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Abstract
The BIRD mission of the German Aerospace Centre shall demonstrate the scientific and technological
value and the technical and programmatic feasibility of a remote sensing small satellite mission under
low budget constraints. The payload -a new generation of cooled infrared detectors- is adapted to the
mission objective - the investigation of hot spots caused by forest fires or volcanic activities completed
by the diagnosis of vegetation conditions and changes.
BIRD –the Bispectral Infra-Red Detector- is a three-axis stabilised spacecraft within a volume of 0.21
m³ and a mass of 88 kg. In flight configuration with one fixed and two deployed solar panels, providing
40 W average and 200 W peak power, the spacecraft dimensions are 620x 1600x 620 mm³.
Although compatible to several launchers due to the highly compact design, the launch is scheduled for
mid 2000 as a piggy-back payload. To fit in this time scale a modular design was chosen for
parallel development, manufacturing and integration of all functional segments.

The article gives an overview of the mission objectives and some of the main design aspects as well as
shows the status of work of the space segment.

Introduction

The growing interest on the investigation of fire as
indicators for influences on the natural environment
from space is reflected in several mission studies. So
also DLR initiated in 1994 the FIRES proposal [1]
which was oriented on a design-to-performance ap-
proach. This and the mission concept based on a
spacecraft in the 300 kg- class was not able to fund.
To materialise the main ideas the BIRD concept was
established. Turning to a strict design-to-cost phi-
losophy and a down sizing of the satellite by a factor
of 3 the BIRD microsatellite mission for investigation
of hot spots and vegetation exploration could be im-
plemented within the DLR.
However one of the primary objective now is to oper-
ate a new generation of imaging infrared detectors in
space which is embedded in a set of ambitious scien-
tific tasks of the science community. The build-or-

buy decision for the spacecraft bus was also very
much influenced by the special requirements of
the payload. Thus the space segment design,
which the article is focused on, is performed as a
modular concept which can be adapted to other
payloads with similar budget needs too.

Mission Objectives and Requirements

Besides the detection and identification of hot
spots, caused by vegetation fires, industrial haz-
ards and burning oil wells a variety of scientific
objectives emerges from related natural events -
volcanic studies, investigation of clouds and at-
mospheric properties (pollutant emission) and
vegetation analysis (aridness, re-cultivation).
The analysis of scientific objectives leads to sev-
eral requirements, here provided by Table 1. for
the scientific instruments.

Table 1 - Functional mission requirements on the BIRD payload
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GeometricTask Spectral Radiometric
GSD Swath Width

Other

Hot-spot detection
hot-spot classification
observation of vulcanoes

3.4-4.2 µm
8.5-9.3 µm
1 VIS/NIR channel

Temperature estimation
within dynamic range
>2000, saturation limit at
T<1300 K, rad. Resol.
within IR >12 bit

< 300 m As large as
possible, min.
>100 km

Different visir
angles at
VIS/NIR

Determination of VI3 and
comparison with the
NDVI

840-890 nm
600-670 nm
3.4-4.2 µm

> 7 bit (VIS/NIR)
> 12 bit (MWIR)

100 m –
300 m

Small Integer pixel
size ratio of
VIS/NIR and
IR pixels

Improvement of Leaf
Area Index

840-890 nm > 7 bit (VIS/NIR) 100 m –
300 m

Small Different visir
angles

Realtime detection of
clouds,
cloud investigation

Min. 3 VIS/NIR channels
+ 1 TIR

Dynamic range >1000 < 1 km Minimum
> 100 km

Stereo
cabability

Test and evaluation of
multi-sensor-multi-
resolution technique,
test of on-board neural
network classification

3.4-4.2 µm
8.5-9.3 µm
1 or more VIS/NIR
channels

> 7 bit (VIS/NIR)
> 12 bit (IR)

100 m –
300 m

Small Integer pixel
size ratio of
VIS/NIR and
IR pixels

Technological
experiments concerning
IR-system

3.4-4.2 µm
8.5-9.3 µm

Range-level + drift- and
detectivity control,
vibration isolation,
pixel alignment

The technological objectives can be categorised ac-
cording to three aspects:

1. Space operation of new infrared detectors with
-  qualification of integrated cooler-detector unit
-  investigation of cooler vibration impacts on sensor

MTF and AOCS performance
-  long term stability of cooler performance
-  dynamic range control of IR- detectors
-  study of the stability of line-of-sight of the sensors

and pixel co-registration

2. Test of a thematic on-board classificator with
-  geometrical and radiometrical correction of sensor

signals
-  geometrical correction of systematic spacecraft

errors and spacecraft attitude
-  orbit propagation model and geo-referencing
-  Earth geoid shape and local altitude correction

