


TN e
Lo ?u\o ' \U&'&‘er v

INTERACTIVE MODIFICATION OF wUADDNATIC MULTIQBJIECTIVE

WATZR RESQURCES PLANHIHNG STRATEGIES

Paul J. Killian and R:hard €. Peralta

Authors: are Hesearch Agsisrant and Ase.scant Professor,
Acricu ! Laral Enginesr:ag Dept » University of Arkansas,
rFayatt-ville, Arkansgas.



ABSTRACT

An interactive method ies presented for modifying =2
multiobjective water resocurces planning strategy by
chaﬁging constraining conditions on regional objectives
and local variables. The method is 1llustrated by
modifying a conjunctive usea. sustained groundwater
withdrawal strategy for minimizing the cost of meeting
regional water demand on the Arkansas Grand Prairie.
The . strategy was developed using a model in which the
finite difference form of the two—dimensional
groundwater flow equation iz embedded in an optimization
Process. The guadratic optimization ie accomplished by
utilizing the General Differential Algorithm to obtain
valuee of drawdown. pumping. and rechuarge in gach finite
difference cell. Results fruom the formal cptimimation
process are subnitted to =a separaté program for
intgractive evaluation and modification. The interactive
algorithm applies the constraint met. od and constrainad
derivatives of the objective function to develop the
noninferior solution and tradeoff functions. The
" modification procedure is extended to determining the
intiuenca on the regional owojectives for repaated

changes in several local decision variables.



INTRODUCTION

Tre development of a regional water resources management
Htrate;y often includes the application of optimizmation thsory to
-~adterming the glliocation plan thrt most effectively satisfies a
desired objsctive. The two major components of any optimization
sroblem are the objective ifunction and the wvariables. In this
papef- an objective function is a8 stztement of the desired goal
nrf a ragional watar management strategy. The variables in the
optimizaetion problem represent local conditions which affect
attainment of the regional objectives,. When a finite difference
technique is uped in a water managamnent models the conditions at
gach node cr finite difference cell ars congidered Ylocal®
variables.

Within the complex arrangement of legislative. sociologic,
and economic goalg intfluencing water resources management,. it is
difficult. if not impossibler to optimize s sSingle objective
function without adversely affecting other regional obhjectives or
the. valuea of local variablea. Because opposing interaests and
ideas cannot be ignored in = reaslistic optimization procedure,
there 18 a need for a technigue of rapidly modifying the
constraining conditions and.determining the resulting effect on
multiple regional objectivas.

Bacause saveral daqision makers are usually involved in the
strategy salection process, the modification method shouid be
interactive. Interactive techniques of multiobjective analysis
have been wusad in the past to improve the coordination of

subjective decision makers with an objective numerical process
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(flonarchi and othera., 1973t Heimes and Hall, 1974. Datta and
Faralta. 18858). With an interactive procedurs:. the decision
sakers can actively participate ins (1) moving through the
decimion epace defined by a multiobjective analysis to decide on
2 compr;mise between regional objectivess and?: (2} changing the
bounds on'déciaion variables to reflect local considerations.

When confliecting objectives exist in the same problem. no
#ingle solution is available in which all aspects are optimally
attained. ‘ However, through the application of generating
~tachniquaes (Cohon and Marks. 1975) a noninferior set of solution=z
can be created. This solution set im almo referred to as 2
"nondominated® set. the "Pareto Optimum®™, the "transiormation
curve” or the "Ygificiency®™ curve. A feasible solution i=
noninferior if no other feawsible solution exists that will cause
one objective to improve withouvt forcing =2t Ileast g¢one other
mojective to degrade (Cohon 18783. At each noninferior solution.
+he relationship betwesn competing goalse is expressed in terms of
a tradeoff function. The tradeoff function describes the amount
zf one objective that must be sacrificed in order toc improve
attainment of another objective.

Every decigion variable also exhibite a relationship with
the ocbjective functions. Dual valuea, or congtrainad
derivatives, describe the relative worth of esch local decision
variable on the ragid;al cbjective. In the development of
-uatsr management sBtrategies, the objective functions applied to a

ragion are frequently a maximization or a minimization of the

aggregate effects on egubareag within the ragion. This



utilitarian approach provides for regional optimization at the
axpense of local development. By knowing how local changes
affect regional optimality, changes in iocal variables can be
congidaered in regiocnal management decisions. Peralta and Killian,
(18684; illustrate a method of refining &an optimal regional
solution in which only a =mingle change to one decision variable
iz mads. Their method however, is not interactive and 1is
inadeguats for analyzing continued changes in several decision
variables.

Oﬁe purpose of this papar is to present s method and
exampieithat utilizes quadratic parametric programing techniques
in an interactive manner to develop the noninferior molution set
and tradeoff functions. The second purpose is to demonstrate how
this method may be extended to rapidly determine the effect on
.ha objective functionm due to repeated changes in any number of
“acigion variables.

