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Abstract
This paper describes a Recursive Least Square (RLS) procedure for use in orbit to estimate the inertia matrix (moments and

products of inertia parameters) of a satellite.  To facilitate this, one attitude axis is disturbed using a reaction wheel whilst the
other two axes are controlled to keep their respective angular rates small.  Within a fraction of an orbit three components of the
inertia matrix can be accurately determined.  This procedure is then repeated for the other two axes to obtain all nine elements of
the inertia matrix.

The procedure is designed to prevent the build up of momentum in the reaction wheels whilst keeping the attitude disturbance
to the satellite within acceptable limits.  It can also overcome potential errors introduced by unmodeled external disturbance
torques and attitude sensor noise.  The results of simulations are presented to demonstrate the performance of the technique.

The paper also describes an RLS procedure which can be used to estimate the thruster coefficients for thrust levels and
alignment of the cold gas thrusters used for attitude control on UoSAT-12.  A general on-line method is presented which uses a
three axis reaction wheel system to accurately determine the relationship between the commanded and actual torque produced by
the thrusters.  The calibration algorithm is designed to be robust against external disturbance torques, inertia matrix modelling
errors and attitude sensor noise.  The results of both simulations and successful in-orbit tests are presented, illustrating the
effectiveness of the technique.

I. Introduction
The recent, tendency is to build smaller, lighter and

cheaper spacecraft.  The present generation of spacecraft
require accurate attitude control to provide pointing
capabilities.  On-line calibration of the attitude control
hardware is often necessary to satisfy this high accuracy
ADCS requirement.  If these systems are not properly
calibrated in-orbit, a significant attitude control error can
result.

UoSAT-12 is a low-cost 320 kg minisatellite built by
Surrey Satellite Technology Ltd.  It is a technology
demonstrator for high performance attitude control and orbit
maintenance for a future constellation of earth observation

satellites.  The satellite uses a 3-axis reaction wheel
configuration and a cold gas thruster system to enable precise
and fast control of its attitude.  Magnetorquer coils assist the
wheels mainly for momentum dumping.  Ten cold-gas
thrusters can be used in various combinations for both attitude
and orbit control and a single N2O resisto-jet is used
exclusively for orbit maintenance.

One of the key features of Surrey’s low-cost approach to
satellite engineering is the replacement of tight performance
requirements and expensive ground calibration campaigns with
in-orbit calibration and adaptation.  This has been applied
extensively to the UoSAT-12 attitude control system, for
estimation of the moments of inertia and for calibration of the
satellite’s thrusters.  In this paper, we present two novel RLS
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methods to identify the spacecraft inertia matrix and the
thruster coefficients in-orbit.

Modeling

Dynamic Equations
 The dynamic model of an Earth-pointing satellite using 3-

axis reaction wheels as internal torque actuators and
magnetorquers and thrusters as external torque actuators, is
given by:
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respectively the inertially referenced body angular velocity
vector, moment of inertia of spacecraft, three-axis reaction
wheel angular momentum vector, applied torque vector by 3-
axis magnetorquers, applied torque vector by 3-axis thrusters,
applied torque vector by 3-axis reaction wheels, external
disturbance torque vector including the torques due to the
aerodynamic and solar forces, and gravity gradient torque
vector.
The inertia matrix is defined as,
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Kinematic Equations
The attitude of a satellite can be presented by means of a

quaternion 4 .  The use of a quaternion in describing the
orientation of a rigid body lends itself well to on board
calculation since no trigonometric relations or singularities
(which arise using Euler angles) exist in the formula, and it can
easily be transferred to the orbit-referenced coordinate system.
The parameterization of the quaternion vector is
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where e
xo

, e yo , e
zo

 are the components of the Euler vector in

orbit-referenced coordinates and ΦΦ  is the rotation angle
around the Euler vector.  The kinematics can be updated by
the following vector set of differential equations:
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where,
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is the orbit-referenced angular body rate vector.  The
transformation matrix to transform any vector from orbital to
body-referenced coordinates can be written as:
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Assuming that the satellite is 3-axis stabilized in a circular
orbit then,
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where,

[ ]ωω o o

T= −0 0ω

is an almost constant orbital angular rate vector.

Error Quaternion
Whenever quaternions are used directly in the attitude

control laws, it is convenient to define the error quaternion as
the difference between the current quaternion and the
commanded quaternion.  It can be represented by:
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where q
ie

 are the components of the error quaternion, q
ic

 the

components of the commanded quaternion and q
i
 the

components of the current orbit-referenced quaternion.

