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Abstract: This paper addresses the problem of bringing two satellites on different orbital
planes together and presents results of successful experiment done using two SSTL satellites:
UoSat-2 and UoSat-12.A simple linearized Keplerian model with J2 dynamics included was
used for initial approximation. A standard LQR controller is presented which by using the
above model provides optimal along-track only firing strategy to bring the satellites within a
few kilometres of each other. A high precision analytical propagation determines the exact
geometry and time of closest approach. As the inclinations of the above two satellites differ
by more than 30 degrees, the final step of bringing the two satellites into a stable formation
was obviously left out, but radio receiver data from the fly-by are presented to validate the
accuracy of the method. A nonlinear least squares filter was constructed to extract orbital
elements from the radio data received, thus improving our knowledge of the relative orbits of
the two satellites. We have brought the two satellites at closest 7.7 km, while other encounters
happened at much larger distances. Clear radio signals were received when the satellites were
even 150 km apart.  For selected encounters for which we have good quality radio data, we
were able to confirm that our prediction was 0.451 second accurate with respect timing and
2.29 km with respect closest approach distance (rms).

Introduction

Formation assembly targets the problem of bringing
satellites together within a specified proximity of
each other. This is needed, as after separation from
the launcher, members of the formation could
potentially be on different orbits and drifting apart
while the spacecraft are commissioned. Formation
assembly also needed when new spacecraft are
being launched to join an existing formation. In
spite of the recent flurry in formation flying
technologies (4-6), literature on formation assembly is
rather small, but a field nonetheless which needs
more attention.

The spacecraft supplier and operator, Surrey
Satellite Technology Limited has built and launched
numerous LEO satellites over the past decades, and
a goal was established to bring together two of them
(UoSat-12 and UoSat-2) together in close proximity
of each other. Even though the inclination
difference between the orbits of the two spacecraft
is more than 300, it was proposed to investigate

formation assembly scenarios and the possibility of
synchronized encounters between the two satellites.

Parameter Uo-2 Uo-12
semi-m axis (km) 7019.08 7025.41
eccentricity 9.344e-4 2.019e-3
inclination (°) 98.06 64.5774
RAAN (°) 47.17 314.97
arg. of perigee (°) -152.2 136.39
arg. of latitude (°) -121.65 -102.77

Analytic Prediction Model

The analytic prediction of the encounter happens in
two major steps using the epicyclic1 description of
satellites by Hashida and Palmer. Initially we aim to
get the satellites within a few kilometers of each

Table 1: Uo-2 and Uo-12 orbital elements on 20th

March 2002, 10:20:00
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other and without worrying what is the exact
geometry. Thus at this step we do not have to worry
about eccentricities of satellites, collision just on
which days the satellites are going to be close to
each other and what are their phase angles will be
at the time of fly-by. However because of the long
time scales involved we do have to worry about
secular J2 (second zonal harmonic of the non-
spherical geopotential) and aerodynamical drag
effects.
In the second step we use analytical propagation to
find exact parameters and geometry of the
encounter. Once the exact time of the encounter is
found a plane-change maneuver could be executed
to finalize formation assembly. However in this case
it was obviously left out for the angular difference
between the two orbit planes would make this
impossible.

The epicyclic equations of orbit of a satellite as
descried in the first step, ignoring any second order
effects and drag for the moment, are:
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where λ,r describe the motion of the satellite in

the instantaneous orbit plane without eccentricity
and the J2 constants are
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and a is the guiding centre radius, b is the offset in
radial direction, tE is equator crossing time.

Let us denote satellite 1 (UoSat-2) parameters with
subscript 1 and satellite2 (UoSat–12) parameters
with subscript 2. We have also the freedom to
choose the initial guiding centre of satellite 1 to be
at the same radius as it follows from its semi-major

axis and thus we have 01 =b . For our purposes we

now denote b2 simply b, and a=a1=a2.
As shown in Figure 1, now we have a spherical
triangle, where the two circles of radius a(1+ρ)
intersect the equator and each other. The
intersection point X is defined as encounter point,
and if the satellites are phased right the satellites are
expected to be within several kilometers of this
point (and each other) at the same time.
We also define b and all J2 terms as being small or
first order (10-3) with respect to Keplerian two-body

motion. For the first analysis all second order terms
will be ignored.

