
Jain 19th Annual AIAA/USU
Conference on Small Satellites

1

SSC05-XI-2

Genetic Algorithm Based Charge Optimization of
Lithium-Ion Batteries in Small Satellites

Saurabh Jain, Dan Simon

Department of Electrical Engineering
Cleveland State University

2121 Euclid Ave., SH 308 Cleveland, OH 44115; (216) 875 9670
s.jain1@csuohio.edu, d.j.simon@csuohio.edu

ABSTRACT: Small spacecraft that are powered by solar energy have limitations because of the size of their solar
panels. With the limitations on the solar panel size, it is generally hard to comply with the demands from all the
satellite subsystems, payloads and batteries at the same time. To overcome these problems we have developed and
adopted a power management optimization scheme that runs in real time in the satellite. The proposed power
management scheme primarily involves scheduling of loads (various subsystem operations, payload
experimentation, battery charging, etc.) so that power utilization and thereby the charge of the batteries is at its
optimum. We have developed a genetic algorithm based schedule optimizer and propose an FPGA based fitness
evaluation function for it.

List of Important Symbols & Abbreviations

Symbol Description

iT ‘ ith’ task of the spacecraft

iN ‘ ith’ node of the power distribution system

ijko Operation i, of task j activating node k

ijkd Duration of ijko

ijkt Starting time of ijko

ijkr Resource for ijko

t
Γ

 Set of schedulable tasks at any time t

e

Π

A partial schedule containing e scheduled
operation

eS The set of all schedulable operations at
iteration e

eC Conflict set, contains all the conflicting
operations at iteration e

ijσ
The earliest time at which operation

ej ∈ S of task i can be started

ijφ
The earliest time at which operation

ej ∈ S of task i can be finished

ijσ The latest time at which operation ej ∈ S

of task i can be started

ijφ The latest time at which operation ej ∈ S

of task i can be finished
J Total number of tasks in the system
n Total number of nodes in the system

ℏ
The hard constraint flag field associated
with an operation. It is 1, if the operation
has HSTC or HETC.

δ

The interval from the soft start time of an
operation after which it actually starts

HSTC Hard Start Time Constraint
HETC Hard End Time Constraint
SSETC Soft Start Time and Soft End Time

ς
Allowed delay, i.e. nominal due time +
allowed time in which a schedule can be
executed

I
ipr Priority rule at the ith position of the Ith

individual in the genetic population

1. INTRODUCTION

Solar powered spacecraft that operate off the sun’s
direct energy during sunlight hours, and batteries during
eclipse periods, have an unwieldy task of sequencing
the various subsystems’ operations for optimized power
management. Traditional techniques rely heavily on a
relatively large and highly skilled mission operations
team that generates detailed time ordered sequences of

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DigitalCommons@USU

https://core.ac.uk/display/32552249?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Jain 19th Annual AIAA/USU
Conference on Small Satellites

2

commands to step the spacecraft through each desired
activity. Each sequence is carefully constructed in such
a way as to ensure that all known operational
constraints are satisfied. Sequencing is primarily
undertaken during mission planning with regular
updates during flight. This method greatly diminishes
the spacecraft’s ability to respond to unforeseen events.
This fact, combined with the requirement to comply
with the demands of the power-starved subsystems,
makes the sequencing job more critical.

This paper describes an architecture that will
demonstrate the Genetic Algorithm (GA) approach to
task scheduling for optimum battery charge
management. The architecture has been tailored for
VIKSAT1 - CSU’s small satellite - but the GA based
core is generic enough to suit a wide variety of
spacecraft.

Some work has already been undertaken in the field of
on-board task scheduling in spacecraft. Bernard et al.1
have described the design and experiment with a
Remote Agent based approach for spacecraft
commanding and control. Jeong2 has presented online
and offline scheduling algorithms for spacecraft. He
employs a GA for offline scheduling. There is lot of
literature that talks in general about autonomy in space,
its advantages, disadvantages and methodologies3, 4, 5, 6.

