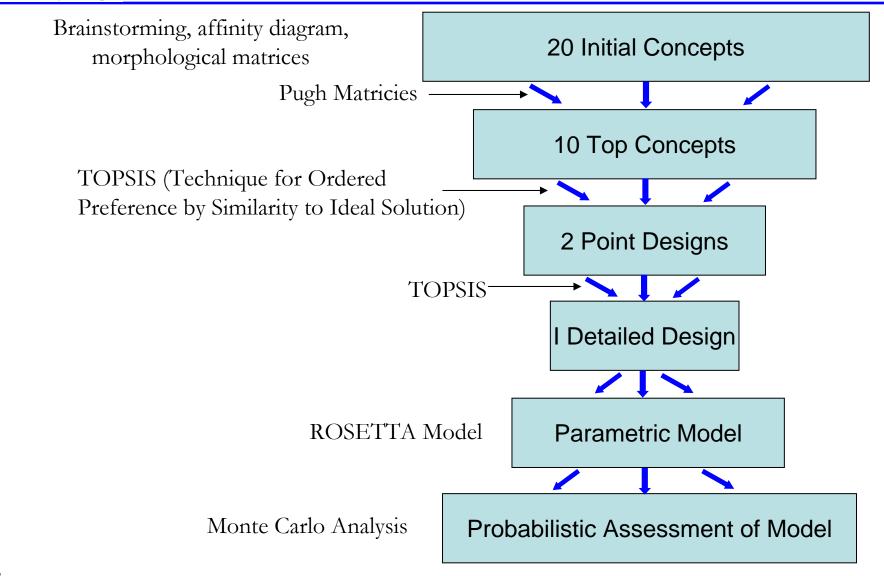


Chimera

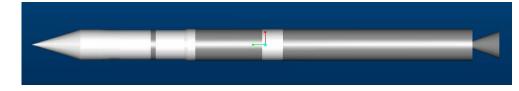
A Low Cost Solution to Small Satellite Space Access

Mike Curry, Virgil Hutchinson, David Young John Crowley, Jonathan Jackson, Alex Keisner, Pavel Piletsky, John Maatsch Georgia Institute of Technology 17th Annual Small Satellite Conference

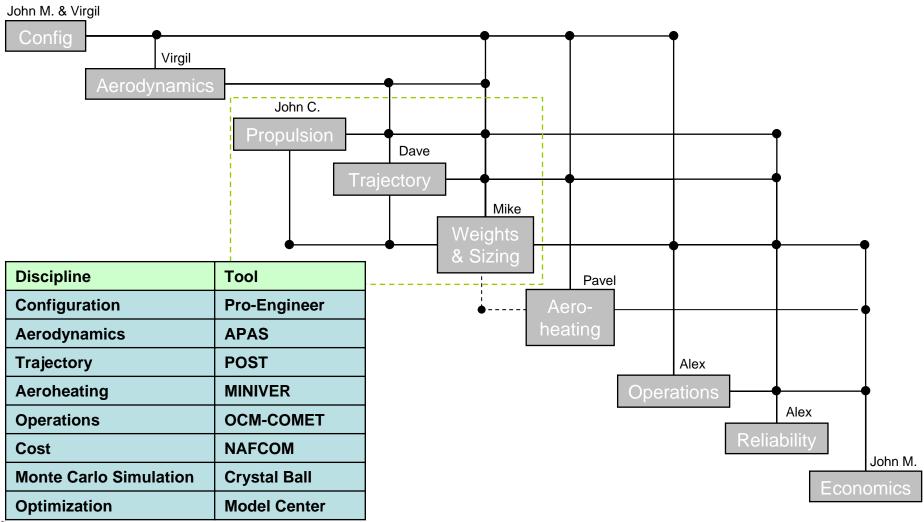
Project Definition


- Design Justification
 - RASCAL Development of a low cost air assisted launch vehicle
 - Space Explorations Technologies Falcon launch vehicle
- Business requirements
 - Launch price \$5 M
 - 6 launches/year for 20 years
 - \$200 M "gift" for Non-recurring costs
- Design Reference Missions
 - 100 kg payload (75 cm*25 cm radius)
 - 60°
 - 700 km
 - 5 g axial limit

- -50 kg (50 cm*50 cm)
- 110°
- 700 km
- 5 g axial limit


Design Process

- Assumptions
 - Solid, preexisting stages will be cheapest option
 - US based solids engines would allow the launch of government payloads
- Alternatives chosen based on TOPSIS of point designs
 - 4 stage solid ground launched vehicle


