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The conductivity effective masses of electrons and holes in Si are calculated for carrier temperatures from 1 to
3000 K. The temperature dependence of the electron mass is calculated by use of a phenomenological model
of conduction-band nonparabolicity that has been fitted to experimental measurements of the dependence of
the electron conductivity effective mass on carrier concentration. The hole mass is investigated by tight-
binding calculations of the valence bands, which have been adjusted to match experimental values of the
valence-band curvature parameters at the top of the valence band. The calculations are in excellent agree-
ment with femtosecond-laser reflectivity measurements of the change in optical effective mass as hot carriers
cool from 1550 to 300 K. © 2002 Optical Society of America
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1. INTRODUCTION
The conductivity effective masses of electrons (me) and of
holes (mh) are important parameters that affect the mo-
bility, electrical resistivity, and free-carrier optical re-
sponse of a semiconductor. Most commonly, these
masses are simply designated by their values at their re-
spective band edges, which for Si are me0 5 0.259 m0 and
mh0 5 0.33 m0 , where m0 is the free-electron mass.
However, under conditions of large carrier concentration
or elevated temperature, the conductivity masses can
vary significantly from their band-edge values. These
variations are due to the complicated nature of real bands
in a semiconductor, which can include nonparabolicity
and the presence of individual bands that are split off
from the bands that define the conduction- or valence-
band edges.1

Ultrafast laser excitation of a semiconductor can easily
produce large carrier densities, temperatures, or both,
significantly altering the optical response of the free car-
riers from low excitation values. For example, in a pico-
second experiment with Si in which holes and electrons
were excited to a common density of ;7 3 1020 cm23 at
;1000 K, an optical effective mass @mopt 5 (1/me
1 1/mh)21# approximately 20% larger than the band-
edge value was inferred.2

This result, as well as other picosecond optical
studies,3–5 prompted two theoretical investigations of
density-dependent conductivity masses in Si. In the first
investigation, based on a pseudopotential-derived band-
structure calculation of Si, the density dependence of the
carrier effective masses at 300 and 3000 K was
calculated.6 In the second study, based on a simple phe-
nomenological model of the nonparabolicity of the conduc-
tion and valence bands, the density dependence at 300
and 1700 K was calculated.7 Whereas the electron con-
ductivity masses determined in the two calculations agree
quite well, the calculated density dependences of the hole
0740-3224/2002/051092-09$15.00 ©
effective masses are quite different. For example, at a
hole concentration of 1021 cm23 and 300 K the pseudopo-
tential result is mh 5 0.95 m0 , whereas the phenomeno-
logical calculation yields mh 5 0.45 m0 .

In a picosecond investigation of Si the time scale of the
measurement is much longer than the electron–phonon
energy relaxation time of ;250 fs.8 Thus those early ul-
trafast measurements are of carriers that have thermali-
zed with the lattice. With femtosecond probing of Si the
situation is entirely different. One now has the possibil-
ity of detecting—in real time—the change in optical mass
as excited carriers relax to the band edge. Recently I
measured the femtosecond time scale reflectivity of Si ex-
cited to a carrier density of ;5 3 1018 cm23 at an initial
carrier temperature of 1550 K. These reflectivity mea-
surements are able to follow the carriers as they cool
to near room temperature and equilibrate with the lat-
tice. As is discussed in detail below, part of the time
dependence of the reflectivity signal is consistent with
a significant decrease in the optical mass as the electrons
and holes cool to their respective band edges: the experi-
mental results indicate a change in optical mass of
22.9 6 0.4% from 300 to 1550 K.

This precise experimental observation (and the incon-
sistency in effective masses obtained in the two previous
calculations) has prompted an evaluation of the tempera-
ture dependence of the conductivity effective masses of
electrons and holes in Si. Specifically, we evaluate both
me(ne , T) and mh(nh , T) as functions of carrier tem-
perature T from 1 to 3000 K, assuming nondegenerate
carrier densities (ne , nh , ;1020 cm23). We designate
these nondegenerate conductivity masses me(T) and
mh(T), respectively. Our approach in calculating the ef-
fective masses is to use the simplest model that is consis-
tent with available experimental data on the conductivity
masses. First we calculate me(T), using a phenomeno-
logical description of the conduction-band dispersion
2002 Optical Society of America
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relation1,9 that has been fitted to the density dependence
of the electron conductivity mass, which has been deter-
mined from room-temperature reflectivity data.10–13 For
the valence band such a simple phenomenological descrip-
tion is precluded because of the complex shapes of the
light-hole and heavy-hole bands that define the valence-
band maximum and the presence of the split-off band at
20.044 eV. Thus for mh(T) we must use an accurate
k-space description of the valence-band structure. The
simplest description of the valence bands that is accurate
enough to use in determining mh(T) is provided by tight-
binding theory. Here we use an orthogonal, three-center
model that includes up to third-neighbor interactions,14

