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PUBLIC ABSTRACT 
 

Frictional Heating of Fault Surfaces Due to Seismic Slip:  Experimental Studies 
on the Hematite to Magnetite Transition 

And 

Federal and Private Landownership’s effect on Oil and Gas Drilling and 
Production in the Southwestern Wyoming Checkerboard 

by  

David W. Jenkins, Master’s of Science 

Utah State University, 2016 

 

Major Professor:  Dr. James P. Evans 
Department: Geology 
 

This report is a two-part presentation of research within in the fields of rock 

mechanics and natural resource economics.  The first chapter addresses the use of iron oxide 

oxidation state and thus mineral transitions as a method for determining the frictional 

temperature rise achieved during an earthquake.  Experimental literature on the hematite to 

magnetite transition is reviewed.  Magnetite from transformed or reacted hematite forms 

between 300-1240 °C.  Design and experimental results for a rotary shear apparatus in which 

hematite is deformed are reported.  The measured coefficient of friction for synthetic 

hematite gouge is 0.38 ±0.03.  The second chapter is an investigation of oil and gas 

production outcomes between federal and private land using a randomized treatment of land 

ownership.  The data comprises oil and gas well drilling and production records located in 

the railroad land checkerboard, southwestern Wyoming.  Spatial and graphical analysis of 

production and drilling records reveal that federal mineral leases are developed systemically 

later than private land.    
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CHAPTER 1 
 

Frictional Heating of Fault Surfaces Due to Seismic Slip:  Experimental Studies on 
the Hematite to Magnetite Transition 

 

ABSTRACT 
 

This project serves as a literature review on the transformation and synthesis of 

magnetite from hematite under hydrothermal conditions as well as with Pulsed Laser 

Deposition (PLD) and milling.  Magnetite forms over a similar range of elevated 

temperatures regardless the method that is used to synthesize it, including non-

heterogeneous, loosely controlled environments such as a ceramics kiln. Based on these 

experiments, magnetite on a fault surface created from the high temperature reduction of Fe 

during seismic slip may indicate the fault experienced temperatures between 300 - 1240°C.  

Duration of seismic slip is short, therefore, in order for magnetite to develop in any 

appreciable quantities optimal conditions for magnetite formation must be reached.  Ideal 

conditions for magnetite formation are low fO2, high normal loads, and temperatures of at 

least 450 - 475°C in a non-equilibrium environment.         

A rotary shear apparatus was constructed to investigate the impact of frictional 

heating of hematite gouge by determining the coefficient of friction of hematite 

experimentally.  Twelve experiments over normal loads of 15 – 70 MPa reveal that the mean 

experimental coefficient of friction of hematite is 0.38 ± 0.03.  A detailed description of the 

apparatus and its operating procedure are discussed.  Results of rotary shear are used to 

inform existing thermodynamic models and to approximate temperatures during slip of iron 

oxide coated faults.  
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INTRODUCTION 
 

Determining the peak temperature of a fault surface during slip sets important 

rheologic constraints on the upper limits of the seismogenic zone.  There are few direct 

indicators of maximum frictional heat on a fault surface other than presence of frictional 

melt (Cowan, 1999) or changes to organic biomarkers (Savage et al., 2014).  For example, 

Savage et al. (2014) used the transformation of biological markers to indicate that fault 

temperature rise was 800-1170°C above the ambient temperature in a pseudotachylyte 

bearing fault.  Evans et al. (2014) reported iron oxide phase changes on the Wasatch Fault, 

near Willard, Utah, and suggest the transition is caused by frictional heating due to 

earthquake nucleation in the brittle regime.  These observations, and those of Ault et al. 

(2015), and McDermott et al., (2015), suggest that understanding the possible reduction of 

hematite caused by elevated temperatures will help constrain the rock properties that 

determine earthquake parameters.  In addition, examining the transformation of Fe oxide 

bearing minerals is attractive as iron is common in fault zones, and there are a range of 

experiments and analytical methods that can be used to investigate iron in rocks. 

The purpose of this report is to review the potential of iron oxide phase transitions 

as a temperature indicator on natural fault surfaces.  This was accomplished by exploring 

experimental literature in which hematite (Fe2O3) has been experimentally transformed to 

magnetite (FeO-Fe2O3).  The design and construction of a rotary apparatus is discussed, and 

experimental data that report the coefficient of friction for hematite will be presented.  

Results from analysis of iron oxides in kiln fired ceramic glazes are also reported and 

discussed.  Reviewed iron oxide studies to be presented are from the geochemical and 

material sciences focusing both on equilibrium and non-equilibrium processes.  
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Experimental data is reported that delineate the detection limits of magnetite from X-Ray 

Diffraction (XRD). These techniques comprise a relative standard from which results from 

rotary shear of hematite gouge and firing of iron oxides in ceramic glazes will be compared.
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BACKGROUND 
 

Frictional heating that occurs during active faulting is explored and described with 

modeling (Sibson, 1975; Lachenbruch, 1980, 1986; O’Hara, 2005; Rempel and Rice, 2006), 

experimental studies(Di Toro et al., 2011; Goldsby and Tullis, 2011; Noda et al., 2011; 

Fondriest et al., 2013), and textural analysis of natural faulted materials (Spray, 1992; Evans 

et al., 2014; Prante et al., 2014; Savage et al., 2014; Ault et al., 2015), among many other 

studies.  Previous researchers have primarily focused on frictional temperature rise via 

seismic slip as it relates to pseudotachylyte formation or fault melt (Sibson, 1975; Spray, 

1992; O’Hara, 2005; Rempel and Rice, 2006).   

Thermal processes important in a fault zone can be divided into four categories 

(Rice, 2015): 1. Shear heating, 2. Asperity (Flash) heating, 3. Transformation –reaction 

heating, and 4. Melting.  In nature the manifestations of these mechanisms are difficult to 

interpret (Takacs 1998, 2002).  Shear heating associated with pseudotachylyte generation was 

conceptualized by Sibson (1975) and proposed as a driving mechanism for thermal 

pressurization of faults to reduce the effective normal stress.  Lachenbruch (1986, 1980) 

further modeled the concept of shear heating and its effect on fault geometry and its 

development in space.  Asperity (flash) heating, caused by the Joule-Thompson effect 

resulting from adiabatic decompression of asperities as proposed by O’Hara  (2005) helps 

explain additional heat generated during seismic slip.  Chemical interaction of minerals that 

are comminuted to nanoparticle size during slip can react exothermically and also result in 

high localized heat along fault surfaces (Rice, 2015).  Both shear and flash heating cause 

reactions above their activation energy (Takacs, 1998; Yetter et al., 2009).
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PREVIOUS WORK 
 

Wasatch Fault Damage Zone, Willard Utah 
 

Observations by Evans and Langrock (1994), Evans et al. (2014), Ault et al. (2015), 

and McDermott et al. (2015) of the Wasatch Fault damage zone between the Willard and 

Brigham City segment in Willard, UT,  small fault surfaces with areas on the order of 

centimeters of slip covered in thin red to purple hematite coatings and exhibit a high degree 

of luster.  These ≤ mm-thick high gloss surfaces are black, mirror like, and/or contain 

iridescent patches that resemble ‘blued steel’ (Evans and Langrock, 1994).  Further work by 

Ault et al. (2015) and McDermott et al. (2015) indicate that similar faults are observed 

elsewhere.  A key piece of evidence that these high-gloss surfaces are created by seismicity is 

that reduced Fe, presumable in the form of magnetite is present in the iridescent patches.  

Reduction of Fe3+ in hematite to Fe2+ requires substantial heat or a highly reduced 

environment (Frost 1991).  Evans et al. (2014) used X-ray photo-electron spectroscopy 

(XPS) to analyze the iridescent patches on the small fault surfaces and a best fit model for 

the data was created.  The best-fit model showed 30% Fe2+ and 70% Fe3+ in the iridescent 

patches.  A gauss-meter was used to characterize surfaces as well and 320mG variations 

(characteristic of magnetite) in magnetization were recorded in the iridescent zones (Evans 

et al., 2014).  When these surfaces are viewed with Scanning Electron Microscopy (SEM), 

the hematite grains are highly comminuted and are submicron in size (Ault et al., 2015).  

Adjacent to the fault surface and associated with iridescent regions are 300-500 μm in 

diameter polygonal Fe oxides crystals (Ault et al., 2015). This texture is interpreted to reflect 

annealing from flash heating (Ault et al., 2015).  Magnetite crystals must be even smaller and 

have not been identified with an SEM (Evans et al., 2014; Ault et al., 2015).  Further analysis 
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using X-ray Near Edge Spectroscopy (XANES) confirms the presence of reduced Fe on the 

fault surface for the Wasatch Fault and on subsidiary fault surfaces within the southern San 

Andreas Fault system in the Mecca Hills, California (Evans personal communication 2016). 