Our work focuses on autonomy for task scheduling
from the perspective of

a. Fulfilling power demands in the satellite.
b. Achieving maximum battery life in terms of

the overall mission
c. Achieving optimum Depth of Discharge

(DOD) in every discharge cycle

The paper has been organized as follows: Section 2
presents the problem formulation. Section 3 outlines
the autonomous scheduling architecture. Section 4
introduces the proposed modified GA with the
problem specific representation and genetic operators.
Section 5 details about the VHDL implementation of
the fitness evaluation function Section 6 summaries
the paper and discusses the results and conclusions.

2. PROBLEM FORMULATION

Representation of Power Distribution

The power distribution system model is assumed to

consist of n ‘nodes’ 1... nN N . A node is any active

power sink of the spacecraft that plays a role in the

fulfillment of ‘tasks’ 1... JT T . These tasks form a setΓ .

Tasks are activities that add together to form a
mission. Examples of tasks can be (a) to capture an
event by the camera at point A in the orbit or (b) to
setup a communication link at time t with the ground
station. The tasks can be periodically updated from

the ground. Every task iT is comprised of an ordered

sequence of ‘operations’ 1io ….
iimo . There are a

maximum of m such operations for each task. The
actual number of operations in a task i is denoted

by im . Every operation is associated with a specific

node. An operation in progress ‘activates’ the
corresponding node. Since every task need not activate

every node im m≤ prevails. Activation of a node k

for task i to complete operation j consumes a

‘resource’ ijkr and takes a finite duration ijkd .

Examples of nodes are a motor for reaction wheels, a
microprocessor and its peripherals, etc. This forms a
star connected topology (Figure 1) with respect to the
main power bus, which acts as the central source node.
At any instant t of time the source node can supply a

fixed quantity of resource tR , which acts as a

constraint to the distribution system.

Figure 1 The Star Connected Configuration of the
Load Nodes.

Jain 19th Annual AIAA/USU
Conference on Small Satellites

3

Constraints

There are two types of constraints for the system –
resource constraints and temporal constraints. Since the
objective is to optimize power use thereby maximizing
the charge of the batteries, we only consider the amount
of available power as the resource constraint. During
the daytime the available power is constrained by the
power that is not used for charging. In the eclipse
periods, the power is restricted to the power available
from the batteries. Here we assume that during
charging, the lithium-ion batteries are subjected to a
constant current for approximately one-third of the total
charging time. After this period the batteries are
subjected to a constant voltage.

Temporal constraints fall into two categories: Hard
constraints and Soft constraints. An operation can have
a. Hard Start Time Constraint – HSTC
b. Hard End Time Constraint – HETC
c. Soft Start Time and Soft End Time – SSETC

The constraints that are not hard are soft. Hard
constraints have to be fulfilled at specific parameter
values. For example if an operation has the HSTC of 2,
it implies that the operation needs to be started at
instant 2e = . Soft constraints confine the parameters
and the scheduler tries to fulfill them. They can be
violated if by no means those constraints can be
satisfied. Here we assume that the duration
corresponding to each operation is constant, therefore,
HSTC and HETC have the same effect on scheduling.

Scheduling

A schedule for spacecraft operations can be seen as a

table of starting times ijkt and ending times ijkρ for the

operation ijko of task i, operation j activating node k

with respect to the technological node orders of the
tasks. Since scheduling tasks is an activity of sustained
pursuit, scheduling is a non-deterministic, dynamic
problem with an open time horizon. We follow Raman
et al.3 to handle situations where tasks arrive non-
deterministically in the task scheduling system. In their
approach the non-deterministic scheduling problem is
decomposed into a sequence of dynamic but
deterministic scheduling problems. Let

0 { : (1,)}iT i s= ∈
Γ

be a set of tasks to be scheduled at

the start of the mission. At time t0 these tasks are
scheduled and starts processing. At time t1 a new task is
added to the system. Up to the release of new tasks at

time t1 problem 0
Γ

can be solved. This leads to a table

of potential starting times and ending times for all

operations involved in 0
Γ

.

To construct the new set 1 { : (1, 1)}iT i s= ∈ +
Γ

we

take a snapshot at the release time of a new task t1. The

operations ijko with potential starting times
1ijkt t<

have already been implemented in the spacecraft. We

remove those operations and decrease im . Finally we

add tasks released at t1 to the remaining program.
Figure 2 shows a representation of the process.

