its

noisy estimate yn. The expectation Es[ai]Eyn|s[ai] = Eyn,s[ai] is computationally intensive.

An iterative algorithm operating on multiple blocks can be thought of as averaging over the

s[ai] part of the joint expectation and the gradient in (3.2) can be computed as the sum

over data symbols in each block. With these observations (3.2) can be computed as

∂

∂ν
P (e) = −Esn=aiEyn

M−1∑

k=0

I(k 6= i)Q

(√
2<((ai−ak)∗(yn−

ai+ak
2

))

|ak−ai|σ

)

×
√
2<((ai−ak)∗(ẏn))
|ak−ai|σ . (3.3)
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If the OFDM block length is sufficiently large and at higher values of SNR this estimate

effectively approximates the actual expectation. It may be noted that in (3.3) the data

symbols ai are assumed to be known. This is generally true of OFDM systems in which it

is customary to include Pilot symbols1. Alternatively a decision aided estimator can also

be obtained with D{yn} used in place of ai. For large constellations (e.g. 64-QAM) the

sum over k can be replaced by considering l-nearest neighbors.

3.2 S-Curves

The probability of error is a function in terms of system parameters such as N -the

number of subcarriers in the OFDM block, σ Signal-to-Noise ratio (SNR) at which the

system operates. The derivative of probability of error is also an important criterion

as it aids the choice of the algorithm with which we will perform the CFO estimation.

If probability of error is used as the objective function with LMS adaptation rule then the

gradient of the probability of error determines the rate of convergence of the algorithm.

The average value of the gradient is called the S-curve and is defined as

g(νe) , E
∂

∂ν
P (e). (3.4)

Using S-curves we can obtain quantitative information about the performance of the esti-

mation system. Figures 3.1 and 3.2 show the probability of error and the S-Curve at 10

dB. A distinct feature of the MSER based decision rule is that at sufficiently high SNR the

system will not compensate beyond a small residual offset as shown in figure 3.2.

Figures 3.3-3.7 show the objective function and the S-curve at SNRs of -16 dB, -8

dB, 0 dB, 8 dB, and at 16 dB. The operating regions of -16 dB and -8dB are not usually

encountered but are provided here for the sake of completeness.

The following observations can be made about the S-curves.

1. When the SNR is low (less than 0 dB) and the CFO is high, corresponding to figures 3.3

1 IEEE 802.11a specification provides for four subcarriers dedicated for carrying pilot symbols in a block
length of 48 [19]. Li et al. [24] note that the preamble structure for IEEE802.11 standard allows for nine
short OFDM symbols of length 16 and 2 long OFDM symbols of length 64 to be used as pilots



20

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Probability of Error under MSER criterion with QPSK Constellation
SNR (db): 10

Number of sub−carriers: 256

CFO
ν

e

P
(e

)

Region over which MSER shows
shows less sensitivity to residual offset

The slope of the probability
of Error determines the 

convergence rate

Fig. 3.1: Probability of error as a function of uncompensated CFO at 10dB for QPSK
constellation- N = 256.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−30

−20

−10

0

10

20

30

Probability of Error under MSER criterion with QPSK Constellation
SNR (db): 10

Number of sub−carriers: 256

CFO
νe

g(
ν e)

Fig. 3.2: S-curve for OFDM system with QPSK contellation operating at 10dB- N = 256.



21

and 3.4, the S-curve passes through zero at νe = 0.2 approximately. This corresponds

to the residual offset of the system after convergence. The performance of the system

is poorest in such conditions.

2. At moderate Signal-to-Noise ratios of operation, 0-8 dB corresponding to figures 3.5

and 3.6, the S-curve passes through the origin implying that the system converges to

a zero residual offset. For the 8 dB case, the small gradient of the S-curve around zero

suggests that the update to CFO estimate is very small once the system has converged

the region of low probability of error. This implies that post-convergence the system

has a low BER. This will be confirmed further in this section.

3. If the system operates at high SNR, 16 dB corresponding to figure 3.7, the behavior

of the system around zero offset is similar to case 2. However, the slope of the S-curve

beyond this point is much larger. This implies a large error signal at the beginning of

adaptation. If an adaptive algorithm is to be implemented with MSER then the step

size should be chosen to avoid the oscillation around the zero residual offset.

4. The range of frequencies at which the S-curve has a linear positive gradient denotes

the acquisition range of the algorithm. Based on these S-curves we may conclude that

MSER algorithm offers an acquisition range of approxiamtely |ν| ≤ 0.5.

