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Starting from the quantum-mechanical Fano-Anderson Hamiltonian, we derive classical equations of motion
for coordinates associated with the discrete and continuum states. The frequency-dependent absorption spectrum
associated with this classical system exhibits the same Fano line shape as the quantum-mechanical system when
appropriate correspondences between classical and quantum variables are made. In the time domain, the response
of this classical Fano oscillator depends upon the asymmetry parameter g that appears in the expression for the
Fano line shape. In particular, under the influence of impulsive driving of the system, the discrete oscillator’s phase
changes by /2 as ¢ increases from zero (maximum asymmetry in the frequency domain) to FFoo (minimum
asymmetry). Previously published ultrafast-laser-pulse-driven coherent-phonon oscillations in degenerate p-type
Si [K. Kato et al., Jpn. J. Appl. Phys. 48, 100205 (2009)] are discussed in light of these theoretical results.
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I. INTRODUCTION

In 1961, Fano published a (now classic) theoretical treat-
ment of the interaction of a discrete quantum state with a
background of continuum of states under the condition that
both the discrete and the continuum levels are excited by some
external perturbation.! The major result of that paper is an
asymmetric resonant line shape (known as the Fano profile)
associated with absorption by the coupled system. The line
shape is characterized by a frequency shift ARy and width
parameter I' that depend upon the coupling of the discrete
excitation with the continuum and an asymmetry parameter
q that depends upon the coupling as well as the relative
excitation strengths associated with the discrete and continuum
levels. Subsequent to Fano’s paper, this asymmetric resonance
has been observed in a wide variety of solid-state settings,
including ultraviolet absorption by excitons in insulators,’
infrared absorption by adsorbates on metal surfaces,>™ and
Raman scattering of optical vibrations in semiconductors.®
The Fano resonance is also a key element of the optics of
plasmonic nanostructures and metamaterials.’

Raman scattering in degenerate p-type Si exhibits one
of the cleanest examples of a Fano system. In p-type Si,
the discrete excitation—the optic phonon—couples to the
continuum of electronic excitations associated with inter-
valence-band transitions. Raman spectra obtained over a wide
range of incident photon energies and doping levels are well
fit by the Fano line shape,5® and the line-shape parameters are
quantitatively described by detailed theory.'®!! Local phonon
modes associated with the boron impurity in p-type Si also
exhibit the Fano line shape.'>!?

As with Raman scattering in Si, other Fano systems
have been predominantly measured in the frequency domain.
Recently, however, there have been several time-domain
investigations (of Zn, Bi, and lightly doped n-type Si) that have
been interpreted in terms of the discrete-state-continuum-state
physics that gives rise to Fano line shapes.'*!” In these
systems, the discrete level is also a phonon oscillation (that
is coherently excited by an ultrashort laser pulse), and the
coupled background is electronic in nature (with perhaps some
vibrational contribution in Bi). Quantitative information has
been extracted from the data by fitting the Fourier transform (of
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the time-domain oscillations) with the Fano line shape. A slight
twist to the standard Fano picture in these experiments is that
the coupled continuum is modified by the exciting laser pulse;
because of this, the line-shape asymmetry, width, and shift
depend upon the laser-pulse intensity, with all three generally
increasing as the intensity increases.'®!”

Time-domain coherent-phonon data have also been ob-
tained from degenerate p-type Si.'® These data exhibit a
curious feature that is directly observed in the time domain:
The phase of the coherent oscillations in the heavily doped
material is substantially different than the phase in lightly
doped Si. This observation raises the following question: Is
this phase difference due to the discrete-phonon—electronic-
continuum coupling that is responsible for the Fano line shape
observed in Raman spectra from degenerate p-type Si?

Motivated by these time-domain results, especially this
most recent one from degenerate p-type Si, and because
coherent-phonon oscillations are a classical manifestation of
the interaction of a femtosecond light pulse with a solid, we
have studied classical equations of motion associated with
the coordinates of a quantum-mechanical Fano model. We
first demonstrate that the classical system exhibits the same
frequency-dependent Fano profile as the quantum-mechanical
system. We then consider the time-domain response of
the system. In particular, we find that, when driven by
impulsive forcing (as is the case for the coherent phonon in
the experiments on heavily doped p-type Si), the phase of
the induced oscillations associated with the discrete oscillator
is a simple function of the Fano asymmetry parameter q.
For large |g| (which corresponds to weak excitation of the
continuum), the oscillations exhibit the expected sinelike
behavior. However, as g approaches zero, the oscillations
continuously become more cosinelike. As we demonstrate,
these results from our model are consistent with the phase
difference observed in the Si experiments.'®

