
SSC99-XII-8

1
Blackman 13th AIAA/USU Conference on Small

Satellites

A Consolidated ACS Flight Software Development Approach for the Earth
Observing-1 Spacecraft

Kathie Blackman and Jeff D’Agostino
the Hammers Company

7474 Greenway Center Drive, Suite 710
Greenbelt, Maryland 20770

301-345-5300
kblackman@hammers.com, jdagostino@hammers.com

Abstract. The Earth Observing 1 (EO-1) mission is part of NASA’s New Millennium Program (NMP). The EO-1
Attitude Control System (ACS) flight software was based on the Tropical Rainfall Measuring Mission (TRMM)
flight software, both of which were developed by the Hammers Company, Inc. Lessons learned during TRMM
ACS software development led to a consolidated software development approach for the EO-1 ACS.

The approach started with a standalone system that incorporated the “first-cut” flight software into the spacecraft
simulation, allowing closed loop simulations to run on a desktop computer. Consequently, more algorithm and
coding errors were detected earlier in the development process. The consolidated system was connected directly to
a ground support equipment computer in order to develop test procedures, ground system databases, and display
pages. For flight software testing, the system’s spacecraft simulation module was used as a spacecraft simulator,
and the flight software was removed and loaded onto the test or flight hardware.

This type of consolidated development approach decreased dependency on hardware deliveries and allowed for a
reduced level of software testing to continue through hardware down time. This approach helped meet the
challenge of EO-1’s shorter schedule and lower cost as compared to TRMM.

.

I – Introduction

EO-1 Overview

The Earth Observing-1 spacecraft (see Figure 1) is
part of NASA’s New Millennium Program (NMP),
which was created to accelerate the development of
new space-applicable technologies and to reduce risk
and cost to future missions by conducting dedicated
technology testing missions. The focus of EO-1 is to
develop and test new remote sensing, spacecraft, and
operations technologies for future land imaging
missions1. The EO-1 spacecraft will be used to
validate three advanced hyper-spectral imagers: the
Advanced Land Imager (ALI), the Hyperion
instrument, and the Atmospheric Corrector (AC).
Additionally, EO-1 will fly seven new technologies:

the X-Band Phased Array Antenna (XPAA), the
Carbon-Carbon Radiator (CCR), the Lightweight
Flexible Solar Array (LFSA), the Wideband
Advanced Recorder Processor (WARP), the Pulsed
Plasma Thruster (PPT), Enhanced Formation Flying
(EFF), and the Fiber Optic Data Bus (FODB).

EO-1 Attitude Control Subsystem

The EO-1 Attitude Control Subsystem (ACS) is
three-axis stabilized using three on-axis reaction
wheels (RW) for control actuation and a hydrazine
propulsion system (four thrusters) for ∆V capability.
The EO-1 spacecraft also has three on-axis magnetic
torquer bars (MTB) which are used for momentum
management, and the experimental PPT that will be
used for pitch attitude control2.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/32552597?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2
Blackman 13th AIAA/USU Conference on Small

Satellites

Figure 1: The EO-1 Spacecraft

The ACS sensor suite consists of four coarse sun
sensors (CSS) which are used for initial sun
acquisition, a three-axis Inertial Reference Unit
(IRU) used for rate determination, a three-axis
magnetometer (TAM) used for magnetic field
measurements (and for rate damping when in BDot
control), and an autonomous star tracker (AST) for
attitude determination during normal mission
operations.

The ACS computer system (see Figure 2) consists of
a network of R000 processors acting as Remote
Service Nodes (RSNs) on a 1773 spacecraft bus.
Along with the RSNs is a R3000 architecture-based
Mongoose V processor, which acts as the 1773 bus
controller and also hosts the Command & Data
Handling (C&DH) software and the ACS software.
The Attitude Control Electronics (ACE) RSN
provides the direct interfaces to the IRU, TAM, RW,
MTB, PPT, and thrusters. The housekeeping (HSK)
RSN manages the interface with the on-board Global
Position System (GPS), and the XPAA RSN
maintains the interface with the XPAA. The AST is
directly connected to the 1773 bus with no RSN
interface.

EO-1 ACS Software

The ACS software is responsible for reading and
processing the ACS data from the ACE and HSK
RSNs and the AST, determining the attitude of the
spacecraft, and generating the proper commands for
the actuators. The ACS software must track the
spacecraft position and velocity (using both GPS
data and an internal ephemeris propagator). It is
also responsible for processing commands,
generating telemetry, managing a variety of control
modes, and monitoring the health of the ACS suite.

