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Abstract

It is shown that at maximum power, the Photovoltaic (PV) voltage varies nonlinearily with temperature and
isolation level, but is directly proportional to the PV cell open circuit voltage. The proportionality voltage-factor
is fixed for a given PV generator regardless of temperature, isolation and panel configuration, but depends on
cell material and manufacturing. This remarkable property is used to achieve temperature and insolation
independent maximum power point tracking of satellite’s solar cells with a simple and reliable technique. The
open circuit voltage is continuously measured by a microcontroller and is used to estimate the maximum power
operating point of the system.

The Voltage-based Maximum Power Point Tracker (VMPPT) is demonstrated by construction and testing of a
solar battery charger (using silicon solar cells, Ni-Cd batteries and a buck mode VMPPT), a solar water pump
(using silicon solar cells, a PM DC Motor and a boost mode VMPPT) and resistive loads supplied by solar cells.
Measured results are satisfactory and confirm the proposed technique. The advantage of this method as
compared to the current-based MPPT are “simplicity” and “higher efficiency”.

1. Introduction

The satellite Electric Power Subsystem (EPS) has the
responsibility of providing continuous, regulated and
conditioned power to payloads and other subsystems
during all mission phases. Undesired space  and
mission features such as eclipse and shadowing
interruptions, temperature and solar angle variations,
and load fluctuations as well as solar array
degradation (over time) must be considered by EPS
designers. In today’s small spacecraft, these
problems are exacerbated due to extreme mass,
volume and cost constrains.  Accurate sun- tracking
solar arrays, generous cooling devices and high
capacity batteries are denied the designer and
therefore, new generation EPS are usually running

with a negative power budget and every drop of
available electric energy is captured and used as
effectively as possible.  These constrains along with
the required high reliability performance and the fact
that spacecraft is not mostly within the
communication range, have made EPS designing
exciting and challenging.

There are two general approaches for satellite power
system design [1-5]. In Direct Energy Transfer
(DET) method, the payload, subsystems and batteries
are directly connected to the solar arrays and the
extra power (at low temperatures and/or Beginning
Of Life (BOL)) are absorbed by  shunt regulators
(Fig.1(a)). This is a dissipative and simple, but
weighty and low efficient power system. A more
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common technique for designing the EPS, especially
for small satellites, is the Power Point Tracking
(PPT) method (Fig.1(b)): the amount of generated
solar energy is continuously controlled and matched
with the satellite’s energy demand. The system is
naturally running at a low temperature level and
there will be no need for large dissipative devices.
But the price is paid by the addition of a PPT device.

The primary source of power on most present
satellites result from photovoltaic solar cells mounted
on surfaces and illuminated by the sun’s rays.  In
order to increase the available electrical energy and
limit the required solar arrays, the  ″maximum power
point″ of  PV cells must be actively tracked and used
by the EPS system. In the literature, there are
different proposed methods for Maximum Power
Point Tracking (MPPT) of solar cells [6-14] and
some have been applied in actual satellite power
systems [15]. The current-based MPPT of [9] uses
reference (dummy) cells for the measurement and
estimation of ″maximum power point″ of the solar
panel. In this paper, a Voltage-based MPPT is
proposed for the optimal tracking of satellite solar
cells. The main advantage of this method (which
uses a microcontroller circuit for the online
measurement of “cell open circuit voltage”) as

compare to the current-based MPPT method is: the
elimination of the reference cells which results in a
“simpler” and “more efficient” system. The effect of
VMPPT is especially noticed at high power demand
phases and during the EOL where the cell
degradation is appreciable.

The proposed method is demonstrated by
construction and testing of three laboratory PV
systems: a solar battery charger (consisting of  four
Ni-Cd batteries with a buck type VMPPT circuit), a
solar water pump (consisting of a permanent- magnet
DC motor water pump and a boost type VMPPT
circuit) and resistive loads supplied by solar cells .