II. FANO-ANDERSON MODEL

Due to its bilinear coupling of the discrete and continuum
states, the simplest quantum-mechanical model that exhibits
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the Fano line shape is the Fano-Anderson Hamiltonian,'

which may be expressed as

H = Eoala + ) Eblbe+ Y Vilabl +a'by), (1)
k k

where E| is the excitation energy of the discrete state |«), Ey
is the excitation energy associated with the continuum state
|k), and V; (assumed to be real) is the matrix element that
couples the discrete state to the kth continuum excitation. The
external perturbation is introduced through matrix elements
My, = («|M|g) and My, = (k|M|g) between the ground state
of the system and the discrete and continuum excited states,
respectively.

The absorption spectrum I (w) associated with the external
perturbation M is given by

I(@) =210 ) |Mj|*8(ho — E}), )
Jj
where j labels an eigenstate of the Hamiltonian H with

energy £ ; As has been previously shown,'>?° the absorption
spectrum has the Fano line shape,

2
1) = Iy LT 4 2 3)
where
Ig(w) =2mw Y | Mg *8(he> — Ex) )

k

is the absorption by the background continuum in the
absence of coupling to the discrete state. The parameter
€ =2(w — Qp — AQp)/ I is the normalized frequency, where
Qo = Eo/h,

|Vi|?
AQO_—PZhw_Ek (5)

and

2
L= 23 Vils(io - Ep. ©)

k

Here, P indicates the principal value. The asymmetry param-
eter g can be expressed as

Mgy +P Y My Vie/(hw — Ey) @
d 7S Mg Vidtho — Ep)
Typically, the range of frequencies over which the coupling is
manifest is quite narrow compared to €. In this case, hw in
Egs. (5)—(7) can be replaced by %2, making A2, I, and ¢
all frequency independent. 2
In Fig. 1, we plot I(w)/Ip(w) vs € for several values of
q. Generally, the line shape is asymmetric with a dip into
the background absorption that goes to zero at one particular
frequency (when € = —q). There are two interesting limits to
the line shape. The first limit is when the external perturbation
M does not couple to the background states |k). In this case,
Mg — 0, |g| — oo, and the line shape becomes a symmetric
Lorentzian. The second limit is when M does not couple to
the discrete state o). In this case, Mg, = 0, typically making
q very small (if not zero). In the limit ¢ — 0, the absorption
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FIG. 1. (Color online) Fano line shape for several values of the
asymmetry parameter q.

profile becomes a symmetric antiresonance in the continuum
absorption as Fig. 1 illustrates.

III. THE CLASSICAL FANO OSCILLATOR

A. Equations of motion

We derive classical equations of motion for coordinates
0 = (a+a) and g = (b + bl), assuming bosonic com-
mutation relations for the raising and lowering operators, e.g.,
[a,af] = 1. Using ih% = ([A,H]), it is straightforward to
obtain the coupled equations of motion,

2
il <E§+ZV£) 0+ VilEo+ Egr =0,

2
dt k k
®)
and

dé]k

2
hd2

+Elqi+ Y Viqe + Vi(Eo+ E)Q =0. (9)
K'#k

We now consider motion of coordinate Q under the
influence of an external driving force Fp(¢) on the discrete
oscillator and forces Fy(¢) on the background oscillators. We
also ignore terms of order V? and define classical coupling
coefficients c; = Vi(Ey + Ey) /hz. Because there is no average
absorption for harmonic driving forces without damping
explicitly included, we include damping in each of the g
equations through a damping parameter y;, although for small
enough damping, the results are independent of y,. With these
modifications, the equations of motion can be written as

d*Q )
>t 20+ chqk Fo(0). (10)
and
dz‘]k ko 2
ﬁ+ykz+wqu+ckQ=Fk(t), (11)
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where wy = E/h. As we now show, Eqgs. (10) and (11) result
in a Fano profile that is equivalent to that of the quantum-
mechanical system; we, thus, take Egs. (10) and (11) as the
defining equations for the classical Fano oscillator.