Figure 2-(a) represents the original schedule generated
at t0. At t1 a new task, T4 (light grey) is added to the
system. 2-(b) shows the snapshot at that instant. The
second operation of task 3 was in process at t1 (colored
black). The operations before t1 have already been
completed (white and grey strips). Those operations
that were in process are left unaltered and also removed
from the problem space. 2-(c) shows the rescheduled

system with 32ko at the original position.

We see that once a schedule has been made and is being
processed, new tasks can still be accommodated and
processed provided the scheduling process is
sufficiently fast.

T
a
s
k
s

Figure 2 Dynamic Scheduling and Rescheduling

Jain 19th Annual AIAA/USU
Conference on Small Satellites

4

3. ARCHITECTURE

The control architecture of VIKSAT1 is supervisory.
Every subsystem has its own dedicated controller. On
top of these controllers is the C&DH - the command
and data handler. C&DH coordinates between these
distributed controllers for keeping track of satellite
activities and updating ground with data. Ground
commands to a subsystem travel trough the
communications controller to C&DH, which filter them
for the subsystem controllers. Our work encompasses
two controllers, the power subsystem main controller
(PSSMC) and C&DH.

Figure 3 shows that the battery data is transmitted from
the PSSMC to the C&DH. C&DH interfaces with the
scheduler. The ‘task buses’ from the C&DH to the
scheduler takes the tasks to be scheduled. Every task is
associated with a ‘task number’ {1... }i J∈ and an

information field that contains temporal information
pertaining to the task, the release time and the potential
due time. The ‘schedule bus’ brings in the scheduled
operations from the scheduler. As and when the
operations come in they are assumed to be processing.

Whenever a new task needs to be added to the
scheduler, the controller interrupts the scheduler, which
halts outputting the operations and reschedules. The key
to successful operation is to achieve very high
scheduler efficiency, highest schedule optimization, and
minimum processing times for schedule generation.

The charging and discharging of batteries are two
activities that fall outside the domain of schedulable
tasks. They are assumed to be a part of the global
spacecraft metabolism and are governed separately.
These two activities in turn have an effect on the
scheduler. The resource constraints and the fitness
function used by the scheduler for schedule
optimization are judged by whether the batteries are in
charging or discharging state.

4. MODIFIED GENETIC ALGORITHM

Introduced by Holland7, genetic algorithms are a class
of evolutionary search algorithms which are loosely
based on the mechanics of natural selection. They

operate by iteratively improving a population of
candidate solutions until an acceptable solution is
found.

Figure 3 C&DH Architecture

The technique has proven both popular and effective in
a wide range of science and engineering disciplines. For
introduction to simple genetic algorithms (SGA), we
refer to Goldberg8.

One major drawback of GAs is their slow execution
speed when implemented on software or on a
conventional computer. Parallel processing has been
the approach to overcome the speed problems of GA.

In this section we introduce the proposed modified GA
(MGA) for solving the task scheduling problem (TSP).
The basic components of MGA are a population,
decoding, resource profiling, fitness calculation,
selection, crossover, and mutation. Figure 4 shows a
block diagram of the MGA.

Representation

We use an indirect representation for our problem. A
rule base is used to represent a population member.
Dorndorf and Pesch9 developed this representation type
for the job shop-scheduling problem. Özdamar10
employed it for the multi-mode extension of resource
constrained project scheduling problem.

Jain 19th Annual AIAA/USU
Conference on Small Satellites

5

Figure 4 Block Diagram of the Modified GA

Priority rules are probably the most frequently applied
heuristics for solving scheduling problems because of
their ease of implementation and low complexity. The
algorithm of Giffler and Thompson11 can be considered
as the common basis for all priority rule based
heuristics. The problem is to identify effective priority
rules. For an extensive summary and discussion on
priority rules refer to Panwalkar12 et al., Haupt13, and
Blackstone14.

For an
J im∑ operation, problem an individual’s

chromosome I is a string of
J im∑ entries. That is, the

chromosome is given as

1(, ...,)
iJ

I I
mI pr pr=

∑

where 1
Ipr is a priority rule such that

{ , , , , , , }I
ipr SPT LFT LST MST MSLK WRUP FCF∈

for each position 1,..., i
J

i m= ∑

Table 1 contains a brief mathematical definition for
each priority rule we used. Here LFT denotes the latest
finish time of an operation. Ulusoy and Özdamar15

developed WRUP. We have employed the weights that
performed best in their study.

