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ABSTRACT: Small spacecraft that are powered by solar energy have limitations because of the size of their solar 
panels. With the limitations on the solar panel size, it is generally hard to comply with the demands from all the 
satellite subsystems, payloads and batteries at the same time. To overcome these problems we have developed and 
adopted a power management optimization scheme that runs in real time in the satellite. The proposed power 
management scheme primarily involves scheduling of loads (various subsystem operations, payload 
experimentation, battery charging, etc.) so that power utilization and thereby the charge of the batteries is at its 
optimum. We have developed a genetic algorithm based schedule optimizer and propose an FPGA based fitness 
evaluation function for it. 
 

List of Important Symbols & Abbreviations 

Symbol Description 

iT  ‘ ith’ task of the spacecraft 

iN  ‘ ith’ node of the power distribution system 

ijko  Operation i, of task j activating node k 

ijkd  Duration of ijko  

ijkt  Starting time of ijko  

ijkr  Resource for ijko  

t
Γ

 Set of schedulable tasks at any time t 

e

Π
 

 

A partial schedule containing e scheduled 
operation 

eS  The set of all schedulable operations at 
iteration e 

eC  Conflict set, contains all the conflicting 
operations at iteration e 

ijσ  
The earliest time at which operation 

ej ∈ S of task i can be started  

ijφ  
The earliest time at which operation 

ej ∈ S  of task i can be finished 

ijσ  The latest time at which operation ej ∈ S  

of task i can be started 

ijφ  The latest time at which operation ej ∈ S  

of task i can be finished 
J Total number of tasks in the system 
n Total number of nodes in the system 

ℏ  
The hard constraint flag field associated 
with an operation. It is 1, if the operation 
has HSTC or HETC. 

δ  
 

The interval from the soft start time of an 
operation after which it actually starts 

HSTC Hard Start Time Constraint 
HETC Hard End Time Constraint 
SSETC Soft Start Time and Soft End Time 

ς  
Allowed delay, i.e. nominal due time + 
allowed time in which a schedule can be 
executed 

I
ipr  Priority rule at the ith position of the Ith 

individual in the genetic population 
 
 
1. INTRODUCTION 
 
Solar powered spacecraft that operate off the sun’s 
direct energy during sunlight hours, and batteries during 
eclipse periods, have an unwieldy task of sequencing 
the various subsystems’ operations for optimized power 
management. Traditional techniques rely heavily on a 
relatively large and highly skilled mission operations 
team that generates detailed time ordered sequences of 
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commands to step the spacecraft through each desired 
activity. Each sequence is carefully constructed in such 
a way as to ensure that all known operational 
constraints are satisfied.  Sequencing is primarily 
undertaken during mission planning with regular 
updates during flight. This method greatly diminishes 
the spacecraft’s ability to respond to unforeseen events. 
This fact, combined with the requirement to comply 
with the demands of the power-starved subsystems, 
makes the sequencing job more critical.  
 
This paper describes an architecture that will 
demonstrate the Genetic Algorithm (GA) approach to 
task scheduling for optimum battery charge 
management. The architecture has been tailored for 
VIKSAT1 - CSU’s small satellite - but the GA based 
core is generic enough to suit a wide variety of 
spacecraft.  
 
Some work has already been undertaken in the field of 
on-board task scheduling in spacecraft.  Bernard et al.1 
have described the design and experiment with a 
Remote Agent based approach for spacecraft 
commanding and control. Jeong2 has presented online 
and offline scheduling algorithms for spacecraft. He 
employs a GA for offline scheduling. There is lot of 
literature that talks in general about autonomy in space, 
its advantages, disadvantages and methodologies3, 4, 5, 6.  
 
Our work focuses on autonomy for task scheduling 
from the perspective of  
 

a. Fulfilling power demands in the satellite.  
b. Achieving maximum battery life in terms of 

the overall mission 
c. Achieving optimum Depth of Discharge 

(DOD) in every discharge cycle 
 
The paper has been organized as follows: Section 2 
presents the problem formulation. Section 3 outlines 
the autonomous scheduling architecture. Section 4 
introduces the proposed modified GA with the 
problem specific representation and genetic operators. 
Section 5 details about the VHDL implementation of 
the fitness evaluation function   Section 6 summaries 
the paper and discusses the results and conclusions. 
 