The EO-1 ACS software is designed to run as a
single task on the Mongoose V processor. Written in
C, it is managed as part of the suite of C&DH tasks,
and has no direct access to external devices. That is,
all external interfaces to the ACS software are
managed through various C&DH function calls (see
Figure 3). The ACS software accesses data and
commands via function calls to the C&DH Software
Bus task, and sends telemetry via function calls to
the same task. Spacecraft time is received via
function calls to the C&DH Time Code task, and the
ACS software can issue ASCII string messages via
calls to C&DH utility functions.

3
Blackman 13th AIAA/USU Conference on Small

Satellites

Mongoose V
(ACS)

(C&DH)

ACE
 RSN

ASTHSK
 RSN

XPAA
 RSN

Comm
 RSN

RW

MTB

Thrusters

PPT

IRU TAM CSS

GPS XPA

1773 Bus

Figure 2: EO-1 Attitude Control Subsystem Computers

The EO-1 ACS software was derived from the ACS
software developed for the Tropical Rainfall
Measuring Mission (TRMM). Significant code re-
use was initially planned, but design changes early
in the life of the project required most of the code to
be re-written to meet unique EO-1 needs. However,
the software design philosophy of a modular
approach to the individual components of the ACS
software remained the same. The modular design of
software similar to that of EO-1 has been covered
elsewhere3,4, and while it is not the focus of this
presentation, it eased implementation of the
consolidated development system discussed in
Section III.

EO-1 ACS Flight Software Build History

The EO-1 ACS software had four major builds.
ACS Build 1.0 was completed in May 1997 and
implemented the initial ACS control algorithms. It
was developed solely with the consolidated
development system discussed in Section III. ACS
Build 2.0 was completed in October 1997 and
updated the control algorithms as well as the

interfaces to the C&DH software. This was the first
build to be integrated with the C&DH software in the
lab environment. ACS Build 3.0 was completed in
September 1998 and implemented interfaces for the
newly added ACE Safehold controller. This build
also closed out most problem reports generated
during testing of Build 2.0. ACS Build 4.0,
completed in March 1999, updated default parameter
values and closed more problem reports generated
during testing. At the time of this writing, the latest
build is ACS Build 4.1, although one more build is
expected to implement final updates for default
parameter values.

II – Background (History of TRMM
Development)

TRMM Overview

The Tropical Rainfall Measuring Mission (TRMM)
was launched in November 1997. A joint mission
between NASA and the Japanese National Space
Development Agency (NASDA), TRMM is designed
to monitor tropical rainfall and the associated energy
that influences the atmospheric circulation that

4
Blackman 13th AIAA/USU Conference on Small

Satellites

affects the global climate5. TRMM is flying five
instruments: the Precipitation Radar (PR), the
TRMM Microwave Imager (TMI), the Visible and

Infrared Scanner (VIRS), the Cloud and Earth
Radiant Energy System (CERES), and the Lightning
Imaging Sensor (LIS).

ACS
Software

Time Code
(C&DH)

Utilities
(C&DH)

Telemetry
Output

Bus
Controller

Command
Ingest

ACE RSN

XPA RSN

HSK RSN

Comm RSN

Star Tracker

Mongoose V Software

Figure 3: EO-1 ACS Software External Interfaces

The TRMM spacecraft consists of an ACS similar to
that of EO-1, with the exception that TRMM is
heavily redundant. The TRMM ACS suite includes
two ACE computers (one acting as a hot backup),
four reaction wheels, two sets of MTBs, two IRUs,
two TAMs, eight CSSs (two sets of four), two Digital
Sun Sensors (DSS), twelve thrusters, and an Earth
Sensor (with a redundant data path). The ACS is
also responsible for commanding the two Solar
Array Drives (SAD) and the two High Gain
Antennae (HGA) to the correct position6.

The TRMM ACS software resides on an 80386
CISC processor (as opposed to EO-1’s Mongoose V
RISC processor) in a similar configuration as on EO-
1. That is, all external interfaces to the ACS
software are managed through C&DH function calls.
As noted previously, the ACS software is modular in
design.

TRMM Flight Software Development
Environment

The TRMM ACS flight software was written in C,
using desktop code editors. The code could not be
compiled at the developers’ desks. Instead, the

source code had to be moved to the build PC in the
ACS software development lab and compiled and
linked there. This required that a C&DH build be
ready for use by the ACS developers before they
could build and test their code. It also required that
the ACS software development lab be ready for use,
which meant that all the components of the lab had
to be completed and functioning properly for ACS
software development to progress.