2. Nonlinear PV Generator
Characteristics

Using the equivalent circuit of photovoltaic cells
(Fig.2), the expression for the nonlinear V-I
characteristics of M parallel strings (N series cells
per string) is

(a)

(b)

Figure 1. Block diagram of satellite Electric Power Subsystem (EPS); (a ) Power Point Tracking (PPT) method., (b) Direct Energy Transfer
(DET) method
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where Io is the reverse saturation current, I sc  is the

cell short circuit current, R s is the series cell

resistance and λ  is a constant coefficient
proportional to cell material.

For the silicon solar panel (M=1, N=36)
manufactured by the Iranian optical Fiber
Fabrication Co. (OFFC), the V-I characteristics of
Eq.1 can be written as
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Cell specification are given in Table 1 and the

computed V-I characteristics (based on equation 2)
are plotted in Fig.3 for different insolation levels.
The laboratory measurement of V-I and P-I
characteristics for one OFFC panel are shown in Fig.
4. Comparison of these two figures indicates a good
agreement between the computed and measured
characteristics.

There is also a nonlinear relationship between the V-
I characteristics and operating temperature
[13,14,16]. According to reference [16], this
dependency can be modeled as:
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Taking into account the impact of temperature
variations (Eq.3), the new forms of Eq.2 can be
written as :
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Equations (4a) and (4b) are evaluated for T=70°c and
T=-20°c, respectively, and are plotted in Fig.5 for
one OFFC panel.

Figure 2. Photovoltaic cell equivalent circuit.

Figure 3. Computed nonlinear V-I characteristics of one OFFC silicon
solar panel for different isolation levels (Eq.2)

Figure 5. Temperature impact (Eqs.3,4) on V-I characteristics of
OFFC silicon  solar cells (table 1)

Figure 4. Measured and computed (Eq.2) nonlinear V-I and P-I
characteristics of one OFFC silicon solar panel (table 1)
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3. The Voltage-based Maximum
Power Point Tracking (VMPPT)

In order to determine the operating points
corresponding to maximum power for different
isolation levels, the partial derivative of  power is
computed as follows
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The solution of Eq.5 represents the currents
corresponding to maximum power as a function of
short circuit currents of  PV generator,

( )I f Imp sc= . This is the main idea for the

current-based MPPT technique [9]. For the OFFC
silicon cells, this function is computed as
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Evaluating Eq.1 at maximum power (e.g., I sc = I mp )

and  open circuit condition (e.g., i pv = 0 ) gives:

V f Imp sc= 1 ( ) and V f Ioc sc= 2 ( ) , respectively.

Therefore, at a given temperature and isolation level,
the “voltage corresponding to maximum power”
could be expressed as a function of  “cell open circuit
voltage”; namely

V g Vmp oc= ( )
(7)

This is the base for the VMPPT technique. Applying
numerical methods (e.g., MATHCAD Software),
Eq.7 is shown by + signs in Fig.6 for the OFFC
silicon solar cells.

Using curve fitting techniques, we can numerically
find this relationship as:

V f V f Vmp nonlinear oc liner oc= ≅ =( ) ( )

0 7 0 328 0 7. . .V V m Voc O C v oc− ≅ =             (8)

this equation is compared with the actual
characteristics in  Fig.6.

Therefore, the voltages corresponding to maximum
powers are directly proportional to open circuit
voltages at different isolation levels and
temperatures. The proportionality voltage-factor
( mv ) is fixed for a given panel regardless of cell

configuration, isolation and temperature variations,

but depends on cell materials and manufacturing
techniques. According to Eq.8 and Fig.6, for the
OFFC silicon cells mv = 0 7. , which will also be

confirmed by experimental result in the following
section.