 
 
 

2. PROBLEM FORMULATION 
 
Representation of Power Distribution 
 
The power distribution system model is assumed to 

consist of n ‘nodes’ 1... nN N . A node is any active 

power sink of the spacecraft that plays a role in the 

fulfillment of ‘tasks’ 1... JT T . These tasks form a setΓ . 

Tasks are activities that add together to form a 
mission. Examples of tasks can be (a) to capture an 
event by the camera at point A in the orbit or (b) to 
setup a communication link at time t with the ground 
station.  The tasks can be periodically updated from 

the ground. Every task iT  is comprised of an ordered 

sequence of ‘operations’ 1io …. 
iimo . There are a 

maximum of m such operations for each task. The 
actual number of operations in a task i is denoted 

by im .  Every operation is associated with a specific 

node. An operation in progress ‘activates’ the 
corresponding node. Since every task need not activate 

every node im m≤  prevails. Activation of a node k 

for task i to complete operation j consumes a 

‘resource’ ijkr and takes a finite duration ijkd . 

Examples of nodes are a motor for reaction wheels, a 
microprocessor and its peripherals, etc. This forms a 
star connected topology (Figure 1) with respect to the 
main power bus, which acts as the central source node. 
At any instant t of time the source node can supply a 

fixed quantity of resource tR , which acts as a 

constraint to the distribution system. 
 

 
Figure 1 The Star Connected Configuration of the 
Load Nodes. 
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Constraints 
 
There are two types of constraints for the system – 
resource constraints and temporal constraints. Since the 
objective is to optimize power use thereby maximizing 
the charge of the batteries, we only consider the amount 
of available power as the resource constraint. During 
the daytime the available power is constrained by the 
power that is not used for charging. In the eclipse 
periods, the power is restricted to the power available 
from the batteries. Here we assume that during 
charging, the lithium-ion batteries are subjected to a 
constant current for approximately one-third of the total 
charging time. After this period the batteries are 
subjected to a constant voltage.  
 
Temporal constraints fall into two categories: Hard 
constraints and Soft constraints. An operation can have  
a.  Hard Start Time Constraint – HSTC 
b.  Hard End Time Constraint – HETC 
c.  Soft Start Time and Soft End Time – SSETC 
 
The constraints that are not hard are soft. Hard 
constraints have to be fulfilled at specific parameter 
values. For example if an operation has the HSTC of 2, 
it implies that the operation needs to be started at 
instant 2e = . Soft constraints confine the parameters 
and the scheduler tries to fulfill them. They can be 
violated if by no means those constraints can be 
satisfied. Here we assume that the duration 
corresponding to each operation is constant, therefore, 
HSTC and HETC have the same effect on scheduling.  
 
Scheduling 
 
A schedule for spacecraft operations can be seen as a 

table of starting times ijkt and ending times ijkρ  for the 

operation ijko  of task i, operation j activating node k 

with respect to the technological node orders of the 
tasks. Since scheduling tasks is an activity of sustained 
pursuit, scheduling is a non-deterministic, dynamic 
problem with an open time horizon. We follow Raman 
et al.3 to handle situations where tasks arrive non-
deterministically in the task scheduling system. In their 
approach the non-deterministic scheduling problem is 
decomposed into a sequence of dynamic but 
deterministic scheduling problems. Let 

0 { : (1, )}iT i s= ∈
Γ

be a set of tasks to be scheduled at 

the start of the mission. At time t0 these tasks are 
scheduled and starts processing. At time t1 a new task is 
added to the system. Up to the release of new tasks at 

time t1 problem 0
Γ

can be solved. This leads to a table 

of potential starting times and ending times for all 

operations involved in 0
Γ

. 

 

To construct the new set 1 { : (1, 1)}iT i s= ∈ +
Γ

we 

take a snapshot at the release time of a new task t1. The 

operations ijko with potential starting times 
1ijkt t<  

have already been implemented in the spacecraft. We 

remove those operations and decrease im .  Finally we 

add tasks released at t1 to the remaining program. 
Figure 2 shows a representation of the process. 
 
Figure 2-(a) represents the original schedule generated 
at t0. At t1 a new task, T4 (light grey) is added to the 
system. 2-(b) shows the snapshot at that instant. The 
second operation of task 3 was in process at t1 (colored 
black).  The operations before t1 have already been 
completed (white and grey strips). Those operations 
that were in process are left unaltered and also removed 
from the problem space. 2-(c) shows the rescheduled 

system with 32ko at the original position.  