The ACS software development lab (see Figure 4)
consisted of an 80386 ACS processor, a build PC,
two ACEs, a spacecraft dynamic simulator on a
VAX computer, a KineticSystems Computer
Automated Measurement and Control (CAMAC)
interface between the ACEs and the simulator, a
Communications processor simulator, and a Ground
Support Equipment (GSE) computer for running test
procedures and monitoring the ACS software.

In this configuration, the flight software is on the
ACS processor breadboard, and sends actuator
commands to the ACE which are sent through the
CAMAC to the actuator models residing in the
dynamic simulator. Conversely, the sensor data
generated in the dynamic simulator models are

5
Blackman 13th AIAA/USU Conference on Small

Satellites

passed out through the CAMAC to the ACE and
then to the flight software on the breadboard. The
dynamic simulator has a 1773 card, allowing it to
simulate the Gimbal and Solar Array Control
Electronics (GSACE) remote terminal to accept

commands to the solar arrays and high gain
antennae, and to generate position and rate
measurements. The GSE computer is used to send
commands to the flight software and to collect and
display telemetry.

VAX
Dynamic

Simulator

Target Platform
(80386)

Build/Load PC

Ethernet
1773

RS-422

Communications
Simulator PC

GSE PCACE CAMAC

Figure 4: TRMM ACS Software Development Lab

TRMM Simulator Development

The TRMM attitude control analysts used a Fortran
simulator on a VAX mainframe to test their control
algorithms. It consisted of control algorithms that
would later be used to develop TRMM ACS flight
software, and a spacecraft simulator that included
spacecraft dynamic models, sensor and actuator
models, and ephemeris models. The simulator
provided closed loop interaction between the control
algorithms and the spacecraft simulator to support
testing of the control algorithms.

Once the control analysts completed design of the
control algorithms and the spacecraft simulator
models, the control algorithms were written up in an
algorithm document and delivered to the ACS
software team for flight software development. The
spacecraft simulator models were turned over to
another independent contractor for development of
the VAX dynamic simulator. The spacecraft
simulator models were converted to C and ported to
the VAX 4000/400 computer that supported
hardware interfaces with the 1773 bus, the GSE
computer and the ACE via the CAMAC.

After the spacecraft models were turned over for
development of the dynamic simulator, the attitude
control analysts continued to update and refine the
models and the associated database values. It was a
significant effort to ensure that the dynamic
simulator models were kept up to date with the
changes made by the analysts, and some problems
that turned up during flight software testing were
due to out-of-date models or database values.

TRMM ACS Software Testing

Prior to the completion of the software development
lab, there was no capability to do any closed loop
testing of the flight code and the simulator models in
the VAX simulator. Unit testing could be done on
individual sections of each system, but there was no
interface between the two systems to allow them to
pass data back and forth (See TRMM Unit Test in
Figure 9). As a result, both the hardware interface
and algorithm problems needed to be debugged at
the same time once the software development lab
was available. Any hardware delays in setting up the
software development lab or any hardware breakage
during the test process resulted in day for day
software test delays.

6
Blackman 13th AIAA/USU Conference on Small

Satellites

Debugging in the software development lab proved
to be time consuming since it required continuous
addition of print statements, recompiling, and
linking. Debugging the TRMM ACS software
consisted of inserting debug ASCII messages in the
source code which were output through a serial
UART port back to the build/load PC. In this way,
developers could see the execution sequence of the
ACS code. However, if the developers wanted to
change the location or contents of the messages, they
had to edit the source code and rebuild and reload
the software.

Flight software testing required the use of test
procedures and command and telemetry databases
that resided on the GSE computer. The procedures
could not be dry run and the databases could not be
checked out prior to the completion of the software
development lab. Only a single set of components in
software development lab was available for use by
the flight software test team, the ACE software
developers, the ACS software developers, and the
VAX simulator developers. When any one of the
groups was using the lab, all the other groups were
prevented from performing any other closed loop
testing

Although this process supported flight software
testing of the highly successful TRMM spacecraft,
the flight software test schedule was driven by the
timeliness of hardware deliveries and hardware
down time. To work in an environment requiring
total dependence on hardware is not an ideal
situation for a software engineer. For this reason,
and because of the compressed schedule of EO-1, the
Hammers Company (tHC) developed a consolidated
software development approach for the EO-1 flight
software.

