

Commissioning of a small satellite constellation: methods and lessons learned Dave Gibbon, Lee Boland, Neville Bean, Yoshi Hashida, Alex da Silva Curiel, Prof Sir Martin Sweeting - SSTL Dr Phil Palmer – Surrey Space Centre

18th AIAA/USU Conference on Small Satellites

SSC04-IX-2

Disaster Monitoring Constellation

- Natural disasters regularly cause huge loss of life, and enormous cost to economies.
 - (\$1 billion p.a.)
- Many organisations considering remote sensing solutions
 - Focus on existing resources
- Imaging Requirements
 - High resolution pan
 - Medium resolution multispectral
 - Thermal IR
 - SAR
 - Regular coverage
- Basic needs for disaster warning, monitoring and mitigation
 - Global reach
 - Daily imaging capability
 - \rightarrow Use of constellation

DMC spacecraft

SOLAR PANE

Constellation support

- Propulsion system contains 2.35kg of butane and a 15W resistojet, giving a delta V of up to 25m.sec⁻¹
- GPS positioning to 15m
 - 0.5deg. attitude control
 - GG boom
 - Wheels
 - Torque rods
- Ground Support
 - Mission Planning software

SSC04-IX-2

Propulsion system

- Miniaturised resistojet thruster
 UoSAT-12 heritage
 - 2x15W heaters
- Butane propellant
 - SNAP Heritage
 - Self pressurised to 2 Bar
 - 5 minute pre-heat to >500K
 - Double storage density of Nitrogen at 200 Bar

In-orbit operation

Commissioning

first launch

1

Commissioning

second launch

- Second launch highly accurate! •
 - 300m difference in semi-major axis
 - 0.005deg difference in inclination
 - Phased by 165 degrees
- Spacecraft commissioned from their respective control stations
- Constellation controlled from Surrey

SSC04-IX-2

Station acquisition 2/2

SATELLITE TECHNOLOGY LTD

Propellant budget

	Estimated Remaining DeltaV (ms ⁻¹)		Estimated Required DeltaV (ms ⁻¹)			Estimated Spare DeltaV (ms ⁻¹)
	Excluding	Including	Inclination	Phase	Phase	Excluding Margins
	margins	margins	adjustment	Acquisition	Maintenance	\frown
Alsat-1	5	9	0.6	-	-	4.4
BILSAT-1	13	16	-	0.45	< 3	> 9.5
NigeriaSat-1	19	24	-	0.77	<< 3	> 15.2
UK-DMC	19	24	-	1.35	<< 3	> 14.6

Station keeping

1

Station Keeping

No tight station keeping Difference in ballistic ratio • constraints due to margins "Standard" DMC drop rate 1.56m/day Timing, Attitude control, Position determination BILSAT drop rate 0.91m/day _ BILSAT phase needs to be _ corrected every two months NigeriaSat-1 **BILSAT-1 UK-DMC** 88kg 130kg 88k

SSC04-IX-2

DMC user support status

National

- Significant use
- 2 user conferences
- Applications evaluation
 - Flooding
 - Burn scar measurement
 - Precision farming
- Applications support
 - Calibration campaigns

- Regular DMC consortium meetings
- Demonstrated Disaster monitoring and support
 - Haiti
 - Vietnam flooding
 - Montserrat volcano
 - Bangladesh flooding
 - Iraq pipeline sabotage
 - California forest fires (Oct03)

Apply to join international Charter for Space and Major Disasters

- Several commercial customers
- Independent quality assessments
- Developing data processing and billing systems
- Exploitation company set up "DMC Imaging Ltd."

DMC Roadmap

DMC-1 Optical, medium resolution multispectral

2002/2003 32m GSD 3 spectral bands **Daily** coverage

2.5 & 4m GSD Daily coverage

DMC-2 Optical, high resolution

DMC-3 Hyperspectral

DMC-3 Ocean Colour

DMC-3 Sea State

DMC-3 **Synthetic** Aperture Radar

DMC-3 Infrared

.

SAR "imaging"

- Night time
- All weather
- Flooding Daily coverage

IR night time imaging hotspot detection 12 hourly coverage

Hyperspectral imaging Identification and detection Daily coverage

Ocean colour imaging Pollution and fisheries Daily coverage

Sea State monitoring **Disaster mitigation** 3-6 hourly coverage

Earthquake science Disaster science

VISTA Near Real-Time imaging constellation

Lessons learned

TE TECHNOLOGY I

- Coordinating multiple customers
- Internet connectivity
- Small satellites are complementary
 - Constellations of small, low cost satellites, provide new opportunities
 - Affordable temporal resolution
- Small satellites are disruptive?
 - DMC is starting to serve some of the Landsat and SPOT users...

Conclusions

Extra slides

SATELLITE TECHNOLOGY LTD

L0 SSTL

SSC04-IX-2

Centralised commercial system

Earth Observation

UK-DMC: California Forest Fires (October 2003)

240km swath before boom deployment and calibration

Earth Observation UK-DMC: Dubai (December 2003)

UK-DMC Image

Images 28/1/04 : Before and After from ERS-2/Envisat

Earth Observation IRAQ: Basra Oil Fires (12 April 2004)

England and Wales