which we have extended to explicitly include the spin–
orbit interaction.15 In our calculations we start with
three previously derived sets of three-center interaction
parameters14,16,17 that are slightly modified to exactly
reproduce experimental valence-band curvature
parameters18–20 (which describe the shapes of the three
valence bands near their band maxima21), thus ensuring
accurate low-temperature values of mh(T). We then use
our calculated values of me(T) and mh(T) to calculate the
temperature-dependent optical effective mass mopt(T).
The result for mopt(T) is then compared with our mea-
sured change in optical mass at 300–1550 K.

2. ELECTRON EFFECTIVE MASS
For the Si conduction band the major contribution to the
concentration and temperature dependence of me(ne , T)
is the effect of nonparabolicity in the band that defines
the conduction-band minimum.6 This nonparabolicity
has been inferred experimentally from drift-velocity-,22

optical absorption-coefficient-,23 and carrier-density-
dependent12,13 reflectivity measurements. The nonpara-
bolicity is often described by a single parameter a that ap-
pears in an effective dispersion relation for the conduction
band near each of its six equivalent energy minima1:

E~1 1 aE ! 5
\2k2

2me0
. (1)

Here E is the energy above the band minima and k is the
magnitude of the electron wave vector (relative to k at
each of the six minima). For Si, a is close to 0.5 eV21.22,23

For a carrier in state k with energy Ei(k) in a band la-
beled by subscript i, the direction averaged band mass
mi(k) associated with that electron is given by24

1

mi~k!
5

1

3\2 ¹k
2Ei~k!. (2)

The conductivity effective mass mc(nc , T) (where c is ei-
ther e for electrons or h for holes) is the thermal average
of this quantity:

1

mc~nc , T !
5

(
i,k

f@mc~nc!, Ei~k!, T#@1/mi~k!#

(
i,k

f@mc~nc!, Ei~k!, T#

. (3)
Here f(m, E, T) is the Fermi–Dirac distribution function
and mc(nc) is the chemical potential (i.e., Fermi level),
which is simply related to carrier density nc .25

Inasmuch as the effective dispersion relation [Eq. (1)]
is a function of only the magnitude of k, it is simplest to
perform the calculation of me(ne , T) in energy space.
From Eq. (1), the energy-dependent electron conductivity
mass is determined to be

1

mc~E !
5

1

me0

1 1 ~8/3!a~E 1 aE2!

@1 1 4a~E 1 aE2!#3/2 . (4)

For a E , 1 the energy-dependent correction to the mass
is nearly linear relative to E, and me(E) can be expressed,
with an accuracy of better than 2%, as

me~E ! 5 me0S 1 1
10

3
aE D . (5)

Also from Eq. (1), the density of electronic states is deter-
mined to be

r i~E ! 5
21/2me0

3/2

p2\3 E1/2~1 1 aE !1/2~1 1 2aE !. (6)

(This is the effective density of states of each of the six in-
dividual bands that compose the near-edge part of the
conduction band.) With Eqs. (4) and (6) the sums in Eq.
(3) can be converted to energy integrals and me(ne , T)
determined.

I have analyzed reflectivity-derived values of
me(ne , 300 K), plotted in Fig. 1, to extract a value of a for
the Si conduction band. The data in Fig. 1 are from four
independent measurements of Si reflectivity.10–13 The

Fig. 1. Si electron conductivity mass versus carrier density at
room temperature. Symbols indicate experiment points.
Dashed curves, standard model of nonparabolicity, Eq. (1); solid
curve, extended model, Eq. (7). For comparison among the cal-
culated curves, me0 has been slightly adjusted in each calcula-
tion such that the low-density, room-temperature mass equals
0.285 m0 .
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three dashed curves shown in the figure were calculated
for values of a 5 0.4, 0.6, 0.8 eV21. As is evident from
Fig. 1, the highest-density values of me(ne , 300 K) are
consistent with a value of a 5 0.8 (top dashed curve).
However, me(ne , 300 K) values for ne of 1020 to 1021 cm23

are significantly overestimated by this value of a. The
data in this density range are better described by a
5 0.4 eV21 (lowest dashed curve). As shown by the
middle dashed curve, a 5 0.6 eV21 best approximates the
overall shape of all the reflectivity data.