III – Consolidated Development System

Consolidated Development System Overview

The consolidated development system (CDS) was
created as an attempt to free the ACS flight software
development process from dependencies beyond the
control of the software developers. Initially, the EO-
1 ACS software team considered using the VAX

dynamic simulator from TRMM for its software lab.
However, a launch delay on TRMM, coupled with
discovered inconsistencies between the TRMM and
EO-1 lab environments, led the team to realize that
the effort to convert the TRMM system to EO-1
would be prohibitive for EO-1’s development
schedule.

The first successful run of the CDS prototype was in
December 1996 as an after-hours experiment to
execute the TRMM ACS flight source code on a
desktop PC. Data were logged and graphed to show
that the system successfully simulated a sun
acquisition maneuver.

The EO-1 CDS was built in three different
configurations – a standalone configuration for use
by developers and analysts on their desktops; a GSE-
interface configuration, which allowed a GSE
computer to send ground commands and receive
telemetry from a CDS computer; and a lab
environment configuration, in which the ACS source
code was removed from the CDS and integrated with
the C&DH software for the target platform. In the
lab environment configuration, the function of the
CDS is the same as that of the dynamic simulator in
the TRMM flight software development lab.

The three CDS configurations differ by compile
options so that changes made to one of the
configurations will automatically be applied to the
others.

Consolidated Development System Design

The EO-1 CDS is a single executable program
developed in C and C++ with the Microsoft Visual
C++ Developer Studio for Windows. The main
components of the CDS are the Main Interface, the
ACS Thread and Models Component (see Figure 5).

The Main interface component of the CDS is
designed to maintain communications between the
ACS thread and models components, and to
maintain communications with the outside world
(via a GUI and network interfaces). The main
interface is also responsible for maintaining the
synchronization heartbeat between the components.

7
Blackman 13th AIAA/USU Conference on Small

Satellites

The Models component is the spacecraft dynamic
simulator portion of the CDS. This component
simulates the spacecraft orbit and attitude, accepts
actuator commands from the ACS software via the
main interface, and sends simulated sensor responses
back to the ACS via the main interface. The models
component is very similar in function to the TRMM
spacecraft dynamic simulator, and can enable or
disable a variety of environmental and hardware
characteristics, such as aerodynamic drag, wheel
friction, and sensor noise.

The ACS thread is the container for the ACS flight
software source code. The source code for which the
ACS development team is responsible contains no
modifications unique to the CDS. That is, when
code is updated and run under the CDS, it can be
moved directly to the target platform development
environment with no changes, reducing the risk of
introducing errors in the code during the port to the
software lab environment.

Since the ACS software is designed to run in an
infinite loop (it enters a sleep state while waiting for
new data), the source code must be placed in a
separately executing thread in the Windows program
to allow the rest of the CDS to execute.

The ACS source code externally references C&DH
functions and sends and receives data packets to the
outside world. In the CDS, the external references
are simulated outside the ACS source code. Since
these functions are not the responsibility of the ACS
software developers, the developers of the functions
must define the function formats, but the contents of
the simulated functions may be tailored for the CDS
environment. For the EO-1 CDS, the simulated
C&DH functions call CDS library functions to
perform data handling tasks and to check for the
status of the environment. For example, a simulated
software bus function could also check for ACS
thread termination requests from the main interface.

The approach for the CDS was to integrate the ACS
source code, with no modifications, into a single
program with the spacecraft models. Special
interface code was written to simulate the external
interfaces to the ACS, such as CCSDS data packets,
C&DH external variables and C&DH function calls.
For the EO-1CDS , 3 CCSDS data packets, 7 C&DH
external variables, and 10 C&DH functions were
simulated.

8
Blackman 13th AIAA/USU Conference on Small

Satellites

Main
Interface

ACS-to-Main
Interface

ACS Thread

Spacecraft
Dynamics

Simulations
(Models)

User Interface

Data Logging

Communications
Interface

ACS Flight
Software

Source Code

C&DH/ACE
Interface

Simulations

Spacecraft
Dynamics-to-Main

Interface

ACS Source Code is executed on the
target platform instead of the consolidated
development system in the software lab
environment.