B. Frequency-domain response

The frequency-dependent response of the system is found
by considering driving forces of the form F;(t) = Re(F;e~*")
and assuming that the coordinate time dependence can also be
written as Q(t) = Re(Qe™'®") and qi(t) = Re(gre'"). For
this case, Egs. (10) and (11) become

(- )0+ b = Fo. (12)
k

and
(@ — 0 —inw)g + 0 = F. (13)

These equations can be straightforwardly solved for Q and gy
as

Fo =Y, ciFi/Zk

0= , (14)
Zo— > it/ Zk
and
1 /- Fp— F./Z
fzk=—(Fk—ck = Z"C"z"/ "), (15)
Z Zo = il Zk

where Z, = Q(z) - w? ang Z, = a),% — w? — iypw. Under the
assumption that Fp and Fy are real, the frequency-dependent
absorption can be calculated via

() = %Im (Z Fugi + F Q) : (16)
k

which results in
w F? 1
I(w) = —Im e
2 [;Z’C Zo =Y il Z

2
x (FQ - chﬁk/zk> } (17)
k

We note that the first term in Eq. (17) is the background
absorption /g. Generally, Eq. (17) has the Fano line shape
with line-shape parameters given by

1 2
AQy = ——R & 18
0 26() e; Zk ( )
r=4 3 % (19)
= —1m —_—,
w i Zk
and
Fo—%  2IgT — 37
q="2 5 : (20)
> (Fp — Tz

where %’ and X" are the real and imaginary parts of
Z k Ck F; k / Z k-

With a few approximations, this classical Fano line shape
essentially becomes identical to that of the quantum system. If
we take the limit y, = y — 0, then, for positive frequencies
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(w > 0), expressions of the form ), Ax/Z; can be expressed
for good approximation as

A 1 A
R
- Zi 2w W — @

+ % Xk: A — wp), 1)
which allows us to write A2y and I" as
AQy =P Xk: —(Z‘/_z ZZ (22)
and
I'=271 ) (cr/20)8(w — ax). (23)
k

If we further assume that the coupling coefficients c¢; and forces
Fy only depend upon k via wy, then the second term in Eq. (20)
vanishes and ¢ reduces to

_ Fo+PY, Filck/20) /(@ — o)
Ty, Fu(cr20)8(w — wy)

Comparing Eqgs. (22)-(24) with their quantum counterparts,
Egs. (5)—(7), we see that they are identical with the cor-
respondences Fo/Fy <> Mg/ Mg, and ¢ /2w <> Vi /h. This
last correspondence is not quite equivalent to the definition
cr = Vi(Ep + Ek)/hz. However, relevant values of w and wy
are typically not too different from the discrete frequency
Q. Thus, in Egs. (22)-(24), ci/2w can be substituted
with ¢ /(€20 + wi) = Vi /h without appreciably altering their
values.

We are aware of several other calculations of coupled
oscillators in the context of Fano-like response. We emphasize,
however, that none of these previously investigated models
include a true continuum background (of multiple oscillators)
coupled to the discrete oscillator. In an investigation of the
interaction of an adsorbate vibrational mode with a continuum
of excitations in the underlying solid, Sorbello considered the
coupling of a single oscillator with either one (highly damped)
background oscillator (Zg = w% — w? — iwyp) or a viscous
bath (Zp = —i a)yB).5 Both of these systems exhibit the Fano
line shape in the vicinity of the single oscillator’s natural
frequency. Indeed, our results, as expressed in Eqs. (18)—(20),
reduce to those of Sorbello in the limit of one background
oscillator and the replacement of Z; by either of Sorbello’s
Zp’s. Similarly, in their investigation of a sharp waveguide
mode with a broad plasmon mode, Klein et al. also calculated
the absorption associated with two coupled oscillators and
pointed out that the response in the vicinity of the sharp mode
appears Fano-like.”! Joe et al. investigated this same classical
system in the context of understanding the interaction of a
discrete quantum-dot electronic state with a continuum of
waveguide states.”> We also note the coupled-oscillator mod-
eling of infrared reflectivity spectra from the high-dielectric-
constant materials BaTiO3, SrTiO3, and KTaO3 by Barker and
Hopfield.* Although Barker and Hopfield did not make the
connection to Fano’s paper, their elegant analysis was later
extended to several oscillators by Struzhkin et al. as the basis
for modeling Fano-like features in the infrared vibrational

(24)
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spectra of ice.’*There are also examples from plasmonic-
nanomaterial optics where several coupled oscillators are used
to reproduce Fano-like spectra.>>%’