The value 0.6 eV21 is in good agreement with other ex-
perimental determinations. The earliest extracted value
comes from drift-velocity measurements,22 which were fit-
ted with a value of 0.5 eV21. More recently, optical
absorption-coefficient data23 were fitted with a
5 0.4 eV21. Previously, reflectivity data (circles in Fig.
1) were also analyzed,13 yielding a 5 0.27 eV21. How-
ever, in that analysis an incorrect formula for the band
mass was used [cf. Eq. (2)], resulting in a value of a much
lower than we derive from the reflectivity data. As
shown in Fig. 1, a 5 0.6 eV21 does a reasonable job of de-
scribing that particular data set, in addition to the other
data included in the figure.

In spite of the fairly good agreement in a among the
three analyses, the reflectivity data suggest that a higher
order of nonparabolicity may be indicated for Si. The
effective dispersion relation, Eq. (1), originates from
k • p calculations of the Si conduction band structure,1,9

where the left-hand side is a Taylor series expansion in
the energy E. If the next term in the Taylor series is in-
cluded, the dispersion relation is extended to become

E~1 1 aE 1 bE2! 5
\2k2

2me0
. (7)

Using this effective dispersion relation and following the
steps as outlined above for calculating me(ne , 300 K), I
also analyzed the data in Fig. 1 with various values of a
and b. As shown by the solid curve in the figure, a some-
what better description of me(ne , 300 K) at all density
values was obtained with a 5 0.4 eV21 and b 5 0.25
eV22.

The density dependence of the electron conductivity
mass shown in Fig. 1 for a 5 0.4 eV21 and b 5 0.25
eV22 is in very good agreement with that determined in
the two previous calculations of the electron conductivity
mass,6,7 one of which was based on a realistic band struc-
ture of the conduction band.6 Thus, although the phe-
nomenological model used here is simplistic, it accurately
describes the effect of nonparabolicity in the conduction
band.

Using parameter values extracted from the standard
(b 5 0 eV21) and extended models of nonparabolicity, I
calculated me(T), the nondegenerate limit of me(ne , T).
In this limit the Fermi–Dirac distribution function is
equivalent to a classical Boltzmann distribution for which
f 5 f(E, T) } exp(2E/kBT), resulting in a mass that is
independent of ne . For the standard model the
temperature-dependent mass is linear in temperature
and can be expressed with excellent accuracy up to 3000
K as

me~T ! 5 me0~1 1 5akBT !. (8)
Note that Eq. (8) is simply Eq. (5) with E replaced by
(3/2)kBT. In Fig. 2 me(T) is plotted for a 5 0.6 eV21,
b 5 0 eV22 and a 5 0.4 eV21, b 5 0.25 eV22. The lin-
ear variation of me(T) with T for the standard model is
clearly evident. Note that the difference in me(T) for
these two sets of parameters is really significant only at
the highest temperatures. Thus, whereas a nonzero
value of b fits the density-dependent data more precisely,
use of the extended model does not dramatically alter the
calculated values of me(T) compared with those of the
standard model.

3. HOLE EFFECTIVE MASS
The near-band-edge valence-band structure of Si is much
more complicated than that of the conduction band, which
leads to a more complex dependence of mh(nh , T) on T.21

The top of the valence band, located at k 5 0, comprises
two distinct bands, designated heavy-hole and light-hole
bands. Just below the degenerate maxima of these two
bands resides the maximum of a third band at 20.044 eV,
designated the split-off band.21,26 Because of the
avoided-crossing nature of the light-hole and split-off
bands, the low-energy shape of the light-hole band is par-
ticularly complex. At higher (hole) energies a nonpara-
bolicity similar to that observed for the conduction band is
expected to dominate the effect of the band structure on
mh(nh , T).6,7 As is shown below, these effects of avoided
band crossing, presence of the split-off band, and high-
energy nonparabolicity all contribute to producing a tem-
perature dependence of the hole conductivity mass that is
far from simple.