II. Controller Design
In this section, we present two feedback control laws that

are used to satisfy the requirements of the estimation
algorithms during estimation of the inertia matrix and thruster
parameters.  The satellite is assumed to have a rigid body.
The angular velocity vector of the satellite ( ωω

B
O ) is measured

or estimated accurately.  Its attitude ( q ) is estimated or

measured via the quaternion (4).  Consequently, the state
vector of the satellite ( ωω

B
O  and q ) is accurately known
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though subject to sensor noise.  The control laws use this state
vector to control the satellite’s attitude.

The Quaternion feedback Controller
A standard quaternion PD feedback controller consists of

linear error-quaternion feedback, with linear and nonlinear
body-rate feedback terms to compensate for the gyroscopic
coupling torques.  The control torque vector is represented as
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where D  and K  are 3 3× constant gain matrices to be
properly determined according to Wie 2  and N

W T/
 the

applied torque vector of 3-axis reaction wheels or thrusters.

The Bang-Bang feedback Controller
A Bang-Bang nonlinear controller is implemented using a

PD feedback method to control a two level switching control
law.  The switching function is determined by using a linear
feedback equation and a hysteresis band and can be
summarized by the following equation:
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where K p  and K
D

 are controller gains, e  is the control

error and e
band

 is the error hysteresis band.  This error band is

tuned to adjust the level of the wheel momentum indirectly
(and the error quaternion).  When reducing the error band the
torque output switches at a higher frequency and the wheel
momentum build-up is reduced.  An increase in the error band
has the opposite effect.  The controller gains K p  and K

D

adjust the slope of the switching function, this also controls
the stability of the non-linear limit cycle and the magnitude of
the error quaternion.

III. Inertia Matrix Identification
In this section, we present a new method for identifying

the spacecraft inertia matrix.  The way the calibration torque is
generated depends on the specific actuators installed on the
spacecraft.  UoSAT-12, for example, has three reaction
wheels.  Using accurate wheel speed measurements and
knowledge of the wheel moment of inertia, the reaction
wheels’ torques are accurately known and can be used to
estimate the inertia matrix (moments and products of inertia
parameters) in-orbit.  This is done by disturbing a specific
attitude axis using a reaction wheel Bang-Bang controller.  The
other two axes are controlled using a quaternion feedback
controller to control their reaction wheels to keep their
respective angular rates small.

This procedure is then repeated for the other two axes to
obtain all nine elements of the inertia matrix.  Figure 1
summarizes the general in-orbit inertia matrix estimation
scheme using reaction wheel actuators.  A known disturbance
torque N k

W 3
( )  is applied to the spacecraft at time k  as a

result of the Bang-Bang control law, using the third wheel.
This torque together with unknown external disturbance
torques N

D
k( )  and the output from the two-wheel controller

N
W

k
12

( )  acts on the satellite.  The in-orbit moment of inertia

calibration procedure (below the dotted line in Fig. 1) uses the
known disturbance torque N k

W 3
( ) , the output from the two

wheel controller N
W

k
12

( )  and the resulting satellite state to

calculate the calibration torque N
c

k( ) .  This calibration

torque is used in the measurement equation

N I N h N
c B

I
B
I

M w
k f( ) ( , , & , , , )= ω ω     (11)

for the RLS algorithm to estimate the inertia matrix $I  via a
suitable high pass filter (see paragraph on high pass filter
design).
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Fig. 1 On-orbit inertia matrix estimation block diagram

Reduced Equations of motion
This novel moment of inertia (MOI) estimation algorithm
depends on the idea that when disturbing one axis using the
corresponding wheel, the principal moment of inertia can
easily be estimated.  By keeping the angular rate disturbances
in the other two axes close to zero using the quaternion
feedback controllers and combining the dynamic equations of
these two axes we can estimate the products of inertia.

A problem for nadir pointing satellites is that the inertial
angular rate in the Y-axis (pitch) is non-zero and equal to the
orbital rate.  It is therefore recommended first to disturb the Y-
axis and control the X and Z-axes, keeping the angular rates in
these axes close to zero.  This will reduce the cross coupling in
the dynamic equations between the Y-axis and the other two
axes, so that the products of inertia terms when estimating
I yy , I xy  and I yz  are negligible.  The second step will be to

disturb the X or Z-axis and to control the remaining two axes.