C. Time-domain response

We now consider Egs. (10) and (11) with more general
forces. In particular, we consider these equations with forces
that last for a finite time, and our goal is to find Q(¢) after
the forces have stopped acting on the system. We start with
the ansatz that the solutions can be written as a power series
in the coupling coefficients cy,

00 =000 + > a0 )+, (25)
k

and

a0 =g+ g O+, (26)

and that, for sufficiently weak coupling, each series can be
truncated at the terms linear in the ¢;’s. [It can be shown,
using the Laplace transform, that a sufficient condition for this
truncation is Y, (cx/wx)* < 3. This inequality is typically
satisfied if I" « €29, as can be ascertained from Eq. (23).]
With this ansatz, the equations of motion simplify to a set of
hierarchal equations, the first three of which are

d? Q(O)

T %07 = Fow, 7)
d? 0 d
i ;’k +wlq = Fu(o), (28)
and
dZQ(l)
T+ 9%0 =4 (29)

We further assume initial conditions Q(t — —o0) =0,
Ot - —00) =0, gi(t = —00) =0, and g (t - —o0) = 0.
As outlined in Appendix A, the asymptotic solution for Q(¢)
to linear order in the ¢;’s can be written as

_ LGV S ) N
Q(f)_«/ﬂlm[< 0 +Xk:§2k Q%—w,%—iy;ﬁ%)
x exp(i Qol_)i|» G0

where I:}(SZ) is the Fourier transform of F;(¢), Q; =

a),% - ykz /4, and 7 indicates the long-time solution. For
symmetric impulsive forces centered at = 0, F(—) is real
and F;(—2) = F;(R2). In this case, Eq. (30) can be written as

dz_[( Fi(Q0)

2y Q0 — wy

o) = Fo(Qo)+ P Z >sin(Qof)

- (n > o B @0)8(Q0 — wk)) COS(Qof)}, 31)
X 2a)k
in the limit that y, =y becomes negligibly small. [The
evolution of Q(¢) toward this asymptotic limit is discussed
in Appendix B.]
Comparing Eq. (24) with Eq. (31), we see that the ratio of
the amplitudes that multiply the sin(£2y7) and cos(£2f) terms in

PHYSICAL REVIEW B 84, 064308 (2011)

90 T ) T

60

T

30

T

o
S
1

—atan(q) (deg)

o
=]
I

-10 -5 0 5 10

FIG. 2. (Color online) Phase ¢ = —atan(q) vs ¢ for the classical
Fano oscillator. The solid circle (with vertical error bars included) is
the phase that has been measured for a degenerate p-type Sisample (p
between 3 x 10" and 1.5 x 10%° cm~3);'® the horizontal line spans
the range of estimated g values for the sample as deduced from Fig. 3
(see text for details).

Eq. (31) is essentially the classical Fano asymmetry parameter
q evaluated at w = 2. The only differences are as follows:
(i) the appearance of the force Fourier transforms F;(Qo) rather
than the harmonic force amplitudes F; and (ii) the presence of
1/wy rather than 1/w in the sums over k, which is typically of
little consequence. Thus, we can express Eq. (31) as

¢ Fu(S0)
Zwk Q() — Wk

2w
o) = £ (FQ(QO) +P Z

X |:sin(Qot) + %ICOS(QM)} , (32)

or equivalently,

v Fu(Q0) )

2w Q0 — wi

@) = <FQ(90> +P Z

x /1 + q~2cos[Qot — atan(q)]. (33)

In Fig. 2, we plot the phase ¢ = —atan(g) as a function
of the asymmetry parameter g. The extreme limits of ¢ on
the behavior of Q(¢) are evident from Egs. (32) and (33) and
from the figure. If the background oscillators are not driven,
1/g = 0, atan(g) = +/2,?® and the oscillations are sinelike,
as expected for impulsive driving of a single oscillator. On the
other hand, if only the background oscillators are driven, then
g = 0, atan(g) = 0, and the oscillations are cosinelike.