We see that once a schedule has been made and is being 
processed, new tasks can still be accommodated and 
processed provided the scheduling process is 
sufficiently fast.  

T
a
s
k
s

 
Figure 2 Dynamic Scheduling and Rescheduling 
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3. ARCHITECTURE 
 
The control architecture of VIKSAT1 is supervisory.  
Every subsystem has its own dedicated controller. On 
top of these controllers is the C&DH - the command 
and data handler. C&DH coordinates between these 
distributed controllers for keeping track of satellite 
activities and updating ground with data. Ground 
commands to a subsystem travel trough the 
communications controller to C&DH, which filter them 
for the subsystem controllers. Our work encompasses 
two controllers, the power subsystem main controller 
(PSSMC) and C&DH.  
 
Figure 3 shows that the battery data is transmitted from 
the PSSMC to the C&DH. C&DH interfaces with the 
scheduler. The ‘task buses’ from the C&DH to the 
scheduler takes the tasks to be scheduled. Every task is 
associated with a ‘task number’ {1... }i J∈  and an 

information field that contains temporal information 
pertaining to the task, the release time and the potential 
due time. The ‘schedule bus’ brings in the scheduled 
operations from the scheduler. As and when the 
operations come in they are assumed to be processing. 
 
Whenever a new task needs to be added to the 
scheduler, the controller interrupts the scheduler, which 
halts outputting the operations and reschedules. The key 
to successful operation is to achieve very high 
scheduler efficiency, highest schedule optimization, and 
minimum processing times for schedule generation.  
 
The charging and discharging of batteries are two 
activities that fall outside the domain of schedulable 
tasks. They are assumed to be a part of the global 
spacecraft metabolism and are governed separately. 
These two activities in turn have an effect on the 
scheduler. The resource constraints and the fitness 
function used by the scheduler for schedule 
optimization are judged by whether the batteries are in 
charging or discharging state.  
 
4. MODIFIED GENETIC ALGORITHM 
 
Introduced by Holland7, genetic algorithms are a class 
of evolutionary search algorithms which are loosely 
based on the mechanics of natural selection. They 

operate by iteratively improving a population of 
candidate solutions until an acceptable solution is 
found. 
 

 
Figure 3 C&DH Architecture  

 
The technique has proven both popular and effective in 
a wide range of science and engineering disciplines. For 
introduction to simple genetic algorithms (SGA), we 
refer to Goldberg8.  
 
One major drawback of GAs is their slow execution 
speed when implemented on software or on a 
conventional computer.  Parallel processing has been 
the approach to overcome the speed problems of GA.  
 
In this section we introduce the proposed modified GA 
(MGA) for solving the task scheduling problem (TSP). 
The basic components of MGA are a population, 
decoding, resource profiling, fitness calculation, 
selection, crossover, and mutation.  Figure 4 shows a 
block diagram of the MGA. 
 
Representation 
 
We use an indirect representation for our problem. A 
rule base is used to represent a population member. 
Dorndorf and Pesch9 developed this representation type 
for the job shop-scheduling problem. Özdamar10 
employed it for the multi-mode extension of resource 
constrained project scheduling problem.
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Figure 4 Block Diagram of the Modified GA 

 
 
Priority rules are probably the most frequently applied 
heuristics for solving scheduling problems because of 
their ease of implementation and low complexity. The 
algorithm of Giffler and Thompson11 can be considered 
as the common basis for all priority rule based 
heuristics. The problem is to identify effective priority 
rules. For an extensive summary and discussion on 
priority rules refer to Panwalkar12 et al., Haupt13, and 
Blackstone14. 
 

For an 
J im∑ operation, problem an individual’s 

chromosome I is a string of 
J im∑ entries. That is, the 

chromosome is given as 

1( , ..., )
iJ

I I
mI pr pr=

∑
 

where 1
Ipr  is a priority rule such that 

{ , , , , , , }I
ipr SPT LFT LST MST MSLK WRUP FCF∈  

for each position 1,..., i
J

i m= ∑  

 
Table 1 contains a brief mathematical definition for 
each priority rule we used. Here LFT denotes the latest 
finish time of an operation. Ulusoy and Özdamar15 

developed WRUP. We have employed the weights that 
performed best in their study. 
 