- 3 stage air launched vehicle

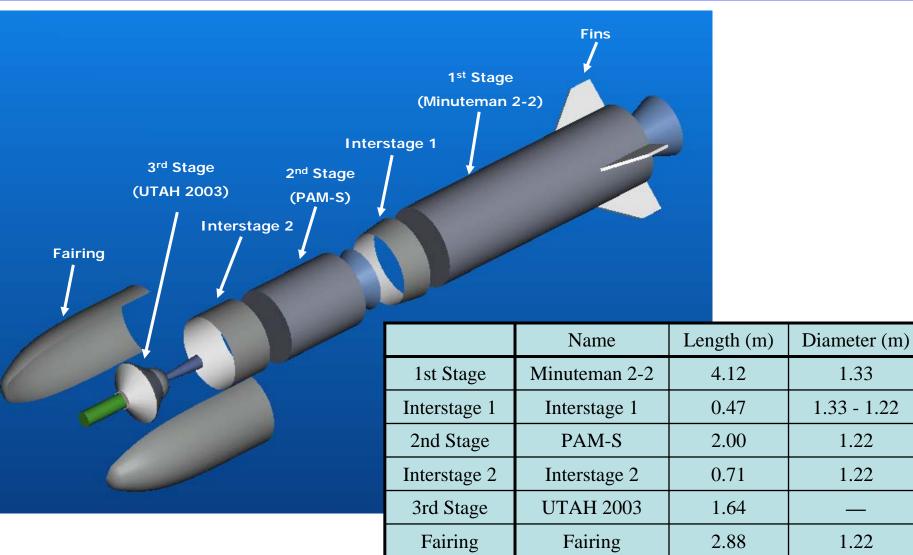
Design Structure Matrix

- Both designs evaluated using industry standard tools
- TOPSIS used to choose final concept
- Economic baseline scenario cost number
 - 1.255 relative cost for Ground Launch
 - 1.0 relative cost for Air Assist
- 3-stage air assist rocket chosen

Air Drop Aircraft

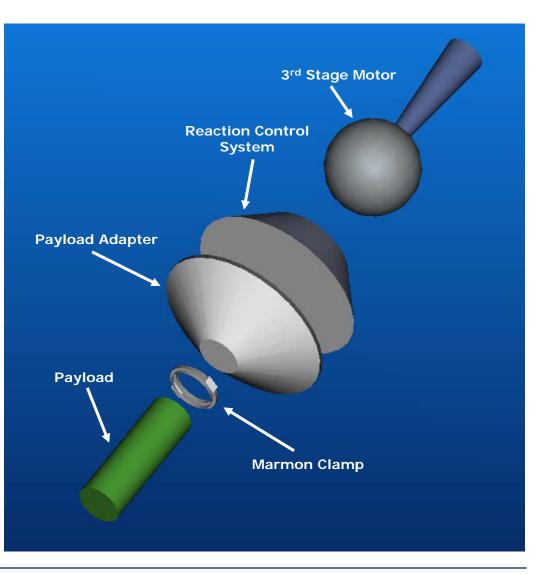
• Nine civil and military aircraft variants investigated

	Payload (kg)	Ceiling (m)	Velocity (m/s)
B-52	19320	15362	290
F-15E	11136	20000	840
SR-71	22250	26000	900


- First two stages chosen from off shelf SRMs
 - Approximately 20 different SRMs
 - Explored design space of both SRM and launch aircraft options
- Third stage is a spherical solid rocket motor designed specifically for Chimera.
 - Steel motor casing
 - 15° half-cone Carbon/Carbon nozzle with ϵ =50
 - HTBP/AP/Al solid fuel used in baseline motor

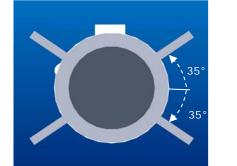
	1st Stage	2nd Stage	3rd Stage
	Minuteman 2-2	PAM-S	Utah 2003
Propellant Mass (kg)	6237	1962	30.86
Structural Mass (kg)	795	220	54.43
Area Exit (m2)	0.929	0.4645	0.157
Thrust (N)	267716	66708	2668
Isp (secs)	287.5	288	295