IV. COHERENT PHONONS IN SILICON

Raman-scattering spectra from heavily doped (degenerate)
p-type Si exhibit a Fano line shape in the vicinity of the Si optic
phonon. Here, the Fano line shape arises from the interaction of
the optic phonon with a valence-band electronic continuum as
both the phonon and the electronic continuum Raman scatter
the incident radiation. In Fig. 3, we summarize the results of
two studies in which ¢ has been determined as a function of
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FIG. 3. (Color online) Experimental Fano asymmetry parameter
g deduced from Raman-scattering data vs photon energy hw for
degenerate p-type Si. Indicated doping density for each curve is
in units of 10! cm~3. Triangles are from Ref. 8, and circles are from
Ref. 7. Dotted lines are extrapolations of the 5 x 10! and 1.6 x
10%° cm~3 data to liw = 1.55 V.

photon energy for a total of six different doping densities.”*

For photon energies away from the strong Raman-scattering
resonance at ~ 3.4 eV (associated with direct valence-band-to-
conduction-band transitions),®?° the data show the expected
monatomic dependence of g on doping density: more heavily
doped samples exhibit smaller g values, owing to stronger
scattering by the continuum with increased doping.

Recently, Kato et al. measured the coherent response of
the Si optic phonon in a degenerate p-type sample using
ultrafast pump-probe reflectivity at 1.55-eV photon energy.'®
From their data, it can be deduced that the phase (as defined
above) of the coherent oscillations in their degenerate sample
is 32 &£ 5° larger than in undoped Si. The phase in undoped Si is
(£)90° (due to purely impulsive excitation of the optic phonon
by transiently stimulated Raman scattering);**! therefore,
the phase of the heavily doped sample in the paper by
Kato et al. is —58 &+ 5° (when constrained within the bounds
—1/2 < ¢ <m)2).3?

In light of our time-domain result for the classical Fano
oscillator, the significant phase shift in the optic-phonon
oscillations in degenerate p-type Sisuggests that the difference
in phase between undoped and heavily doped Si is due to
the time-domain interaction between the concurrently excited
discrete optic phonon and the valence-band continuum. A
quantitative comparison supports this conjecture. As Raman-
scattering measurements with 1.55-eV photons on degenerate
p-type Si have not been reported, we use Fig. 3 to estimate g at
1.55 eV for the Kato sample. The Kato sample has a reported
value of p between 3 x 10" and 1.5 x 10 cm™3.!% As
several of the curves in Fig. 3 illustrate, vs photon energy log(q)
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varies linearly as the photon energy approaches 1.55 eV. Thus,
we linearly extrapolate the 5 x 10'°- and 1.6 x 10*°-cm™3
curves and see that g is expected to lie between ~ 1 and 4
at 1.55 eV. This range of g can be compared with the range of
q that gives rise to the measured phase shift of —58 & 5. Using
q = —tan(¢), the measured phase shift corresponds to a range
of g between 1.3 and 2.0, which is entirely consistent with the
range estimated from the Raman-scattering measurements.

Due to the simplicity of the Fano-Anderson Hamiltonian
and the resulting classical equation of motions, it is worth
considering potential limitations of the application to coherent-
phonon oscillations in Si. The first potential limitation is the
Fano-Anderson description of the background and its coupling
to the discrete oscillator. As can be inferred from Eq. (1),
in application to the Si problem, the background excitations
describe valence-band electron-hole pairs. This description
is more restrictive than the canonical practice of keeping
explicit track of all electron states.>*°> However, because
both the laser photons and the optic phonons have (essen-
tially) zero momentum, momentum conservation restricts the
coupled background to electron-hole pairs with zero total
momentum, and so, the simpler Fano-Anderson background
is not as restrictive as it might first appear. Second, in our
model, the photons are introduced only at classical level.
This approximation certainly cannot describe the complexity
associated with a quantum description of the stimulated Raman
processes that drive both the oscillator and the background.**
However, at 800 nm, Raman excitation of the Si optic phonon
is impulsive,?>*! and so, describing the photon excitation as a
classical impulsive force may also not be unduly restrictive in
this application. In order to assess these potential limitations of
the present model, we are currently investigating a model for Si
with a more standard description of the electronic excitations
as well as a quantum description of the photons.*® Nonetheless,
the results for the classical Fano oscillator do indicate that
the discrete-continuum coupling should affect the phase of
coherent-phonon oscillations in a system where Fano-like
coupling occurs. Furthermore, the quantitative agreement
between the model and the experimental results for Si suggests
that the model presented here indeed captures the essence of
this interaction in the time domain, at least, for this particular
application.