Figure 1.  Hematite microtextures.   
“Hematite fault surface micro-structural 
observations from backscattered electron 
images. A, B: Sample A13-3 cross-sectional 
images with hematite (hem) plates (qtz—
quartz). C: Sample WF94-17 cross-sectional 
image with hematite cataclasite, coarser-
grained hematite clast, lesser sub-angular 
quartz grains, and contact with host rock. D: 
Associated fault surface image with multiple 
slickenline orientations. E: Detail of sample 
WF94-17 hematite cataclasite with subangular 
to subrounded crystals. F: Polygonal hematite 
crystals are located within 2 mm of slipsurface 
with cataclasite below. G: Closeup example of 
F.” [figure, annotations, and description 
directly from Ault et al., (2015) with bolding 
of fonts added as well as figure designation]. 

Boxed in red are polygonal crystals that have 
been associated with annealing.   

 

 

The temperature rise for slip along a fault is calculated as: 

∆ܶ ൌ ඨߥ௡௘ߪߤߙ
1
ߢ
݈௧

 

where ∆T is the change in temperature in Kelvin, μ is a coefficient of friction, σ is normal 

stress on the effective slip surface, ν is the slip velocity, κ is the heat capacity, lt is the thermal 

diffusive length into the wall rock, and α is an asperity shape constant.  Evans et al. (2014) 

made the following assumptions:  A constant slip velocity of 1m/sec, 1-10mm circular 

asperities, heat capacity of 1 Joule/(mol*K), 40 MPa of normal stress, 1µm diffusive length, 

(1) 
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and a coefficient of friction equal to 0.6 (Ashby et al., 1991; O’Hara, 2005; Beeler et al., 2008, 

2008; Evans et al., 2014).   

A temperature >300 °C can be expected along the fault plane using the nominal 

values from Evans et al. (2014) and thereby explain flash heating and transformation of 

hematite to magnetite. 

 Ault et al. (2015) further described the same surfaces mentioned in Evans et al. 

(2014) using Backscatter Electron Microscopy (BSE).  Polygonal crystals are located within 

2μm of the fault surface and serve as textural evidence that at the fault interface, flash 

heating occurred (Ault et al., 2015).  This inference is explained by adiabatic heating from 

rapid decompression of an asperity as being >800 °C (O’Hara, 2005).  Ault et al. (2015) 

suggests that annealing textures seen adjacent to the principal slip surface hematite formed 

between 800 – 1000 °C  and seems to exhibit this same polygonal texture as natural hematite 

found on at the interface of highly polished slip surfaces (Vallina et al., 2014).   
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Review of Previous Work: Hematite to Magnetite Transitions 
 

Hydrothermal Synthesis of Magnetite 
 

Equilibrium hydrothermal laboratory experiments report the oxidation and reduction 

of iron Fe0, Fe2+, and Fe3+ to form magnetite in a rigorous and quantitative manner 

(Matthews, 1976; Cole et al., 2004; Otake et al., 2010; Solferino and Anderson, 2012).  Each 

of the four experiments presented lend insight to the optimal temperatures in which 

magnetite formed under equilibrium conditions. 

Oxygen fugacity (fO2) or the partial pressure of oxygen, is an important variable in 

each experiment, because iron exists in three valences and will behave differently under 

unique temperature - fO2 conditions (Fig 3).  Oxygen fugacity can be thought of as the 

activity of oxygen (Frost, 1991).  Strict control of fO2 in the experimental apparatus is usually 

accomplished by using a buffer such as the Ni-NiO buffer, or limiting the amount of O2 in 

the system by vacuum/inert gas flush (Lindsley, 1991).  Temperature, pressure, and fO2 will 

control the formation of iron oxide minerals and their metastable phases (Frost, 1991). 
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Figure 2.  Phase diagram of the iron oxide system.   Plotted as temperature (°C) vs oxygen 
fugacity (fO2).  Modified from Essene and Fisher (1986). 

 Matthews (1976) studied the formation of magnetite under hydrothermal conditions 

by reacting hematite with non-valent iron between temperatures of 350-570°C and pressures 

of 1-2 Kbars.   Oxygen fugacity is controlled for by use of a Ni-NiO buffer.  Reactions 

between elemental Fe and hematite occur as a non-stoichiometric redox reaction in two 

steps with variable rates.  Reactions proceed to completion in ~0.25 hrs when powdered 

elemental iron is reacted with powdered hematite in water.  For temperatures ≥555°C only 

magnetite can be detected (Matthews, 1976). 

 Cole et al. (2004) investigated the oxygen fractionation in magnetite in isotopically 

different waters to better constrain the magnetite-water geothermometer.  Hematite to 

magnetite hydrothermal experiments were performed from 300-800°C and at pressures of 

10-215MPa (Cole et al., 2004).  Quantitative X-ray diffraction (XRD) determined the mol 

percent magnetite yield.  Optimal magnetite creation of magnetite was between 335-350°C 

when hematite is heated in the presence of 0.5M acetic acid.  Temperature, pressure, and 

Fe2O3 Fe+2 Fe2O3 

FeO 
LOG 

-30 

1100° 1200° 1300° 

Atmospheric fO2 
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starting material were found to impact the extent of crystallization, grain size, and crystal 

habit of both magnetite and hematite (Cole et al., 2004). 

 Solferino and Anderson (2012) performed experiments under higher pressures up to 

~136 MPa using a diamond anvil cell apparatus with a N2 flush to control fO2.  The optimal 

formation temperature for magnetite with their given conditions was 490-500°C. 

 Otake et al., (2010) reacted hematite and magnetite with acid under hydrothermal 

conditions as well as performed acid base titrations.  The partial pressure of H2 was raised 

from 0.05-5 MPa during experiments at temperatures from 100-250°C.  Non-redox behavior 

controlled the reactions for the first 1-3days depending on the temperature.  Constants for 

the non-redox reactions were then determined from acid base titrations (Otake et al., 2010).   

 

Table 1.  Experimental results of the hydrothermal synthesis of magnetite.  Controls on the 
experiments such as oxygen fugacity, pressure, and temperature range are listed.  Optimal 
conditions found in each experiment are also noted.  Not reported (NR) 

 

Pulsed Laser Deposition of Magnetite Films 
 

Pulsed Laser Deposition (PLD) is a method used by the nano-materials community for 

synthesizing magnetite films and is a non-equilibrium process that allows environmental 

factors to be controlled while varying temperature that is (Shima et al., 2002).   

Study fO2 Control Pressure T° Range Optimal T° for Magnetite Time
Cole

2004

Otake

2010

Matthews

1976

Solferino

2012 NR
N2 Flush 97.4 - 136.3 MPa 475 - 500°C 490 - 500°C

Equilibrium Hydrothermal Experiments

H2 and Ar Flush Not reported 100 - 250°C Not Reported NR

Ni / NiO Buffer 100 MPa 350 - 570°C 555°C 0.25 hrs

Vacuum Oven 100 Mpa 300 - 800°C 350°C  N/R
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Figure 3.  Schematic of Pulsed Laser 
Deposition in plan view.   A high 
intensity laser impacts a spinning 
hematite target inside an evacuated 
chamber.  A plume of hematite 
nanoparticles are formed from coulomb 
explosion (Hashida et al. 2009) caused by 
the laser.  Hematite nanoparticles collect 
on an inert substrate (Si, MgO, ect.) that 
is heated to a background temperature.  
(schematic created from descriptions of 
PLD(Shima et al., 2002; Tepper et al., 
2004; Tiwari et al., 2009; Sanz et al., 
2013)) 

 

The percent yield of magnetite and its crystal structure are controlled by the 

background temperature of the substrate during deposition (Shima et al., 2002; Tepper et al., 

2004; Tiwari et al., 2009; Sanz et al., 2013).  Magnetite formation using PLD also changes 

when fO2  is varied (Guo et al., 2013).  For instance, if the same laser settings are used to 

ablate a hematite target in a reduced environment, a maghemite film will form rather than a 

hematite film (Shima et al., 2002).  Table 2 contains the relevant methods and results of 

magnetite formation from notable PLD experiments with respect to magnetite.   

 

Table 2.  Experimental results PLD deposition of magnetite films.  Contains the partial 
pressure of oxygen (fO2), power of laser with its associated wavelength, temperature range at 
which experiments were run, and optimal temperature of substrate for formation of 
magnetite films thickness and percent yield of magnetite. 

Study PO2 Laser Settings T° Range Optimal T° for Magnetite
Shima

2002

Tiwari

2009

Tepper

2004

Sanz

2013
2 x 10-2 Pa 20 mW 10 Hz 300 - 750°C 475°C (magnetite)

2 x 10-2 Pa 9 mW 10 Hz 350 - 550°C 450°C (magnetite)

1 x 10-2 Pa 300 mJ 5 Hz 500°C No Variation in Temperature

Non-equilibrium Pulsed Laser Deposition of Magnetite Films

6 x 10-2 Pa 250 - 550 mJ 20 Hz 25 - 500°C 400°C (maghemite and magnetite)
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 Optimal formation temperatures of magnetite in the PLD experiments closely 

coincide with those found in the equilibrium hydrothermal experiments.  Typical deposition 

rate for magnetite films is ~10 μg/(cm2 min).  The power and pulse frequency of the laser 

are potential contributing factor of magnetite formation, assuming magnetite instantly forms 

upon photon impact.  Unfortunately, it is difficult to measure the temperature directly when 

the laser impacts the substrate.  What is known, however, is that when the same laser 

settings are used to ablate a hematite target, the background temperature of the deposition 

plate controls the formation of either a hematite, maghemite, or magnetite film (Sanz et al., 

2013).      