As a dsvelopmental step in the Grand Prair:ie Water Supply
Project, {Peralta and others 18984zs), ths interactive method is
damhnstratad through application to the bkicriterion problem of
developing a conjunctive use. sustained yield pumping strategy
‘for the Grand Prarie region cf Southeast Arkansas. Opposing
objectives c¢onsidered in this example include a linear function
to maximize regional groundwater withdrawal and a gquadratic
expression to minimize yhs total cost of supplying regional water
demand. These objective functions are simultasneously evaluated
within the same Iramework of physical and ingtitutional
constrainte.

Simulation is performed by applying the finite difference
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ftorm 0of the two-dimeneicnal sieady-etate groundwater flow
equations, (Pinder and Bredeshoeft. 1968) as part of the
constraining conditions in the optimization model. This
technique of linking the simulation to the optimization model ig
referrad to as the embedding method (Gorlick., 13983).

In the illuatrative example. local variables subject to
mansgement constraint include the drawdown, pumping, and recharge
in each ¢£finite difference cell. (Several considerations for
catermining limitations on these varisbles are listed by Bear
f£979).)- Drawdown ie defined as the difference in elevation
betwesn a horizontal detum. located above thae potentiometric
gurface, and the potentiometric surface. Groundwater pumping
referg to the volume of groundwater removed from the system by a
well penetrating the aquiferr» and recharge represents the volunme
of water entering the groundwater system from outside the region.
“he net sum of pumping and recharge in each cell is referred to
a8y excitation.

The development of the interactive modification method is
sxplained by firsti describing the objective functiona and the
conztraining conditions used in the example application. The
necessary theory is then presented through discussion of: (1) the
genaration technigue used to construct the noninferior solution
gat: (2) the General Differential Algorithms, andi: {(3) constrained
derivatives. This i; followed by a presentation of the
intersctive procedure used to construct the noninferior solution
ast. make repetitive local changes: and determine the influence

of 1local changes on regional objectives. The conditions under



which the method may be applied are almo detailed.

OBJECTIVES FOR THE GRAND PRAIRIE
The gusdratic objective function applied in the example. is
unique ip that it estimates the cost of maintaining a2 sustained
yvield by minimizing the cost of both groundwater and s=surface
water rsguired to satisfy regional démand. A complete derjivation
¢f thias objective function and the factors invoived is presented
by Peralta and Killian (1884). For the purposss of this paper

the fo}llowing general representation is satisiactory.

minimize (1)
N
z = > ¢ (i) pli) £(s(i)) + ¢ (i) p(i) + e (i) p (i)
i i=1 a m a a
wheras.
= = the total annusl cost of water supply, (&/year):

N = the total number of finite difference cells in
which drawdown and pumping are variables

¢ (1) = +tha cost associated with raising & unit

e volume of groundwater one unit distance:
($/L48);

p{i} = the annual volume of groundwater pumped from call

i» (L3/year);

t(ma(i)) = a linsar function of drawdown which describes
' the total dynamic head at cell i, (L);

¢ (i) = the cost asgociated with a unit veolume of
m " groundwater pumped,. ($/L3)}
¢ (i) = +the cost per unit volume of alternative
a water supplied in call i, ($/L3):
P (i) = +the annual volume 0f alternative water usme at

a cell i, (L3/year).

Because water requirements of each cell are satisfied by the



conjunctive use of groundwatsr and an alternative water source,
tha following relationship is umed to reaeplace p (i) in

a
equation (1).

p (i) = wli) = p(i) for i=1.N (27
a2 A -

where!
w(i) = the annual water requirements in cell i,
(L3/year).
The linear objective function used to maximize regional
groundwater pumping is gimiliar to the formulation used by Aguado
and othere (1974), Alley and others (1376}, and Elangoc and Rouve

(19688). Thie im described as follows.

mixXximize = = Ei pti) (2)
2 i=1
Jherss:
- = the total volume of groundwater annually withdraun
2 from the region. (L3/year).

The bicriterion problem consisting of both objective
functions is 2 two dimensional vector within a soclution space of
dimension 2N + M, where M is the total number of constant head
cells. The following notation im uped to describe this

gituation.

(4)

|
-
N
-
4]
—t
»

optimize o

Becauge it ie not pomgible to maximize or minimize this problem

without either prior knowledge or numerical repressntation of



management preferencer the term "optimize"™, a&as it appears in
eguation (41, raferga to accuretely defining the s=et of
noninferior solutions.