The dynamic model of an Earth-pointing satellite using 3-
axis reaction wheels as internal torque actuators, and
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magnetorquers as external torque actuators, is given in (1).  It
is clear from these dynamic equations that it is better to
estimate the principle moment of inertia terms by disturbing
the satellite using a small level of reaction wheel torque and
momentum.  This decreases the effect of the products of
inertia in the dynamic equations, but ensures sufficient torque
and momentum to counteract the influence of unknown
external disturbance torques 5 .  Conversely, when estimating
the products of inertia it is better to disturb the satellite using
full reaction wheel torque and momentum in order to increase
the influence of the products of inertia in the dynamic
equations.

The presence of external disturbance torques tends to
cause wheel momentum drift.  Therefore, management of
reaction wheel momentum is required in order to counteract
the influence of persistent external disturbance torques.  On
UoSAT-12 an external torque using magnetorquers is applied
for wheel momentum management.  This also ensures that the
satellite angular rate values in the two controlled axes are kept
close to zero.  Furthermore, small angular rates in the
controlled axes will decrease the effect of cross-coupling and
result in improved estimates of the products of inertia.

Case Study: Disturb Y-axis and Control X and Z axes
Neglecting small terms, the reduced dynamic equations of

motion (1) describe the effect of disturbing the Y-axis using
the reaction wheel Bang-Bang controller (10) and controlling
the X and Z axes using quaternion feedback reaction wheel
controllers (9), (with momentum dumping) and can be written
as thus:

I N I I h h hxx x mx xy y y yz z y y z x
& & &ω ω ω ω ω= + + + − −2       (12-a)

I N h h hyy y my z x x z y
& &ω ω ω= − + −                               (12-b)

I N I I h h hzz z mz yz y y xy x y y x z
& & &ω ω ω ω ω= + − − + −2         (12-c)

Two separate RLS estimations are needed for each axis:  One
to estimate the principle moment of inertia I yy , and the other

to estimate the products of inertia I xy  and I yz .

For the first of these rewrite (12-b) in the form

N k Icy yy y( ) &= ω     (13)

where, N kcy ( )  is the calibration torque required to estimate

I yy  and is given by:

N k N h h hcy my z x x z y( ) &= − + −ω ω     (14)

Equation (13) acts as the measurement equation for the RLS
estimation to estimate I yy .  The error to be minimized can be

written as:

e k N k I ky cy yy y( ) ( ) $ & ( )= − ω     (15)

Where $I yy  is the estimated inertia parameter.

For the second RLS to estimate I xy  and I yz adding (12-a) and

(12-c) and rearranging gives:
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where, N kcyp ( )  is the calibration torque given by:
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and $I
xx

, $I
zz

 can be obtained from an initial estimate.

Equation (16) also acts as the measurement equation for the
RLS estimation to estimate I xy  and I yz .  The error to be

minimized can be written as:

e k N k I Iyp cyp xy y y yz y y( ) ( ) $ ( & ) $ ( & )= − − − +ω ω ω ω2 2          (18)

in practice, both error equations (15) and (18) are high pass
filtered to remove the effects of low frequency disturbance
torques.  This procedure is then repeated for the other two
axes to obtain all nine elements of the inertia matrix.  The
results of the estimated products of inertia from any two-axes
can then be compared to ensure that the values of the products
of inertia are estimated correctly.

RLS Implementation
The inertia matrix identification can now be formulated as
follows:  Given the measurement equations (13) and (16)

estimate the mean values of the inertia matrix $I . A RLS
calibration algorithm based on real time parameter estimation
is proposed for improved convergence and accuracy.  The
algorithm is a recursive implementation of the least squares
minimization technique and is appropriate because of the
almost time invariant nature of the inertia parameters (2).  The
error to be minimized can be written as a standard least square
parameter estimation problem:

e k y k k
i i

T
i i

( ) ( ) ( )= − ϕϕ θθ     (19)

The least squares cost function to be minimized is taken as:

J e kt k
i= ∑ −1

2
2λ ( )     (20)

The forgetting factor λ  is a constant (λ ≤ 1 ) which defines
the smoothing of the estimates by introducing a time varying
weighting of data.  The full RLS algorithm will be given as,
• Compute the regression vector ϕϕ

i
k( )  and the residual

e k
i
( )  from (19)

• Compute the update gain vector
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 Where, P

i
 is defined as the covariance matrix of the parameter

vector θθ
i

k( )

• Update the parameter vector

θθ θθ
i i i i

k k k e k( ) ( ) ( ) ( )= − +1 K                      (22)

• Update the covariance matrix

P I K P
i i i

T
i

k k k k( ) [ ( ) ( )] ( ) /= − −ϕϕ 1 λ           (23)

Addition Error Processing
The above general RLS procedure is further modified by

processing the error to remove low frequency components and
outlying values.  To improve the robustness of the RLS
algorithm, the error can be modified by a non-linear saturation
function (see Steyn 3 ) as follows:

{ }f e k
e k

b e ki
i

i

( )
( )

( )
=

+1
    (24)

The constant b is defined such that the function is still linear
for normal values of e k

i
( ) , while decreasing the influence of

large outliers.