  

Ball-milling 
 

Ball-milling is considered a “brute force chemistry” method, where reactants are 

forced together in order to produce steel and other metal alloys in a non-equilibrium 

environment.  Powders reacted together within the ball-mill are mechanically activated via 

plastic deformation transforming a portion of the kinetic energy into heat (Suryanarayana, 

2001).  Variables such as oxygen fugacity, grain size reduction, milling temperature, and total 

system energy are set at a constant rate.  Reactions and phase changes in nano-particles are 

observable and measureable because the ball-mill can be stopped and sampled at any point 

in time (Suryanarayana, 2001).  

The transition of Fe3+  in hematite to Fe2+ in magnetite is hypothesized to be 

evidence of seismic slip on a fault surface (Evans et al., 2014).  The purpose of this portion 

of the review is to report experimental results from ball-milling hematite powder.  In these 
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experiments, Fe3+ is transformed to Fe2+ in magnetite owing to elevated temperatures under 

particular conditions.   

How mechanical alloying and milling work 
 

Ball-mills come in various styles (Fig. 4) but operate on the same principles.  A drum 

is rotated with a grinding medium and a substrate to be mechanically alloyed or milled.  The 

grinding medium (balls), vary in size and material depending on the substrate being used.  

Substrate, typically a powder, is impacted between two or more grinding media and is 

deformed by both brittle and plastic mechanisms (Fig. 5).  Brittle deformation serves to 

reduce grain size and plastic deformation compacts and reacts the substrate. 

The variables that are important to the milling process are:  1) type of mill and its 

dimensions; 2) milling energy and speed; 3) length of time powder is milled; 4) grinding 

medium type, size, and size distribution; 5) ball-to-powder weight ratio; 6) extent of vial 

filling; 7) composition of milling atmosphere; 8) catalysts used; and 9) milling temperature 

(Suryanarayana, 2001).  Hereafter, I focus on the milling temperature. 

Temperature rise during milling 
 

Temperature rise during milling occurs due to friction and adiabatic decompression 

from impact of grinding balls with the cylinder, with other grinding balls, and/or substrate.  

The two types of temperature rise of interest are: 1) the overall rise in temperature, and 2) 

the discreet temperature rise on impact.  Overall temperature rise is modeled by the 

Equation 2 and discreet temperature rise by Equations 3 and 4.  
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Figure 4. (Above)  Various types of ball-mill and 
specifications (Suryanarayana, 2001). 

 

Figure 5. (Left) Cross-section of grinding balls 
colliding and deforming substrate.   (Suryanarayana, 
2001). 

 

 

 

Figure 6.  Schematic of milling variables.   
Eqn. 2.  Describes maximum discreet 
temperature rise when two grinding balls 
impact substrate (Suryanarayana, 2001) 
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Where ∆T is the maximum overall temperature rise, J = σnvr is the energy flux where 

σn is the normal stress and vr is the relative velocity of grinding media.  The value ∆t is 

duration of milling, and κρc are thermal conductivity, density, and specific heat capacity of 

the powder respectively (Schwarz and Koch, 1986).   

Equations 3 and 4 model the maximum temperature rise of single collisions.  ∆T is 

the maximum temperature rise for a single collision assuming all heat is from adiabatic 

decompression.  Q is the average quantity of heat (derived from eqn. 1), δ is the fraction of 

heat flowing into the powder, r଴
ଶ is the width of the compact powder (see Fig. 6), t଴ is the 

thickness of the powder compact cylinder, and α is the thermal diffusivity (Bhattacharya and 

Arzt, 1992).  The other variables are same as stated above.  Discreet temperature rise from 

impact has not been validated because it occurs within 10-5s so the classical thermodynamic 

model of Equations 3 and 4 are the best approximation thus far.   

 

 

(2)

(3)

(4)
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Ball mill transformation of hematite to magnetite 
 

 Betancur et al. (2003) used a planetary ball-mill under a high flow of N2 and H2 gas 

to transform hematite to magnetite.  Distilled water was added to pure hematite in an 

evacuated stainless steel planetary ball-mill.  The ball to powder ratio was 1 to 30 and the ball 

mill was rotated at 280rpm.  Mössbauer spectroscopy and X-ray diffraction (XRD) were 

used to characterize the change with increased time.  It was found that increased milling time 

resulted in a higher yield of magnetite (Fig. 7).  After 12.5 min of milling only magnetite 

could be detected.  In a similar study done by Campbell et al., (1995) average crystallite size 

of magnetite and hematite was reduced to 30nm; however, the size of starting material is not 

reported.  Temperature rise of the milling vial as well as theoretical calculation of heat 

generated in discreet ball to powder impacts are not reported.     

 Sakthivel et al. (2014) also used a planetary ball-mill to cause the hematite-magnetite 

transition but did so in the presence of highly reactive elemental iron.  A metastable wüstite 

phase was observed after 10hrs of milling.   
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Figure 7.  XRD spectra with 
increased milling time.   Magnetite 
peaks (M) and hematite peaks (H).  
Note that the large peak at ~35° is 
shared by M and H (Betancur et al., 
2003). 

 

 

 

 

 

 

 

 

 

 

 

 

Iridescent ceramic glazes 
 

Ancient Chinese ceramics known as “black Jian tea bowls” provide natural 

experiments in iron oxide transformation (Dejoie et al., 2014).  Potters collected iron rich 

clay from the countryside and made bowls and teacups.   Wares were then fired, creating 

unique textures as well as iridescence (Li et al., 2008).   

 Dejoie et al. (2014) analyzed glaze from these bowls with SEM, Transmission 

Electron Microscopy (TEM), and XRD.  Pottery glaze was found to contain significant 

amounts of magnetite and a metastable form of iron oxide (ε-Fe2O3).  Magnetite and ε-Fe2O3 

formation is attributed to thermal reduction during the firing process.  Thermal reduction of 

the wares fired in open air occur at 1240°C (Li et al., 2008).   
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 Matt Fiske is currently reproducing iron oxide rich glazed textures as part of his 

Masters of Fine Arts at Utah State University.  His pottery us glazed using pulverized iron 

rich basalts and subjected to a reducing kiln.  Fe3+ in iron oxides is thermally reduced 

creating similar textures to those found in ancient Chinese pottery (Fig. 8).  Typically 

iridescence is produced when these glazes are fired at 1230°C.   

 

Figure 8.  Ceramic work by M. Fiske (left). Base glaze substrate to (right).  Glaze created 
from 25% basalt and 75% rhyolite.
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SUMMARY OF LITERATURE REVIEW 
 

Results from equilibrium hydrothermal and non-equilibrium ball-milling experiments 

demonstrate that hematite is completely transformed to magnetite in ~15 min under optimal 

conditions (Matthews, 1976; Betancur et al., 2003).  Magnetite forms readily from hematite 

in more reducing environments, higher pressures, and moderate temperatures.  Even non-

heterogeneous, loosely controlled reducing environments such as a ceramics kiln result in the 

creation of magnetite under high temperatures.  Magnetite on a fault surface created from 

the high temperature reduction of hematite during seismic slip indicates the fault 

experienced temperatures in the range of 300 - 1240°C.  Duration of seismic slip is short, 

therefore, in order for magnetite to develop in any appreciable quantities optimal conditions 

for magnetite formation must be reached.  Ideal conditions for magnetite formation are low 

fO2, high normal loads, and temperatures 450 - 475°C in a non-equilibrium environment.   
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RESEARCH PROJECT RESULTS 

METHODS 

X-Ray Diffraction Standard 

A standard was created to determine the magnetite detection limits of the X Pert® 

XRD instrument for pure magnetite/hematite blends (Sigma Aldrich® 99.8% pure).  

Samples are mixed in known proportions (Table 3) and run at 45 KV/40 mA from 2 - 75° 

2θ for 73 minutes.  Homogenization of samples was attempted by shaking, but minor 

clumping of magnetite in samples may have been present.  Non-metallic utensils were used 

to transfer powders.  Minor sample separation bias is possible due static electric attraction of 

plastic and powder.  Spectral profiles are then compared to determine when magnetite is 

measurable (Fig. 9).  

Ceramic glazes from M. Fiske were analyzed both before and after firing using XRD.  

A 25% basalt -75% rhyolite mixture was powdered and heated to 1240°C in a reducing kiln 

for ~15 minutes.  XRD of the glaze powders were performed under the same setting as the 

standards.       

 

Table 3.  Mixing percentages for iron oxide.   Reports mol pecent of hematite/magnetite 
after weighing and mixing for XRD.  Mol percent is calculated from the stoichiometry of 
hematite and magnetite.   