To accurately model the Si valence bands we use a
tight-binding description of the bands.14,16,27 The tight-

Fig. 2. Calculated electron conductivity mass versus tempera-
ture in the nondegenerate carrier-density limit. Dashed curve,
standard model of nonparabolicity with a 5 0.6 eV21; solid
curve, extended model with a 5 0.4 eV21 and b 5 0.25 eV22.
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binding model that we use is the three-center, orthogonal
model of Papaconstantopoulos.14 This model includes up
to third-neighbor interactions in an 8 3 8 Hamiltonian
matrix that includes the 2s and 2p Si orbitals. As de-
scribed by Chadi,15 we incorporate spin–orbit coupling of
the Si 2p states into the Hamiltonian, which expands the
Hamiltonian to 16 3 16 elements. In principle, the 20
energy integrals involving the Si orbitals [known as
Slater–Koster (SK) parameters27] that are the input pa-
rameters to the tight-binding theory can be directly deter-
mined theoretically. In practice, one finds them by fitting
experimental or ab initio calculated quantities. Com-
monly included in the set of fitted quantities are band en-
ergies at high-symmetry points of the Brillouin zone (BZ).
Indeed, in searching the literature I found no fewer than
12 sets of three-center SK parameters that do a satisfac-
tory job of reproducing these energies.14–17,28–34

However, our requirements for a suitable set of SK pa-
rameters are stricter than simply matching energies at
high-symmetry points in the BZ. We also require an ac-
curate description of the band curvatures at the top of the
valence band at the BZ center (k 5 0) to be able to accu-
rately assess the low-temperature hole conductivity mass.
Near the band edges at the top of the valence band the
hole energies can be expressed as21,35

E lh
hh

~k! 5 Ak2 6 @B2k4 1 C2~kx
2ky

2 1 ky
2kz

2 1 kz
2kx

2!#1/2,

(9a)

Eso~k! 5 Ak2 1 D, (9b)

where hh, lh, and so indicate heavy-hole, light-hole, and
split-off, respectively. The parameters A, B, and C are
known as the band-curvature parameters; D 5 0.044 eV,
which arises from the spin–orbit interaction, is the dis-
tance of the split-off band from the heavy-hole and light-
hole bands at k 5 0.26 As is evident from Eqs. (9), one
can easily evaluate the parameters A, uBu, and uCu from the
tight-binding band structure by calculating ]2Ei(k)/]k2

along high-symmetry directions in the BZ.
Experimentally, the curvature parameters have been

inferred from cyclotron resonance and quantum spectra
measurements.18–20,35,36 Table 1 lists four sets of experi-
mentally determined values of A, uBu, and uCu. The first
two sets are from cyclotron resonance measurements
from two independent groups of researchers35,36; the third
set, from Stickler et al., is from quantum spectra18; and

Table 1. Experimentally Derived Curvature
Parametersa

Study A uBu uCu

Dresselhaus et al.b 4.0 6 0.2 1.1 6 0.5 4.0 6 0.5
Dexter et al.c 4.0 6 0.1 1.1 6 0.4 4.1 6 0.4
Stickler et al.d 4.22 1.0 4.34
Balslev and Lawaetze 4.27 6 0.02 0.63 6 0.08 4.93 6 0.15
(from Hensel and Feherf)

a Units for the curvature parameters are \2/2m0 .
b Ref. 35.
c Ref. 36.
d Ref. 18.
e Ref. 20.
f Ref. 19.
the fourth set was obtained by Balslev and Lawaetz20

from cyclotron resonance measurements on uniaxially
stressed Si.19 The fourth set is most often quoted in the
literature. This is not surprising, given the small error
bars. However, the third set, obtained with a method
that is independent of the cyclotron-resonance results, is
in quite good agreement with those measurements and
perhaps should not be dismissed out of hand, even though
it does not agree well with the fourth set. Thus I consid-
ered both the Stickler and the Balslev parameters in cal-
culating the valence-band masses.