Ethernet,
1773 packets

CCSDS packets,
External function calls

Start thread

Kill thread

Start ACS

User commands,
Data displays

ACS data
Models
data ACS commands,

Models data

ACS commands,
ACS data,
Models data

ACS commands,
Models data

User commands,
ACS data

Figure 5: Consolidated Development System Design

Consolidated Development Configurations

The standalone configuration of the EO-1 CDS (see
Figure 6) ran faster than real time and consisted of
flight software source code and spacecraft simulator
models. This configuration was used for flight
software code development, spacecraft model
development, unit testing by the software developers,
and preliminary testing by the flight software testers.
All that was needed to run the standalone CDS was
an executable and input file so the simulation could
be run on any desktop PC. The user interface
allowed the user to send flight software commands,
read in spacecraft model configuration files, and
view and log telemetry.

Standalone
CDS PC

Standalone
CDS PC

Configuration
Management

Ethernet

Figure 6: Standalone Configuration of
Consolidated Development System

The standalone configuration allowed developers to
pull code directly from configuration management
over a local area network into the
simulation/development environment, and allowed
developers to share source files easily. Additionally,

9
Blackman 13th AIAA/USU Conference on Small

Satellites

debugging of the flight source code could be done at
the developers’ desks in the Microsoft Visual C++
environment with no need for a target platform.

The GSE-interface configuration (see Figure 7) ran
in real time and was the standalone version of the
CDS with an Ethernet interface component which
transmitted and received CCSDS Standard Format
Data Units (SFDU) to and from the GSE computer.
The Ethernet connection supplied a command and
telemetry link between the CDS and the GSE
computer. With this interface, the flight software
test procedures could be dry run and the command

and telemetry databases could be checked out, all
using the flight software source code that was
running on the desktop PC. The only hardware that
was required for this configuration was the desktop
PC and the GSE computer. This version was used
throughout the flight software test process as an
alternative to the software development lab. Many
tests were dry run or debugged on this system in
order to allow more efficient use of test time in the
lab. It was important to be able to continue testing
without use of the lab because of hardware down
time and because it was shared with the EFF
software group.

Standalone
CDS PC

Standalone
CDS PC

Configuration
Management

GSE PC GSE-Interface
CDS PC

Test/Analysis
PC

Ethernet

Figure 7: GSE-Interface Configuration of Consolidated Development System

The ACS software lab configuration of the CDS (see
Figure 8) ran in real time and consisted of the
spacecraft simulator models, a command and
telemetry link to the ASIST, and a connection to the
1773 bus to simulate the ACE, AST and GPS remote
terminals. Adding a 1773 interface component to
the CDS allowed it to perform strictly as a spacecraft
dynamic simulator and ACE simulator in the lab
environment. Once the EO-1 target platform was
ready, the ACS source code already had been heavily
tested in the other configurations. In the lab
environment the ACS source code was removed from
the CDS and integrated with Command & Data

Handling (C&DH) software for loading onto the
target platform. Since the interfaces to the C&DH
were simulated in the CDS, most of the integration
was seamless. Test results from this environment
were compared with test results from the GSE-only
environment. When anomalies were found,
scenarios were re-created at the stand-alone level,
and developers could step through the code line-by-
line to debug the problem. Using the stand-alone
system to debug problems found in the lab
environment freed up lab resources for additional
testing and EFF software work.

10
Blackman 13th AIAA/USU Conference on Small

Satellites

CDS PC
(Dynamic
Simulator)

Target Platform
(Mongoose V)

Build/Load PC

Ethernet

1773

RS-422

Communications
Simulator PC

GSE PC

Figure 8: ACS Software Lab Configuration of Consolidated Development System

TRMM / EO-1 Schedule Comparison

The use of the CDS allowed EO-1 ACS flight
software development to proceed despite the lack of a
software development lab in the early stages of the
development process. On TRMM, the ACS software
development lab and C&DH Build 1.0 were ready
for use in March 1993. The TRMM ACS Build 1.0
was delivered in August 1993 (five months after the
lab was ready), and only contained basic interface
code to the C&DH (no ACS control algorithms).
The TRMM ACS Build 2.0, which included ACS
control algorithms, was completed in April 1994
(thirteen months after the lab was ready).

By comparison, the EO-1 software development lab
and C&DH Build 1.0 were ready for use in
November 1997, while the EO-1 ACS Build 1.0,
which contained most of the ACS control
algorithms, was completed in May 1997 (six months
earlier). The ACS test team was able to make use of
the time between completion of the flight software
delivery and the hardware delivery of the software
development lab, which would have been forced idle
time on TRMM, by starting to test the software using
the GSE-interface CDS configuration. The EO-1
ACS Build 2.0, which included updates to the
control algorithms as well as updates to the C&DH
interfaces, was completed in October 1997, one
month before the lab was ready for ACS integration.
(Although some of the EO-1 ACS source code was
inherited from the TRMM ACS, most of the software
had to be re-written to meet unique EO-1 ACS
requirements. Therefore, the EO-1 development

schedule did not benefit as greatly from heritage
code as originally expected.)

