

An Electrically Actuated Pin-Puller for Space Application using Nickel-Titanium Memory Alloy

Peter M. Cipollo, Brendan S. Surrusco Advisor: Dr. Sven G. Bilén

The Pennsylvania State University

Frank J. Redd Student Scholarship Competition

Small Satellite Conference August 11, 2004 Logan, Utah

LionSat Program Objectives

Mission Statement

The LionSat mission will investigate the local ambient and perturbed plasma environments surrounding a small satellite in the Earth's ionosphere. LionSat will measure the ambient plasma environment and the satellite's ram and wake regions using a novel hybrid plasma probe instrument. LionSat will test a miniature RF ion thruster system that will augment the satellite spin, which is necessary for mapping the plasma environment surrounding the satellite.

Technology Demonstration

- LionSat will demonstrate the Hybrid Plasma Probe as a plasma diagnostic instrument.
- LionSat will also test *in situ* a miniature RF Ion Thruster as a satellite spin control device.

Science Mission Goals

Primary Objectives:

- P1. To map the ram and wake plasma structure surrounding a small satellite
- P2. To collect data on ionospheric plasma in a variety of geophysically interesting locations in low Earth orbit
- P3. To test, on orbit, a miniature RF ion thruster

Secondary Objective:

- S1. To test IP communications for uplink and downlink to a spacecraft in low Earth orbit

Spacecraft Technical Data

Dimensions

- Diameter: 18.25 inches
- Length: 18.5 inches
- Shape: Octagon

Mass Budget

• 30 kg maximum

Power Budget

- 26.2 W
- 12–20 V bus depending on load

Cost

\$100K from Air Force, "seed money"

Frank J. Redd Student Scholarship Competition 2004: An Electrically Actuated Pin-Puller for Space Application

1

Mission Timeline

HPP Inhibit Requirement

Requirement – "Functions Resulting in Critical Hazards. A function whose inadvertent operation could result in a critical hazard must be controlled by two independent inhibits, whenever the hazard potential exists." NSTS 1700.7B, section 201.2

Solution – a low cost, electrically actuated pin-puller that makes use of Nickel-Titanium (NiTi) memory alloy to be used as part of the boom deployment inhibit system.

Pin-Puller Criteria

Low Mass - strict mass budget < 200 g</p>

- Low Cost COTS hardware where possible
- Reusable must be able to cycle multiple times to reduce testing costs
- Remote Reset not practical to disassemble satellite to reset device
- 12-V unregulated supply for operation, current draw \leq 500 mA
- No magnetic parts
- No hazardous materials

Commercial Possibilities

None could be found that meet all the criteria

		Technology		
		Pyrotechnic	Paraffin	Solenoid
Pin-Puller Requirements	Reusable		•	•
	Remotely Resettable			•
	Low Power Consumption	•	•	
	Low Cost	•		
	Low Mass	•	•	•
	Non-Hazardous		•	•
	Non-Magnetic	•	•	
	Compact	•	•	•

NiTi Pin-Puller Design

- Low force linear actuator using NiTi shape memory alloy
- Low power
- Automatically resettable
- Reusable
- Nonmagnetic
- Nonhazardous
- Light weight
- Inexpensive

NiTi Pin-Puller Design Issues

- Anodized aluminum construction provides electrical insulation for NiTi wire
- Ø 0.004" NiTi shape memory alloy actuator provides the required displacements and forces
- Steel bias/reset spring keeps the pin engaged at >75 g acceleration

- Capacitive discharge circuit reduces the requirements on the power system
- 25 g mass (not including electronics)
- 0.125" stroke ensures pin is engaged
- 3.5" overall length
- 0.5" largest diameter

NiTi Mechanical Response

Mechanical Response of Ø0.004" NiTi Actuator Wire with Steel Bias Spring

NiTi Pin-Puller Charging Circuit Design Issues

- 500-mA peak current draw at 5 V
- Capacitor is fully charged in <60 s
- 0.8-F capacitor chosen for energy capacity/favorable discharge time constant
- 10-Ω resistor in series with capacitor
 - reduces peak current draw without dropping excessive power

Charging Current

NiTi Pin-Puller Capacitive Discharge Circuit Design Issues

- 30-Ω power resistor in series with capacitor to achieve time constant
 - 0.35-W maximum power dissipation in resistor
- NiTi wire transitions from -55°C to 90°C in 38 s, holds above 90°C for minutes
- Discharge controlled by the flight computer
 - Allows precise coordination of components in the deployment system

Time [s]

NiTi Pin-Puller Status

Work Completed

- NiTi wire obtained for experimentation
- Alpha prototype designed and fabricated
 - Testing showed initial bias spring was too stiff and NiTi wire failed mechanically
- Steel spring selected for LionSat application
- Equipment developed for conditioning of NiTi wires
- Beta prototype designed
- Beta prototype fabricated

Testing Regimen

- Apply 200 mA to NiTi wire at 5% strain with bench supply
- Test pin-puller with capacitive discharge circuit
- Test pin-puller in thermal vacuum

- Inexpensive pin puller designed for LionSat mission
- Meets all LionSat requirements and NS-3 safety requirements
- Simple design should be applicable to other nanosat missions