I evaluated the 12 sets of previously derived SK
parameters14–17,28–34 to find those that produce curvature
parameters closest to the experimentally derived values:
three sets that produce reasonably close values were
found,14,16,17 as listed in Table 2. The first set, from the
universal model of Harrison (slightly modified)37 is a
nearest-neighbor model only. Thus the second- and
third-neighbor SK parameters are zero. The second set,
from Papaconstantopoulos, includes up to third-neighbor
interactions and has been fitted to both valence- and
conduction-band energies. The third SK set, from Niquet
et al.,17 was fitted not only to band energies but also to
the Balslev curvature parameters.38 However, the Ni-
quet valence bands do not match these curvature param-
eters exactly. As is shown below, the low-temperature
conductivity mass is highly sensitive to the band curva-

Table 2. Curvature and SK Parameters for Three
Tight-Binding Modelsa

Parameter Harrisonb Papaconstantopoulosc Niquet et al.d

A 4.26 3.54 4.26
uBu 0.89 0.70 0.81
uCu 4.20 3.69 4.74
Ess(000) 25.262 26.36892 26.15831
Ess(220) 0 0.21149 0.2301
Esx(022) 0 0.04306 20.02496
Esx(220) 0 20.1435 20.21608
Ess(111) 21.821 21.84407 21.78516
Esx(111) 21.301 1.01852 0.78088
Exx(000) 1.768 2.25140 2.41088
Exx(220) 0 0.09858 0.02286
Exx(022) 0 20.32894 20.24379
Exy(220) 0 20.12292 20.05462
Exy(022) 0 20.18248 20.12754
Exx(111) 0.442 0.29947 0.35657
Exy(111) 1.311 1.44623 1.47649
Ess(311) 0 20.11562 20.06857
Esx(311) 0 20.12484 20.25209
Esx(113) 0 0.07166 0.17098
Exx(311) 0 0.07920 0.13968
Exx(113) 0 0.02620 20.0458
Exy(311) 0 0.08797 0.03625
Exy(113) 0 20.07875 20.06921

a The SK parameters Ess(000) and Exx(000) have been uniformly
shifted in each model such that the top of the valence band is at E 5 0.
Units for the curvature parameters are \2/2m0 . Units for the SK param-
eters are electron volts.

b Ref. 16.
c Ref. 14.
d Ref. 17.
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ture, with the Balslev and Stickler parameters producing
quite different values of mh(T). It is therefore advanta-
geous to be able to exactly match an experimental set of
A, uBu, and uCu with the tight-binding formalism.

I thus investigated the 20 SK parameters of the tight-
binding model to ascertain how small variations in these
parameters affect both the band curvature and the BZ
edge energies. I found that Es,x(220), Ex,y(220), and

Table 3. Values of SK Parameters Esx(220),
Exy(220), and Exy(113) Adjusted by Use of the

Harrison, Papaconstantopoulos, and Niquet SK
Parameter Sets to Match the Balslev–Stickler

Curve Parametersa

SK Parameter Harrisonb Papaconstantopoulosc Niquet et al.d

Balslev matched
Esx(220) 20.01291 20.16888 20.20354
Exy(220) 0.15423 20.05116 20.01312
Exy(113) 0.01540 20.03798 20.05960

Stickler matched
Esx(220) 0.00459 20.19656 20.22817
Exy(220) 0.04162 20.16453 20.12628
Exy(113) 20.00860 20.05891 20.08127

a See Table 2.
b Ref. 16.
c Ref. 14.
d Ref. 17.
Ex,y(113) produce the largest, linearly independent, rela-
tive variations in curvature compared with variations in
the energies. I then adjusted Es,x(220), Ex,y(220), and
Ex,y(113) in each of the models in Table 1 to exactly
match the two sets of experimental curvature parameters
(Balslev and Stickler). The adjusted values of these
three SK parameters are given in Table 3. The effect on
the energies at the BZ edges with these modified SK pa-
rameter values is minimal, indicating that the high-
temperature variation in conductivity mass should be in-
sensitive to these changes in Es,x(220), Ex,y(220), and
Ex,y(113). It is shown below that such is indeed the case.