Target mol % (Hem/Mag)

Hem Mag Hem Mag Hem Mag Hem Mag

Boat weight 0.527 0.595 0.546 0.561 0.533 0.552 0.559 0.525

Boat w/sample 2.383 0.738 2.293 0.848 2.126 0.959 2.035 1.054

Sample weight 1.856 0.143 1.747 0.287 1.593 0.407 1.476 0.529

Boat after 0.546 0.596 0.548 0.561 0.535 0.553 0.565 0.526

Residual left on boat 0.019 0.001 0.002 0 0.002 0.001 0.006 0.001

Sample less residual 1.837 0.142 1.745 0.287 1.591 0.406 1.47 0.528

Actual mol % (Hem/Mag) 94.4/5.6 89.8/10.2 85.0/15.0 80.1/19.9

XRD Standard: Weight Percents

95/5 90/10 80/15 80/20
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X-Ray Fluorescence 

 
A Bruker AXS Handheld Inc. S1P X-Ray Fluorescence (XRF) Spectrometer is used 

to analyze elemental compositions of ceramic glazes before and after firing.  Samples are 

analyzed for 30 seconds at HV ADC 40 in room air optimized for detection of transition 

metals.  

Rotary Shear Apparatus Specifications 
 

Few data exist on the frictional properties of hematite in the rock mechanics 

literature.  Mechanical experiments suggest the coefficient of friction of hematite is 0.60 

when ambient temperature is 20°C and decreases to 0.20 at high temperatures (Barrau et al., 

2003).  Siemes et al. (2003) indicate that crystal plasticity is the dominant deformation 

mechanism over a wide range of temperatures.  To explore the frictional processes that may 

produce hematite transformations and to estimate the coefficient of friction in hematite, I 

designed and built a simple rotary shear apparatus.   The rotary shear apparatus is housed in 

a 12 ton (10.886 Kg) shop press with a bottle-jack modified to attach to a 5000 psi (34.5 

MPa) hydraulic pressure gauge (Fig. 9).  The internal shaft diameter of the bottle-jack is 1.5 

inches (38.1mm) with an effective surface area of 1.77 in2 (11.4 cm2).  The hydraulic pressure 

gauge has a measurement error of ± 50 psi (0.34 MPa).  The drive mechanism is a one inch 

steel shaft tapped for a 1.5 inch nut and attached to a two inch chuck for a mini lathe.  A 

rotating ~0.75 inch core or 1 inch bar-stock is secured by three expandable teeth in the lathe 

chuck (Fig. 10a).  A 1 inch diameter packed tapered bearing is seated in a 2 inch diameter 

port to reduce friction and oppose the normal load of the bottle jack.   Stationary core or 

steel bar-stock is mounted on a 0.25 inch steel plate inside a 2 inch pipe under confining 
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pressure of another steel pipe tapped for 0.5 inch grubs.  The maximum torque is measured 

with a digital toque adapter with a factory mean calibration error of ± 0.10%.   

A granodiorite core sample is used for low normal loads (<15.41MPa), and acts as 

the wallrock for the experimental fault.  The core samples are cut using a 1 inch diamond 

coring bit which cores to a ~0.75 inch diameter.  Copper pipe whose diameter is roughly 

that of the core was cut used to jacket the core to provide confinement of material. A sample 

of well-lithified quartz arenite serves as 2 inch diameter stationary base that the rotation core 

grinds against.  Cores were squared to a right cylinder using a diamond saw to ensure a flat 

surface area for slip.  

 Steel bar-stock is also used as experimental wall rock, but under high normal loads 

(7 – 70Mpa) the stationary and rotating core having diameters of 2 inches for the stationary 

and 1 inch for the rotating.  Steel bar-stock is used in place of rock core because we are only 

interested in the friction properties of the hematite gouge.  Pure hematite (Sigma Aldrich® 

99.8% pure, <5μm grainsize) is the substrate used for synthetic gouge. 

Experimental Procedure 
 

The core sample is secured in lathe chuck as well as stationary sample holder (Fig. 

10a).  Powdered hematite is placed on the lower rotating core until the angle of repose is 

met, when compressed, the hematite thickness is 0.0625 inches (1.5mm).  Force is increased 

via the bottle-jack until the desired value is met and held manually during slip.  The digital 

torque adapter and breaker bar is applied until a maximum torque value is reached and static 

equilibrium is broken.  A maximum torque value corresponds to the maximum static 

coefficient of friction.  Pressure is released and the hematite slip surface is inspected visually, 

removed with clear packaging tape to maintain textural context, and residue is removed with 
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compressed air.  A 350 ft-lb electric impact was used for rotary shear in place of a breaker 

bar and digital torque adapter, the same procedure applies.  Samples from rotary shear 

friction experiments are not analyzed with XRD because of sample contamination from steel 

bar-stock and the assumption that the amount of magnetite transformed from hematite 

would not be greater than 5% or detectable through the XRD method.   

We can determine the torque and coefficient of friction for these experiments using: 
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Where theoretical torque (Γ) can be calculated for two cylinders rotating against each other 

by knowing the shear force (σs) and the radii (r) of the contact surfaces and integrated from r 

= 0 to r exterior (Di Toro et al., 2010).  Equation 5 can be rearranged to solve for shear 

force and set equal to resisting forces under static equilibrium conditions.  Given this 

relationship the maximum Γ corresponds to the coefficient of friction (μ) assuming Byerlee 

conditions. 

(5)

(6)or
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Figure 9. Rotary shear 
apparatus.   Individual 
components are labeled. 
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Figure 10.  Sample holder and drive 
mechanism.   Sample holder (above), 
upper receptacle grips the stationary 
core and lower core is contained in a 
2” rotating mini lathe chuck.  Drive 
mechanism (below) is centered by a 
positioning bearing and is threaded 
on both ends.   
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RESULTS 

Results are presented in three categories: the creation of an XRD standard (Fig. 12) 

for the qualitative comparison and analysis of run products, analysis of ceramic glazes using 

XRD and XRF (Figs. 13,14), and experimental results of hematite friction and rotary shear 

experiments (Figs. 11,15,16 and Table 4). 

X-Ray Diffraction Standard 

XRD intensity profiles vary subtly as mol percent of magnetite is increased relative 

to hematite (Fig. 12).  Magnetite has a diffraction peak at 30° 2θ whereas the main hematite 

diffraction peak at 49.5° 2θ.  Visual inspection of profiles reveal little difference between 

small mol percent (< 20%) magnetite and the pure hematite profile.  X’Pert Highscore® 

XRD software detects the presence of magnetite between 15 – 20 mol percent relative to 

other potential minerals.   

X-Ray Diffraction and X-Ray Fluorescence of Ceramic Glazes 
 

XRD profiles of glaze before and after firing vary widely (Fig. 12).  The glaze prior 

to firing indicate the existence of quartz, anorthite, clinopyroxene, magnetite, and hematite.  

After firing a strong SiO2 peak and broad curved peak is seen in profile between 15° AND 

40° 2θ.   

Visual inspection of the XRF intensity profiles for glaze before and after firing 

indicates that the profiles not different.  Elemental composition is primarily SiO2 and Fe 

(Fig. 13).   
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Hematite Coefficient of Friction and Rotary Shear 
 

The calculated mean coefficient of friction from measured experimental normal 

stress and maximum torque is 0.38 (Table 4), with standard deviation of ± 0.09 and a 

calculated standard error of ±0.03.   Experiments 2, 3, and 5 yield maximum torques greater 

than 50% lower than the expected value assuming Byerlee conditions (Byerlee, 1978) and a 

coefficient of friction of 0.6 (Barrau et al., 2003).  Experiments at 2000 and 3000psi were run 

again to check reproducibility.  Difference in coefficients of friction for reproduced runs at 

gauge measurements of 2000 psi (31.08 MPa) is 0.14 and at 3000 psi (46.62 MPa), 0.04.  The 

coefficient of friction using rock core and hematite gouge is 0.45 (Table 4).  Coefficient of 

friction and the applied normal stress appear to be uncorrelated (Fig. 15).   

Granodiorite core fails under normal loads greater than 15.41 MPa with shear, even under 

the confining stress of copper pipe.  Steel bar-stock was then substituted in order to 

accommodate higher normal loads and shear forces yielding a similar coefficient of friction 

for hematite gouge.    

Hematite gouge exhibited a color change after rotary shear experiments (Fig. 11, 16).  

After friction experiments a ~2cm wide lighter red hematite compact is left between the two 

cores with a more granular unconsolidated ring of dark red hematite on the periphery.  Small 

spots dark staining from the steel bar-stock can be seen on the hematite compacts.         

Rotary shear of hematite was performed under 46.62 MPa and 350 ft-lbs of hammered toque 

and resulted in a color change in hematite.  Dark metallic fragments from barstock are found 
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in the residual gouge, but there are also smaller darker particulates whose formation and 

origin are not clear.      