The regional goals expressed by the objsctive functions are
dependent’ én the drawdown. pumping. and recharge in each finite
difiference cell. Ea;h of these local variables is limited by an
upper and lowsar bound. The bound=z on these variablea delineate
the feseible regionr o©r solution space. The ifsasible region for

" .the bicriterion example problem is defined by the following

constraints.
.Y
pti) = 2> - t(i,j) s(3) for i=1,N (5)
j=1
K
r(m) = 2 - tlm.j) 8(§) for m=1,H (8)
i=1
=] (i)Y < @tiy < = (i) for i=1.,N (7}
min - - max
19 {iy < p(iy < p (i) for i=1,N (8
min T - max
Iy (m» < ri{m) < r {m) for m=1,H4 (8)
min - - max
where!
: K
tliri) = > — t(irj) 3
j=1
ixi
£ECisj)} = the traﬁamissivity hatween finite difference cell

i and cell j» for i = j+ (LZ2/year):;

X = the total number of cells in the study srea, also the
total number of inequality constraints. K = N + M 3

H = the total number of constant head cells in the regioni



£ (i} = the lower limit on drawdown in cell i. (L};

min
s (i) = the upper limit on drawdown in cell i. (L)}

max
P (i) = the lower limit on annual groundwater pumping
min in e®l1l i.» (L3/yearii

P {i) = +the upper limit on annual groundwater pumping in
max cell i, (L3/year);

rim) = the annual rechargs at constant head cell m,

(L3/year);

r (m) = the lower limit on annual recharge in constant
min head cell k» (L3/year):

r . (k) = the upper 1limit on annual recharge in conatant
max head cell k., (L3/vear).

Equality conatraints (5) and (6} are substituted into the
cbjective functions and constraints (8) and (8) such that the
only explicitly defined wvariable is drawvdown. Pumping and
rachargé a}a daefined in terms of the slack variables associated

with constraints (8) and (8), respectively.

THEORY

Generation Technique

The method used in this pesper to generate the mnoninferior
solutiun set is refsrred to by Cohon and Marks {(1975) as the
constraint method. Under the constraint method. all but one
_objective becone additional constraints. The single, or
principal objective is_optimized by conventional methode while
the constrained objectives are limited by 8 chosen value. The
selection of a principal objective doem not indicate management
preference.

To -ccnstruct the noninferior solution set. the limiting



valug for & particular constirained objective is varied and the
principal objective optimized =8t each new point. This is=s

generally defined by the following formulation.

min/max ' = = £(x) {13
P

Bubject to:

= > L For h=1.H (11)

h - h
whara:

z .= value of the principal objective function;

p

z = wvalue of objective constraint h:;

h

L = +the limiting value of opbjective constraint hi

h .

H = total number of objectivae constraints.

For the bicriterion example, the linear objective function.
aquation (3), becomes an objective constraint and the problem
description is represented in the opsrational form:
pinimize = = gis) (122

1
Subiject to the conditions of the feasible region as previously

defined by (B}, (Bl (7T)s (8), (9), and the Ifcllowing additional

condition. -

= > L (13

B
1
8]

where:



g{a) = e@quation (1) sxpressed in terms of drawdown alone;
L = the minimum allowable total groundwater annually

2 withdrawn from the asguifer underlying the region.

At gach value of L » a new value of z i computed. Within ¢he
2 1

feamibie ' region of the solution space: the objective constraint

will be binding. Therefore,. a noninferior sclution existy as a

sat of N drawdown values, at which 2z is equal to L .

2 2
The vazlues of L represent the minimum allowable regional
2
pumping imposed by a managsment decision. The range of L for

2
which the objectives will be conilicting and the corresponding

range of regional cost valuss are defined by the following

limits.
(14)

= at min =z < L < max =
2 i - 2 - 2
{ort
min = < =z < Zz at max =

1 - 1 - b 2
For wvaluas of L le@g than = at min =2 the constrained

2 2 1

objective and the principal cobjective are not in oppogition: the
objective censtraint is not binding and the value of =z resulting

1
from the optimization is equal to min = .

A systematic approach to develéping the noninferior
golution set varies the value of L from one extreme to the
cther, covering the entire range fn a predetermined number of
ateps. By using a controlled interasctive method, only areasg of
the solution set which are pf particular interest to the decision

makerg need be examined. Thus: by ignoring areas of the region

which are of little concern: guch as the extreme ende ©f the

18



feamible range. each decigion maker can accurately pinpoint hie
or her best-comnpromige wsolution with minimal computational
affort. By wusing a differential algorithm in this interactive
procedure, tradeoff functions for each regiconal objective and

each local decision variable are rsadily available.

General Differential Algorithm

The General Differential Algorithm. developad by Wilde and
Beightler (1867) and discussed in detail by Horel-Seytoux
(1972)L is a8 direct climbing method of locating the cptimal
solutioﬁ through a systematic gradieant search routine. The
interactive technique presented in this paper uses an extension
of the General Differential Algorithm to svaluate the change in
the value o0f the principal objective function and the system
r zaponse resulting from a change in the optimal solution set.