V. SUMMARY

Starting with the Fano-Anderson Hamiltonian,'” we have

studied the dynamics associated with classical coordinates
derived from that Hamiltonian. When driven by external
harmonic forces, the classical system exhibits the same Fano
absorption line shape as the quantum-mechanical model when
appropriate correspondences are made between the classical
and the quantum parameters of the system. Thus, we take
the equations of motion for the classical coordinates as the
definition of the classical Fano oscillator. We have further
studied the time dependence of the discrete-oscillator coordi-
nate when the system is driven by forces that exist for a finite
time. Under the condition that the forces are impulsive (and
symmetric about r = 0), the phase of the ensuing oscillations
has a simple relationship to the Fano asymmetry parameter
g that appears in the expression for the absorption profile.
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These results indicate that the dynamics that give rise to the
Fano line shape in the frequency domain also play a role in the
time-domain response of coherently excited normal modes. We
find good agreement between the predicted and the measured
phases of the coherent oscillations of the zone-center optic
phonon in degenerate p-type Si.'®
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APPENDIX A

Here, we outline the derivation of the asymptotic result for
the time dependence of the coordinate Q(¢), Eq. (30). To do
this, we extend the technique used by Landau and Lifshitz to
find the general solution of the undamped harmonic oscillator
subject to a time-dependent force.’” We start by introducing
the functions,

40
‘V“”=—i +iQ0Y, (A1)
d 0
0=y (B i) a, (A2)
and
m_do? 0]
v = = i, (A3)

and note that Q© = Im(¥ @)/, ¢ = Im(y")/ 4, and
Q;{l) = Im(\I/,El))/ 2. This allows us to rewrite Egs. (27)—(29)
as the first-order equations,

dv© o _
dy .
(=) =Ro. @y
and
dw) W _ Im(w“’)
— QW Tk A6
dt 0%y Qk ( )

With the initial conditions given in Sec. III C, the solution to
Eq. (Al)is

WO1) = exp(i Qot) f dt' Fo(texp(—iQt)). (A7)

In order to find the asymptotic limit of W (¢), we consider
Eq. (A6) for ¢ such that Fp(t) has vanished. In this case,
we can replace the upper limit on the integral by oo. If we
define the Fourier transform of a time-dependent function f(z)
as

«/%_n/j; dt f(t)exp(i2t),

then we can simply express the asymptotic limit W (7) as

WO(7) = V21 Fo(—S0)exp(i 1)

f@= (A8)

(A9)
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Similar to Eq. (A7), the solutions to Egs. (AS5) and (A6)
may be written as

0 O) = explli% — 72/2)] / dt' F()

x exp[—(i Qi — yi/2)t'], (A10)

and

. ©) ./
[—m(gz @ ))i|exp(—i520t’).

w(1) = exp(i Qo) / dt’
(A11)

The solution for \D,EI)(t) is found by substituting the right-hand
side of Eq. (A10) into Eq. (A11) for @[/,EO)(I/). Doing this and
looking at the asymptotic limit \IJ,EI)(I_), it is straightforward to
show that

v(f) = «/_Z—Q())Qexp(iﬁof). (A12)

— a)k — 1Yk
Using the relations Q©@ = Im(Ww©®)/Qy and Q}’ =
Im(\lllgl))/ Qp, the results expressed by Egs. (A9) and (A12)
can be used in Eq. (25) to produce Eq. (30), the result for Q(7).

APPENDIX B

Here, we look at the complete time dependence of Q(r)
for impulsive driving by Dirac §-function forces F;(t) =
V27 I:“, 8(t). [The constant F; is the Fourier transform of F;(1).]
In this case, the results in Appendix A can be used to easily
obtain Q©(¢) and q(o)(t) as

‘/_Q

09 = sin(Q1) (1), (B1)

and

*/_ kexp( Vit [2sin(D)O).  (B2)

g (1) =
Because q,&o) = Im(I//,EO)) / 2, this result for q,ﬁo) can be used
in Eq. (Al1) to find W{"(r) and thus Q\" = Im(¥{")/ .
Neglecting the nonresonant terms (which results in negligible
error), the solution for Q;cl)(t) can be written as

V21 EO(t) { Yilcos(Qot)—cos(Qit)exp(—yit /2)]
402 (Qk — 0%+ y2/4
n 2(S2 — S20)[sin(§2¢2)exp(—yit /2) — sin(§201)] }
(Q — Q)2+ y2/4

0, (t) =

(B3)

As per Eq. (25), we now multiply Eq. (B3) by ¢, and sum over
the continuum index k. In the limit y, = y — 0, the sums
involving cos(£2pf) and cos(€2,) equal zero, and we are left
with

ZC ngl)(f) \/_O(t) Z e By sin(awyt) — Sin(Qot).