Decoder

To generate valid schedules from the schedulable tasks
based on the rules that evolved from the GA we
propose a modification of the Giffler and Thompson11
(GT) algorithm. The GT algorithm produces active
schedules. The optimal schedule is guaranteed to be a
member of the set of active schedules.

The algorithm is follows.

Step 1. At 1e = we begin with t

Π
as the null set and let

eS contain all operations with no predecessors.

Step 2. If any operation has the 1=ℏ , schedule that
operation at the time from the constraint field. Update

the set eS by removing the scheduled operation from it

and adding it to t

Π
.

Jain 19th Annual AIAA/USU
Conference on Small Satellites

6

Step 3. Determine ,
* min ()

e ii j mij ijφ φ∈ ≤= Γ and the node

*n that ijo corresponding to *ijφ activates. If more than

one such operation exists, the tie is broken by a random
choice.

Step 4. Form the conflict set eC , which includes all

operations ei ∈ S with *
ijσ φ< that activate *n . Select

one operation from eC with the priority rule I
epr . If

there is a tie, the tie is broken by a random choice.

Step 5. Let ij ij ijIN φ σ= − be the interval in which the

selected operation ijko can be placed. To find its starting

time ijkt δ+ , ()ijk ij ijkt dδ φ+ ≤ − add up all the

resources (
, , (..)1

()
i j k N Nn ijkr t
∈ ∈ ∈∑ Γ Π), ijt IN∀ ∈ of all

the operations already scheduled during that interval.

Step 6. Find δ such that the difference between the

allowable resource consumptiontR , ijt IN∀ ∈ and

, , (..)1
()

i j k N Nn ijkr t
∈ ∈ ∈∑ Γ Π is maximum. If there is any

operation uvwo in eS with

1, { .., }u nu i v m w N N≠ ≤ ∈ that has ijktσ δ< + , the

starting time of the selected operation is shifted to

ijkuvw
dσ − . If more than one such operation with

ijktσ δ< + exits in eS , the starting time is shifted to

,min ()
t ii j m ijσ∈ ≤

Γ

Step 7. Update t

Π
and eS .

Fitness Function

To achieve optimum charge levels in the battery we
need to optimize schedules while both charging and
discharging. During charging, as has been already
stated, the battery is charged at a constant current for
one-third of the total charge time. In this duration, the
battery charges to approximately 70-80% of its full
capacity. This implies that the battery takes in a

constant amount of power during that duration. The
remaining power available from the solar cells can be
used to drive the operations of the spacecraft.
Scheduling is necessary at this point because we intend
to complete all the operations without disrupting the
charging process. The fitness function for this period is
simply the mean flow time, an indication of how soon
all the operations can be completed while meeting the
resource constraints. Mean flow time can be calculated
as

1

1 J

i i
i

F C R
J =

= −∑ (1)

Here iC is the completion time andiR the release time

of task iT .

To evaluate the fitness of an individual member during
eclipse (when discharging), we generate a resource
profile of the decoded schedule. The resource profiler
block of the GA Core does this. The resource profile is
an approximation of the time varying discharge with a
piecewise constant load.

An active operation ijko of a task Ti at time t is an

operation that is being processed at that time (i.e., it is
activating its corresponding node). There can be more
then one active operation at any time t. The active
operations and their corresponding tasks form a set, the
set of active operations (SAO). The number of elements
in this set is determined by the schedule generated. A
resource changeover instance (RCI) is defined as a time
t when any operation is either deleted or added to the
SAO. Between two RCIs is an interval k of constant
resource consumption. This resource being the current

drawn from the batteries is designated askI . The

duration of this interval is designatedk∆ , the start time

of this interval by kt and the total duration of the

schedule by max ()k k kT t ς= + ∆ + , ς being the

allowed delay. A resource profiler looks for RCIs on the
time axis and creates a load profile out of that. We refer
to Rakhmatov18 et al. for a high level Li-ion battery
discharge model. Here we outline the key results. There
are two battery specific parameters α and