To aid in the sexplanation of the Gensral Differential
Algorithm consider the minimization of &a gquadratic objectivs
function with N variables subject to K ineguality constraints.
During any iteration in the search process:. the problem will
congist of K @qﬁations and N+K variables., {K of these variables
'éra slack variables introduced to transform the inequality
constraints into equality conditions}. The constraining
equations are separable and as such: K variables are expressed as

a function of N ind:paqdent variables. N independent variables

ara initially referred to as decision variables while K
dependsnt variables are reiferred to a2 solution or =state
variables. .- The spevific ageparation of wvariables into state

variables and decision variables is known a8 the partition of

11



the systemn.

The functional egquivalents of the state variables are
directly substituted into the objective function such that the
cbjective function is an unconstrained expression of N decision
variableé and ne state variables. During each iteratien in the
optimization procvess, one decision variable iz changed to
improve the wvalue of the objective function. A change in any
decision variable will caume every state variable related by the
K equality conditions to change.

In, the example problems a decision variable ig either a
dravwdown variable, or a slack variable corresponding to one of
the inequality conditions described by constraints (8)» (9). and
(13). At the optimum. all decisgion variables that are limited by
a binding constraint are associsted with & non-zero constrained
derivative. Assuming a minimization process. if a decision
variable ig agsinst an upper limit, the related congtrained
Jderivative must be negativa. A decision variable has =a
poesitive constrained derivative associsted with it if.the lower
limit is binding. If the value of a decigion variable is not
equal to0o a limiting conditions the corresponding constrained
derivative is zero and any changs in the decision variable doss
not improve the value of the objective function. This is simply

a non—doghatic explanation of the Kuhn-Tucker conditions.

Constrained Derivatives

The change 1in the value of the uncornstrained form of the
pringipal objective functions, for a given change in a particular

decision variabler, 1ie expressed in terms of the gradient of the

12



unconstrained objective function. The gradient of the objesctive
tfunction is the vector of first partial derivativee with respect
to the decision variables. Each first partial derivative is
referreed to as a constrained derivative. ("Constrained"”
derivatéve implies that the constraining conditions have been
subsfituted- into the objective function.) The constrainad
derivative deecribes the direction and magnitude of a change in
the value of the objective function for an instantanecuz change
in the value of the decision variable. |

Becauss the objectivea function described in this
application is a gquadratic expression each constrained
derivative of the objective function is & linear function of
decigion variables. Thuss, for a change in the value of a single
decision wvariables the values of all related constrained
derivativaes also change. The change in the value of easch
conetrained derivative is determinad by evaluating the vector of
second partial derivatives of the objective function with reespect
to  the decision variables. For a gquadratic okjective function.
this will be a vector of constant terms. The c¢hange in the
constrained derivatives of the principal objective function for a3
change in decision variable i is described in termse of the second

partial derivatives as follous.

AvEi) = blj.i) Ax (i) for j=1,N (15)
d - and i=1,N
where?
D v(j) = the change in the wvalus o©f the constrained
derivative.

i3



b(j.i) = the sacond partial derivative of =z taken first

P
with respecit to decision variable j and again

with respect to decision variable i.
Utilizing equation (15}, the change in the value of the
opjective function for =& change in one decisiocn variable is

gXpressed in terme of both the first order &nd second order

partial derivatives as

dz /d x (1) = w(i) + Dblisi) (x* (i) = x (i)) (16)

P, d d d

for i=1,N
where:

v(i}) = the constrained derivative of =z with rempect to

decision variable x (1i)3; he]
d
b(iri} = the sscond partial derivative of =z with respect
to decigion variable = (i). 5]
d

x'(i) = the new value of decision variable i:

-d

x {i) = the value of decigsion variable i, pricr to

d increasing or decreasing the value.

For a specific change in a decision variable the above equation

iz integrated over /A x (i) to yield
d

AR = { wv(i) + @.5 b (is1) (A x (1)) ¥ (A= (i)) (17a)
P : d d d

for i=1.N

where:

ANz = the change in the value of the principal objective
P function:

14



Ly# (i) = the specific change in the decieion variable i,
d or the difference between x*{(i) and x (i).
d d
For a specific change in the decision variable associated with an
objective constraint. equation (17b) describee the tradeoff
function.

DNz =1 v(h) + 8.5 b(h'sh) (A x (hy) } (/A x (h)) {17b)
P d d

for h=l,-H

Equatioﬁs (153, (1B), (17a) and (17b) are valid when the change
in the decision variable does not cause a repartitioning of
syatem variasbles. This limitation is discussed in detsil in a
EJbBaguent section.