High pass filter design
Low frequency (e.g. Aerodynamic) disturbance torques
influence the satellite states (angular rate, quaternion) which
are used by the attitude controller to control the satellite with
corresponding reaction wheel torque and momentum.  All
these disturbance terms form part of the RLS error but can be
filtered out using a second order Butterworth high pass filter
during MOI calibration.  This is the best location for the high
pass filter because the error contains all the parameters
affected by the low frequency disturbance torques (reaction
wheel torque, wheel momentum, angular rate and angular
acceleration).

IV. Thruster Coefficients Identification
Following an idea of Wiktor 1 , a novel RLS algorithm can

be used to calibrate the cold gas thrusters in-orbit during
normal mission conditions, when the satellite is stabilised.
This method requires knowledge of a calibration or known
disturbance torque (generated using reaction wheel actuators
on UoSAT-12) whilst the attitude is controlled using the gas
thrusters.
The n thrusters are controlled by n commands in vector T

c

from the attitude controller.  The resultant torque N
T

 exerted

on the spacecraft from this set of thruster commands is

N AT
T c

=    (25)

where N
T

 is a 3 1× vector, and A  the 3× n  thruster

configuration matrix which contains the information about the
output direction and magnitude of each thruster. The goal of
the thruster calibration is to identify these 3× n  coefficients
in spite of sensor noise and external disturbance torques.

Calibration Techniques
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Fig. 2 On-orbit thruster calibration block diagram

Figure 2 summarises the general in-orbit thruster calibration
scheme.  A known disturbance torque N

W
k( )  is applied to

the spacecraft using reaction wheels controlled by a Bang-
Bang control law (10), whilst the attitude controller (9) sends
commands T

c
k( )  to the thrusters (generating torques

N
T

k( ) ) to compensate for both this known and also any

unknown external disturbance torques N
D

k( ) .

The in-orbit thruster calibration procedure (below the dotted
line in Fig. 2) uses the known disturbance torque N

W
k( )  and

the resulting measured satellite state to calculate the calibration
torque N

c
k( )  acting on the satellite.  This calibration torque

is equal to the sum of the known and the unknown disturbance
torques and can be obtained by rearranging equation (1) thus

N I I h N
c B

I
B
I

B
I

W
= + × + −& ( )ωω ωω ωω     (26)

so that it also includes the effects of measurement noise in
estimating the state.  If the satellite attitude is maintained, this
torque is being exactly cancelled by the thruster torque given
by (25), so to estimate A , rewrite (25) as a state estimation
problem with the measurement equation

N AT n
c c
= +$               (27)

where n  is the effect of measurement noise plus the external

disturbance torques and $A  is the estimated value of the true
thruster coefficient matrix A .

The objective of the thruster calibration procedure is to

estimate the mean value $A  of the true thruster coefficient
matrix A  which should not change with time, so they can be
modeled by the state equation



SSC00-I-4

Refaat El-Bordany 14th AIAA/USU Conference on Small Satellites

6

a k a kij ij( ) ( )+ =1     (28)

where aij  is an element of the estimated thruster coefficient

matrix $A .  The thruster calibration problem can now be
formulated using (27) and (28) as an RLS calibration algorithm
based on real time parameter estimation.

V. Simulation Results
 In this section, we present simulation results to identify both
the thruster parameters and the spacecraft inertia parameters.
Simulations were performed using MATLAB and
SIMULINK.  The RLS algorithms were implemented using a
full simulation of the satellite dynamics, sensors and
environmental models.  The UoSAT-12 satellite in a LEO was
used as an example during these simulations to test the new
algorithms.  The parameters used during the simulation are
summarized in Table 1.  The estimation algorithms were run
both with and without aerodynamic disturbance torque.
During the simulation a set of three thrusters pairs were used
to test the thruster algorithm to identify the 3 3×  calibration

matrix $A .
 