Jain 19th Annual AIAA/USU
Conference on Small Satellites

7

Table 1 Mathematical Definition of the Priority Rules Used
Priority rule Formula

SPT shortest processing time min id

LFT latest finish time min iLFT

LST latest start time min i iLFT d−

MST most total successors max jS

MSLK minimum slack min(_ _ _)due time current time remaining time− −

WRUP weighted resource utilization and precedence max 0.7 0.3 /i ie eS r R+

FCF first come first First element of eS

β. These parameters are estimated from the battery
profiling data. The battery model can be described as

2 2()

10

1 2 ()
L

m L

m

e i t dβ τα τ
∞

− −

=
= + 

  
∑∫ (2)

where i(t) is the discharge current and L is the battery
time to failure or lifetime. The parameter α has been
loosely termed by the authors as the battery charge
capacity before the battery started to discharge and β is
the measure of the battery non-linearity. For a given
load profile of duration T we can define

0

2 2 ()

1

1 2 ()
T

m T

m

e i t dβ τσ τ
∞

− −

=
= + 

  
∑∫ (3)

The output of a load profiler is a piecewise constant
profile. It can be expressed by a set of step functions.

[]1 1
1

() () ()
n

k k k
k

i t I U t t U t t− −
=

= − − −∑ (4)

Then σ can be expressed as

2 2 2 2() ()1

2 2
0 1

2
k k km T t m T tn

k k
k m

e e
I

m

β β

σ
β

− − −∆ − −− ∞

= =

−
= ∆ +

 
 
 

∑ ∑

Then the objective is to maximize charge
slack()κ α σ= − . κ can be seen as the amount of

charge less then the capacity α .

Selection

We use roulette wheel selection technique to select two
individuals for applying the genetic operators of
crossover and mutation. The idea behind roulette wheel
selection technique is that each individual is given a
chance to become a parent in proportion to its fitness. It
is called roulette wheel selection as the chances of
selecting a parent can be seen as spinning a roulette
wheel with the size of the slot for each parent being
proportional to its fitness. Those with the largest fitness
(slot sizes) have more chance of being chosen. Thus, it
is possible for one member to dominate all the others
and get selected a high proportion of the time.

Crossover

The problem representation allows us to employ
standard crossover. We consider two individuals for
crossover, P1 and P2, from which two offspring
individuals O1 and O2 are computed. We use one point
crossover. In this we draw a random number q
with1 q J≤ < . The first q positions of O1 are taken

from P1 while the remaining ones are taken from P2.

1

1

2

, {1... }

, { 1... }

P
O i

i P
i

pr if i q
pr

pr if i q J

∈
=

∈ +





Jain 19th Annual AIAA/USU
Conference on Small Satellites

8

For the offspring O2, the first q members are taken
from P2 and the remaining members are taken from P1.

Mutation

By mutation we alter a member of the population
randomly to maintain the diversity. For priority rule
base encoding the mutation operator is defined as: For

each position 1,..., i
J

i J m= ∑ of an individual I, a new

priority rule

{ , , , , , , }I
ipr SPT LFT LST MST MSLK WRUP FCF∈

is randomly drawn with a probability ofmutationp . It is

then replaced by a random rule.

5. REAL TIME IMPLEMENTATION

To employ the system for task scheduling on a
spacecraft the system need to be implemented in real
time. Since the core of the scheduler is a
computationally intensive genetic algorithm, FPGAs
can be used for its implementation. The most
computationally expensive part of the GA being the
fitness function, we present an FPGA based
implementation of it.

We use IEEE 754 single precision floating point
representation of the data being computed. This
implementation assumes that the various input values

are present from the constraints (, ,
k k

T t∆), resource

profiler (
k

I) frames (iR) or the decoder (iC) blocks

(Figure 4). These values are available in 32-bit IEEE
format.

Implementation of the fitness function for the daytime
is intuitive. It contains a subtraction unit (signed
addition), an accumulator and a multiplier. Figure 5
shows a block diagram representation of it. Figure 6
shows a block diagram of the implementation of the
fitness function for the eclipse period. It consists of two
loops – the inner loop computes the following.