Figure 11.  Stationary quartz 
sandstone core.  Fracture is from 
failure under uniaxial compression. 
The hematite gouge is bright red.  
Core is housed in a notched steel 
pipe.   
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Figure 12.  XRD 
spectra for the 
hematite/magnetite 
standard.   The 
vertical axis is peak 
intensity and the 
horizontal axis is 
marked in degrees 2θ.  
Percentages of 
hematite and 
magnetite are to the 
right with the letter 
“M” indicating the 
distinctive 30° 2θ 
magnetite peak.  “Mt 
score” is a mineral fit 
ranking ascribed by 
XRD analysis 
software.    Smaller 
lines beneath the 
profile are markers for 
hematite and 
magnetite.  These 
profiles omit 0 - 15° 
2θ.  
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Figure 13.  XRD spectra for ceramic glazes.   Below- Profile of M. Fiske glaze prior to firing 
with vertical axis indicating peak intensity, horizontal axis in degrees 2θ.  Spectra indicate 
quartz, anorthite, clinopyroxene, magnetite, hematite.  Above- glaze after firing, spectra 
indicate quartz and amorphous glass. 
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Figure 14.  XRF analysis of glazes prior and post firing.   Characteristic diffraction peaks for 
Fe and Si.        
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Table 4.  Results of friction experiments.   Calculated and measured values from experiment results performed on powdered 
hematite using a rotary shear apparatus.  Fields in yellow are input measurements and non-highlighted fields are calculated values of 
unit conversion or using Equation 4.  Blue highlights the coefficient of friction.  Note that only experiment 1 is performed using 
rock core, experiments 2-8 are performed using steel bar-stock. 
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Figure 15.  Coefficient of friction vs normal stress.   
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Figure 16.  Photographs of synthetic hematite gouge.  A-C, enhanced photographs of 
hematite from friction experiments, lifted from core, mounted on clear plastic tape.  The 
lighter color hematite is the more deformed hematite compact.  Halo around compacts 
shows extent of less consolidated deformed powder that does not adhere to tape.  In A the 
lines are residual hematite in a fingerprint on the tape.  D is the result of rotary shear of 
hematite gouge between to steel cores.  Black material is residual from steel core, note the 
gradation in color in the rest of the hematite compact.   
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DISCUSSION 
 

X-Ray Diffraction Resolution 
 

In the tests to determine XRD standards, we found that small percentages (0% - 

~15%) of magnetite relative to hematite are not discernable with X’Pert® XRD analysis.  

The X’Pert® XRD, therefore, has little utility in detecting small amounts of magnetite that 

can develop on fault surfaces in the rotary shear experiments or in natural samples.  The low 

resolution of XRD analysis may be a product of non-homogeneity within samples and or 

require longer, constricted scan intervals over 30° and 49.5° 2θ.  Either more reliable 

software or different instrumentation such as Mössbauer spectroscopy must utilized to 

establish a reliable standard as done in Betancur et al. (2003).  

Composition of Ceramic Glazes 
 

Ceramic glazes created by M. Fiske from basalt and rhyolite contain magnetite and 

hematite prior to firing (Fig. 13).  Results of XRD after firing indicate that the basalt/rhyolite 

glaze is either an amorphous glass or microcrystalline.  The lack of a reliable standard for 

magnetite/hematite percentages and the presence of both phases at the start of the 

experiment in unknown quantities make it difficult to determining whether neo-formed 

magnetite formed from hematite during firing.  However, if the degree of crystallinity and 

proportion of magnetite versus other iron oxides could be established before and after firing, 

it could be determined whether neo-formed magnetite is present. SEM and BSE images 

taken before and after firing glazes could also help identify newly created magnetite.  The 

XRF profiles indicate that the elemental composition of glaze is the same prior to and after 

firing.  This is to be expected because, although reactions may occur, the glaze will maintain 

the same overall elemental composition. 
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Implications of Hematite Coefficient of Friction and Rotary Shear Experiments 
 

Evans et al. (2014) used nominal values for normal stress, friction, slip velocity, rock 

thermal properties and estimated a temperature rise of 300 °C (Eqn. 1) along the small 

displacement faults in the footwall of the Wasatch Fault.  A mean coefficient of friction 

value of 0.38 ±0.03 is much lower than the nominal 0.6 value used in the Evans et al. (2014) 

theoretical calculations of temperature rise, and is less than the μ found for westerly granite 

torsion experiments.  With this lower coefficient of friction temperature rise due to frictional 

heating could be as low as 190°C, much lower than 300°C with all other variables held 

constant (Eqn. 1).  A lower value of μ = 0.38 is more consistent with arguments made by 

Rempel and Rice (2006) who modeled thermal pressurization of faults using a coefficient of 

friction of 0.25.  Rice (2006) calls on the effects of flash weakening of asperities to explain 

the diversion from the traditional 0.6-0.8 values predicted by Byerlee’s Law. 

The coefficient of friction varies with changes in the state of stress (Christensen et 

al., 1974).  The fact that the rotary shear experiments presented are unconfined does raise 

the question of whether a μ = 0.38 is applicable to other states of stress, namely that of a 

fault that is under confining stress.  The nature of rotary shear experiments under any 

amount of confining pressure still pose the problem of having a free surface at the edge of 

the comminuted material (Christensen et al., 1974).  Measuring the maximum static 

coefficient of friction is unencumbered by the limitation of a free surface because by 

definition, no component of the experimental apparatus has moved including the hematite 

gouge.  Under static conditions lateral forces acting to push hematite gouge out from the slip 

surface are in equilibrium with frictional forces keeping the hematite in between the cores.   
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Powdered hematite is used in place of the crystalline lithified hematite observed on 

small fault surfaces by Evans et al. (2014) and could result in a different coefficient of 

friction (Collettini et al., 2009).  Powdered hematite is used because pure lithified hematite 

core would fail when subjected to high unconfined uniaxial stress just as the granodiorite 

core failed.  Compacted materials with foliation or flow textured can have lower coefficients 

of friction than their powdered equivalents (Collettini et al., 2009).   

A notable color change is observed in hematite compacts from friction experiments 

and rotary shear (Figs. 11, 15).  There is distinct dark staining and contamination from the 

steel bar-stock meaning that at least some of the slip is accommodated between the bar-

stock and powdered hematite.   The coefficient of friction between the hematite power and 

bar-stock interface is likely lower and could potentially underreport the value of μ.  SEM 

would be helpful in identifying potential changes in the morphology of the lighter colored 

hematite compact and comparing flow textures.  Much of the hematite between the steel 

bar-stock is expelled during impact driven rotary shear.  Further experimentation using 

hematite core and a more advanced rotary shear device must be performed.  Such 

experiments would mitigate contamination and provide a mechanically homogeneous sample 

and a more reliable static coefficient of friction.     

The detection of Fe2+ possible in the form of magnetite on the Wasatch fault 

indicates that temperatures exceeded 190 °C and at least passed through 450 – 470 °C 

(optimal non-equilibrium magnetite creation temperatures) during slip.  Annealing textures 

identified by Ault et al. (2015) suggest even higher temperatures up to >750–800 °C.  What 

then is the cause of additional heat generation?  Adiabatic decompression suggested by 

O’Hara (2005) can produce a temperature rise or reduction of 336 – 879 °C in silicates.  
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These temperatures are derived from multiplying the Joule-Thompson coefficient by the 

compressive yield strength of the mineral.  Quartz has a compressive yield strength of 2.8 

GPa, however, hematite is only 0.1 – 0.4 GPa (Fan et al., 2012) assuming no preheating 

treatment or roasting prior to compression.  If a Joule-Thompson coefficient for hematite is 

assumed to be similar to that of a silicate ~-300 °C/GPa (O’Hara, 2005), and multiplied by 

the compressive yield strength of hematite (0.1 – 0.4 GPa) then adiabatic temperature rise 

can be calculated to be 30-120 °C.  If the upper estimates of both frictional and adiabatic 

heating are combined, the total temperature rise resulting from slip becomes ~310 °C, just 

shy of an optimal 450–470 °C for the formation of magnetite.  Assuming a geothermal 

gradient of 30 °C/km, and supposing the hematite coated fault surfaces where at 5km depth 

at earthquake nucleation, the ambient temperature would be ~150 °C.  Therefore, the total 

temperature of the Wasatch fault during seismic slip would be 460 °C.   

Remaining Questions and Direction of Future Research 
 

The annealing textures documented by Ault et al. (2015) and calculations by R. 

McDermott (Pers. Comm.) indicating high temperatures along the faults (~800 °C) that still 

require explanation.  We expect that the flash temperature of 490 °C reported for the 

Wasatch fault is only the temperature of initial slip.  As hematite is pre-heated or sintered its 

compressive yeild strength increases (Wright, 1976; Fan et al., 2012).  Flash heating from 

each subsequent slip event would strengthen hematite and increase flash heating 

temperatures relative to previous events.  Future rotary shear experiments on hematite need 

to incorporate evolving compressive yield strength of hematite by pre-heating or sintering.    