3. Development of small satellite technology with

-  concept for extremely unsteady power con-
sumption

-  thermal management of varying point sources
-  high performance attitude control system
-  partly autonomous observation modes

The requirements on orbit and operations are
determined by the fact that BIRD is foreseen for a
piggy-back launch. That means that the design
has to fit in several scenarios. At least a LEO
from 450 to 900 km (500 km preferred) with an
inclination >53° is required.
The operational lifetime is 1 year with a 10 min
duty cycle over land regions. This restriction is
coming from the limited data volume which is
able to handle in a store-and-forward manner
with at least one Mission Operation Center and
another small experimental ground station for
payload data receiving. Besides that it underlines
the characteristic of the BIRD mission to be a
demonstrator and not an operational system.
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Scientific Instruments

Infrared Camera - First Steps

Direct detection of hot spots with the required high
resolution is not compatible with the limited re-
sources of a microsatellite. Therefore special tech-
niques in the subpixel range for BIRD were devel-
oped [2]. Based on staggered IR-line arrays a first
two-channel imaging system called IRCAM was
built. The main parameters of the detector are given
in Table 2.

Table 2 – IR-Detector parameters for BIRD

Detector material HgCdTe
Spectral channels 3.4 – 4.2 µm

8.5 – 9.3 µm
Detectivity 1010cmHz1/2/W
No. of elements 1024 (2 Arrays available)
Array format 2x512 staggered
Element size 30 x 30 µm
Element stagger 15 µm
Max. pixel rate 5 Mhz (4 outputs)

Fig. 1 – One channel of IRCAM - Sensor Head with
cooling engine

The detector of the IR-camera head as shown in fig-
ure 1 is cooled to 80 K operating temperature by a
separate Stirling cooler. This system was intensively
tested under laboratory and airborne conditions. Sev-
eral airborne campaigns demonstrated the feasibility
of the BIRD imaging concept (see Figure 2).
The system performance allowed the detection of
hot spots with a size of a tenth of the GSD if the
temperature is 800 K or higher. That means from
the proposed BIRD orbit fires in the 30 m range are
able to identify.

Fig 2. – Airborne experiment results:
hot plate of 1m² with 200°C (cross
marked) detected from 3000 m altitude.
MWIR-image above, LWIR below

However the first results also identified the main
disadvantages of the design- the high power con-
sumption for cooling (40 W cool-down, 32 W
operation per channel) and the significant influ-
ence of thermal radiation coming from the in-
strument inner structure. The ladder is namely
caused by the fact that due to cost reasons IR-
lense and cold shield design inside the dewar of
the detector was insufficiently adjusted.
This was the reason to change the approach for
the flight model of the BIRD- IR-camera.
The IR-electronic unit, providing A/D conversion,
detector control and calibration operation as well
as digital data handling for both channels was
kept unchanged.
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Hot Spot Recognition Sensor (HSRS)

Equipped with the same detector as before a inte-
grated detector/ cooler design was developed and
qualified (see Figure 3). It consumes a factor of 4
less power. Together with a new lens design the inner
radiation disturbances could be decreased signifi-
cantly.

Fig.3 – Miniaturised integrated detector/ cooler as-
sembly

Fig.4 – Engineering Model of the HSRS Camera Head,
calibration covers separated

Due to the strong requirement of the co-alignment
stability in the line-of-sight of the MWIR to the
LWIR channel (±0.2 arcmin @ duty cycle) the
original design of two independent camera heads
were combined in one optomechanical structure
with a special thermal control system. As shown
in Figure 4 a cover in front of the IR-lenses is
foreseen contai-ning a heatable blackbody for in-
flight calibration purpose. The inherent total fail-
ure risk is minimised by a separation mechanism
that rejects the cover sytem in emergency cases.

Wide Angle Optoelectronic Stereo Scanner
(WAOSS-B) – an Example of Hardware Reuse

This instrument is the VIS/NIR-sensor of the
BIRD payload. Actually developed for the
MARS-96 mission a flight spare model will be
used and modified slightly.