Heavy-hole, light-hole, and split-off bands along high-
symmetry directions calculated with the two sets of
curvature-matched Harrison parameters are shown in
Fig. 3; the solid curves in Figs. 3(a) and 3(b) show bands
that reproduce the Stickler and Balslev parameters, re-
spectively. Inasmuch as (3/2)kB 3000 K 5 0.38 eV, the
range of hole energies shown is appropriate for tempera-
tures up to ;3000 K. Note the rather complicated na-
ture of the heavy-hole and light-hole bands at hole ener-
gies below the split-off energy. Differences among bands
calculated with the modified Harrison, Papaconstanto-
poulos, and Niquet SK parameters, when they are
matched to a given set of curvature parameters, are much
smaller than the differences between the two sets of
curvature-matched Harrison bands shown in Fig. 3.
Bands calculated with the analytic k • p model of Dür
et al.39 with the Balslev curvature set are shown as dotted
Fig. 3. Valence-band dispersion curves along high-symmetry directions near the top of the valence band. (a) Bands calculated from the
Harrison model matched to the Stickler curvature parameters. (b) Solid curves, Harrison model matched to the Balslev curvature pa-
rameters; dashed curves, Dür model with the Balslev curvature parameters.
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curves in Fig. 3(b). This model includes 2p spin–orbit
splitting but is parabolic at high energies. Comparison
of these bands with the tight-binding bands, which gener-
ally become flatter at higher energies, shows that high-
energy nonparabolicity is indeed significant in all three Si
valence bands.

From the tight-binding band structure the hole conduc-
tivity mass mh(T) is calculated from Eqs. (2) and (3) (i
5 hh, lh, so) in the limit of a Boltzmann distribution
function. Typically, 330 points in the irreducible BZ are
used to calculate mh(T). As a check on our numerical
method we compare band-edge conductivity masses for
each individual band (calculated at 1 K) with conductivity
masses calculated from the approximate expressions of
Lax and Mavroides.40 For the Balslev curvature param-
eters we calculate heavy-hole, light-hole, and split-off
masses of 0.417, 0.149, and 0.238 m0 , in very good agree-
ment with Lax–Mavroides values of 0.411, 0.149, and
0.234 m0 . The results for mh(T) are shown in Fig. 4.
Figure 4(a) plots mh(T) for the six sets of curvature-
matched SK parameters. The top three curves are for
bands matched to the Stickler parameters, the bottom
three curves correspond to the Balslev parameters. The
curves show that for temperatures below ;500 K the cur-
vature parameters largely determine mh(T), whereas
above ;1000 K the high-energy nonparabolicity, which is
independent of the band-edge curvature, determines the
rate of change of mh(T) with temperature.

In conjunction with the curves in Fig. 4(a) there is ex-
perimental evidence that the Balslev parameters may be
more accurate that those of Stickler. From room-
temperature reflectivity data from p-type Si with a carrier
density of 9.6 3 1018 cm23, a conductivity mass of 0.37
m0 has been inferred.10 This value is in excellent agree-
ment with our room-temperature value of mh for the
Balslev set but is significantly lower than the value of
;0.41 m0 for the Stickler set.

As is clear in all the curves in Fig. 4(a), there is an ini-
tial increase in mass, followed by a slight decrease, fol-
lowed again by an increase. This shape is emphasized in
Fig. 4(b), which plots the temperature on a logarithmic
scale. The top curve in Fig. 4(b) is an average of the
three tight-binding models fitted to the Balslev curvature.
To ascertain the origin of the shape of mh(T) we also plot
masses calculated from several simpler models of the
bands. The long-dashed curve in Fig. 4(b) is from the
model of Dür et al. [see Fig. 3(b)], which is parabolic at
high energies.39 Thus it is clear that high-energy nonpa-
rabolicity starts to become important at temperatures as
low as 100 K. As a further simplification, I also calculate
mh(T), using the model of Dür et al. without the split-off
band, shown as the short-dashed curve. The difference
in the short- and long-dashed curves shows that the split-
off band becomes thermally populated only above ;200 K
and that its contribution is rather minimal, lowering the
effective mass at 3000 K by only ;0.012 m0 . The dotted
curve in Fig. 4(b) was calculated with the assumption
that the bands maintain their zone-edge shape, given by
Eq. (9), throughout the BZ. As expected, the mass is
temperature independent until the split-off band begins
to contribute. Thus we can identify both the initial in-
crease and the decrease as due to the complicated shapes
of the heavy- and light-hole bands in the energy region of
the avoided crossing.