Run products from rotary shear with a controlled atmosphere and in the presense of 

moisture need to be performed.  Ball-milling experiments have established that magnetite 
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can form from hematite due to active deformation of hematite powder and adiabatic 

decompression (Betancur et al., 2003).  Future work will require the use of rotary shear in a 

controlled environment in order to investigate the morphology of hematite and magnetite 

post shear.  This would establish a textural baseline with which fault related deformation in 

hematite within the slip zone can be compared.  A more sophisticated rotary shear device 

would also enable the use of high confining stress so that representative rock core can be 

used in conjunction with a hematite gouge rather than steel bar-stock which contaminates 

samples.  
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CONCLUSIONS 
 

Magnetite forms from hematite under specific pressure, temperature, and oxygen 

fugacity conditions and optimally when fO2 is low, pressures are high, and temperatures are 

350-570 °C for equilibrium conditions and 450-470 °C for non-equilibrium.   

X-ray diffraction is not a reliable means for determining relative percentages of 

magnetite vs hematite.  The coefficient of friction for powdered hematite synthetic fault 

gouge is 0.38 ±0.03.  When this coefficient of friction is used in existing thermodynamic 

models, frictional temperature rise on the hematite coated surfaces are 190 °C.  When 

geothermal gradient and adiabatic temperature rise are accounted for a flash heating 

temperature during seismic slip is ~460 °C, overlapping with the optimal conditions for 

magnetite formation summarized here.  Color change in hematite compacts from friction 

experiments and rotary shear warrant further investigation into using more advance 

techniques such as SEM and more sophisticated machinery.  
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CHAPTER 2 
 

Federal and Private Landownership’s effect on Oil and Gas Drilling and Production 
in the Southwestern Wyoming Checkerboard 

ABSTRACT 
 

This study investigates oil and gas drilling and production outcomes on federal and 

private land using the randomized allocation of the Wyoming railroad land checkerboard.  

Geologic and production variables are held constant in the analysis of nearly 65,000 yearly 

production records and 4,000 oil and gas wells.  Spatial and graphical analysis of drilling and 

production data indicate that BLM leases are developed systemically later than private leases, 

likely due to bureaucratic delay.  Rigorous statistical analysis of the data presented is needed 

to establish correlations between regulations, commercial activity, and land use. This chapter 

of the report presents the primary data used in a collaborative effort between David Jenkins, 

Dr. Eric Edwards, and Dr. Trevor O’Grady, which work will use hypotheses derived from 

this report to generate quantitative results and conclusions.1

                                                 
1 Please note: the results and discussion are reported together as is typical in economics literature. 
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INTRODUCTION 
 

Bureaucracy is often criticized for its inefficiency. Anecdotes of high levels of 

paperwork and long waits for decisions are common among people interacting with large 

bureaucratic organizations like the federal government. However, if these organizations 

provide different goods and services compared to less bureaucratic entities, efficiency 

evaluation can be difficult.  Moreover, bureaucratic entities may work with goods and 

services that are valued differently than those with an expressed market value.  Bureaucratic 

delay and caution may even be efficient in some cases (Prendergast, 2003). In addition, what 

consumers see as bureaucratic delay may be due to the complex nature of demands placed 

on the allocation and management of a resource or land parcel.  For these reasons estimating 

the cost of bureaucracy, and channels through which these costs are manifest, are difficult. 

To examine the effect of bureaucratic processes on economic outcomes, this project 

examines how state, federal, and private land ownership affects oil and gas development and 

extraction. To address selection issues, the approach utilizes the randomized allocation of 

federal lands due to the Pacific Railroad Acts between 1862 and 1871, and state lands under 

the General Land Ordinance of 1785. 

Federal ownership of large reserves of land in the western US has become an 

important and contentious policy issue. Although these lands have a myriad uses, the highest 

revenues are generated from the extraction of mineral resources, especially oil and natural 

gas, where they are available. There has been little positive empirical analysis of the effect of 

federal ownership on economic outcomes and efficiency. The Wyoming checkerboard, 

centered on the Union-Pacific Railroad line that formed the first transcontinental railroad, 

overlies valuable oil and gas fields in the Green River Formation and underlying Mesozoic 
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strata. These fields were undiscovered at the time the land was assigned and therefore offer a 

unique natural experiment to observe how differences in ownership affect outcomes. We are 

not aware of any studies examining oil and gas extraction using a natural experiment of land 

allocation. Akee (2009) examined a similar checkerboard allocation in an urban setting, 

finding land randomly allocated to an Indian tribe was valued less than that held privately. 

Although not utilizing random assignment, Fitzgerald (2010) examined land ownership 

regimes in federal lease auctions, finding that where mineral and surface rights are split, 

prices paid were lower.  

The purpose of this project is to investigate differential outcomes of oil and gas 

drilling and production on federal and privately held land. This is accomplished by 

comparing nearly 65,000 yearly production records for almost 4,000 oil and gas wells located 

in the land checkerboard. Spatial and graphical interpretation of randomly assigned land 

ownership allows for all other explanatory variables related to geology and production to be 

held constant while revealing the effect of contracting and regulation.  In other words, 

because the land has been randomly assigned, if drilling and production is not the same on 

private versus federal land, then that difference is likely due to aspects of differential 

regulation and/or contracting.   

 We hypothesize that: 1. fewer wells are drilled on federal land than private land 

because of high transaction costs related to regulation.  2.  That production is higher on 

private land than federal.   3. Contract conditions will have an effect on a firm’s choice to 

drill on private vs federal land.   



49 
 

 

Figure 17. Wyoming Railroad Checkerboard. A generalized map of the study area and its 
associated oil and gas fields that lie within the checkerboard as well as land ownership.
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BACKGROUND 
 

Oil and Natural Gas Production 
 

Oil and gas drilling and production typically occur in a heterogeneous geologic 

system where local geology determines well production. Once a well is drilled, a decline in 

production is expected over time (Arps, 1945).  Production decline is influenced by reservoir 

characteristics such as porosity, permeability, how heavy hydrocarbons are relative to water 

(i.e. API gravity or specific gravity), and pore pressures of the reservoir. Therefore, analysis 

of decline curves can be used to infer reservoir characteristics (Archer and Wall, 1986a).     

Hydrocarbons travel from regions of high to low pressure.  When a well is drilled, an 

area of low pressure is created and is maintained by a mechanical pump (Archer and Wall, 

1986).  Because hydrocarbons are compressible, lighter hydrocarbons push heavier 

hydrocarbons and water to the wellbore in a mechanism called gas expansion drive (Fig. 17).  

Slightly different, but related, is dissolution gas drive where dissolved natural gas is liberated 

and pushes fluids to the wellbore.  Initial production volumes are high when gas is the 

driving mechanism, but decline exponentially (Fig. 17).  In water drive mechanisms, 

hydrocarbons are driven to the wellbore without the assistance of natural gas (Fig. 17).  

Water is thought to replace hydrocarbons in porespace, and replace them either partially or 

completely leading to a sustained high production yield for long periods of time (American 

Association of Petroleum Geologists, 2016). 

The rate at which oil and gas is produced will influence how many wells an oil 

company will drill and where to drill them.  A rule of thumb is that gas drive reservoirs have 

more wells drilled with smaller spacing because production declines quickly and the 

reservoirs are compartmentalized.  In contrast, water drive reservoirs have fewer wells with 



51 
 

larger spacing because high initial production is sustained and oil moves more freely between 

wells.  In either case, when drilling occurs is almost as important as where it occurs, because 

the first wells to produce will yield the highest production due to high initial reservoir 

pressures (Archer and Wall, 1986).  In a water drive reservoir timing is especially important 

because initial production has a combined gas/water drive effect, and pressure for the entire 

reservoir can decrease as the number of wells increases (Archer and Wall, 1986).    

Eventually, oil field production will decrease to the point where wells are no longer 

economic to operate because the costs of maintenance costs far outweigh production gains.  

Oil companies can then choose to either plug and abandon wells, re-stimulate wells via 

hydraulic fracturing on other potential producing horizons, inject fluids (water or CO2) into 

the reservoir pushing residual oil and gas to producing wells (Archer and Wall, 1986), or 

abandon them entirely after a “blow-down” in which a controlled depressurization of the 

wellbore is conducted.    

Contracting 
 

Commonly landowners do not drill their own wells. In these cases, federal, state, or 

private land can go for lease auction in which the landowner receives a small upfront 

payment in exchange for providing an oil company the option to drill on their land for a 

specified period of time. If oil is produced by a well on the property, the landowner receives 

a royalty payment, which is percentage of the gross value of oil extracted. There are 

significant differences in contract structure between federal and private leases, in large part 

because federal lease structure is standardized and private leases are not. Private lease 

duration is typically 3-5 years, while nearly all federal leases in Wyoming have a duration of 

10 years. On BLM land, royalties paid to the Federal Government are 12.5% (Snow, 2015) 
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where royalties on private land range up to 25% (Riley Brinkerhoff, pers. comm., 2015).  