2 2 2 2

2 2

() ()10

1

k k km T t m T t

m

e e

m

β β

β

− − −∆ − −

=

−
∑

Figure 5 VHDL Implementation of Fitness Function
for the Charging Period

The outer loop computes

1

0

2
n

k
k k InnerLoopI Value

−

=

∆ +  ∑

The inner loop runs 10 times. This is because its value
falls off very rapidly after that. The outer loop is
executed n times, n being the number of RCIs of the
load profile.

The complete fitness evaluation consists of six main
blocks. Multipliers perform signed floating point
multiplication. It accepts two normalized IEEE single
precision floating point values. The exponents are
added together. The 24 bit mantissas are multiplied
resulting in a 48 bit result. The result is either bits 46
thru 24 or 45 thru 23 depending on bit 47. It requires
only one cycle to produce a result. Adders add and
subtract two floating point numbers depending on the
sign of the inputs. The constraint data is calculated
before and fed to the fitness evaluation modules
through multiplexers. This simulates the data
availability from the constraints and profiler blocks. We
follow Tang19, and Doss20 et al. to implement the
exponentiation module. It performs floating point
exponentiation. In this approach the input x is divided
as

(log 2)
(32) (1 2)

32
x m j r r= + + +

Jain 19th Annual AIAA/USU
Conference on Small Satellites

9

where m and j are integers and 1r and 2r are real

numbers such that1 2 (log 2) / 64r r+ ≤ . From this the

exponential function is derived as

/322 2 (() 1)x m je p r= × × +

6. RESULTS & CONCLUSIONS

Experimental Design

We studied the GA based scheduling on two sets of
problems. Both the problems were tested for charging
and discharging times. Those problems were generated
randomly. We simulated the scheduling process using
MATLAB. For the design of the fitness evaluator we
used QUARTUS from ALTERA. The fitness evaluator
was programmed in VHDL

Test Case I

The first problem consisted of 40 tasks with a
maximum of 10 operations per task. The minimum
duration was set for a task to 0.5 and the maximum to
7.5. A total of 320 operations were generated. The
battery parameters α and β were chosen to be 40000

and 0.2. We followed Rakhmatov18 et al. for choosing
the battery parameters. The starting time was set to 0.
The total number of nodes that were considered was 50.
They were randomly assigned to each operation with
the constraints that no two operations of a task get the
same node. All the tasks had hard duration constraints
(HDC). 35 out of the 320 operations were assigned hard
starting/ending time constraints (HSTC/HETC). The
rest of the tasks had SSETC. The assignment of the
times for HSTC and HEST was done manually but
randomly. All the tasks were to complete all the
operations in 100 units of time including 12 units of
delay. Apart from that every task had a due time
associated with it. The population size was chosen to be
POP {20,30, 40}∈ and the GA was run for GEN

{40,30, 20}∈ generations. The probability of mutation

was fixed to 0.01.

Figure 6 VHDL Implementation of the Fitness Function for Eclipse Period

Jain 19th Annual AIAA/USU
Conference on Small Satellites

10

Three variants of the GA were tested with respect to the
probability of crossover – 0.40, 0.63 and 0.90. The
same problem was used for charge optimization while
both charging and discharging.

 Test Case II

This test case has 6 tasks with up to 5 operations each
and the durations generated at random. The main
emphasis was to limit the number of RCIs to 6 or less to
be able to test the VHDL based fitness evaluator. Also
the small number of tasks allowed us to validate the
scheduler by comparing its results to the results from
and exhaustive search. The constraints were converted
to IEEE 754 single precision floating point format for
analysis.

Observations (Discharging)

For the first test case it was observed that with the
initial random rule bases, even the best members when
decoded to schedules fail to complete the tasks because
the battery runs out (κ turns out to be negative). As the

GA progresses the best members start to decode to
schedules that complete the tasks but with little slack -
i.e. more depth of discharge. Towards the final runs the
slack increases substantially, thus achieving the
objective of the scheduler. Figure 7 shows the average
fitness versus the number of generations as the GA
progresses during discharging. The three plots are for
three different rates of crossover. It is evident from the
Figure 7 that increasing the probability of crossover has
a prominent effect on the value of the optimal solution
achieved Table 2 summarizes the optimal solutions
found for the various crossover probabilities.