The linear nature of mh(T) above ;500 K indicates
that the standard phenomenological description used for
the conduction band [Eq. (1)] is applicable to the valence
band in this temperature range. Indeed, the average
tight binding derived mh(T) [solid curve in Fig. 4(b)] is
described to excellent approximation by use of Eq. (8)
with me0 replaced by mh0 5 0.33m0 and a 5 0.34 eV21.

Fig. 4. Calculated hole conductivity mass versus temperature in
the nondegenerate carrier-density limit. (a) Curves for the
Niquet, Harrison, and Papaconstantopoulos SK parameters sets
matched to the Stickler (three top curves) and Balslev (three bot-
tom curves) curvature parameters. (b) Solid curve, average of
three tight-binding calculations matched to the Balslev curva-
ture parameters; long-dashed curve, Dür model with Balslev cur-
vature parameters; short-dashed curve, Dür model with Balslev
curvature parameters (the split-off band is neglected); dotted
curve, parabolic bands, Eq. (9).
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4. COMPARISON WITH FEMTOSECOND
REFLECTIVITY MEASUREMENTS
When there is an equal number of electrons and holes,
which can happen under intense laser illumination, the
conductivity or optical response of the free carriers is
characterized by the optical mass mopt(T) 5 @1/me(T)
1 1/mh(T)#21, where carrier density nc is taken to be
that of either the excited electrons or holes. To calculate
this optical mass we use the a 5 0.4 eV21, b 5 0.25
eV22 result for the electron mass and an average of the
Balslev curvature–derived tight-binding hole mass.
Both of these temperature-dependent masses, along with
the corresponding optical mass, are plotted in Fig. 5.

This result for mopt(T) can be compared with our time
resolved femtosecond-laser reflectivity measurements of a
commercial Si(100) wafer. In these experiments 25-fs,
2.8-nJ pump pulses from a Ti:sapphire oscillator centered
at 800 nm (1.55 eV) excite electrons from the valence to
the conduction band. Electron–hole pairs with a density
of ;5 3 1018 cm23, which is in the nondegenerate den-
sity limit, are created. Initially, each carrier has on av-
erage 0.20 eV of excess energy above the band minima.

Fig. 5. Electron, hole, and optical masses versus temperature in
the nondegenerate carrier density limit. (a) Electron mass from
extended model with a 5 0.4 eV21 and b 5 0.25 eV22. Hole
mass from average of three tight-binding calculations matched to
the Balslev curvature parameters. (b) Optical mass calculated
from the electron and hole masses; see text.
Within a few tens of femtoseconds this excess energy is
thermalized among the carriers at a temperature of 1550
K.41,42 The carriers then equilibrate with the lattice with
a time constant of approximately 200–400 fs,8,41–44 which
cools them to nearly room temperature because the elec-
tronic specific heat is much less than the lattice specific
heat. On much longer time scales, typically .1 ms, the
electrons and holes recombine across the band gap.21

The electron dynamics of the laser pulse-excited Si
sample are followed in real time by measurement of the
change in reflectivity with 25-fs, 100-pJ probe pulses.
Figure 6 shows typical reflectivity data. After a small
initial spike that is due to coherent effects between the
pump and the probe pulses [part (A) of the reflectivity
curve], the reflectivity exhibits a relatively large laser
pulse width–limited decrease (B), followed by a smaller,
continuing decrease on a much slower time scale (C). At
;1 ps the reflectivity begins to increase (D). (The small
oscillations in the reflectivity are due to coherent excita-
tion of the Si zone-center optic phonon, analogous to those
observed in ultrafast reflectivity experiments with Ge.45)
The sharp drop in reflectivity R at (B) is due mainly to the
free-carrier optical response of the laser generated
electron–hole pairs.46 Using the standard Drude model
of optical conductivity,24 which accurately describes the
free-carrier response in Si,10–13 we can show that the re-
flectivity decrease that is due to the free carriers can be
written as

DR

R
5 2g

nc

mopt
, (10)

where g is a parameter that depends on the probe-pulse
angle of incidence, laser frequency, and Si index of
refraction.47,48 The continuing slower decrease at (C),