Both BLM and private leases can only be held under continuous economic production. 

Wyoming BLM parcels are auctioned quarterly using a competitive sealed-bid first-

price auction.  Unsold leases are available to be purchased non-competitively.  Remaining 

parcels without a buyer are then recycled through the auction.  The price of a typical BLM 

lease with a 10 year term ranged from $17-$223 per acre from 1998-2013 (Bureau of Land 

Management, 2016).  Private parcels can be marketed individually to potential buyers or sold 

in open auction.  Because these sales are private, it is difficult to obtain sales records that 

include per acre prices. However, industry sources indicate private parcels in Wyoming vary 

in duration and sell for roughly $300 per acre, depending on the resource quality (M. 

Dighans, pers. comm., 2016). 

The amount of time required for a drilling permit to be granted on BLM land can be 

much longer than on private land (M. Dighans, pers. comm., 2016). The BLM permitting 

process to drill or recomplete a well can take anywhere from nine months to two years 

depending on stipulations attached to the permit.  Delays are often due to the time required 

to assess and comply with the National Environmental Policy Act (NEPA) of 1970, Federal 

Land Policy Management Act (FLPMA) of 1976, Endangered Species Act (ESA) of 1973, 

and National Historic Preservation Act (NHPA) 1966.  Evaluation and compliance with 

these enacted laws is performed by third party consulting firms prior to receiving a permit to 

drill, recomplete, or inject in wells and can cost tens of thousands of dollars (“Leasing,” 

2016; B. Burger, pers. comm., 2016). 
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The Railroad Checkerboard 
 

The Pacific Railroad Acts of 1862 and 1871 granted every other section (1 mi2) of 

land within twenty miles of either side of the railroad (U.S. National Archives, 2016)(Fig. 17).  

When Wyoming became a state, every sixteenth section was granted to the State and many 

of those sections were set aside as school trust lands (Office of State Lands and Investments, 

2016).  What remains is a geometric patchwork of Bureau of Land Management (BLM) and 

privately held land crossing southern Wyoming.  This unique allocation of land provides an 

ideal natural experiment for examining oil and gas production by land ownership. 

The federal and private land types are equally likely to have the same reservoir 

characteristics, geology, and production drive mechanisms because land is randomly 

allocated and the area of most of the oil and gas pools are > 1mi2 (DeBruin, 1989).  

However, because production decreases over time, if wells are drilled systemically later on a 

particular land type, then it is expected that the land drilled later will have lower production.  

Other variation in producing behavior on federal vs private land is due to oil companies 

choosing to drill on whatever land type best maximizes profit, or to “prove up” a geologic or 

engineering concept on private or state lands before going through the federal land 

permitting process.  No other studies have made use of the railroad checkerboard to 

investigate outcomes of oil and gas drilling.  One paper appearing in the American Economic 

Review made the attempt, however was redacted because of mistakes in well production data 

(E. Edwards, pers. comm., 2015). 
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Figure 18.  Reservoir drive mechanisms.   Difference between conventional and unconventional wells and the associated decline curves 
with reservoir drive mechanisms (decline curves from (“Reservoir drive mechanisms - AAPG Wiki”)).  Horizontal drilling is not discussed 
in the text because to our knowledge, none exist in the study area.  Drive mechanisms for horizontal wells are presented in this figure as a 
point of reference for future studies that may address them.

Hydrocarbon Reservoir Drive 
Mechanisms and Decline Curves
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METHODS 
 

To analyze the effect of land ownership on oil and gas production in the Wyoming 

checkerboard, 193,715 yearly oil and gas well production records were obtained from the 

Wyoming Oil and Gas Commission.  In addition, shapefiles that delineate land ownership by 

section and outlines of oil and gas fields were retrieved from the BLM (Bureau of Land 

Management, 2012) and the State of Wyoming ( Wyoming Oil and Gas Conservation 

Commission, 2016).  Two complete datasets are collected from the Wyoming Oil and Gas 

Commission.  The first is oil and gas cumulative production data for each well from initial 

production in the early 1900’s until 2010.  Most of the development in the study area began 

in the 1950’s, so this dataset will be hereafter referred to as the 1950 dataset. The second 

dataset is a high frequency dataset that records monthly production from 1978 to 2015. The 

1978 dataset will be used for more rigorous econometric analysis to test hypotheses derived 

from the 1950 dataset.  The datasets overlap from 1978 to 2010 and differ slightly from each 

other for this period of time. 

Although individual well data is available, production is aggregated by section: all of 

the wells on a particular section will have production added together.  Production is often 

misallocated for any particular well because measurements are taken at the collection tanks 

rather than at the well head.  Well production data also comingle the production from all of 

the producing horizons in the well.  Section-level production volumes are a more accurate 

metric and correspond with the unit of land ownership. 

GIS analysis of oil and gas records is used to ensure the random distribution of land 

ownership and geologic control.  Oil and gas field shapefiles are chosen that completely sit 

within the checkerboard landownerships. Fields are then reduced to those that sit within the 
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geologic Green River Basin extents as indicated by an overarching shapefile.  Viewing fields 

within a single hydrocarbon producing basin is important, because natural heterogeneity is 

reduced from well to well, oil can be assumed to maintain a similar specific gravity, be 

produced from similar formations and depths, and sourced from similar formations. 

Geologic control is significant in selecting fields to compare because the less variability there 

is in the subsurface, the more variability can be attributed to drilling and producing behavior 

of landowners.  Only oil and gas wells within the bounds of the selected oil fields were 

chosen for comparison.  By doing so, complicated land ownership types attributed to 

multiple government agency jurisdictions and out-of-basin wildcat drilling behavior is 

removed. Production and drilling data are compared with shapefiles to remove sections with 

split ownership types, non-random distribution of land within a field, or wells attributed to 

ownership by both the BLM and private land because of shared borders or incorrect GIS 

datum conflicts.  After cleaning, 64,777 yearly production records remain. 

The production and drilling data are plotted in several ways to highlight differences 

in outcomes on BLM and private land.  In the 1950 dataset, values are reported based on 

start date, stop date, and sum total production of oil and natural gas, referred to as ultimate 

recovery.   

The plots used to display this data are: ultimate recovery vs time, cumulative ultimate 

recovery vs time, number of wells drilled vs time, cumulative wells drilled vs time, and 

ultimate recovery vs wells drilled in any given year.  The ultimate recovery vs time plot 

illustrates how successful wells are that start production in any given year.  Cumulative 

ultimate recovery is a running total of ultimate recovery through time that reveals potential 

disparities in total production between land types.  Number of wells drilled is the total 
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number of wells drilled in a given year.  The cumulative number of wells drilled is an additive 

measure of number of wells drilled.  Drilling activity plots can indicate oil companies 

reactions to commodity prices, regulation, and/or contract changes.  A measure of relative 

efficiency is determined when the number of wells drilled is plotted against ultimate 

recovery. 

Commodity prices are important in the interpretation of drilling and production 

behavior through time.  The prices plotted are inflation adjusted using the Consumer Price 

Index (CPI) so that prices can be compared through time (Fig. 20a-b).  The historic Illinois 

Crude oil price is plotted in tandem with the Henry Hub natural gas price (Fig. 21).   

Plots derived from the 1950 dataset and selected plots from the 1978 dataset are 

displayed generally for the entire study area.  Granular analysis of the data is not 

recommended at this point.  Instead, a generalized view of the data is used to develop 

hypotheses regarding events that may have impacted land-lease selection over the past forty 

years.  Forthcoming econometric analysis will quantitatively test the hypotheses postulated in 

this report.     
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Figure 19.  Oil fields and ownership.  A- Oil and gas fields whithin the study area ranked by quantities 
of oil produced, larger fields have names displayed.  A total of 118 individual fields lie within the 
study area.  B- An expanded view of Church Buttes field with the associated land ownership.  
C- An orthographic image of Church Buttes field with BLM, private, and State lands 
highlighted with their corresponding color code.  Red points are the surface locations of oil 
and gas wells.  Colored squares are 75% transparent revealing surface topography. 
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*Larger versions of plots in appendix 
Figure 20. A-H. Comparison plot of production and prices.  Wells drilled, production, and 
cumulative production from the 1950 dataset.  Gas-left, Oil-right.  Ultimate Recovery is the 
sum total of production of wells assigned to the year wells were drilled.  Cumulative Ultimate 
Recovery is a running total of Ultimate Recovery. 
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Figure 21.  Inflation adjusted oil and natural gas prices.  
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Figure 22.  Ultimate recovery of oil vs number of wells drilled. Each point represents a year 
and that years associated ultimate recovery and number of wells drilled. 

 

 

Figure 23.  Ultimate recovery of gas vs number of wells drilled.  Each point represents a 
year and that years associated ultimate recovery and number of wells drilled. 
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RESULTS AND INITIAL FINDINGS 

We hypothesize that: (1) fewer wells are drilled on federal land than private land 

because of high transaction costs related to regulation and (2) production is higher on 

private land than federal land. (3) Also, we expect that contract conditions will have an effect 

on a firm’s choice to drill on private or federal land.  Results from analysis of drilling and 

production data that are used to test these hypotheses are discussed below.    