Overall Vehicle

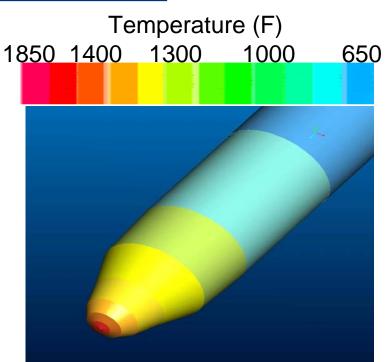


3rd Stage – UTAH 2003

	Length (m)	Diameter (m)
Nozzle	0.71	0.1 - 0.22
Motor	0.54	0.54
Reaction Control System	0.35	0.54 to 1.00
Payload Adapter	0.25	1.00 to 0.25
Marmon Clamp	0.06	0.25
Payload	0.75	0.25

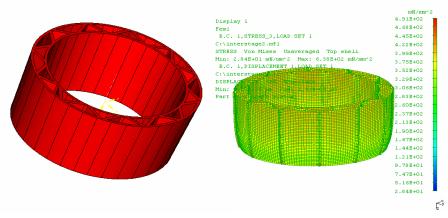


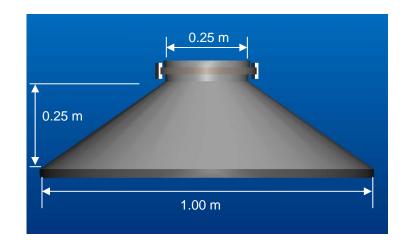
Aerodynamics & Aeroheating


- Aerodynamics calculated using APAS
- Four fins provide stability and small addition of lift for subsonic/sonic flight $(C_L=0.175)$

• Aeroheating analysis conducted using MINIVER (engineering aeroheating code)

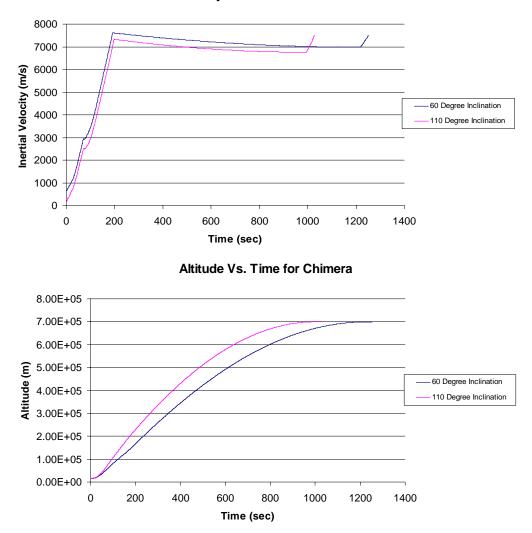
- TPS: Ma $\mathcal{Z}(sprayable ablator)$
- TPS application areas: fairing and fins





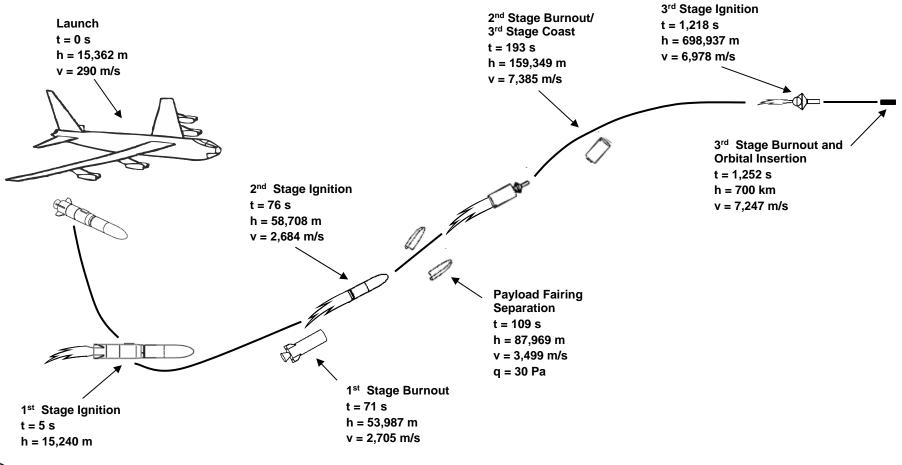
Structural Design

- Interstage Design
 - Designed using FEA
 - Designed for a minimum structural safety factor of 1.2
 - 3 geometrical concepts considered
 - 4 materials considered
 - Lightweight, high strength graphite composite, corrugated construction
- Payload Adapter Design
 - Aluminum monocoque conical shell to support payload during flight
 - Material thickness sized based on payload mass, adapter dimensions, and launch loads