Fig. 6. Time-dependent reflectivity change of Si(100) after exci-
tation by a 25-fs, 800-nm laser pulse. (A) Coherent spike, (B)
pulse-width-limited drop in reflectivity caused by optical re-
sponse of excited free carriers, (C) continued drop caused by de-
crease in optical mass as carriers cool to room temperature, (D)
beginning of increase in reflectivity owing to carrier recombina-
tion across the Si bandgap.
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which occurs with a relaxation time constant of 253
6 7 fs, is attributed to the decrease in mopt as the elec-
trons and holes cool from 1550 K to room temperature.
Note that this relaxation time is in excellent agreement
with a recent determination of the carrier energy-
relaxation time of 240 6 30 fs found from transient grat-
ing spectroscopy.8 From the measurements reported
here, the magnitude of this slower drop in reflectivity
yields a change in mopt of 22.9 6 0.8% from 300 to 1550
K, in excellent agreement with the value of 21.9% de-
duced from the theoretical curve in Fig. 5, thus confirm-
ing the interpretation of the femtosecond reflectivity data.

5. CONCLUSIONS AND SUMMARY
An overall comparison of calculated electron, hole, and op-
tical masses with the two earlier calculations6,7 is given in
Table 4. At 300 K all three calculations are in reasonable
agreement for all three masses, with the best agreement
between the present calculations and the pseudopotential
band-structure–based results of van Driel.6 At 1700 K
the present results also agree quite well with those of
Yang and Bloembergen.7 At 3000 K our electron conduc-
tivity mass again is reasonably close to that of van Driel.
We note, however, that the standard conduction-band
model with a 5 0.6 eV21 (dashed curve in Fig. 2) is in
even better agreement with van Driel’s result. However,
the 3000-K hole masses are quite different: we obtain
0.48m0 , compared with 0.87m0 by van Driel. It thus ap-
pears that the high-energy nonparabolicity in the valence
bands used by van Driel is approximately twice as strong
as in any of our tight-binding bands.

Although our aim has been to describe accurately the
electron and hole effective masses, these calculations, es-
pecially the tight-binding parameterizations presented
here, may be useful to researchers interested in other
properties of Si. For example, it has been noted that
tight-binding parameters that accurately reproduce the
band-edge curvature are essential for describing the elec-
tronic states of Si nanostructures.17 An accurate descrip-
tion of the bands, both near the band edge and at higher
energies, is also essential for Monte Carlo simulations of
high-field transport in semiconductor devices.1,49

Table 4. Comparison of Calculated Values of
me(T), mh(T), and mopt(T) among Present Study,
van Driel Study, and Yang–Bloembergen Studya

Study Temperature (K) me(T) mh(T) mopt(T)

Present 300 0.273 0.367 0.156
1700 0.367 0.418 0.195
3000 0.496 0.477 0.243

Yang et al.b 300 0.291 0.397 0.168
1700 0.388 0.435 0.205

Van Drielb 300 0.272 0.373 0.157
3000 0.447 0.872 0.295

a The masses are in units of m0 .
b Ref. 7.
c Ref. 6.
In summary, the temperature-dependent electron and
hole conductivity masses in Si in the limit of nondegener-
ate carrier densities have been calculated. A standard
conduction-band nonparabolicity model was used that
was evaluated against reflectivity-derived density-
dependent electron masses, yielding a nonparabolicity pa-
rameter of 0.6 eV21. A slightly better description of the
density-dependent masses was obtained by extension of
the standard nonparabolicity model to the next higher
term in energy. Tight-binding calculated valence bands
have been used in evaluation of the hole conductivity
mass, which has a much richer structure relative to tem-
perature than do the electrons. The complexity of relat-
ing mh to T is most apparent below 500 K and is due
mainly to the structure in the heavy- and light-hole bands
below the split-off band energy. Above 500 K the stan-
dard conduction band model can be used for the holes
with a nonparabolicity parameter of 0.34 eV21. The re-
sulting calculated change in the optical mass from 300 to
1550 K compares extremely well with results from time-
resolved femtosecond reflectivity measurements.
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44. W. Kütt, A. Esser, K. Seibert, U. Lemmer, and H. Kurz,
‘‘Femtosecond studies of plasma formation in crystalline
and amorphous silicon,’’ in Applications of Ultrashort Laser
Pulses in Science and Technology, A. Antonetti, ed., Proc.
SPIE 1268, 154–165 (1990).
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