Oil and Natural Gas Prices 

Oil companies cannot predict when the highest price will occur, however, they will 

respond to a price increase relative to the previous period.  Thus, we would expect that the 

highest volumes of drilling production occur during increasing prices.  Likewise, we would 

expect drilling and production to fall or remain constant during decreasing prices This 

general response to prices is evident in drilling behavior within the checkerboard (Fig. 20 

a,b).  The effect of price change should influence drilling behavior in the same fashion on all 

land types if all other variables are held constant. 

The same or similar numbers of wells are drilled on BLM and private leases under a 

range commodity prices (Figs. 20a-d), which partially refutes the notion that drilling behavior 

is different between land types.  As an exception, after year(s) ~1994 cumulative numbers of 

producing wells diverge with an increase in private drilling.  Interestingly, this divergence 

occurs while prices are decreasing, meaning oil companies may be reacting to incentives 

other than price and preferentially drilling on private leases. To investigate the cause of the 

divergence in drilling behavior in 1994 rigorous statistical treatment of the data will need to 

be employed.  Hereafter, analysis is limited to points in time when wells drilled on both land 

types are the same, because graphical comparison of production is more direct and suitable 



63 
 

for interpretation.  Since the numbers of wells drilled are similar, we would expect 

production to be similar on both land types because landownership is randomly assigned and 

each lease type stands equal probability of high resource quality.    

Ultimate Recovery and Cumulative Ultimate Recovery of Oil and Gas 

Cumulative oil production is higher on private land than federal land prior to 1994, 

but not necessarily for natural gas (Fig. 20 e-h).  Reservoir drive mechanisms are likely 

responsible for the production disparity.  Spikes in ultimate recovery of oil and natural gas 

on BLM land lag 1-2 years behind private (Fig. 20 e-f).  Meaning the 1-2 yr well permitting 

process on BLM land leads oil and gas firms to preferentially develop private land first.  

Private wells drilled first exploit initial high water drive reservoir pressures leaving 

diminished production for BLM wells drilled later (Fig. 18).  Since gas drive reservoirs in the 

checkerboard are not well connected, cumulative gas production for any given well is 

expected to be the same regardless of when a well is drilled.    

Private leases react to rising prices quickly, causing production to be uniform as 

prices increase.  The extensive permitting process on BLM land instigates delayed reactions 

to price changes leading to punctuated development.  Although BLM and private leases have 

the same cumulative ultimate recovery of gas before 1994, revenues between land types vary 

because BLM gas volumes are sold for lower prices (Figs. 20a, g).  This may indicate an 

efficiency gap and can only be solved through detailed cost benefit analysis.   

Private cumulative ultimate recovery of natural gas is greater than BLM from 1994 

until 2010 (Fig. 20g).  This could simply be a reflection of more wells being drilled on private 

leases.  Periods of increased drilling correspond with greater ultimate recovery volumes for 

natural gas, but not always for oil (Figs. 20e-f, 22, 23).  This is because very few fields in the 
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checkerboard are favorable for oil production and their reserves are depleted prior to 1994 

(Fig. 19).  Patrick Draw, Brady, and Table Rock are oil fields with water drive reservoirs (Fig. 

18), and produce a majority of the oil in the checkerboard (Street, 1979).  

Contract structure differences between federal and private leases to not appear to 

impact a firm’s decision to choose BLM or private land, because more expensive private 

leases are being chosen for first development.  What seems to be a more important factor is 

the amount of time permits take to be granted.  In other words, because of reservoir drive 

mechanisms, when you drill is as important as where you drill.   

Relative Efficiency 
 

Cross-plots of the number of wells on BLM and private lands as a function of 

ultimate recovery reveal similar correlations for both oil and gas production (Figs. 22-23).  

Until multivariate statistical analysis is performed, the relationships between the number of 

oil and gas wells and production remain inconclusive.      

Potential Causes and Future Research 

In order to drill quickly, the lengthy time required for permitting causes oil 

companies to drill on private rather than federal land.  The Energy Policy Act of 1992 and 

sale of the Union Pacific Resource Group in 1995 (15% stake sold in an Initial Public 

Offering (IPO)) and 1996 (87% stake sold in an IPO) are both candidates for changes in 

lease selection and oilfield development post 1994 (Strack, 2015).  The federal government 

sought to incentivize clean energy with the Energy Policy Act of 1992 and may have caused 

restructuring in federal mineral leasing policy, and therefore dis-incentivized drilling for 

hydrocarbons on BLM land.  Separately, but in a similar time-period, the Union Pacific 
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Resource Group may have increased production in the early nineties in order to maximize 

revenue from their IPO.    

We also propose that environmental protection of the greater sage grouse habitat, 

and pre-existing policies which cause bureaucratic delay are reasons for the widening gap in 

producing wells post year 2000 (Kirol et al., 2015)  In 2003, the cumulative producing well 

disparity between private and BLM drilling widens at an increasing rate (Figs. 20c-d).  

Incentives for oil field development in 2003 are relatively high commodity prices, and 

opportunities for water/CO2 flood projects for additional oil recovery (Lim and Ramsey, 

2006). 

A difference in difference econometric model will be used for further testing the 

treatment effect of regulatory policy, corporate activity, and contract structure on oil and gas 

drilling and production outcomes.  This type of model assumes all variables, excluding those 

that are being tested, are held constant and reveals the impact of regulatory policy, corporate 

activity, and contract structure.  The randomized allocation of land allows for the 

assumptions of a difference in difference model to be met.  The 1978 high frequency panel 

dataset provides the necessary resolution to make granular observations and establishes a 

correlation in a quantitative manner.  Analysis will then be taken to the field level rather than 

the breadth of the study area.  A field level analysis will reveal the true effect of reservoir 

drive mechanisms on production and help establish whether federal leases are actually being 

developed later.   

If our model of reservoir drive mechanisms is correct, and BLM wells are being 

drilled later, then they should have higher cumulative water production than private wells.  

The 1978 dataset contains observations of water production that will be used as a proxy for 
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costs and for decline curve analysis.  This dataset will show the effects of water and CO2 

flooding of fields and serves to inform how oil companies are making secondary recovery 

decisions.   

Oil companies often recomplete wells rather than plugging and abandoning them 

and may treat exhausted wells differently depending on the land type.  The current analysis 

using ultimate recovery does not reveal the effects of recompletion, because the 1950 dataset 

only reports sum totals of production and is blind to changes in production over time.  The 

1978 dataset, however, will reveal whether a recompletion ever occurred and which land 

types are likely to have recompleted wells.  Recompletions will display as a spike in 

production for a well that would otherwise be declining.  In addition to revealing 

recompletion activity, monthly production data that is amenable to decline curve analysis will 

be used to determine reservoir drive mechanisms.  
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CONCLUSIONS 
 

Oil and gas drilling and production outcomes for BLM and private leases are visible 

due to a randomized treatment of land ownership.  Drilling behavior on BLM and private 

leases wax and wane according to price and a similar number of wells appear to be drilled on 

BLM and private land prior to 1994.  Bureaucratic delay may be causing BLM leases to be 

developed in low price environments and with lower oil production.  Oil wells drilled later 

on BLM land often produce less because of depleted reservoir pressures from earlier 

production on private land.  Contract structures do not appear to impact whether an oil 

company will choose to drill on private versus federal land.  Rigorous statistical treatment is 

still needed to test hypotheses and to establish correlations between regulation and 

contracting to oil and gas drilling outcomes.     
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  Figure 24 Land ownership for Southwestern Wyoming.  Surface rights and mineral rights are largely owned by the 
same entity 
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Figure 25.  Cumulative Ultimate Recovery, Gas, 1950 dataset.   Natural gas is plotted in billions of Mcf (Tcf).  The vertical red line 
is a point of reference indicating the start of the 1978 dataset.   
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Figure 26. Ultimate Recovery, Gas, 1950 dataset.    Natural gas is plotted in millions of Mcf (Bcf).  The vertical red line is a point 
of reference indicating the start of the 1978 dataset.  All natural gas production from wells are assigned to the year the wells were 
drilled.   
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Figure 27.  Cumulative Producing Wells, 1950 dataset.
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Figure 28.  Cumulative Ultimate Recovery, Oil, 1950 dataset.  Crude oil is plotted in millions of barrels.  The vertical red line is a 
point of reference indicating the start of the 1978 dataset.
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Figure 29  Ultimate Recovery, Oil, 1950 dataset.  Crude oil is plotted in millions of barrels.  The vertical red line is a point of 
reference indicating the start of the 1978 dataset.
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Figure 30.  Nominal and inflation adjusted natural gas prices.  Natural gas price and inflation adjustment data from inflationdata.com. 
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Figure 31.  Nominal and inflation adjusted crude oil prices.  Oil price and CPI index are from the Energy Information Administration and 
US Bureau of Labor Statistics.  
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