Figure 3 illustrates the performance of the RLS MOI
estimation algorithm without aerodynamic disturbance when
disturbing the Y-axis and controlling the X and Z axes.  It is
clear from these figures that the convergence of the RLS
estimated parameters was achieved in approximately 1000
seconds in the case of  the moment of inertia I yy  and

approximately 3000 seconds in the case of the products of
inertia I xy  and I yz .  The parameter variation after

convergence was very small around the true value. Figure 5
illustrates the performance with a non-zero mean aerodynamic
disturbance torque (see Figure 14).  It is clear from this figure
that the convergence rates are somewhat slower than the case
without aerodynamic disturbance torques, Figure 3, (λ  is the
same) but that parameter convergence will still occur.  This
slower convergence is due to the drift in the reaction wheel
momentums, (compare Figures 4 and 6) when compensating
for the external disturbance torque and consequent build-up in
the angular rates in X and Y axes.  This also increases the
effect of cross-coupling, resulting in a slower convergence of
the estimates of the products of inertia.

Figures 7 and 8 illustrate the performance of the RLS
algorithm to estimate the thruster coefficients with and
without aerodynamic disturbance torque.  It is clear from these
figures that the results are almost identical and the thruster
parameters converge to the true values in less than half an
orbit.

VI. In-Orbit Results

In this section, we present the identification of thruster
coefficients using real data generated on board UoSAT-12.

The thrust arm of the roll, pitch and yaw thrusters (8 cold
gas) to the CoG of UoSAT-12 is approximately 0.44 m each,
giving a torque of 35 milli-Nm for attitude control.  The Z-axis
(yaw) control thrusters will, however, always be fired
simultaneously in an opposing pair to give a pure rotation
without any translation force, so the Z-axis thruster torque
will be 70 milli-Nm per dual pulse (see figure 13 for the
location of yaw-thrusters).  A pair of thrusters are
implemented to generate attitude control rotation of the
satellite around the yaw-axis, the other two axes being
controlled using reaction wheel actuators to identify the 3 2×
coefficients of the Z-thrusters (29).

N T
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a a

a a

a a
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where,Tzp  and T
zn

refers to positive and negative firing torque

respectively (nominal magnitude of 70 milli-Nm).
Figures 11 and 12 illustrate the satellite angular rate and

wheel momentum respectively during the experiment).  We
observe from Figure 9 that the mean values of the positive
thruster coefficients converge approximately to 0.01,-0.087,1
while the mean values of the negative thruster coefficients
converge approximately to 0.03,0.13,0.72 for the X, Y and Z
axes respectively.  Finally the estimated thruster coefficients
were used to identify the principle moment of inertia of the Z-
axis.  We observe from Figure 10 that the mean value of the
principle moment of inertia I

zz
 converges to its measured

value with small variation around the measured value.

VII. Conclusions
Two novel RLS algorithms have been presented to

identify satellite inertia matrix and thruster parameters in-
orbit.  Both algorithms assume no knowledge of the thruster
parameters and only an initial guess of the inertia matrix.
Numerical simulations illustrate the successful identification of
the thruster parameters and inertia matrix in spite of non-zero
mean disturbance torques and sensor noise.  In orbit tests have
been shown to confirm the operation of the thruster
identification technique.  The RLS estimation algorithms could
be applied in real-time on board a LEO nadir pointing satellite
in order to improve the attitude control performance.
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Figure 3 Estimated inertia without aerodynamic disturbance
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Figure 4 Reaction wheel angular momentum without
aerodynamic disturbance
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Figure 5 Estimated inertia with aerodynamic disturbance
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Figure 6 Reaction wheel angular momentum with aerodynamic
disturbance
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Figure 7 Estimated thruster coefficients without
aerodynamic disturbance
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Figure 8 Estimated Thruster Coefficients with
aerodynamic disturbance
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Figure 9 Estimated Thruster Coefficients
for the UoSAT-12
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Figure 10 Estimated moment of Inertia
for the UoSAT-12
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Figure 11 Angular Rate for the UoSAT-12
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Figure 12 Reaction wheel Momentum for the
UoSAT-12
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Figure 13Top view of cold gas thrusters
for UoSAT-12

 Table 1 UoSAT-12 simulation parameters
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Orbital parameters Orbital rate = 2 6000ππ / rad/sec
Inclination i = 650

Orbital Period = 100 min
Sample time 1 sec
Cold gas thruster Torque output 0.035 Nm

Minimum firing-time = 20 milli-seconds
Reaction wheel Maximum torque =0.015 Nm

Maximum Momentum = 4 Nms
Moment of inertia = 0.0077 kgm2

Maximum speed = 5000 rpm
Thruster
Coefficients A =

−

− −

















0 9 01 02

015 0 95 0 05

01 0 05 11

. . .

. . .

. . .

0 1000 2000 3000 4000 5000 6000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10-4
D

is
tu

rb
an

ce
 T

or
qu

e(
N

m
)

Ndx
Ndy
Ndz

Time(sec)

Figure 14 Aerodynamic disturbance torque
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