Minimizing Mission Risks Through Emulating Space Communications Architectures

Rich Slywczak, Fran Lawas-Grodek, Thong Luu, Cindy Tran, Allen Holtz, Brenda Ellis NASA/Glenn Research Center (GRC)

18th Annual AIAA/USU Conference on Small Satellites August 10, 2004

Glenn Research Center

Introduction

- <u>Goal:</u> Provide an environment that allows researchers to emulate space missions and/or custom on-board components.
- Emulation Testbed under development by NASA/GRC
 - Called the Space Communications Emulation Facility (SCEF)
- End users can create scenarios via mission parameters:
 - Number of satellites
 - Number of instruments on the satellite
 - Orbital Parameters

Glenn Research Center

- Space environment characteristics (e.g., latency, BERs).
- Customize on-board satellite components
 - Research code can be added into the emulation system.
- Output can be shown textually and graphically
 - Visualize the satellite orbits via STK
 - Text output will show the throughput for the links
- Originally based on University of Kansas' Space Based Internet (SBI) software.

at Lewis Field

9/23/2004

2

Motivation

- NASA is designing more complex missions with stringent communications and coordination requirements.
- Trend is to move from single satellite missions toward multiple satellite missions.
- Example Future Missions

Glenn Research Center

- Loosely coupled constellations
 - Little communication between each of the nodes.
 - Data will be assimilated on the ground.
- Tightly coupled constellations
 - Communications and coordination is essential among nodes.
 - Requires inter-satellite communications.
- NASA's new focus is on Moon and Mars missions.
- Current testbed focus is Low Earth Orbit (LEO) missions
 - Future development will include Lunar and Deep Space Missions.
- National Facility for use by Government, Universities and Industry.
 - Testbed resides at the Glenn Research Center (GRC)

at Lewis Field

9/23/2004

3

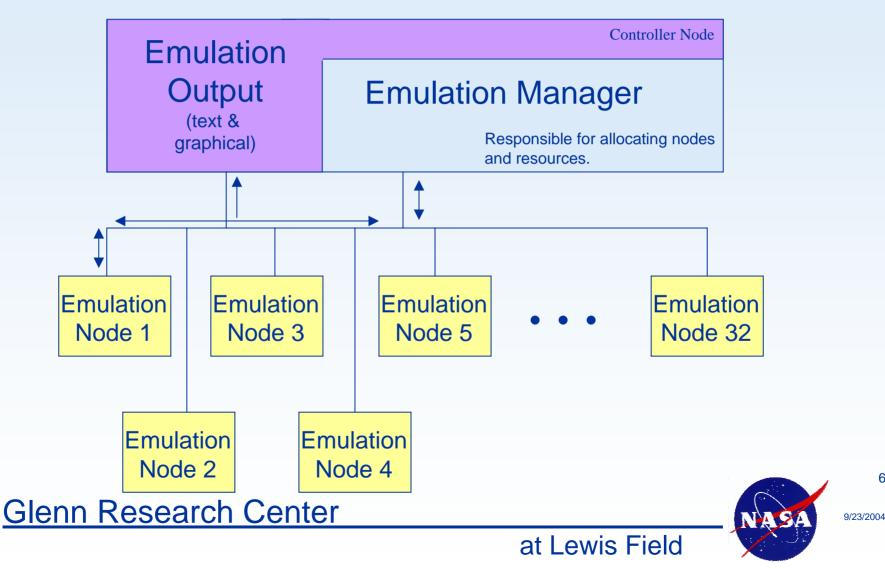
Minimizing Mission Risks

- Emulation systems can be powerful tools.
 - Determine the liabilities and validate requirements before a mission launches.
- Some of the risks include:
 - Communication Problems.
 - Satellites/Constellations with inaccurate orbit information.
 - Satellite functionality in deep space.
 - Using new components/technologies on satellites.
- SCEF can minimize the risks by:
 - Running the actual code/components in the environment.
 - Modeling satellites based on orbital information.
 - Modeling missions based on the space environment.

Glenn Research Center

Advantages of SCEF

- Common Infrastructure
 - Projects can share results and data from the emulation.
 - Promotes more interaction between projects during design.
- Space Characteristics
 - Implements latency, Bit Error Rates (BERs), QoS, etc.
- Satellite Components
 - Provides default algorithms for C&DH, ACS, Instruments, on-board clock, etc.
- Cost Reduction
 - Multiple use of common software.
 - Evaluate missions and concepts during design.
- Simplified Integration using Common Tools
 - SCEF developed utilities for researchers home environment.