Advantages of the EO-1 CDS

Since the same version of spacecraft simulator
models were used for both the standalone and the lab
environment CDS configurations, the difficulties in
maintaining two different systems as on TRMM
were avoided. There was a Fortran PowerStation
simulator with simulated flight software and
spacecraft models used by control analysts early in
the program that was a follow on from the system
used by the TRMM analysts. This system was
abandoned as soon as the initial version of the CDS
standalone configuration was completed. Future
desktop simulation work by the control analysts was
accomplished using the standalone CDS system with
the actual ACS source code since it was kept up to
date with the latest software changes in support of
software testing.

The CDS enabled EO-1 flight software developers to
run closed-loop simulations at their desktops to help
verify code before releasing it, and to assist in
debugging of delivered code (See EO-1 Unit Test in
Figure 9). In fact, one developer was able to
continue writing and testing EO-1 ACS code on a
notebook computer while in Japan supporting the
TRMM launch.

Using the CDS, most of the flight software coding
errors were found in the software debug environment
so that once the ACS software was loaded on the
target platform, only the interface issues still needed

11
Blackman 13th AIAA/USU Conference on Small

Satellites

to be worked out. The Microsoft Visual C++
development environment has an efficient debug
system so that finding and fixing code errors was a
much less time-consuming process than in the
hardware environment on TRMM. Even when
errors were encountered when running in the
software development lab, the same scenarios could
be set up on the standalone system to investigate the
problems in a software debug environment.

The EO-1 ACS flight software test team was able to
obtain the software lab GSE computer before
delivery of the rest of the lab components. This
allowed the test team to dry run all the flight
software test procedures and check out the command
and telemetry databases prior to running on the
completed software development lab (See EO-1
Procedure Development in Figure 9). The test team
was able to get a head start on closed loop testing
and GSE procedure and database development that
decreased the dependency on hardware deliveries.

The test team was able to borrow an additional GSE
computer and use the GSE-interface configuration of
the CDS to continue debugging test procedures
without using valuable lab resources. This provided

a “free” redundant test environment that doubled the
available test time and allowed the Enhanced
Formation Flying software development team to
spend more time in the software lab without
interference from the ACS group.

The portability of the standalone configuration of the
CDS with the flight software and the spacecraft
simulator allowed for wider distribution of the
system. In the early stages of the project there was a
request from the EO-1 Flight Dynamics group for a
copy of the standalone CDS, which they then used to
develop and test of the ground software used for
telemetry processing and sensor calibration.

The mission operations team was provided with
several GSE computers but not a breadboard on
which to run the flight software. Using the GSE-
interface configuration of the CDS, they were able to
gain experience in sending ACS commands and
validating ACS telemetry through the same GSE
computer they will use to command the spacecraft
during the mission.

12
Blackman 13th AIAA/USU Conference on Small

Satellites

T
R
M
M

Code Development Unit Test Procedure Development Acceptance Test

Flight Software
on PC

Simulator Models
on VAX

Different platforms

Flight Software
on PC

Simulator Models
on VAX

Different platforms

1773

GSE PC

Ethernet

Flight
Software on
Target
Breadboard

CAMAC/
ACE1773

Digital
I/O

GSE PC

Ethernet

Flight
Software on
Target
Breadboard

CAMAC/
ACE

Digital
I/O

E
O
-
1

Standalone CDS Standalone CDS GSE-Interface CDS

GSE PC

Ethernet

GSE PC

Ethernet

Flight
Software on
Target
Breadboard

Flight Software &
Simulator Models

on PC

1773

1773

1773

VAX Dynamic
Simulator

VAX Dynamic
Simulator

Flight Software &
Simulator Models
run closed-loop

simulations on PC

Flight Software &
Simulator Models

run closed-loop
simulations on PC

CDS (Dynamic
Simulator)

Software Development Lab Software Development Lab

Software Development Lab

Figure 9: Comparison of TRMM and EO-1 Software Development Processes

Disadvantages of the EO-1 CDS

A disadvantage of this EO-1 software lab
configuration of the CDS for acceptance testing in
comparison to the TRMM system is that there was
no hardware interface from the CDS to the ACE, so
hardware-in-the-loop testing with the ACE as part of
the configuration was not possible. The ACE was
simulated as part of the CDS, even in the lab
environment configuration. The ACE I/O and ACE
safehold software testing was done by stimulating

the sensors and measuring the actuator response in
an open loop fashion.