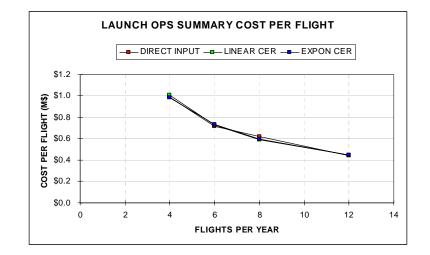
Trajectory

- POST- Bogram to Optimize Simulated Trajectories used in all trajectory calculations
- The 100kg to a 60 deg inclination orbit resulting in a larger rocket than the 50kg to 110 deg
- 60 deg inclination DRM was used as the reference mission



Velocity Vs. Time for Chimera

Chimera Mission Profile

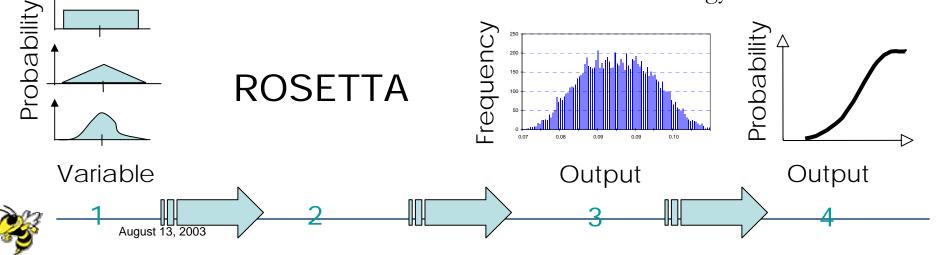


Operations & Economics Model

- Operations data obtained from OCM-COMET
 - Crew size: 45 people (26 for Ground Ops, 19 for Flight Ops)
 - Integration time: 30 days
 - Total operations cost per year: \$8.85M
- NAFCOM 99 (Cost Estimation)
 - Data obtained from database
 - Cost is exponential function of weight & complexity factors
- Production Schedule
 - Learning curve rate applied
 - Yearly costs
- Excel sheet that models business parameters
 - Determines the cost per flight to meet an internal rate of return of 10%

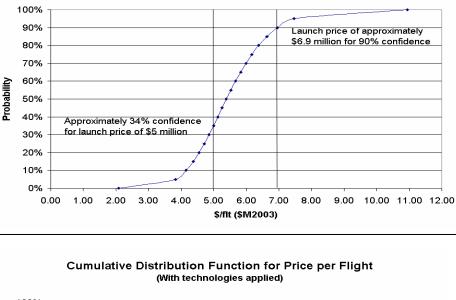
Chimera Air Assist Rocket

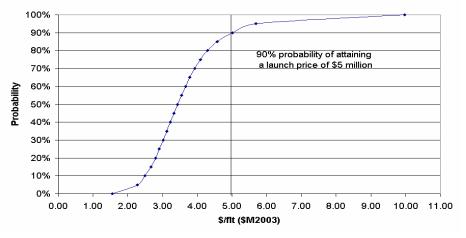
	Desired Inclination	60°	110º				
	Gross Mass	9,507 kg	9,457 kg				
	Payload	100 kg	50.2 kg				
_				Overall Length	11.18 m		
				Release Altitude	15,362 m		
				Release Velocity	Mach 0.8		
				Thrust at Launch	267.7 kN		