-0,2

0

0,2

0,4

0,6

0,8

1

400
450

500
550

600
650

700
750

800
850

900
950

1000
1050

1100
1150

1200

Wavelength (nm)

T
ra

n
sm

is
si

o
n

 (
%

)

Fig. 5 - Spectral bands of WAOSS-B (NIR doubled)

New lenses with integrated filter providing nar-
row spectral bands over a wide field of view of
50° (see figure 5) will adopt the instrument to the
tasks of vegetation exploration. On the other hand
the in-track stereo capability is a important fea-
ture for the cloud investigations.
Due to the modular electronic concept of
WAOSS-B almost no hardware modification are
needed and the re-configuration is concentrated
on the software side.
A special requirement was set to the power sys-
tem of BIRD because the camera electronics of
WAOSS-B was developed for a 28V DC stan-
dard bus voltage.
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BIRD-Instrumentation as an independent Multi-
Sensor Assembly

The development of the BIRD components was from
the beginning sub-system-oriented. In the case of the
payload the functional architecture allows full
integration as well as calibration and test
independently from the spacecraft. The interfaces
are reduced to a minimum (power, telemetry/
telecommand, structural and thermal attachment)
which have to be defined early but realised on the
very end of the development timeline.

Payload Data Handling System (PDH)

The PDH is the functional integrative part of the
scientific payload. It has data interfaces to all
instruments, the spacecraft bus computer (SBC) and
the down-link telemetry channel.
Three kinds of tasks are assigned to the PDH:
• distribution of high level commands and

Housekeeping extraction out of the payload data
stream

• science data storage, telemetry frame generation
and down-link

• on-board thematic data compression

Each of the two functional redundant PDH-
subsystems is based on a TMS320C40 digital signal
processor equipped with 1 Gbit mass memory.
Advanced multi-chip module technology allows to
compress the size of the processor module to one
standard European Size printed circuit board.

Fig. 6 – Both sides of the PDH processor board,
Mass memory (1 of 2 assembled) left,
3D-MCM-processor hybrid right

Figure 6 provides the status of this development.

Other technological experiments are the fibre
optic interconnects or on-line real-time parallel
processing. Also the tests of the on-board geo-
coding facility and different classification
algorithms with the neuro-chip NI1000 are of
experimental character.

Technical Data Overview
To summarise this section Table 3 gives the
main technical data of the payload calculated
from an altitude of 450 km.

Table 3 - Main technical parameters of the BIRD scientific instruments

HSRS - MWIR HSRS - LWIR WAOSS-B
Spectral bands 3.4 - 4.2 um 8.5 - 4.2 um forward 600 - 670 nm

nadir, backward 840 - 900 nm
F-number 2.0 2.0 2.8
Focal length 46.39 mm 46.39 mm 21.65 mm
Pixel size 30 x 30 um 30 x 30 um 7 x 7 um
No. of pixels 2 x 512 staggered 2 x 512 staggered 3 x 5184 (2884 illum.)
Instantaneous FOV 2.22 arcmin 2.22 arcmin 1.11 arcmin
FOV across track 19 deg 19 deg 50 deg
FOV in track n.a. n.a. +25 , 0, -25 deg
Ground pixel size 290 m 290 m 145 m
Swath width 148 km 148 km 418 km
Quantization 14 bit 14 bit 11 bit
Data rate (aver./ peak) 693/ 4790 kbps 693/ 4790 kbps 597/ 600 kbps
Power consumption 42 W incl Electr. Unit 42 W incl. Electr. Unit 18 W
Mass 7.3 kg Camera Head + 6.5 kg Electronic Unit 8.4 kg
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Development of the Spacecraft Bus

Spacecraft Modes - Task of Attitude and Orbit
Control

To operate the BIRD payload nearly all functions of
a classical remote sensing spacecraft have to be
fulfilled. Due to the high impact on cost and space-
craft size an early decision was to do without any
propulsion system. So no active orbit maintenance
can be provided and a consequence of that is the
limited lifetime to approximately one year (450 km
altitude).

Other constraints are:
• the push-broom principle of the scientific in-

struments – slew rate of < 1°/s ,
• requirement for pointing accuracy of + 5

arcmin with a pointing knowledge of + 0.2
arcmin per axis,

• the need for optimal Sun-pointing to generate
sufficient power.

200 W peak power are needed for the detection
mode. Together with the data volume constraints
this mode is defined as the duty cycle which can be
worked out in three adjacent orbits for 10 min each.

Basically 6 modes of operation of the spacecraft
are defined:
1. Sun pointing mode – accumulation of energy
2. Earth pointing mode G – coarse, data down-

link
3. Earth pointing mode F – fine, remote sensing
4. On-board processing and experimental sensor

data classification
5. Remote sensing and down-link at night-time
6. In-flight calibration mode – Moon or deep

space pointing.

The required 3-axis stabilisation is provided by a
set of components with any new developments
among them.