Decoder 
 
To generate valid schedules from the schedulable tasks 
based on the rules that evolved from the GA we 
propose a modification of the Giffler and Thompson11 
(GT) algorithm.  The GT algorithm produces active 
schedules. The optimal schedule is guaranteed to be a 
member of the set of active schedules. 
 
The algorithm is follows.  
 

Step 1. At 1e = we begin with t

Π
as the null set and let 

eS contain all operations with no predecessors. 

 
Step 2. If any operation has the 1=ℏ , schedule that 
operation at the time from the constraint field. Update 

the set eS by removing the scheduled operation from it 

and adding it to t

Π
. 
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Step 3. Determine ,
* min ( )

e ii j mij ijφ φ∈ ≤= Γ and the node 

*n  that ijo corresponding to *ijφ  activates. If more than 

one such operation exists, the tie is broken by a random 
choice. 
 

Step 4. Form the conflict set eC , which includes all 

operations ei ∈ S with *
ijσ φ<  that activate *n . Select 

one operation from eC with the priority rule I
epr . If 

there is a tie, the tie is broken by a random choice. 
 

Step 5. Let ij ij ijIN φ σ= −  be the interval in which the 

selected operation ijko can be placed. To find its starting 

time ijkt δ+ , ( )ijk ij ijkt dδ φ+ ≤ −  add up all the 

resources (
, , ( .. )1

( )
i j k N Nn ijkr t
∈ ∈ ∈∑ Γ Π ), ijt IN∀ ∈  of all 

the operations already scheduled during that interval.  
 
Step 6. Find δ such that the difference between the 

allowable resource consumptiontR , ijt IN∀ ∈ and 

, , ( .. )1
( )

i j k N Nn ijkr t
∈ ∈ ∈∑ Γ Π is maximum. If there is any 

operation uvwo  in eS  with 

1, { .., }u nu i v m w N N≠ ≤ ∈  that has ijktσ δ< + , the 

starting time of the selected operation is shifted to 

ijkuvw
dσ − . If more than one such operation with 

ijktσ δ< + exits in eS , the starting time is shifted to 

,min ( )
t ii j m ijσ∈ ≤

Γ  

 
Step 7. Update t

Π
and eS . 

 
Fitness Function 

To achieve optimum charge levels in the battery we 
need to optimize schedules while both charging and 
discharging. During charging, as has been already 
stated, the battery is charged at a constant current for 
one-third of the total charge time. In this duration, the 
battery charges to approximately 70-80% of its full 
capacity. This implies that the battery takes in a 

constant amount of power during that duration. The 
remaining power available from the solar cells can be 
used to drive the operations of the spacecraft. 
Scheduling is necessary at this point because we intend 
to complete all the operations without disrupting the 
charging process. The fitness function for this period is 
simply the mean flow time, an indication of how soon 
all the operations can be completed while meeting the 
resource constraints.  Mean flow time can be calculated 
as  

1

1 J

i i
i

F C R
J =

= −∑                 (1) 

Here iC  is the completion time andiR the release time 

of task iT .   

To evaluate the fitness of an individual member during 
eclipse (when discharging), we generate a resource 
profile of the decoded schedule. The resource profiler 
block of the GA Core does this. The resource profile is 
an approximation of the time varying discharge with a 
piecewise constant load.  
 

An active operation ijko of a task Ti at time t is an 

operation that is being processed at that time (i.e., it is 
activating its corresponding node). There can be more 
then one active operation at any time t. The active 
operations and their corresponding tasks form a set, the 
set of active operations (SAO). The number of elements 
in this set is determined by the schedule generated. A 
resource changeover instance (RCI) is defined as a time 
t when any operation is either deleted or added to the 
SAO. Between two RCIs is an interval k of constant 
resource consumption. This resource being the current 

drawn from the batteries is designated askI . The 

duration of this interval is designatedk∆ , the start time 

of this interval by kt  and the total duration of the 

schedule by max ( )k k kT t ς= + ∆ + , ς  being the 

allowed delay. A resource profiler looks for RCIs on the 
time axis and creates a load profile out of that. We refer 
to Rakhmatov18 et al. for a high level Li-ion battery 
discharge model. Here we outline the key results. There 
are two battery specific parameters α and
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Table 1 Mathematical Definition of the Priority Rules Used 
Priority rule Formula 