The change in &ll system varizbles in response to a change
in the value of a mingle decisicon variable i=s referred to as the
system response. Because all decision variables are independent.

a c¢change to one decision variable will not =sffect the value of

the remaining decision variables. Every state variable however.
im expressed as a function of decision variables and is
therafiore affected. By evaluating the gradienis of the state

variabless the change to the state variables in remsponse to =a
change in the value of a gingle decision variable is determined.
In the bicriterion.example. the constraints are linear and
the repultant 8state gradients are vectors of gconstants.
Therefore» the firset partial of a state variable with regspect to
each decision variable is valid for any arbitrary change in =a

gingle decigion variable, not merely an incremental change. The

18
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@system response to a change in the value of a Bingle decision
variable i3 represented by the following formulation.

A% (k) = d(k.1) Ax (1) for k=1-K (18)
=} d

whare:

Ax (k) = the change in state variable ki
=]

d(k»i} = +the first partial derivative cf state variable k
with respact to decision variable i}

A x (i) = the change in decision varisble i.
d

The partial derivatives of the state variables. df(k.i), are
revised each time the system variables are repartitioned.

The concepts described indicate how the value of the
principal objective function and the system variables change for
a given change in a single decision variable. These methods are

aﬁp!iad in the development of the interactive procedurs.

THE INTERACTIVE PROCEDURE

The bicriterion example problem is formulated as it appears
in eguations (I12) and (13) with L. =et sgual to any feasible
_value of total regional pumping. 2This problem ism initially
solved by a quadratic programing procedure written by Leifsson
and others (198!) which uses the General Differential Algorithm
to determine the optimal solution. The optimal met of N drawdown
values, N pumping valuéss and M recharge valuezs that result from
the initial optimization represent one noninferior solution.

These values, along with the values of the first and second order

partial derivatives are transferred to a separate program for

16



interactive evaluation.

In @a constrained optimization, the decision variables are
ganerally tight variables with nonzero constrained derivatives,
Toe modify the original noninferior soclution, any decision
variable may be changed by modifying itse upper or lower bound to
expand or reduce the original ®size of the solution space. This
effectivaiy forces the decision variable to agsesume s desired

value when the problem is optimized under the revised conditions.

Hbving'Through the Noninferior Solution Sst

T01 generate the set of noninferior solutions, smeveral
changea to the binding limit, L » 0of the objective constraint are
inputs one at a time, to the ?nteractive program. This modifies
the value of the slack variable asmociated with constraint (13).
The gyetem response to gach change ie determined by equation (18)
and the new value o©¢f the principal objective function ia
deternined by equation (17b). The values 0I the constrained
derivatives are revised by eguation (15) and thse system is
checkei for optimality. [f the solution is not optimal, the
interactive program periforms the iterations necesgary to make the
soclution noninfe}igr.

At any point in the noninferior solution sat. the
ralationship between regional objectives is described by thse
constrained derivative‘ot the principal ebjective function with
regpect to the decision variable associated with e@ach objective
constraint. Once a tfavorable relationship is achieved and a
compreeise molution agreed upons, the resulting values of all

local variables may be examined.

17



In examining the local wvariablesg, a group of decigion makers
may identify areas at which the variable valuems of drawdoun:
sumping. or recharge are unsatisfactory. To refine the
compromise strategy and address local concerns, the interactivs

program is utilized as explained in the following section. -

Local Influsnce on Regional Objectives

At a noninferior solution, each loeal variable is either a
state variable. or &a decismion variable. The constrained
dErivaEive of the principal objesctive function with respect to a
state ;ariable is zeros indicating the independence beiween thae
principal cbjective function and the state variables. A change
t0 &a local condition represented by a state variable may be made
by changing a decision vsriables {(or several decision variableg).
such that the desired weffect on the particular state variable,
(described by equation (18} ). is achieved. Several examples of
this are discussed by Peralta and Killian., (1884). To change tha
value of & decision variable representing drawdown. pumping or
racﬁarge- the binding limit is appropriately changed.

A change in the bound on a local decision variable changes
ihé feasible region of the solution mpace common to both the
frincipal objsctive and the objesctive con@tréints. Depending on
the extent of the change. the noninferior solution that exists
prior to changing = loqﬂl bound is not necessarily optimal after
the bound has been re-established. In other worda, the solution
may become inferior. At an inferior solution. one objective can
be changed without advermely affecting the other obhjectives.

Uasing the interactive procedure, the decision makers may choose

i8



the regional dimension in which teo move such that the solution
becomes noninferior.