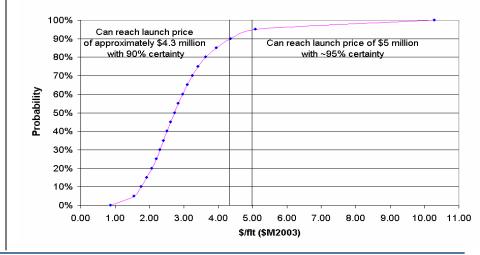


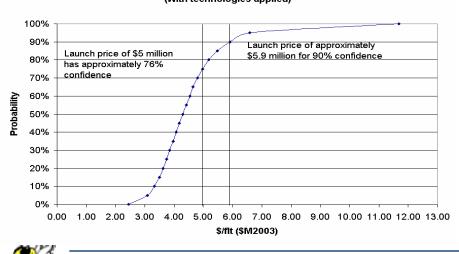
- Following the baseline design, it is necessary to probabilistically evaluate different alternatives and to investigate the implementation of technologies
- REDUCED ORDER SIMULATION FOR EVALUATING TECHNOLOGIES AND TRANSPORTATION ARCHITECTURES (ROSETTA)
- Metamodels created of the high fidelity legacy codes
 - Response surface equation of POST
 - CCD to fit Thrust and Altitude of Launch
 - Launch Velocity (three separate aircraft) and ISP manipulated through the modified rocket equation
 - NAFCOM curve fit to approximate costs
- Weights & Sizing spreadsheet parametrically scales the rocket based upon sub calculations
 - Technology reduction factors
 - Payload fairing & interstages
 - Propulsion module design
- Economics and Operations approximated using appropriate disciplinary equations and historical aircraft operations data

- Assign variables to be randomly varied over a range for a given distribution.
- Extract Cumulative Distribution Functions for cost variables
- Evaluate 4 different scenarios
 - Baseline Case
 - Minuteman Cost Reduction
 - Obtaining surplus ICBMs from US government for only transportation cost
 - Technology Infusion
 - Advanced Structural Materials & Propellants
 - Minuteman Cost Reduction combined with Technology Infusion


Cumulative Distribution Function for Price per Flight (Baseline case)


Monte Carlo Simulation


Cumulative Distribution Function for Price per Flight


(Baseline case)

Cumulative Distribution Function for Price per Flight (With Minuteman reduction applied)

Cumulative Distribution Function for Price per Flight (With technologies and Minuteman reduction applied)

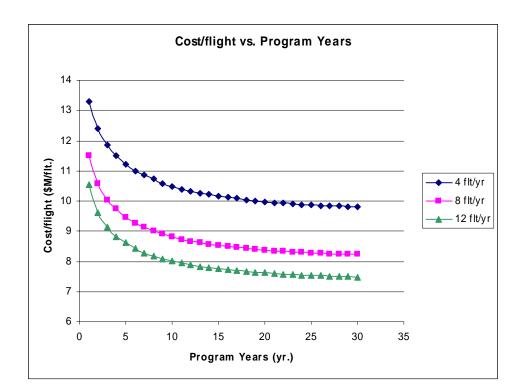
- Chance of achieving desired launch price of \$5 million per launch and still breaking even seems unlikely.
- However, if Minuteman stage can be purchased from the government at a significantly reduced price, chances of reaching economic goals increase dramatically.
- Even with Minuteman cost reductions, the application of selected material and propellant technologies enable a much more viable launch system.

Backup Slides

Available Pre-existing Stages

Stage	Gross Mass (kg)	Empty Mass (kg)	Vacuum Thrust (kgf)	lsp (sec)	Burn time (sec)	Length (m)	Diameter (m)
Castor 4	10534	1269	41524	261	54	9.07	1.02
Algol 1	10705	1900	48022	236	40	9.12	1.01
Minuteman 2 2	7032	795	27300	287.5	66	4.12	1.33
Minuteman- 2	5170	466	23300	297	60	3.96	1.13
PAM D2	3697	431	10931	282	120	1.83	1.6
Pegasus XŁ 2	4331	416	15653	290	73	3.58	1.27
Castor 2	4424	695	26402	262	37	6.04	0.79
Pegasus 2	3370	345	12053	292	73	2.65	1.27
IUS 2	3919	1170	7996	304	103	2.08	1.61
Castor 1	3852	535	29164	247	27	5.92	0.79
PAM S	2182	220	6800	288	80	2	1.22
Antares 2	1400	300	9493	293	36	2.9	0.78
Burner 3	1243	168	5216	297	60	1.86	0.94
Antares 1A	1225	294	6169	256	39	3.38	0.78
Pegasus 3	985	203	3525	293	65	2.08	0.97
Burner 2	774	116	4441	285	42	0.84	0.66
Caleb 1	1033	194	5441	204	34	0	0.6

Business Model Trends

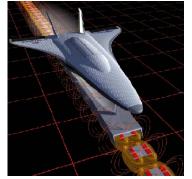

•Marginal Cost Improvements

•Greatest in first 15 Years •Levels Out After 9 flt./yr.