3.3 MSER-Based CFO Estimator

In expression (3.3) ẏn was used in computing the gradient of the error function. Fig-

ure 3.8 illustrates how ẏn can be obtained given the received samples rk and describes the

structure of an estimator that updates the CFO estimate ν̂ once per OFDM block. CFO Es-

timator block performs the computuation of the error signal which is limited to the range

[−0.5, 0.5] at the mod-0.5 block to generate the CFO estimate for the next iteration using

the LMS update equation

ν̂t+1 = ν̂t − δMSERgMSER(νe), (3.5)
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Fig. 3.6: Probability of error and S-curve for OFDM system with QPSK constellation
operating at 8 dB.
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Fig. 3.7: Probability of error and S-curve for OFDM system with QPSK constellation
operating at 16 dB.

where δMSER is the step-size of the update.

3.4 Results

In this section the results of simulating the OFDM system with MSER decision rule

are discussed. QPSK constellation is used to generate data symbols. The OFDM block

length, N, is chosen to be 256. The symbols are known a priori. The effect of AWGN

noise added by the channel is averaged out by performing approximately 100 iterations.

The CFO has been chosen to be 0.18 to illustrate system performance in terms of resolution

and the number of iterations required for convergence. One of the important parameters

affecting the system behavior is the step size δMSER . Figure 3.9 shows the Symbol Error

Rate (SER) of the system averaged over 100 trials as a function of the step size. It can

be seen that at a moderate SNR of 10 dB the system performance can be improved by

increasing the step size, which leads to faster convergence. If the system is operating at

a higher SNR, say 16 dB, increasing the step size leads to an increased number of symbol

errors. For our simulations step size in the range 0.01 to 0.02 has been used. Only for the
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Fig. 3.8: Estimator structure. CFO estimate is updated once per OFDM block.

simulation in figure 3.9 OFDM block length of 32 has been used.

Figures 3.10-3.14 show the performance of various system parameters at SNRs of -5

dB, 0 dB, 5 dB, 10 dB, and 15 dB. The CFO estimate, Error signal, and Bit Error Rate

(BER) are chosen to illustrate system performance. The number of blocks processed or the

iteration number forms the time axis for these plots.

3.4.1 CFO Estimate

The number of iterations required for convergence in an iterative approach is dependent

on the SNR and the step size. As mentioned in section 3.2, the MSER-based approach

is particularly vulnerable to low SNR. In figure 3.10 we can observe that even after 20

iterations the CFO estimate has not converged to the true offset of 0.18. In figure 3.11 the

estimator converges to the true offset in about 8 iterations. Figures 3.12 and 3.13 are the

best operating regions for the MSER CFO Estimator at 5 dB and 10 dB, respectively.

In the latter case, we can observe the initial overshoot characteristic of this under-

damped system. In section 3.2, it was observed that at high SNR the system is resilient to

a small residual offset. In figure 3.14 at 15 dB the system does not converge to the true
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Fig. 3.9: Plot illustrating the region of operation in terms of step size δMSER .

CFO of 0.18.

3.4.2 BER Curves

Uncompensated CFO leads to Inter-Carrier Interference in OFDM systems. The recov-

ery of transmitted symbols becomes impossible in the presence of CFO and AWGN noise

added by the channel. The probability of error was analytically determined by Sathanan-

tan and Tellambura [7] wherein it was shown that for a QPSK constellation operating at

SNR = 10 dB and CFO = 0.2 would perform at a Bit Error Rate of 10−1. MSER

focuses on minimising the BER along with the estimation of the CFO. In figure 3.13 we can

see that after 5 iterations the BER drops down to 10−3. This is a marked improvement over

traditional CFO estimation techniques. At higher SNR of 15 dB (figure 3.14) the achievable

BER of the system is approximately 10−4.3. The high initial gradient of the BER, typically

in the first 3-4 iterations, seems to suggest MSER-based estimation as an alternative to

other blind and data-aided equalization techniques that work on 2-5 OFDM symbol blocks.
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3.4.3 Error Signal

At a low SNR of -5 dB (figure 3.10), the error signal of the MSER-CFO estimator

is very small and converges to zero gradually. At higher values of SNR the error signal

drops to zero typically in 3-5 iterations (figures 3.12 and 3.13). At higher values of SNR

(15 dB, figure 3.14) the error signal becomes zero in 1-2 iterations. This means that the

system typically never converges to the exact value of CFO. This behavior can be attributed

to the approximations made with the objective function to make the gradient function

easily computable. As claimed earlier (section 3.1) once sufficient number of iterations

are performed the system BER drops down. However due to the high value of SNR, the

argument of the Q-function is sufficiently large implying a small value of the error signal.