Equation (16a) is used to determine the c¢hange in the
principal objective function resulting from a specific change in
the value of a decision variable. In making this change the
objective éonstraints remain fixed and a8 new solution s=et
resul te. At  ths new golutions the change in the value of an
ohjective constrzint, needed to insure that the principal
objective retaine 1its original values may be calculated by
solving equation (18b) for /A x (h) . This value is then input to
the interactive program auc: that the original wvalus of the

objective function is obtained.

Conditions Under Which the Procedure may be Utilized

To change the value of a decision variables the limiting
ound i2 replaced with 2 value that either &xpands or reduces the
wize ' of the solution space. This effectively creates a new
problen. Dapending on the extent of the change to the bound. ths
new problem may require subssguent iterationsz to achieva
optimality.

The solution that exists prior to changing the bound (the
old optimal solution) is the starting point for the new problem
and must be feasible within the new solution space. 1f a change
in a bound i1ncreases the. size of the gglution space {(if the upper
limit is increased or the lower limit is decreased) the old
solution is alwayB & feasible starting point. l1f however. tha
solution space 18 reduced (a lower bound ig increased orf an

upper bound is decreased! the extant of the change to the bound

13



«n a decision variable ig limited by femsibility criteria. A
veduction in the sizZe if the soclution mpace that causses the old
optimal solution to be infeasible within the new solution space
ig not permitted with the interactive procedurs.

The magnitude of the feasible change ig determined by thse
conatraints. imposed on the involved variables. A decision
variable is alloved to increase or decrease until ity or another
variable, encounters a limiting condition. Since the bound on
the decision variable itself is dictated by +the users the
feagible pomitive and negative deviation is controlled by the
firgt state variable to reach its upper or lower iimit. The
valua of the isasible deviation is found by solving eguation (18)
for A x with A x (i) defined as the difference betweaen the state
variablg and its :ppraaching bound.

If the change in the bound on a decision variable is withirn,
or equal te the feasible daeviation, the corresponding change in
the valuae of the decision variable ig equal to the change in the
*mund. The constraint remaing tight: and the system response is
fessible, thecugh not necessgarily optimal.

Optimality is afitected if a gingle decision variable is
changed such that application of equation (18) causss one of the
corigtrained derivatives to change signs. The maximum sbsolute
change in the valua of &2 decision variable such that none of the
nonzero constrained deri;atives change sign is referred to as the
nptimal deviation. To change sign, &8 constrained derivative

must first change from a positive or negative value, to zero.The

optimal deviation ig determined by applying egquation (15) with _

29



Nvi(i) defined as the difference betwsen the value of the
congtrained derivative and zero. if the change in the bound on a
dacigion wvariable is within both the optimal deviation and the
ieagible dsviations the change in the value o0f the decimion

variable ' i8 egual to the change in the bound and the resulting
atrategy is.optimal.

The bound on & decision variable can be chénged in excess of
the tfteasible and optimal dsviation if the change incrasses the
size of the feaaible ragion. In such a casas, a state variable
reachaé ite bound and the initial change in the decisgion variabhle
is Iess'than the input change in the bound. A re—-partitioning of
thar variables is performed such that the tight s=state wvariable
becomes a decision variable and the 1loome decision variable
bacomesa a state variable. Additional iterations may be necesmary
to make the Ifeasible solution optimal ag well.

In summary *: (1) the intgractive process may bs used to
modify an existing strategy when a change in the limiting bound
-m -any decision variable decreases the size o0of the solution
space if the change to the bound is within ths feasible deviation
determined through the use of the congtrained derivatives: (2)
'tﬁa interactive modification method may not be umed 1o change a
bound in excess of the feasible deviation if the change decreases
the size of the Bolution spaces (3) the method can analyze any
arbitrary change in the dimiting bound on a decision variable if
the Ehange increases the size of the solution apace. When thae
change in the solution space exceeds the optimal dsviation,

additional iterations are necessary if the optimal rasult is

desired. These iterations are performed by the interactive
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program by utilizing the same subroutinee developed for tha

interactive process.

APPLICATION AND DISCUSSION

Site Degceription

The quadratic and linear objective functions for minimizing
total cost and maximizing total regional groundwater withdrawal
are applied in the multiobjective format to the Grand Prairie of
southsastern Arkansas. Figure 1 ®shows the Grand Prarie
sgubdivided into 204 finite difference cells. Of the 204 titotal
cells, 52 are constant head cells used to =simulate conditions
along the periphery of the study area.

The Grand Prairie is an extensively cultivated and irrigated
agricultural area and one of the prime rice producing regions of
the country (Griffis 1872). A heavy layer of clay underlies the
topsoil and brevants infiltration from recharging the aquifer.
The only apparent sources of recharge are the rivers which border
the aresa and sxtengions of the aguifer cutside the study area.
Extensive pumping and limited recharge has resulted in a
declining water table and water shortages in this Quaternary
.aquifer.