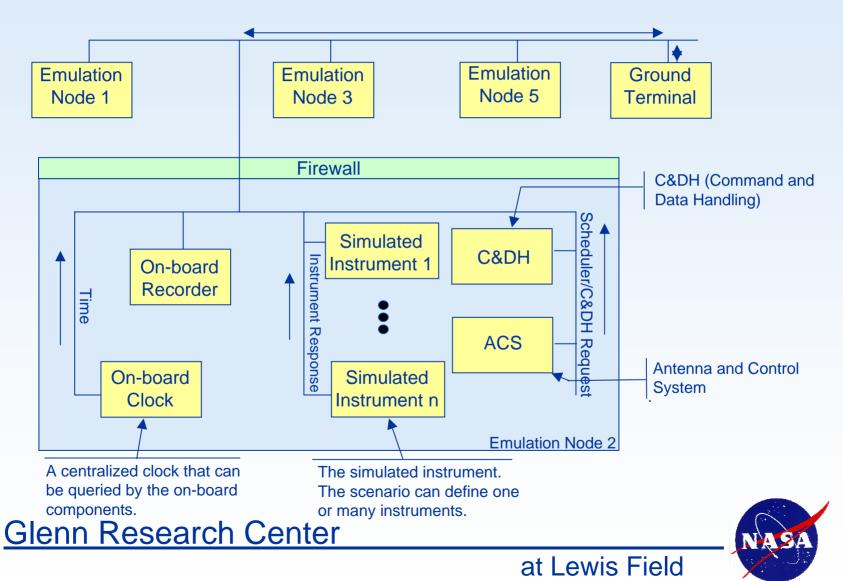
9/23/2004

5

Glenn Research Center

SCEF Architecture

6


SCEF Node Architecture

- Each node represents a satellite or ground station.
- Each component is modeled as a UNIX process.
 - Components are customizable.
 - Examples include Command and Data Handling (C&DH), Recorder, Simulated Instruments, On-Board Scheduler, Antenna and Control Systems
- Open standards
 - TCP/IP and Ethernet
 - UNIX Operating Systems
 - Standardized on RedHat Fedora Core I
- Third-party Software
 - Satellite Toolkit (STK) for orbit generation visualization.
 - NetSpec (U. of Kansas) for data throughput.

SCEF Node Architecture

8

9/23/2004

Hardware Architecture

- SCEF contains 32 nodes and 2 controllers.
 - Controller is responsible for starting the emulation and controlling the nodes.
- Controllers
 - Pentium III Class Machines (900 MHz)
 - 4 GB Memory
 - 234 GB On-line Storage
 - Gigabit Interfaces
- Nodes
 - Pentium IV Class Machines (3.06 GHz)
 - 1 GB Memory
 - 80 GB On-line Storage
 - Gigabit Interfaces

Glenn Research Center

at Lewis Field

9/23/2004

Example Scenarios for SCEF

- Mission Types
 - LEO-based, GEO-based
 - Constellations, Single Satellite Missions
- Research Algorithms
 - Scheduling Algorithms
 - Command and Data Handling (C&DH)
 - Antenna Control
- Security
 - Modifications to Firewalls and Routers
 - IP Sec, VPNs
- Communications
 - Modifications to the TCP/IP Stack
 - Throughput
- Networking Issues
 - Modifications to Routing Algorithms

Conclusions

- Researchers from academia, government and industry will have access to a satellite emulation facility for modeling satellite missions.
- SCEF has two objectives:
 - Models entire missions by defining scenarios that contain mission parameters.
 - Integrates custom code into the environment to test algorithms for certain aspects of the mission.
- Testbed uses open standards
 - Linux
 - TCP/IP
- Serves the need for future missions.
 - NASA is current designing complex future missions.
 - Designed for both Earth-centric and Deep Space missions.

11

Glenn Research Center

Contact Information

Rich Slywczak NASA Glenn Research Center 21000 Brookpark Road, MS 54-5 Cleveland, Oh 44135 Phone: (216) 433-3493 e-mail: <u>Richard.A.Slywczak@nasa.gov</u>

Glenn Research Center