3.5 Comparision with ML

The Maximum Likelihood approach for CFO estimation as presented in the paper by

van de Beek et al. [15] was discussed in section 2.5. It is a blind estimation technique but yet

offers a good metric for comparision with MSER based CFO estimation. For our simulation

OFDM block length of 256 was chosen. The system operates at a stationary CFO of 0.18.

Cyclic Prefix of 32 is used in the simulation. Averaging is performed using 100 trials and a

step size of 0.003 was used for the MSER approach.

For the ML approach when the time offset is unknown, the CFO can be estimated by

the use of 2N + L receiver inputs. The computuational effort involves the calculation of

average symbol correlation which can be accomplished using an accumulator. This can be

contrasted with the computationally intensive error estimation in MSER. At moderate to

high SNR (5-15 dB), the CFO estimate converges in about 2-3 iterations. In the following

simulations, the Mean Square Error (MSE) and Bit Error Rate (BER) of the two algorithms

is contrasted. For the MSER approach, we have plotted the MSE and BER curves against

SNR for the three cases corresponding to 5, 3, and 2 iterations. From figure 3.15 we see

that the CFO estimate for the ML approach has the lowest MSE. The BER curves, figure

3.16, for the ML approach is much better than that for the MSER approach. At SNR =

12 dB, the BER drops to ≈ 10−4 while the BER of the ML approach has a relatively high
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Fig. 3.10: Plot illustrating (a - Top left) CFO estimate, (b - Top right) Error signal, and (c
- Bottom) BER as a function of the iteration number at -5 dB.
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Fig. 3.12: Plot illustrating (a - Top left) CFO estimate, (b - Top right) Error signal, and (c
- Bottom) BER as a function of the iteration number at 5 dB.
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Fig. 3.14: Plot illustrating (a - Top left) CFO estimate, (b - Top right) Error signal, and (c
- Bottom) BER as a function of the iteration number at 15 dB.

BER of ≈ 10−2

3.6 Improving Performance of the MSER Estimator

The performance of MSER algorithm has two major drawbacks namely, the poor per-

formance in terms of the mean squared error of the estimate and secondly the computational

complexity. This section attempts to address these issues.

3.6.1 Choice of Parameters σ and δMSER

Figure 3.9 illustrated the impact of step size δMSER on the performance of the system. It

was also observed that this was a function of the signal-to-noise ratio σ. Since the expression

for the error signal is dependent on σ, at high SNR the system rarely adapts over iterations.

This problem can be overcome if it could be ensured that the system continiues to adapt

even at higher SNR. One way this could be done is to artificially fix the value of noise

variance at a predetermined value in computing the error signal. Figures 3.17 and 3.18

show the performance of the MSER system when the noise variance in equation (3.3) is

held fixed at σa = 5dB even while the system SNR varies independently. The performance

improvement for MSER can be readily observed both in terms of the MSE and the bit error

rate.
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3.6.2 Derivative Based on Log-Probability

The derivative of probability of error was obtained in (3.3) using the expression for

probability of error. Based on this derivative, the estimate for CFO was iteratively computed

in (3.5). A similar equation can be derived by computing the log-probability of error. As

shown in the Appendix B, the following function is an upper bound on the derivative of

log-probability of error ∂
∂ν logP (e).

f(P (e),y) = −Esn=aiEyn
M−1∑

k=0

I(k 6= i)
√
2<((ai−ak)∗(ẏn))
|ak−ai|σ (3.6)

This derivative can be used in the update equation and greatly reduces the computational

complexity by eliminating the need to compute the value of the Q-function. Keeping the

SNR fixed at 5dB in evaluating the equation (3.6), simulations as in section 3.6.1 were

performed. The results are shown in figures 3.20 and 3.19.

It can be seen that the MSE performance of the log-MSER estimator has improved over

the ML approach where cyclic prefixes of length 16 and 8 are used. The BER of log-MSER

is slightly better than the ML based estimator.