Aquifer charscteristics used for aimulation are those
reéortad by Peralts and others (13884b). These data include the
elevation of the top .and bottom of the aquiifer. (uged in
determining the saturated thickness)., and a - hydraulic
conductivity of 82 meters per day., (270 feet per day).

Tha drawdown and pumping in the non—constant head cells are

bounded by an upper and a lower limit. The lower limit on
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' drawdown represents the average ground surfmce elevation in @ach
cell. The upper limit on dréwdown ig such that © meters (20
feet) of saturatsd thickness is guaranteed in each cell. The
lowar limit on pumping is zero (toc prevent physically unrealistic
1nternai recharge from being computed}! and the upper limit on
} -mping isl equal to the current average annual groundwater
withdpauals. The variable recharge in constant head c¢ells is
limited =such that maximum annual observed recharge from outside
the gsyatem is never exceeded.

Cost coefficients used in the quadratic objective function
are estimated from information received from the U.S. Army Corps
of Engineers., (personal communication with Joe Clements. Dwight
Smith a&nd Stony Burke). In areae where no surface water isg
available for uge as an alternative sourcer the opportunity cost
asqociated with reduced production is used ag the alternative
yater cost.

Tire matrix of second partial derivativem in the least-cost
cbjectiive function, eguation (1), consists of groundwater cost
coefficients and transmissivity values. Before optimization,
this _Hessian matrix was examined and found to be positive-
definiter- thus insuring that the resulting sclution is the global
optimum. Details of this are discusged by Peralta and Killian

(1984).

Noninferior Solution Sat

Figure 2 displays the resulting =2t of noninferior solutions
interactively generated as outlined previously. Shown with every

exact noninferior solution is the corresponding tradsoff function
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axpressad by the the firet order partial derivatives in units of
dellars per cubic decameter. Although the totsl range defined
by (14) is presented in Figure 2, in actual practice it iz not
ragessary to produce the entire set of solutions.

From the noninferior esolution w=setsy the best-compromnise
solufion méy be determined by implementing the surrogate worth
tradeoff method introduced by Haimes and Hall (1874) and sdopted
for interactive developaent of a vonjungtive uses asuzgtained yield
strategy by a8 group of decision makers (Datta and Peralta. 1898%5).
For illustrafivs purposes, 8olution set A is chosen as a
compronise solution, though not necessarily the best compromise
golution. For solution Ay the total annual regional grounduater
pumping is maintained at 138,000 cubic decameters, (112.000 acre
femt). The total regional cost of the conjunctive use strategy
is S.3 million dollars and the average combinéd cogt of
grcﬁnduater and alternative water (including opportunity cost) is

26 dollare per cubic decamster. (32 dollars per acre foot).

Locél Change

At the compromise solution. the local groundwater pumping in
cell (3.4) is equal to its lower limits which is 6.0 . In other
words, for the benefit of the region ae & whola: no groundwatser
withdrawal is permitied at this cell and in factr» no water neads
‘are satisfied. Asaumiﬁg that a group of decision makers wish to
improve the equity of the compromise solution to groundwater
userg in cell]l (3+:4)., the lower 1limit on groundwater pumping in
call (3,4) is increassed, mnd the regional effect analyzed.

The censtrained derivative for the pumping in cell (3,4) is
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"4z dosllars per cubic decemeter, (40 dollars per acre foot). For
gvery cubic decameter increase in groundwater pumping in cell
{3,4). the regional cost increases by 32 dollars. Bacau=se the
second partial derivative of the objective function with respect
to tha'pumping is a pomitive 0.088 dollars per cubic decamnster
per cubic décamater, (0.912 dollars per acre foot per acre foot).
the constrained derivative, (32 dollars psr cubic decameter).,
will increase as the local pumping increases.

The most that pumping can be increased in cell (3.4) and
s8till maintain feagiblility i®s 237 cubic¢ decameters. (192 acre
feet). at which point the pumping in eell (5:5) reaches its lowver
limit. Becsuse the changs will reduce the size of the solution
space. the limit of 237 cubic decameterse must be recognized. i
the desired increase in the pumping at cell (3:4) ias greater than
237 cubic decamsters. the original problem must be reformulated
end submitted for exectution uzing standard optimization code.

Asgume that the decision makers agree to increase pumping in
call (3,4) by 224 cubic decameters, (183 acre feet). In
accordance with equation (17a), the modification causes the totasl
regional cost to incresse by 7,430 dollars. -The change of 224
cubic decameters alsgo causss the values o©of some of the
constrained derivatives to change g2ign, thus making the solution
inferior. The interactive program reguires 5 subsegquent
iterations and about td; minutes of processing time to calculate
the optimal solution. At the revised optimum,. the increasme in
total regional cost is 7,392 dollars and the pumping in csill

(3,y4) i 224 cubic decameters.