SPT shortest processing time min id  

LFT latest finish time min iLFT  

LST latest start time min i iLFT d−  

MST most total successors max jS  

MSLK minimum slack min( _ _ _ )due time current time remaining time− −  

WRUP weighted resource utilization and precedence max 0.7 0.3 /i ie eS r R+  

FCF first come first First element of eS  

 
β. These parameters are estimated from the battery 
profiling data. The battery model can be described as  
 

2 2( )

10

1 2 ( )
L

m L

m

e i t dβ τα τ
∞

− −

=
= + 

  
∑∫                (2) 

 
where i(t) is the discharge current and L is the battery 
time to failure or lifetime. The parameter α has been 
loosely termed by the authors as the battery charge 
capacity before the battery started to discharge and β is 
the measure of the battery non-linearity. For a given 
load profile of duration T we can define  
 

0

2 2 ( )

1

1 2 ( )
T

m T

m

e i t dβ τσ τ
∞

− −

=
= + 

  
∑∫                (3) 

 
The output of a load profiler is a piecewise constant 
profile. It can be expressed by a set of step functions.  
 

[ ]1 1
1

( ) ( ) ( )
n

k k k
k

i t I U t t U t t− −
=

= − − −∑               (4) 

 
Then σ can be expressed as 
 

2 2 2 2( ) ( )1

2 2
0 1

2
k k km T t m T tn

k k
k m

e e
I

m

β β

σ
β

− − −∆ − −− ∞

= =

−
= ∆ +

 
 
 

∑ ∑  

                

Then the objective is to maximize charge 
slack( )κ α σ= − . κ can be seen as the amount of 

charge less then the capacity α .  
 
Selection 

We use roulette wheel selection technique to select two 
individuals for applying the genetic operators of 
crossover and mutation. The idea behind roulette wheel 
selection technique is that each individual is given a 
chance to become a parent in proportion to its fitness. It 
is called roulette wheel selection as the chances of 
selecting a parent can be seen as spinning a roulette 
wheel with the size of the slot for each parent being 
proportional to its fitness. Those with the largest fitness 
(slot sizes) have more chance of being chosen.  Thus, it 
is possible for one member to dominate all the others 
and get selected a high proportion of the time. 

Crossover 
 
The problem representation allows us to employ 
standard crossover. We consider two individuals for 
crossover, P1 and P2, from which two offspring 
individuals O1 and O2 are computed. We use one point 
crossover. In this we draw a random number q 
with1 q J≤ < . The first q positions of O1 are taken 

from P1 while the remaining ones are taken from P2.  
 

1

1

2

, {1... }

, { 1... }

P
O i

i P
i

pr if i q
pr

pr if i q J

∈
=

∈ +




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For the offspring O2, the first q members are taken 
from P2 and the remaining members are taken from P1.  
 
Mutation 
 
By mutation we alter a member of the population 
randomly to maintain the diversity. For priority rule 
base encoding the mutation operator is defined as: For 

each position 1,..., i
J

i J m= ∑ of an individual I, a new 

priority rule  
 

{ , , , , , , }I
ipr SPT LFT LST MST MSLK WRUP FCF∈  

 

is randomly drawn with a probability ofmutationp . It is 

then replaced by a random rule.  
 
5. REAL TIME IMPLEMENTATION 
 
To employ the system for task scheduling on a 
spacecraft the system need to be implemented in real 
time. Since the core of the scheduler is a 
computationally intensive genetic algorithm, FPGAs 
can be used for its implementation. The most 
computationally expensive part of the GA being the 
fitness function, we present an FPGA based 
implementation of it.  
 
We use IEEE 754 single precision floating point 
representation of the data being computed. This 
implementation assumes that the various input values 

are present from the constraints (, ,
k k

T t∆ ), resource 

profiler (
k

I ) frames ( iR ) or the decoder (iC ) blocks 

(Figure 4). These values are available in 32-bit IEEE 
format. 
 
Implementation of the fitness function for the daytime 
is intuitive. It contains a subtraction unit (signed 
addition), an accumulator and a multiplier.  Figure 5 
shows a block diagram representation of it. Figure 6 
shows a block diagram of the implementation of the 
fitness function for the eclipse period. It consists of two 
loops – the inner loop computes the following. 