For the second test case the VHDL based evaluator
evaluated the fitness that closely resembled the results
from MATLAB. The limitation that arises is due to the

single precision representation 2
80 /T β≤ which in our

case turns out to be 20. This limits the time for which a
schedule can be laid out. Increasing the precision of the
representation can overcome this problem. The number
of clock cycles for a 25 MHz clock to evaluate the
fitness comes to about 23673 /number of RCI . For our

test case with 6 RCIs, the frequency of operation was
3.9 KHz; i.e. approximately 3900 evaluations can be
done in 1 sec.

Observation (Charging)

During charging, the emphasis was to complete the
tasks as soon as possible, while fulfilling resource
constraints. The best time for three different
combinations of population size and generation count
are summarized in Table 3. Figure 8 shows the
variation of fitness for different crossover probabilities.

Table 4 compares the fitness results obtained from the
hardware evaluator and MATLAB. For most of the
time the decoded schedule will follow both the
constraints. But there can be sets of tasks whose
completion times can be well beyond the nominal due
times supplied by the controller. In this study we
‘forgive’ those violations. A more stringent GA can
have a penalty associated with such
schedules.

0 5 10 15 20 25 30
-3000

-2000

-1000

0

1000

2000

3000

4000

Iterations

M
ea

n
F

itn
es

s

0.40

0.63

Pc = 0.90

Figure 7 Graph of Mean Fitness vs. Iteration for
Eclipse Period

Table 2 Impact of Probability of Crossover

(Discharging)

Mode POP GEN crossoverp
AVG

SOLUTION
30 30 40% 2556
30 30 63% 2929 Discharging
30 30 90% 3585
30 30 50% 99
30 30 73% 98.8

Charging

30 30 99% 98.4

Jain 19th Annual AIAA/USU
Conference on Small Satellites

11

0 5 10 15 20
90

100

110

120

130

140

150

160

Iteration

M
ea

n
F

itn
es

s

0.99

0.73

Pc =
0.50

Figure 8 Graph of Mean Fitness vs. Iteration for
Daylight Period

Table 3 Impact of Population Size
 (Discharging)

Mode
(Fitness
criteria)

POP GEN
AVG

SOLUTION

20 40 3266
30 30 3585

Discharging
(Slack)

40 20 2818
20 40 102
30 30 98

Charging
(Time)

40 20 92

Table 4 Comparison of Actual and Expected
Outputs

Actual Output Expected Output

148.4131662 148.1432301

89.0912356 89.0912356

2555.619 2555.7

7. CONCLUSIONS & FUTURE WORK

A GA based schedule optimizer was developed for
spacecraft task scheduling. The proposed power

subsystem representation enabled schedule generation
with multiple tasks running at the same time. To design
the optimizer the primary assumption was that the
optimizer is being controlled and informed by some
‘higher entities’. The tasks that comprised the mission
were of two categories.

(a) Tasks that are to be completed at some specific
times during the mission. Most of them are known a
priori. Some of them are added dynamically during
flight. Additions can be made because of changes in
mission objectives or due to unforeseen events.

(b) Tasks that are to be completed as and when
necessary. There are no hard bounds on the times at
which those tasks are to be completed. It may be
necessary that some tasks precede others. This issue is
dealt by the higher entities.

To respond to non-preemptive events the scheduler has
to operate at very high speeds. Very high-speed
operation can be achieved using FPGAs. The fitness
evaluators were implemented in FPGA and they
performed satisfactorily. Using clocks of still higher
frequency will boost the speed even further.

The growing abundance of FPGA/ASIC, higher
operating frequencies and radiation hardening are
incentives for further research with them for the space
applications.

An all-hardware implementation at the computational
core of a big system is less prone to getting stuck into
faulty loops. But this reliability has a cost. The
complex computations that are often programmed in
software are difficult to realize in hardware. The key
component of our future research will be to reduce
these complicated computations to smaller but simpler
ones by employing mathematical tools. One pivotal
point will be to reduce the complexity of exact fitness
evaluation functions for the GA by using some
approximate replacements, and in the end compensating
for the lost accuracy.

Acknowledgement

This work was partially supported by the Center for
Research in Electronics and Aerospace Technology at
Cleveland State University.