4. Construction and measurements

For the tracking and estimation of the maximum
power point of solar panels, the open circuit voltage
must be accurately measured under all operating
conditions (temperature, isolation and degradation
levels). To do this, a microsystem is used with the
following responsibilities:

 1. Continuous control and switching of the DC/DC
converter (buck or boost mode).

 2. Continuous measurement of the panel open
circuit voltage.

 3. Continuous estimation of panel maximum power
operating point (Eq.8).

 4. Continuous matching of satellite operating point
with the estimated solar panel maximum power
point (by changing the duty cycle of DC/DC
converter).

 5. If required, continuous matching of generation
and demand levels by adjusting the system
operating point on the V-I characteristics.

The microsystem driver circuitry consists of: a
80C51 microcontroller, D/A and A/D converters, the
series-switch driver (boost), power supplies, display
and keyboard as shown in Fig.7.

Table 1. Specifications of the silicon solar cells used
(manufactured by OFFC)

Current Temperature
Coefficient

  α = 0 002086.        [Amp/°c]

Voltage Temperature
Coefficient

β = 0 0779.            [Volt/°c]

Reverse Saturation Current I0
405 10= × −.      [A]

Short Circuit Cell Current Iph = 2 926.         [A]

Cell Resistance RS = 0 0277.         [Ω]

Cell Material Coefficient λ = 0 049.          [V −1
]

          +Vmp g Voc= ( )

          -Vmp Voc= ⋅ +0 704 0 328. .

Figure 6. Voltages corresponding to maximum power versus open

circuit cell voltages (Eq.7) and the linear function (Eq.8)

approximation (T=25 and varying isolation level).
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Figure 7.  The microsystem driver circuitry used in Figs.8 and 12 for measurements.
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4.1.  A Solar Battery Charger
(VMMPT in Buck Mode)

In order to experimentally investigate the
performance of the proposed VMPPT tracker, the
solar battery charger of  Fig.8  was constructed using
one OFFC silicon solar module (table 1), four Ni-Cd
batteries (1.2V, 800mAh), a VMMPT buck type
tracker (MOSFET power switches, ferrite core
inductance) and a microcontroller (Fig.7). The
measured voltage, current and power waveforms at
the output of the solar panel as well as the input of
the nickel-cadmium batteries are shown in figure 9,
with and without the VMPPT unit. These results
indicate an increase of about 150% in panel output

power in the presence of VMPPT unit during the
charging phases. The corresponding measured V-I
and P-I characteristic for the operating condition
(insolation and temperature levels) are shown in
Fig.11 which confirms a maximum power of 25
watts. The two zero-power instances on panel
waveform, indicate disconnection of panel by the
microsystem and online measurement of its open
circuit voltage

Experiments and measurements at different
isolation,  temperature and load levels using various
voltage-factors (Fig.11), confirmed that maximum
output power is obtained for a unique value of

Fig 9. The waveforms of  current, voltage and power at the output of the solar panel and the input of the
batteries  with (top figures) and without (bottom figures) the VMPPT unit. Horizontal axis indicates sampling

times.
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Figure 8.  The constructed microcontroller-based  solar battery charger (VMPPT in buck mode) used for measurements
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mv = 0 7. .

4.2. A Solar Water Pump (VMPPT in
Boost Mode)

The solar water pump of  Fig.12 was constructed
using one OFFC silicon solar module (Table 1), a
small permanent magnet DC motor (24 V, 45W), a
VMPPT boost type tracker and a microcontroller
(Fig.7). Different measured results for various values

of voltage-factor (Fig.13) confirm the unique value of
mv = 0 7.  for maximum power operation of the

system under different conditions.

Figure 11. Comparison of measured panel output power (of solar
battery charger) for different values of voltage-factors. The operating
conditions (insolation level) of Fig.10 & 11 are different.

Figure 10. The measured V-I and P-I characteristics corresponding to
Fig.9.
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Figure 13. Comparison of measured panel output power (of solar
water pump) for different values of voltage-factors. The operating

conditions (insolation level) of Fig.13 and 14 are different.