2 2 2 2

2 2

( ) ( )10

1

k k km T t m T t

m

e e

m

β β

β

− − −∆ − −

=

−
∑  

 
 
Figure 5 VHDL Implementation of Fitness Function 
for the Charging Period 
 
The outer loop computes  
 

1

0

2
n

k
k k InnerLoopI Value

−

=

∆ +  ∑  

 
The inner loop runs 10 times. This is because its value 
falls off very rapidly after that. The outer loop is 
executed n  times, n being the number of RCIs of the 
load profile.  
 
The complete fitness evaluation consists of six main 
blocks. Multipliers perform signed floating point 
multiplication. It accepts two normalized IEEE single 
precision floating point values. The exponents are 
added together. The 24 bit mantissas are multiplied 
resulting in a 48 bit result. The result is either bits 46 
thru 24 or 45 thru 23 depending on bit 47. It requires 
only one cycle to produce a result. Adders add and 
subtract two floating point numbers depending on the 
sign of the inputs. The constraint data is calculated 
before and fed to the fitness evaluation modules 
through multiplexers. This simulates the data 
availability from the constraints and profiler blocks. We 
follow Tang19, and Doss20 et al. to implement the 
exponentiation module. It performs floating point 
exponentiation. In this approach the input x is divided 
as 

(log 2)
(32 ) ( 1 2)

32
x m j r r= + + +  
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where m and j are integers and 1r and 2r are real 

numbers such that1 2 (log 2) / 64r r+ ≤ . From this the 

exponential function is derived as 

/322 2 ( ( ) 1)x m je p r= × × +  

 
6. RESULTS & CONCLUSIONS 
 
Experimental Design 

We studied the GA based scheduling on two sets of 
problems. Both the problems were tested for charging 
and discharging times. Those problems were generated 
randomly. We simulated the scheduling process using 
MATLAB. For the design of the fitness evaluator we 
used QUARTUS from ALTERA. The fitness evaluator 
was programmed in VHDL 
 
Test Case I 
 

The first problem consisted of 40 tasks with a 
maximum of 10 operations per task. The minimum 
duration was set for a task to 0.5 and the maximum to 
7.5.  A total of 320 operations were generated. The 
battery parameters α and β were chosen to be 40000 

and 0.2.  We followed Rakhmatov18 et al. for choosing 
the battery parameters. The starting time was set to 0. 
The total number of nodes that were considered was 50. 
They were randomly assigned to each operation with 
the constraints that no two operations of a task get the 
same node. All the tasks had hard duration constraints 
(HDC). 35 out of the 320 operations were assigned hard 
starting/ending time constraints (HSTC/HETC). The 
rest of the tasks had SSETC. The assignment of the 
times for HSTC and HEST was done manually but 
randomly. All the tasks were to complete all the 
operations in 100 units of time including 12 units of 
delay.  Apart from that every task had a due time 
associated with it. The population size was chosen to be 
POP {20,30, 40}∈  and the GA was run for GEN 

{40,30, 20}∈ generations.  The probability of mutation 

was fixed to 0.01. 
 
 

 
Figure 6 VHDL Implementation of the Fitness Function for Eclipse Period 
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Three variants of the GA were tested with respect to the 
probability of crossover – 0.40, 0.63 and 0.90. The 
same problem was used for charge optimization while 
both charging and discharging.  
 
 Test Case II 
 
This test case has 6 tasks with up to 5 operations each 
and the durations generated at random. The main 
emphasis was to limit the number of RCIs to 6 or less to 
be able to test the VHDL based fitness evaluator. Also 
the small number of tasks allowed us to validate the 
scheduler by comparing its results to the results from 
and exhaustive search. The constraints were converted 
to IEEE 754 single precision floating point format for 
analysis.  
 
Observations (Discharging) 

For the first test case it was observed that with the 
initial random rule bases, even the best members when 
decoded to schedules fail to complete the tasks because 
the battery runs out (κ turns out to be negative). As the 

GA progresses the best members start to decode to 
schedules that complete the tasks but with little slack - 
i.e. more depth of discharge. Towards the final runs the 
slack increases substantially, thus achieving the 
objective of the scheduler. Figure 7 shows the average 
fitness versus the number of generations as the GA 
progresses during discharging. The three plots are for 
three different rates of crossover. It is evident from the 
Figure 7 that increasing the probability of crossover has 
a prominent effect on the value of the optimal solution 
achieved Table 2 summarizes the optimal solutions 
found for the various crossover probabilities. 