Wy wr —

k k
(B4)
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FIG. 4. (Color online) Components of Eq. (B6) vs Q. Parts (a)
and (b) correspond to narrow and wide continua, respectively (see text
for details). The individual curves correspond to (i) the sum of terms
inside the outermost parenthesis on the right-hand-side of Eq. (B6),
(ii) the term containing cos(£2¢?), (iii) the term containing sin($2¢?),
and (iv) Si(wmin?) — Si(wmaxt). Curves (ii)—(iv) are offset for clarity.
The asymptotic limit 7z cos(£2yt) is plotted (dotted curve) with (i).

Combining this result with Eq. (B1), we have the final result
for Q(¢) with §-function driving,

V27 ® F
(1) = (t) [(FQ +P Z Zwk(go — wk))sin(Qot)
Ck stm(wkt)
+P B5
Z 204 (S20 — a)k):| (B

We first note that the term containing sin(£2¢¢) in Eq. (BS) is
identical to the likewise term in Eq. (32). Thus, for a §-function
impulse, this part of the asymptotic result is valid for all # > 0.
The remaining term in Eq. (B5) evolves into the cos(£2p¢) term
in Eq. (32).

To investigate the evolution of this term, we consider a
simplified case where ¢ and F vary slowly enough that they
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may be taken as independent of %, i.e., ¢,y = ¢ and Fk = I:"B.
We further assume that the background density of states g(wy)
is constant [g(wy) = g)] over a range of frequencies from
Wmin t0 Wmax and is zero elsewhere. With these assumptions,
the last term in Eq. (BS) can be replaced by an integral
over the continuum frequencies. Evaluating the integral, we
obtain

P Z ckasm(a)kt)
2w (820 — wi)

chB . .
T ({Sil(@max — 20)2]+Si[(£20 —@min)t1}c0s(£207)
+ {Cil(@max — S20)t] — Ci[(0 — @min)t]}sin(207)

+ Si(@mint) — Si(@max?)), (B6)

where Si(x) and Ci(x) are the sine-integral and cosine-
integral functions, respectively. Before considering the time
dependence of Eq. (B6) in detail, we note that, because
Si(x) — /2 and Ci(x) — O for large x, the asymptotic limit
of Eq. (B6) is given by

Fsin(agf wcgF
Z ciFisin(exl) cs Bcos(Qof). B7)

200(Q — ) | 2%

We further note that, under the assumptions applicable to
Eq. (B7), the term containing cos(£2p¢) in Eq. (31) becomes
identical to this last expression.

In Fig. 4, we plot the functions contained in the out-
ermost parenthesis on the right-hand side of Eq. (B6)
for two example continua. Figure 4(a) is for a fairly
narrow continuum: wmpin/ 0 = 0.9 and wnax/ 20 = 1.05,
while Fig. 4(b) is for a much wider -continuum:
Wmin/ 20 = 0.3 and wmnax/ R = 3.0. As can be ascer-
tained from the figure, in both cases, the contributions
from the {Ci[(wmax — 20)¢] — Ci[(20 — ®min)t]}sin(Ro?) and
[Si(wmint) — Si(wmaxt)] terms are relatively insignificant.
Furthermore, because Si(x) becomes nearly equal to its
asymptotic limit for x & 2, the term containing cos($2¢?)
becomes nearly equal to its asymptotic limit on a time
scale given by the larger of 2/(wmax — 20) and 2/(2 —
Wmin)-

These results indicate that time-domain data may also
provide information on the bandwidth of the coupled contin-
uum. For example, the coherent-phonon data from degenerate
p-type Si are well fit by a single oscillator with constant
phase,'® indicating that the asymptotic limit is established
very quickly, as illustrated by Fig. 4(b). This observation
suggests that the bandwidth of the coupled continuum is
fairly wide for degenerate p-type Si. Indeed, for p-type
Si with a hole concentration on the order of 102° cm~3,
the coupled bandwidth is significantly larger that the optic-
phonon energy of 0.064 eV.” In contrast, high-laser-intensity
coherent-phonon data from Zn exhibit a significant phase
difference between early and late times,' indicating that
it takes a few cycles to reach the asymptotic limit, as
is the case for the narrow-bandwidth results shown in
Fig. 4(a).
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