Fine Attitude Actuator – Reaction Wheels

After separation of the spacecraft from the launcher
at first 3 pairs of magnet torquers with a dipole
moment of 3 Am² will decelerate BIRD’s initial
movement. A concept without magnet field sensor
is under consideration. The magnet torquers are part

of the secondary structure and serve as a corset
for the multi-layer-insulation at the same time.

Reaching a slew rate below 4°/s the spacecraft
motion is taken over by 4 reaction wheels which
are oriented according to the planes of a tetrahe-
dron. This wheel is under qualification (see figure
7) with the parameters given in table 4.

Table 4 – Parameters of the BIRD Reaction Wheel

Angular momentum >0.2 Nm
Slew rate (BIRD specific) 2 – 4°/s
Voltage 16 – 24 V
Power
(Steady state/  maximum) 1.2 W/ 9 W
Mass < 1 kg
Dimensions dia. 80 x 80 mm
Temperature range -15°C –  +50°C
Vibration load 10 g rms,

20 g @ 5 msec
Friction < 0.3 mNm
Electro-mech. time constant 10 s

Fig. 7 – Flywheel and control electronics of the
BIRD Reaction Wheel on an integration
spider

The accompanying attitude sensor is an integrated
laser gyroscope containing sensors for all three 3
axis with an resolution of 2.7 arcsec at a drift of
1°/h. The attitude data can be delivered with an
update rate of < 100 Hz. The size is comparable
with that of one reaction wheel.
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Fine Attitude Detector – Star Sensors

Another important development is the star sensor
which will be outlined for BIRD in two configura-
tions. It is dedicated to the high-accuracy attitude
control tasks during data acquisition from Earth.
However one of the star sensors is switched on all
the time during mission. According to the figure 8
one points in orbit normal position and the other is
oriented 30° off that direction towards off-nadir
side.

Fig. 8 – Modular design of the BIRD Star Sensor
twins

Including an own processor it provides a fully
autonomous attitude determination with 100%
probability. The sensor inter-link capability is im-
plemented for improvements of the roll axis accu-
racy. The main technical data are given in Table 5.

Table 5 – Parameters of the BIRD Star Sensor [[3]]

FOV 15° x 15°
24° x 24° optionally

Sun exclusion angle 45°
Star accuracy < 2.5 arcsec
Line of sight accuracy < 1.0 arcsec pitch/ yaw

< 10 arcsec roll
< 1.0 arcsec (2 sensors)

Sensitivity 6.0 mv @ ti = 100 msec
Update rate up to 10 Hz
Slew rate < 0.8°/s full accuracy
Power 5 W Sensor

1 W Peltier
Dimensions 70 x 130 x 230 mm³
Mass 1.2 kg
Life time 2 – 5 years LEO

The AOCS is controlled by the Spacecraft Board
Computer and completed by a GPS as shown in
the figure 9.

Fig. 9 - BIRD Service Segment with 4 reaction
wheels (middle), Laser-Gyro (right), GPS
(box left) and the both battery stacks with 2
x 4 NiH2 cells (2,5 V, 12 Wh each) plus
power control unit.

BIRD Architecture - a Highly Integrated
Modular Design

Structural Concept

Configurations of small satellites are mostly
difficult to structure because there is a strong
interaction of geometrical and functional re-
quirements within a small volume.
Commonly, payload and subsystem components
in combination with the satellite structure have to
be developed in an integrated and highly iterative
design process considering the spacecraft as one
complex device.

According to the figure 10 the primary structure
of the BIRD architecture is a cube-shaped tower
of three segments:
1.  Service Segment as the basic segment with

separable launcher interface containing bat-
teries, reaction wheels and gyroscope as well
as the GPS system

2.  Electronic Segment as a container of payload,
spacecraft electronics and the communications
package

3.  Payload Segment as a platform for the scien-
tific instruments and the star sensors.
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Fig. 10 - Flight configu-
ration of
BIRD

Service Segment

Electronics
Segment

Payload
Segment

S-Band
Antenna

The configuration is completed by the secondary
structure namely the solar cell system of three solar
panels, two of them deployable, the antennas and
magnet torquers.

Besides the fact that the highly compact design is
open for more than one launch opportunities the
modular concept comprises growth potential for
alternative applications. Any payload with dimen-
sions of 460 x 460 x 250 mm³ could be adapted and
supplied with an average power of about 50 W.