SSC99-XII-7

Dr. M.A.S. Masoum                                                                                                 13th Annual AIAA/USU Conference on Small Satellites
8

Figures 14 and 15 demonstrate the V-I and P-I
characteristics as well as voltage, current, and power
waveforms for a chosen operating condition. The
introduction of VMPPT changes the panel output
power from 22 watts to 34 watts (55% increase).

4.3. Resistive Loads Supplied  by
Solar Cells (VMPPT in Buck Mode)

Further experimental investigations of VMPPT
technique was done by supplying a set of  resistors
with  one OFFC silicon solar panel  (Table 1).
Different measurements were performed to
investigate the uniqueness of voltage-factor for

different isolation, temperature and load conditions.
As an example, figure 16 shows the measured panel
average output power with  and without the VMPPT
tracker for a chosen operating condition. As for the
other types of  loads (Figs.11 and 13), the computed
value of voltage-factor ( . )mv = 0 7  results in

maximum output power.

Figures 17-19 show the V-I and P-I characteristics
and the corresponding waveforms for two resistive
loads. According to Fig.17, the maximum output
solar  power (for the chosen operating condition) is
32W. Furthermore, the panel voltage corresponding
to maximum power ( )Vmp V= 18  is about 70% of

Figure 14. The measured V-I and P-I characteristic corresponding to
Fig.15.

Fig 15. The waveforms of current, voltage and power at the output of the solar panel and the input of solar pump
with (top figures) and without (bottom figures) the VMPPT unit.

Figure 16. Comparison of measured panel output (of resistive loads)
for different values of voltage-factor.



SSC99-XII-7

Dr. M.A.S. Masoum                                                                                                 13th Annual AIAA/USU Conference on Small Satellites
9

the panel open circuit voltage ( . )V Voc = 12 6  which

confirms the unique computed value of the voltage-
factor ( . )mv = 0 7  for these loads.

The impact of VMPPT is 125% and 28% increase  in
panel output  power for the heavy (Fig.18) and light
(Fig.19)  resistive loads , respectively.
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Figure 17. The measured V-I and P-I characteristics corresponding to
Figs.18 and 19.

Fig 18. The waveforms of current, voltage and power at the output of the solar panel and the input of the
resistive load  with (top figures) and without (bottom figures) the VMPPT unit (heavy loads).

Fig 19. The waveforms of current, voltage and power at the output of the solar panel and the input of the
resistive load  with (top figures) and without (bottom figures) the VMPPT unit (light loads).
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5. Conclusion 

A Voltage-base Maximum Power Point Tracker
(VMPPT) is proposed for optimal Power Point
Tracking (PPT) of  Satellite Electric Power
Subsystem (EPS) and is demonstrated by
construction and testing of a solar battery charger, a
solar water pump and resistive loads. It is shown
(numerically and experimentally) that at maximum
power, the cell voltage is linearly proportional to the
cell open circuit voltage.

A microsystem is used for the on-line measurement
of the solar cells open circuit voltage, estimation of
panel maximum power point, control of system
operating point and matching it with panel
maximum power point on the V-I characteristic
curves. The proportionality factor is fixed (e.g.,
mV = 0 7.  for OFFC silicon cells) regardless of

operating conditions. The following conclusions can
be stated:

 1. Introduction of VMPPT increases the output
power of PV generators. The percentage of
power  increase depends on operating conditions
(isolation, temperature, degradation and load
levels).

 2. The proposed VMPPT technique is very  simple
since it requires only the measured open circuit
voltage.

 3. The cell open circuit voltage can be measured
using a microsystem.

 4. The same microsystem can be used for switching
of DC/DC converters (buck or boost mode) and
controlling the operating point on the panel V-I
characteristics.

 5. The effect of VMPPT is especially appreciable
when generated  electrical energy is less than the
demand level (e.g., at EOL, high power demand
phases, high temperature conditions).

 6. The main advantage of the proposed
microprocessor-based VMPPT method as
compared to the current-based MPPT [9] is the
elimination of  the reference cells which results
in a “simpler” and “more efficient” system.
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