Jain 19th Annual AIAA/USU
Conference on Small Satellites

12

References

1. Bernard, D.E., Dorais, G.A., Fry, C., Gamble, E.B.,
Jr., Kanefsky, B., Kurien, J., Millar, W.,
Muscettola, N., Nayak, P.P., Pell, B., Rajan, K.,
Rouquette, N., Smith, B., Williams, B.C., “Design
of the Remote Agent experiment for spacecraft
autonomy” Proceedings of IEEE Aerospace
Conference, vol. 2, 21-28 March 1998.

2. II-Jun Jeong, “Offline and Online Scheduling
Algorithms for Spacecraft” Dissertation, Dept. of
Electrical Engineering, University of Southern
California, December 1999.

3. Moynahan, S.A., III and Touhy, S., “Development

of a modular on-orbit serviceable satellite
architecture”, 20th Conference on Digital Avionics
Systems, vol. 2, pp14-18 October 2001.

4. Moynahan, S.A., III and Tuohy, S.T., “Satellite

architecture [for autonomous on-orbit servicing]”,
IEEE Proceedings of the Aerospace Conference,
vol. 4, pp 247 – 260, March 2000.

5. Andert, E.P., Frasher, C., “A verifiable,

autonomous satellite control system,” Aerospace
Applications Conference, IEEE, February 1989.

6. Atkins, E. and Pennecot, Y., “Autonomous satellite

formation assembly and reconfiguration with
gravity fields”, Aerospace Conference
Proceedings, IEEE vol. 2, March 2002.

7. Holland, J.H., “Adaptation in Natural and Artificial
System”, the University of Michigan Press, Ann
Arbor, 1975.

8. Goldberg D.E., “Genetic Algorithms in Search,
Optimization, and Machine Learning”, Addison-
Wesley Press, 1953.

9. Dorndorf, U. and Pesch, E. “Evolution Based
Learning in a Job Shop Scheduling Environment,
Computers and Operations Research, vol. 22,
pp25-40, 1995.

10. Özdamar, L., “A Genetic Algorithm approach to a
general category project scheduling problem”,
IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Application and Reviews, pp
44-59, 1999.

11. Giffler, B. and Thompson, G. “Algorithms for
Solving Scheduling Problems”, Operations
Research, vol. 8, pp 487-503, 1960.

12. Panwalkar, S. and Iskander, W., “A Survey of
Scheduling Rules”, Operations Research, vol. 25,
pp 45-61, 1977.

13. Haupt, R.,” A Survey of Priority-Rule Based
Scheduling Problem”, OR Spektrum, vol. 11, pp.
3-16, 1989.

14. Blackstone, J., Phillips, D., Hogg, G., “A State of
the Art Survey of Dispatching Rules for
Manufacturing Job Shop Operations”, International
Journal of Producton Research, vol. 20, pp. 26-45,
1982.

15. Ulusoy, G., Özdamar, L., “Heuristic Performance
and Network Resource Characteristics in Resource
Constrained Project Scheduling”, Journal of the
Operational Research Society, vol. 40, pp. 1145-
1152, 1989.

16. Bierwirth, C., Kopfer, H., Mattfeld, D.C., and
Rixen, I. “Genetic Algorithm based Scheduling in a
Dynamic Manufacturing Environment,”
Proceedings of the Second Conference on
Evolutionary Computation, pp 439-443, 1995.

17. Lin, S., Goodman, E., and Punch, W. “A Genetic
Algorithm Approach to Dynamic Job Shop
Scheduling Problems”, Proceedings of the Seventh
International Conference on Genetic Algorithms,
pp 481-489, 1997.

18. Rakhmatov, D., Vrudhula, S., and Wallach, D., “A
Model for Battery Lifetime Analysis for
Organizing Applications on a Pocket Computer”,
IEEE Trans. on Very Large Scale Integration
Systems, vol. 11, pp.1019-1030, December 2003.

Jain 19th Annual AIAA/USU
Conference on Small Satellites

13

19. Tang, P., “Table Driven Implementation of the
Exponential Function in IEEE Floating Point
Arithmetic”, ACM Trans on Mathematical
Software, vol. 15, No. 2, pp. 144-157, June 1989.

20. Doss, C. and Riley, R., “FPGA–Based
Implementation of a Robust IEEE-754 Exponential
Unit”, Proc. Of the Symposium on Field-
Programmable Custom Computing Machines,
IEEE, 2004.