A disadvantage of the GSE-interface configuration
of the CDS for EO-1 mission operations training is
that it did not simulate the C&DH software that
resides in the Mongoose V spacecraft processor with
the ACS software. Functions such as table loads and
absolute/relative time command sequences that are
often used by the mission operations team when the
spacecraft is on orbit were unavailable in the CDS.

13
Blackman 13th AIAA/USU Conference on Small

Satellites

The standalone and GSE-interface configurations of
the CDS did not allow developers to catch hardware-
specific anomalies. For example, an unknown
characteristic of the target platform caused a math
exception that could not be duplicated in the CDS.
This anomaly had to be researched, corrected, and
verified in the lab environment.

Since the CDS was built using Microsoft Visual C++
on a Windows platform, it did not use the target
platform’s C make file. Therefore, problems with
the make file (e.g., memory allocation errors) were
only caught in the lab environment.

Future Plans

The consolidated development system created for
EO-1 has proven successful enough to be used in
new ACS development projects such as the the Naval
EarthMap Observer (NEMO) and the Formation
Flying Test Bed (FFTB). Additionally, plans are
underway to expand and improve the design of the
CDS to allow more uses of the system.

Among the future uses and improvements for the
CDS are:

- Extrapolation a single spacecraft simulator into
a collection of satellites to simulate a satellite
formation.

- Addition of advanced data display and logging
capabilities.

- Addition of a component development kit which
would allow users to create and customize
components without re-building the entire CDS.

- Addition of portions of C&DH flight software
(from the SMEX-Lite project) into the CDS as
separate components.

- Addition of a component which would allow the
CDS to connect to third-party analysis tools
(such as MatLab) to test control algorithms
before writing ACS code.

- Configuration of the CDS to allow for hardware-
in-the-loop testing, which would enable the CDS
to access hardware registers to read actuator
inputs and stimulate sensor outputs.

IV – Conclusion

In the days of longer schedules and larger budgets, it
was acceptable to deliver software that had only
undergone basic functional and unit testing with the
knowledge that future testing in a hardware
environment would uncover more subtle errors in
control algorithms, software design and coding.
With shorter schedules and smaller budgets, this
luxury is gone. Software must be more thoroughly
tested at early stages of development for schedules to
be met.

The consolidated software development system used
for the EO-1 project enabled the ACS flight software
developers to test and verify code despite delays in
hardware deliveries. The minimization of downtime
due to hardware delays prevented software delivery
dates from slipping in the schedule. In fact, the first
build of the EO-1 ACS was completed six months
before any hardware was ready to run it, and the
CDS allowed testing of the software to proceed
during that six-month period.

Besides aiding the software coding portion of ACS
software development, the CDS facilitated the
development of telemetry and command databases
and GSE procedures needed for formal testing of the
ACS software in the software lab environment.
Additionally, once the ACS flight software reached
the lab environment for integration on the target
platform, the CDS served as a dynamic simulator.
Using the same simulator throughout the
development process reduced the risk of errors being
introduced due to differences in simulations.

Since the consolidated development system was a
small program (which fit on a single floppy disk for
EO-1), it could be easily distributed to analysts and
mission operations personnel throughout the
development cycle. This allowed members of the
EO-1 team to gain an early familiarity with the ACS
flight software before delivery of the code on the
target platform. It also allowed more people to catch
potential errors in the code that could then be
corrected before formal delivery of the next build
(more eyes are more likely to find errors). This
reduced the workload on formal testing, as errors

14
Blackman 13th AIAA/USU Conference on Small

Satellites

that normally would have not been caught until
formal testing already had been corrected.

In the standard development approach, design,
coding and testing are treated as independent and
nearly separate phases of the development process,
making redesigns or code changes more costly to
implement. The consolidated development system
encouraged a rapid approach to ACS software
development, since designs were updated and tested
more easily, and coding and testing took place
concurrently. This approach reduced overall
development time.

The CDS does not eliminate the need for a target
platform and a software development lab. For
instance, processor-unique errors (byte-ordering,
exception handling, etc.), target make file errors
(memory allocations, etc.), and external function
incompatibilities (ill-defined interfaces, etc.) will not
necessarily get caught in the CDS environment.
However, by testing the ACS source code to debug
algorithm-level problems, the CDS allows the lab
environment to be used more efficiently for these
types of errors. The ACS software is therefore more
likely to meet the demands of today’s “faster, better,
cheaper” spacecraft environment.