Now from spherical geometry (Figure 1.) we have:
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Immediately we can have a rough estimate on the
relative velocities of the satellites, or how much
delta V we would need for an immediate plane
change maneuver by calculating the angle ε.
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This is because ignoring eccentricities allow us to
say that the angle between the velocity vectors of
the satellites at point X is ε.
If satellite 1 has crossed the equator at time tE1 and
its guiding center is at X at time t1, then we have:
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and similarly for satellite 2
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Rearranging to get the time difference between the
satellites arriving close to each other while ignoring
second order terms:

Figure 1: Formation assembly geometry in
general case
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Thus at any time if satellite 2 is at X, then G gives
the time difference of satellite 1 being at X as well.
If G=0, then we define encounter between the
satellites. To find out when we will have encounter
we simply solving for G=0 as time progresses.
We have to bear in mind that the difference between
the equator crossing times also progresses every
orbit the following way:
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from eq 8. we also have
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where λ(Ψ)’ is derivative with respect to ψ.
Using the transformation
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the proof of which would be too long to present
here, we can establish an optimal separation bc such
that G’=G:
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Thus if G=0 and satellite 2 can always maintain its
semi-major axis with a separation of bc from satellite
1, then we would have continuous encounters
between the two satellites. In other words we can
use drift caused by varying the semi-major axis to
counteract drift caused by the J2 terms and
synchronize the phases of satellites so they meet
twice every orbit.

Graphs 2 and 3 show example behavior of the G and
bc functions with respect to time. As mentioned
before we have encounter when G=0=2π/n or any
integer number of orbital periods. Please note that bc

can vary between +2 and -20 km and that is mainly
because of the large difference in the inclinations
causing large differential J2 disturbances.

LQR Control and firings

We can now define our LQR problem as to reduce
both G and h=b-bc to zero. Accordingly our state
vector contains G and h. Although bc varies with
time, we know its exact value. Thus in our control
loop we modify G external to the LQR algorithm to
achieve our desired result. Our state transition
equation is thus:

Figure 2: Function G, with respect time

Figure 3: bc  with respect time
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Simulations were done in MATLAB using the
DLQR function K=DLQR(A,B,Q,R), where Q=[1
0; 0 0] and R=1e8 and A and B as specified in
equation 21. It is imperative to note that coefficients
would need to be chosen separately for each
scenario to find the required trade-off between time
and fuel.

The following figures show a scenario, where the
initial value of G is 2500 seconds (almost half an
orbit) and it takes the controller approximately 700
orbits of firings to bring the satellites in
synchronized formation flying. This somewhat
worse case scenario with respect fuel expenditure
needs 22 km of semi-major axis change, which is
about 11.8 m/s total delta-v. Obviously by waiting
while the natural dynamics brings the two satellites
closer could significantly reduce this. It is also
worthy to note that after G becomes close to 0,
maintenance of the synchronized encounters cost
less than 1m/s. This is because a period was chosen
where the variation of bc is small.
The LQR controller was also verified by replacing
the analytical model high-precision numerical
propagators  

3 and inserting the commanded delta-vs
in an open-loop control manner.
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To simplify our control process relative
aerodynamical drag was added at the final stage of
the process. After drag coefficients were estimated
via the OBC or NORAD, the relative change in b
until the next firing period was subtracted from the
b’-b value from which the firing command was
calculated. This rather simplified approach is
justified by the fact that relative drag between the
satellites is very small compared to the manoeuvres
executed and errors gained via incorrect attitude or
not perfectly calibrated propulsion.
In total more than 50 firings were executed on
UoSat-12 by firing usually once a day. Another aim
for the firings were to reduce the eccentricity of
UoSat-12, radial firings were executed as well.
The Table 2 shows some of the firings executed.

 Figure 4: Plot of G (100 sec) vs orbits 

Figure 5: Plot of h,b,bc (km) vs orbits

Figure 6: Plot of to_fire (10m) Sum_fire (km) vs
orbits
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Collision Analysis

After the initial analytical prediction and firings we
used the full epicycle model (2), including the
eccentricities this time, to analytical propagate the
satellites and predict the final parameters of the
encounter. Table 3 shows example output of the
final prediction.