25



This new noninferior solution is point B on Figure 3» an
anlarged saction of Figure 2 in the vicinity of the compromise
molution, At point B+ the totmsl regional pumping is still
138,000 cubic decameters but ths cost is 7,380 dollars greater
than tne cost of solution point A.

The decision makers may alzo want to know how the total
regional pumping of strategy A im affected by a locsl increase of
224 cubic decameters in cell (3,4): 1if the total cost remaing
constant. At point B, the constraingd derivative of the
ﬁrincibal objective with respect to the constrsined objesctive.
{the iﬂstantaneoua tradeoff function), is 3@ dollars per cubic
decameter (37 dollars per acre focotls and the corresponding
second partial derivative is 0.002 dollars per cubic decameter
per cubic decameter. (0.983 dollargs per acre foot per acre foot).
Solving equation (17b) for A x with A= egqual to -7,390
dollarg results in a reduction indtotal regignal pumping of 259
2ubic decameters. (202 acre feet). Because this increase in the
aize of the feasible region is less than the maximum feasible
daviation: the first and second partial derivatives remain valid.
Thie means that in order teo increase groundwater availability =at
call (3,4} from @ to 224 cubic decaneters, while maintaliniang
total regional cost st 9.3 million dollare, @& total of 474 cubic
daeamaters of groundwater must be forsaken in all resmaining
calls. Implementing #his change resultz in the noninferior
golution indicated by point C in Figure 3.

At point C» the total cost is the original 8.3 million
dollars, but the total regional pumping has decreamsed by 250

cubic decameters. The curve connecting points B and C indicates
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3 portion of the set of noninferior solutions for the new
solution space. At any point on the revised curve, the minimum
amount of groundwater pumping at cell (3,4) is 224 cubic
decamsters.

The extension of the noninferior solution set Iin a loecal
dimehsion i possible at any compromise solution with any
decimion variable. Therefore, for the 152 decision variables in

thie exsmples the total number of possible decigion directions,

including the two regional dimensions, is 154.
SUHHARY

An interactive parametric programing msthod is introduced
in the form of a computer program to effectively and efficiently
avaluate several conflicting objectives. With this technique.
the uger i=s able to interactively investigate any area of the
teagible =olution epace and utilize beth regional and local
tradsoff functions in selecting and designing a regional water
management strategy.

By applying this method. decision makers may interactively
modify a management strategy in both the regional and local
decimion dimensions. Regional changes are made by moving through
the set of noninferior solutions to locate a compromige golution
and regional tradeoff functions. Local changes, or modifications
in the finite dirferance‘variablas, are accomplished by changing
the constraining c¢onditions on locel decgimion variables. The

constrained derivatives are available for evaluating the response

of regional objectives to repeated changes in local decision
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variables.

In the field example the procedure is used to modify an
optinmal regional conjunctive UBe, sustained groundwater
withdrawal stirategy. The strategy ie initially obtained from a
management model that minimizes the cost of meeting watar needs
from the cpnjunctive ume of groundwater and surface water while
maintaining a sustained yield. The optimization process uses the

finite difference form of a two dimensional groundwater flow

aquation as part of the constraining conditions. For
multiobjective analysis, a mecond objective function that
maximizes the total regional groundwater withdrawal under

sustained yield conditions i®e included in the original problen as
an additional constraint. The results of the formal optimization
include local variables representing the drawdoun, pumping. and
recharge in each finite difference cell. The initial regsultis
also include a decvimion variable that represents tha total
regional groundwater withdrawal under the optimum strategy.

The results of the formal optimization are input to  an
intéractiva computer program and the aset o0f noninfericr
soclutions is generated. At any fzamsible solution. the tradeofi
function between competing objectives is given to sid in lecating
a compromisge solution. The procedure alsc provide= information
on the- response 0f the reglonal objectives te a changes 1in any
locel decision variablei- This information is used for modifying
the cbmpromise sclution with respect to local concerns.

The interactive modification method may be applied for any
change in a bound on a decision wvariable, when the change

increases the gize of the feasible region. For the given exaempla
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of 152 decigion variables and 204 inequality constraints, if a
change in the bound on a decision variable is less than the
maximum feasible deviation: the optimal solution is calculated
with a -few additional iterations and about two minutes of
procesesing ,time. If the change in the bound causes a re—
partitioning of the system variables, it may take more than a
hundred iteration2 and considerably more processing time to
arrive at an optimum.

wh@n a change in a bound decreases the size of tha feasibls
ragionvl the change is limited by the feasible deviation
determinaed by utilizing constrained derivatives. The interactive
procedure is not appropriate if a desired change decreases the
gize o0f the feasible region in excess of the feasible deviation.

In such & came the problem must bpe re-submitted and solved by a

gsiandard optimization code.
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