V – Acknowledgments

The authors wish to thank all the managers,
engineers, developers and testers who contributed
greatly to the development and improvements of the
consolidated development system and to the
development of the EO-1 and TRMM ACS flight
software, especially: Louise Bashar, John Bristow,
Stephan Hammers, Albin Hawkins, Teresa Hunt,
David Kobe, Kequan Luu, Steve Mann, Paul
Sanneman and Seth Shulman

VI – Acronym List

ACE Attitude Control Electronics
AC Atmospheric Corrector
ACS Attitude Control Subsystem
ALI Advanced Land Imager
AST Autonomous Star Tracker
C&DH Command and Data Handling

CAMAC Computer Automated Measurement and Control
CCSDS Consultative Committee for Space Data Systems
CDS Consolidated Development System
CERES Cloud and Earth Radiant Energy System
CSS Coarse Sun Sensor
Comm Communications
DSS Digital Sun Sensor
EFF Enhanced Formation Flying
EO-1 Earth Observing-1
FFTB Formation Flying Test Bed
GPS Global Positioning System
GSE Ground Support Equipment
HGA High Gain Antenna
HSK Housekeeping
IRU Inertial Reference Unit
LIS Lightning Imaging Sensor
MTB Magnetic Torquer Bar
NASA National Aeronautics and Space Administration
NASDA National Space Development Agency (Japan)
NEMO Naval EarthMap Observer
NMP New Millennium Program
PPT Pulsed Plasma Thruster
PR Precipitation Radar
RSN Remote Services Node
RW Reaction Wheel
SAD Solar Array Drive
SFDU Standard Format Data Unit
SMEX Small Explorer
TAM Three-Axis Magnetometer
tHC the Hammers Company
TMI TRMM Microwave Imager
TRMM Tropical Rainfall Measuring Mission
UART Universal Asynchronous Receiver/Transmitter
VIRS Visible and Infrared Scanner
XPAA X-Band Phased Array Antenna

VII – References

1. N. Speciale, “Earth Observing-1”, May 10, 1999,
http://eo1.gsfc.nasa.gov/miscPages/home.html
(July 13, 1999)

2. P. Sanneman, K. Blackman, M. Gonzalez and D.
Speer, “New Millennium Earth Orbiter-1
Mission: Attitude Control Requirements and
Capabilities”, 21st Annual AAS Guidance and
Control Conference, February 1998 (AAS98-002)

15
Blackman 13th AIAA/USU Conference on Small

Satellites

3. K. Barnes, C. Melhorn and T. Phillips, “The
Software Design for the Wide-Field Infrared
Explorer Attitude Control System”, 12th Annual
AIAA/USU Conference on Small Satellites,
August 1998 (SSC98-VII-2)

4. S. Andrews and J. D’Agostino, “Development,
Implementation, and Testing of the TRMM
Kalman Filter”, 1997 Flight Mechanics
Symposium, May 1997

5. TRMM Web Site – NASA, “A Global Eye on
Tropical Rainfall”, http://trmm.gsfc.nasa.gov
(July 13, 1999)

6. the Hammers Company, Inc. (prepared for NASA
GSFC), “Tropical Rainfall Measuring Mission
Attitude Control System Software Requirements
Specification”, March 16, 1995 (TRMM-ACS-
SRS-CD-R03.0-031695)

VIII – Author Biographies

Kathie Blackman graduated from Lehigh University
(BSME) in 1990 and Purdue University (MSME) in
1992. Ms. Blackman has developed spacecraft
dynamic simulators for the X-Ray Timing
Experiment (XTE) and the Tropical Rainfall
Measuring Mission (TRMM) in support of ACS
flight software testing. Since 1996 she has worked
for the Hammers Company, Inc., on EO-1 as an
ACS controls analyst and flight software test lead.

Jeff D’Agostino graduated from Virginia Polytechnic
Institute and State University in 1984 with a BS in
Physics and a BA in Philosophy. He has worked in
the NASA Goddard Space Flight Center
environment since then, including work as an ACS
flight software engineer since 1987. Mr. D’Agostino
has developed ground operations software the
Extreme Ultraviolet Explorer (EUVE), and has
developed, tested and/or maintained flight software
for the International Ultraviolet Explorer (IUE), the
Solar Maximum Mission (SMM), EUVE, TRMM,
EO-1, and the Naval EarthMap Observer (NEMO).