Date Closest approach (km)
20/03/ 2002  09:32:58 25.85991
20/03/ 2002  10:21:44 14.0059
20/03/ 2002  11:10:38 13.33353
20/03/ 2002  11:59:23 16.4301

However it is different to predict what is happening
2-3 days before the encounter or two weeks before
it. Although our accuracies would improve a lot as
time progresses, the capabilities to change on the
encounter parameters are reduced due to limitations
of the propulsion system. On the other hand
estimating the exact phases of the satellites two
weeks before is rather difficult because of drag.

Thus a simple statistical analysis was used to ensure
that the satellites would not get too close. Knowing
the inaccuracies of the orbit estimation and our
analytical model, 500 random, Gaussian distribution
variations were added and propagated to the
satellites. The closest approach was extracted each
time and the results organized in a histogram.

The fact that for the March the 20th encounter the
satellites could get as close as 2 km was a bit
threatening. Although the final closest approach was
modified because of the collision analysis, the next
encounter was set up with the knowledge of how
initial conditions can affect the final parameters of
the encounter. Thus for April even two weeks
before the actual encounter we could be sure that the
satellites would not get as close as 13 kilometres.

Date Direction SMA-before (km) SMA-after (km) SMA-change(km)
21/02/02 Alongtrack+ 7026.062 7026.19764 0.1353006
22/02/02 Alongtrack + 7026.199 7026.30777 0.1087635
23/02/02 Radial - 7026.312 7026.30533 -0.006984
24/02/02 Radial - 7026.306 7026.30261 -0.0034
25/02/02 Radial - 7026.303 7026.28793 -0.015153
26/02/02 Radial - 7026.288 7026.26668 -0.021083
27/02/02 Alongtrack - 7026.275 7026.20039 -0.074757

Histogram (500) March 20th
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Histogram( 500) Apr 15th
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Table 4: Example output of final prediction

Table 3: 7 of the firings executed on UoSat-12

Figure 7: Collision analysis in March

Figure 8: Collision analysis for encounter in
April
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Received Radio Data

There were a total of 26 scheduled encounters for
which the radio receiver of UoSat-12 was tuned for
the download frequency of UoSat-2. The dates of
the encounters were 12th October ’01, 20th March
and 15th April ’02. For the last two cases attitude
manoeuvres were executed as well to try to capture
images, but without any merit.

This is because the ADCS and the cameras of the
SSTL satellites were designed for nadir pointing
earth observation goals in mind and not the high
accuracy pointing, high slew rates and small
integration times needed to take an image of another
satellite moving with relative velocities ~10km/s.

On the other hand a clear signal was intercepted
from UoSat-2 at all times during the scheduled
times. Figures 10-13 show two sets of signal
strength and discriminator output. Two things can
be immediately deducted from these graphs. First of
all the centred nature of the major feature shows that
the timing of the window for the encounters was
rather good. This was also verified with quantitative
methods in the next section.

Secondly we can see that the first data set is much
less noisier than the second one. Looking at the
actual positions of the satellites during the encounter
could explain this, as the second set was taken over
populated areas of Sweden, while the first one was
taken while the satellites were over unpopulated
areas of the pacific near New-Zealand.

A similar trend could be noticed with all the other
datasets as well. Because the actual instruments are
so accurate that the error bars would be barely
visible on these graphs, we can therefore deduce
that all fluctuations are due to unknown radio
sources and antenna characteristics.

Figure 9: Screenshot of STK simulation
showing the orbits crossing

Figure 10: Signal strength over the pacific

Figure 11: Discriminator output over pacific

Figure 12: Signal strength over Sweden

Figure 13: Discriminator output over Sweden
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Verification of predictions

After reviewing the datasets, it was found that the
Doppler curve of the discriminator output produced
a lot more accurate results than the peaks on the
signal strength indicator graphs. Further
investigation showed that a straight line could,
easily approximate the actual relative orbits between
UoSat-2 and UoSat-12 during the 15-20 seconds of
closest approach. That is looking from the point of
UoSat-12, UoSat-2 would be travelling in a straight
line with a relative velocity of 10.5 km/s and at the
closest approach it would be around 11 km apart.
This straight-line fit of the relative orbit segment
has got an RMS < 0.5m and thus good enough for
our purposes.