•Non-Traditional Suppliers

•Lower TFU Complexity Factor

•Learning Curve needs to be Quicker


System Morphological Matrix

•2 Morphological Charts •Component Concepts

System ConceptsObjectiveCreate 11 concepts

									~		
Concepts Characteristics	1	2	3	4	5	6	7	8	9	10	11
Launch Type	Balloon	Balloon	Aircraft	Aircraft	Aircraft	Ground	Ground	Ground	Maglev	Cannon	Ground
Stages	3	2	3	3	2	4	4	3	2-3	3	3
Expendable	Full	Full	Full	Partial	Full	Full	Full	Full	Partial	Full	Partial
Strap-ons	No	Yes	No	No	No	No	No	No	Yes	No	Yes/Ramjet
Propulsion	R/B	R/B							Rocket	Rocket	
Fuel	L/S	L/S	Solid	Solid	H/S	Single	H/S	Solid	L/S	Solid	L/S
Wing	No	No	Delta	Delta	Delta	No	No	No	Delta	No	No
Materials	Comp	Aluminum	Comp	Aluminum	Comp	Comp	Steel/Comp	Comp	Comp	Steel	Aluminum
TPS	No	No	No	No	No	No	No	No	No	Dependant	No
Fairing	Single	Multiple	Single	Multiple	Single	Single	Multiple	Multiple	Multiple	Single	Single

Concepts Characteristics	9
Launch Type	Maglev
Stages	2-3
Expendable	Partial
Strap-ons	Yes
Propulsion	Rocket
Fuel	Liquid/Solid
Wing	Delta
Materials	Composite
TPS	No
Fairing	Multiple

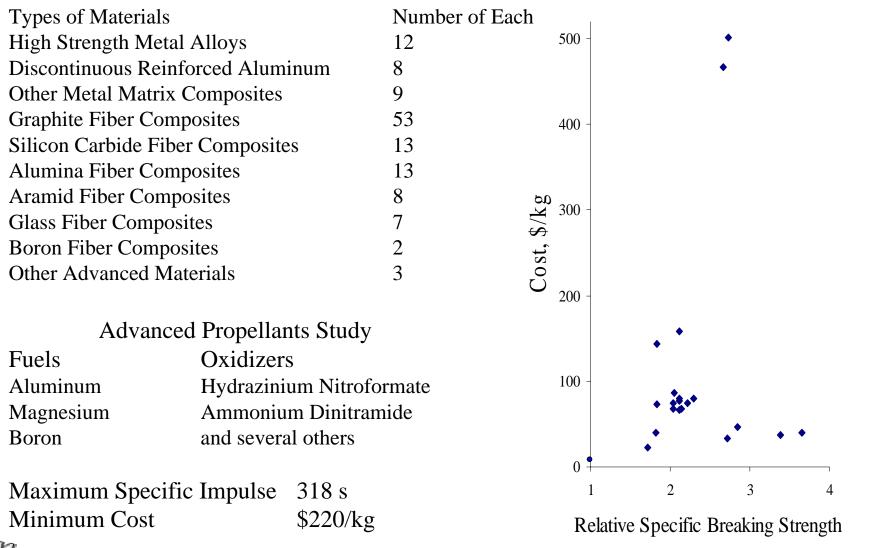
- A decision tool to plan, generate, and prioritize solutions to complex problems.
- Emphasis on mapping:
 - Customer Requirements (CR) needed to satisfy purpose of project
 - Engineering Characteristics (EC) that enable satisfying the customer requirements

Eng. Characteristics		Mass	T/W	Cost	Operations	Reusability
Customer Reqs.		Product		Process		
Cost	5	9	3	9	9	9
Flight Rate	3			9	9	9
Reliability	5	3		9	3	3
Availability	3				9	
Pay. Config.	4	3	3	3	3	3
Relative		0.0549	0.06	0.0216	0.0706	0.02

Concept Selection Process

• TOPSIS- Technique for Ordered Preference by Similarity to Ideal Solution

Criteria	Weight	2	4	6	9
Mass	0.055	10	5	2	7
T/W	0.06	3	9	9	3
Material	0.055	9	10	6	1
Reliability	0.059	1	9	7	4
Configuration	0.12	3	6	10	1
Cost	0.082	5	10	7	1
Operations	0.071	2	6	10	1


	2	4	6	9
S+	0.076	0.037	0.036	0.089
S-	0.038	0.077	0.084	0.026
С	0.338	0.675	0.698	0.227

Design 1	6
Design 2	4

Technology Investigation