Parallel development, manufacturing and integra-
tion relaxes the time scales of the project. The
figures provided on the next chapter are taken
within few months from the begin of 1999 and
demonstrate the effectiveness of this approach
during the development of the Structure Thermal
Model (STM) already. It is an important step for the
design verification and minimises the risks to build
the Proto-Flight Model.

Environmental Tests - Irreplaceable

Figure 11 gives an impression of the STM- integra-
tion - the first time the whole spacecraft appeared.
The comparison to the figure 10 shows the consis-
tence of the design presented in Phase A and B of
the project.
All main interfaces could remain stable, mass and
size have grown not more than 10 %.

Fig. 11 - STM under integration, on top the Payload
Segment with WAOSS-B, Star Sensor 1
and HSRS-MWIR/ LWIR from the left, be-
low the telecomms package and the re-
lease mechanism of the solar panels

Thermal Design and Test

Thermal-vacuum testing was focused on two
problems. How the dynamic of power dissipation
influence the temperature profile of the satellite
and how sensitive the design would be due to the
changing, because not sun- synchronous, orbit
conditions. Here hot (much sun incidence) and
cold (long eclipse) cases were studied.
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The thermal design itself is strictly passive. The
basic elements are the bottom plate serving as ra-
diator and the heat pipes leading from the payload
as the main hot spot to it. All other problems are
solved by spot heating or element-oriented heat
dissipation.
Figure 12 provides the STM before TV-Test in
flight configuration. All honeycomb structure of the
solar panels is covered inside by highly sun-
reflective and heat-dissipating coating.

Special attention was raised on the technology for
the structure of the scientific instruments. The base
line to build with CFRM to fulfil the requirements
of co-alignment has the main disadvantage to be a
thermal insulator in-plane (measured coefficient
0.55 W/mK). With the help of a intermediate layer
of 3 mm CFC (Carbon Fibre Carbon) in combina-
tion with two CF-honeycomb panels at least an
thermal conduction coefficient of 60% of a compa-
rable aluminium structure could established.

The thermal-vacuum test was combined with in-situ
measurements of the optical orientation. Deviations
of 1 arcmin over the duty cycle and 3 arcmin over
the simulated orbit influences (hot/ cold case) could
be detected.

Fig.12 – BIRD equipped with multi-layer-insulation
before TV-Test

Figure 13 provides some of the temperature profiles
of BIRD components. Beginning from thermal
equivalent room temperature firstly the cool down
characteristics was checked without payload opera-
tion (Basic mode 40 W dissipation). Then 5 orbit
cycles after another with remote sensing sequences
where simulated without critical results.

Fig. 13 – Graphs of thermal cycles of the BIRD STM
under TV-test

Mechanical loads and vibration testing

To launch a spacecraft piggyback is surely a draw
back because there is no specific launch fixed at
the beginning of the design process. Therefore top
level requirements where set due to possible
launch options. Actual in the BIRD case the
flexibility has extended to a status that two kinds
of separation systems can be adapted to the bot-
tom segment with slightly modification of at-
tachment interfaces and CoG adjustments.

To reach enough stiffness to avoid interference
effects with the natural frequencies of the launch
vehicle a design goal of 100 Hz was set for the
BIRD’s natural frequency.

First analysis with the help of FEA resulted in
115 Hz which gives some margin to the elasticity
of the separation mechanism. The full verification
of the serviceability of the design was given by
tests.
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Fig. 15 –Results of one of the resonance surveys
during vibration testing, Level of power
spectrum density 0.05 g²/Hz + 6 db/oct [[4]]
indication:
R 22 – HSRS Electronic Unit
R23 – Magnet torquer Nadir
R24 – HSRS Camera head
R25 – WAOSS-B
R29 – PDH electronic board
R30/4 – Solar panel
R30/6 – Bottom Segment

Next steps – the Proto-Flight model

With the pleasant results of the STM-phase the
manufacturing of the Proto-Flight has started al-
ready. Currently the work is concentrated on the
preparation of integration and test environments for
instance an air-bearing facility for AOCS-Tests
and the calibration concepts.
Another key point is the initiation of the electrical
functional process including the telecommunica-
tions equipment as well as the programming of the
desired software.
Flight readiness is dedicated to mid-2000 but the
launch date is determined by an affordable launch
opportunity and could also be in 2001 [5].

The authors have to thank all the BIRD team
members providing the content of this article with
their work which regrettably could not cover all
activities.

Abbreviations

GSD – Ground Sample Distance
FOV – Field of View
MTF – Modulation Transfer Function
LEO – Low Earth Orbit
CFRM – Carbon Fibre Reinforced Material
CoG – Centre of Gravity
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