For the second test case the VHDL based evaluator 
evaluated the fitness that closely resembled the results 
from MATLAB. The limitation that arises is due to the 

single precision representation 2
80 /T β≤  which in our 

case turns out to be 20. This limits the time for which a 
schedule can be laid out. Increasing the precision of the 
representation can overcome this problem. The number 
of clock cycles for a 25 MHz clock to evaluate the 
fitness comes to about 23673 /number of RCI . For our 

test case with 6 RCIs, the frequency of operation was 
3.9 KHz; i.e. approximately 3900 evaluations can be 
done in 1 sec.  

Observation (Charging) 

During charging, the emphasis was to complete the 
tasks as soon as possible, while fulfilling resource 
constraints. The best time for three different 
combinations of population size and generation count 
are summarized in Table 3.  Figure 8 shows the 
variation of fitness for different crossover probabilities.  

Table 4 compares the fitness results obtained from the 
hardware evaluator and MATLAB. For most of the 
time the decoded schedule will follow both the 
constraints.  But there can be sets of tasks whose 
completion times can be well beyond the nominal due 
times supplied by the controller. In this study we 
‘forgive’ those violations. A more stringent GA can 
have a penalty associated with such 
schedules.
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Figure 7 Graph of Mean Fitness vs. Iteration for 
Eclipse Period 

 
Table 2 Impact of Probability of Crossover 

(Discharging) 

Mode POP GEN crossoverp  
AVG 

SOLUTION 
30 30 40% 2556 
30 30 63% 2929 Discharging 
30 30 90% 3585 
30 30 50% 99 
30 30 73% 98.8 

Charging 
 

30 30 99% 98.4 
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Figure 8 Graph of Mean Fitness vs. Iteration for 
Daylight Period 

 
 

Table 3 Impact of Population Size 
 (Discharging) 

Mode 
(Fitness 
criteria) 

POP GEN 
AVG 

SOLUTION 

20 40 3266 
30 30 3585 

Discharging 
(Slack) 

40 20 2818 
20 40 102 
30 30 98 

Charging 
(Time) 

40 20 92 
 
 
 
Table 4 Comparison of Actual and Expected 
Outputs  

Actual Output Expected Output 

148.4131662 148.1432301 

89.0912356 89.0912356 

2555.619 2555.7 

 

7. CONCLUSIONS & FUTURE WORK 

A GA based schedule optimizer was developed for 
spacecraft task scheduling. The proposed power 

subsystem representation enabled schedule generation 
with multiple tasks running at the same time. To design 
the optimizer the primary assumption was that the 
optimizer is being controlled and informed by some 
‘higher entities’. The tasks that comprised the mission 
were of two categories. 

(a) Tasks that are to be completed at some specific 
times during the mission. Most of them are known a 
priori. Some of them are added dynamically during 
flight. Additions can be made because of changes in 
mission objectives or due to unforeseen events.  

(b) Tasks that are to be completed as and when 
necessary. There are no hard bounds on the times at 
which those tasks are to be completed. It may be 
necessary that some tasks precede others. This issue is 
dealt by the higher entities.  

To respond to non-preemptive events the scheduler has 
to operate at very high speeds.  Very high-speed 
operation can be achieved using FPGAs. The fitness 
evaluators were implemented in FPGA and they 
performed satisfactorily. Using clocks of still higher 
frequency will boost the speed even further.  

The growing abundance of FPGA/ASIC, higher 
operating frequencies and radiation hardening are 
incentives for further research with them for the space 
applications.  

An all-hardware implementation at the computational 
core of a big system is less prone to getting stuck into 
faulty loops. But this reliability has a cost.  The 
complex computations that are often programmed in 
software are difficult to realize in hardware. The key 
component of our future research will be to reduce 
these complicated computations to smaller but simpler 
ones by employing mathematical tools. One pivotal 
point will be to reduce the complexity of exact fitness 
evaluation functions for the GA by using some 
approximate replacements, and in the end compensating 
for the lost accuracy.     
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