−10 −5 0 5 10 15
10

−5

10
−4

10
−3

10
−2

10
−1

SNR in dB

B
it 

E
rr

or
 R

at
e

BER vs SNR (log−MSER function)

 

 

CP−8
Iter−10
Iter−5
CP−16

Fig. 3.19: BER of the system plotted against SNR with σa = 5 dB. The log-MSER function
is used.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

This thesis discusses the development of a carrier frequency offset estimator for OFDM

using the minimum symbol error rate criterion. The development of the algorithm involved

multiple phases such as formulation of the data model, obtaining a general rule for the

probability of error, application of the probability of error rule for the OFDM data model.

The objective of the estimator was then defined to be the minimization of the probability

of symbol error under the MSER rule. This was accomplished using the gradient-descent

approach and the update rule similar to the LMS algorithm [25]. The estimator update

occurs once per OFDM symbol. The ML approach derived by van de Beek et al. [15] is used

for benchmarking the MSER-based method. If the derivative of probability of error is used,

the performance of the MSER-based estimator is found be at par with the ML approach.

With a sufficient number of iterations, the MSE of the MSER-based system is can be made

lower than the ML-based system, and the BER performance is comparable or only slightly

worse than the ML-based system. This can be accounted due to the fact that the actual

expectation in the probability of error equation is not performed. When the gradient of

the log probability of error function is used in the update, the system is found to perform

better than the ML-based algorithm.

Even though the use of the log-MSER function consumes lesser computuational power

than the MSER-based estimator, it is more computationally intensive than the ML-based

estimator. Further, the estimator provides improved performance at the cost of the number

of iterations required for convergence and the requirement of pilot sysmbols. However,

both of these conditions can be accomodated in the preamble-block of the communication
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system. Thus, the method discussed in this thesis is suitable for burst mode of operation

at high data rates wherein the tolerance for frequecy offset is very small. The ML approach

described does not work well in an iterative approach and thus the estimate can not be

refined further. Such a solution can be used as the initial guess of the MSER approach and

the estimate may be improved by continued iterations till the desired accuracy criteria are

met.

4.2 Future Work

The frequency offset estimator discussed in this thesis achieves good mean squared error

performance and ensures that the OFDM system can operate with a low bit error rate at the

cost of computational complexity. This system requires the transmission of pilot symbols.

Further work can examine the alternative decision rules that exploit the symmetrical nature

of the communication system and thereby eliminate the need for pilot symbols. The same

holds true for the modified gradient function. This model only considered the AWGN

channel for simulation. This work can be extended to the case of a fading channel. The

performance of MSER decision rule in conjunction with convolutional codes which are a part

of the OFDM implementation standards is an area for further exploration. The gradient

descent method adopted in this work may be replaced by a different minimization strategy

such as binary search or by an algorithm exploiting the convex nature of the probability of

error.
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Appendix A

Derivative of Probability of Error

Consider the derivative of the Q-function,

∂

∂ν
Q(x) =

∂

∂ν

1√
2π

∫ ∞

x
exp(− t2

2 )dt. (A.1)

Using Leibniz’ rule for differentiation under the integral sign,

∂

∂y

∫ b(y)

a(y)
f(t)dt = f(b(y))

∂

∂y
b(y)− f(a(y))

∂

∂y
a(y). (A.2)

Using (A.2) in (A.1),

∂

∂ν
Q(x) =

∂

∂ν

1√
2π

∫ ∞

x
exp(− t2

2 )dt (A.3)

=
1√
2π

(
exp(−∞)− exp(−x2

2 )
∂

∂ν
x

)
(A.4)

= − 1√
2π

exp(−x2

2 )
∂

∂ν
x. (A.5)

Using the approximation that Q(x) ≈ 1√
2π

exp(−x2

2 ),

∂

∂ν
Q(x) = −Q(x)

∂

∂ν
x. (A.6)
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Appendix B

Approximation to the Derivative

Consider the derivative of log-probability of error,

∂

∂ν
logP (e) =

1

P (e)

∂

∂ν
P (e). (B.1)

Substituting for P (e) and ∂
∂νP (e) from (2.39) and (3.3),

∂

∂ν
logP (e) =

−Eyn,s
∑

k I(k 6= i)Q

(√
2<((ai−ak)∗(hn

T s[ai]−
ai+ak

2
))

|ak−ai|σ

) √
2<((ai−ak)∗(ḣT

n s[ai]))
|ak−ai|σ

Eyn,s
∑

k I(k 6= i)Q

(√
2<((ai−ak)∗(hn

T s[ai]−
ai+ak

2
))

|ak−ai|σ

)

(B.2)

= −Eyn,s
∑

k

Q

(√
2<((ai−ak)∗(hn

T s[ai]−
ai+ak

2
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