For all 26 data sets the middle 20-second part of the
discriminator output was extracted. The OBC
logged this output every second thus this means 20
data points. The relative velocities between the
satellites can be estimated by either the angle ε in
equation 11, or via the high accuracy analytical
propagation. Into our measurement equation we also
had to put in a bias r for there is an about 1.5kHz
mis-calibration for the downlink frequency of
UoSat-2. The measurement equation is as follows:
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where Fout is the downlink frequency of UoSat-2, c
is the speed of light, d is the closest approach
distance, v is the relative velocity and t0 is time at
start of filtering.

A standard non-linear least squares (7) algorithm was
then used to extract r, d, t0. However the initial fit
was rather poor (Figure 15.) (Table 3). The RMS of
the residuals was 0.67.

final
parameter standard error

b (kHz) 1.73126 +/- 0.174        (10.05%)
t0 (sec) 43.1406 +/- 0.09808    (0.2273%)
d (km) 5.84829 +/- 2.242        (38.34%)

Vrel

d

t0

Uo-12

Uo-2

α

Figure 14: Screenshot of STK simulation showing the orbits crossing

Figure 15: Straight line approach

Figure 16: Filter result without velocity correction

Table 5: Filter output without velocity correction
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It seemed as if the guess for the relative velocity
was too low and thus prohibiting a more accurate
fit. This was an unknown characteristic of either the
discriminator or the antenna of UoSat-12. Thus for
the second try we also had to filter for the relative
velocity as well. However the actual output of the
filter was useless in the sense that it was always 10-
15% higher then it is expected thus needed to be
discarded. However the quality of the fit has
improved significantly (Figure 16.) (Table 4.). The
RMS of the residuals in this case was now only 0.06
kHz.

The same filtering procedure was executed for all
other datasets and the RMS of the residuals was
always less than 0.1 kHz. Summing up all filter
outputs we can compare the overall performance in
predicting encounter parameters on next day with
respect to the received radio data. The RMS error in
the timing prediction 0.451 seconds, while the RMS
error for closest approach distance was 2.29 km.
With respect to the small usable data, the 1 second
sampling period and the high relative velocities, it
can be concluded that the prediction system worked
reasonably well and within the expected error
boundaries.

final
parameters standard error

b (kHz) 1.68407+/- 0.0168       (0.9974%)
t0 (sec) 43.206+/- 0.01061     (0.02455%)
d (km) 11.705+/- 0.2753       (2.352%)

Conclusions

In this paper two major topics of formation
assembly were discussed. First an analytical model
was presented on predicting time of encounters,
together with an LQR controller to bring satellites
close to each other in a controlled manner. This is
achieved by basically counter-acting the drift caused

by J2 terms in the relative phases via changing the
semi-major axis of one of the satellites. Sample
scenarios showed that control works, but
coefficients for the LQR function need to be
selected manually.

In the second part real-world experiment results
were presented where first part of a formation
assembly scenario was executed. Two SSTL
satellites were brought in close proximity of each
other even though their inclination difference causes
a much larger drift then in an ideal formation-flying
scenario it is ever possible. Probabilities of collision
were examined and on the days of the encounter
radio data was received from UoSat-2 via UoSat-12.
These 26 real-world data sets were then used to
verify the accuracy and the validity of the analytical
model developed in the first part.

There are multiple ways to extend on this work.
First of all the analytic model could include a full
drag model rather than the limited approach used
here, to accommodate for scenarios where the drag
coefficient between the satellites is rather big.
Secondly a more realistic scenario could be set up
by propagating a virtual satellite in an orbit close to
UoSat-12’s orbit and executing manoeuvres. In this
case there would be no risk of collision and the fuel
expenditure would be a lot less as well. There fore
sustained synchronized encounters and even
complete formation assembly could be possible.
However the drawback is that there wouldn’t be any
real world verification like the radio data sets
received from UoSat-2 above.
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Appendix

Figure 18: Data flow diagram of the experiment
(RSSI=Receiver Signal Strength Indicator,

DISC=Discriminator Output)
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