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ABSTRACT: Small spacecraft that are powered byrsetergy have limitations because of the size eir tholar
panels. With the limitations on the solar paneksit is generally hard to comply with the demafrdsn all the
satellite subsystems, payloads and batteries ataime time. To overcome these problems we havdapeg and
adopted a power management optimization schemertnat in real time in the satellite. The proposedver
management scheme primarily involves scheduling lodds (various subsystem operations, payload
experimentation, battery charging, etc.) so thawgyoutilization and thereby the charge of the begteis at its
optimum. We have developed a genetic algorithm dastedule optimizer and propose an FPGA baseeésfitn
evaluation function for it.

List of Important Symbols & Abbreviations a The latest time at which operatigril S,
Symbol Description : of taski can be finished

T i task of the spacecraft J Total number of tasks in the system
N ‘™ node of th distributi n Total number of nodes in the system

[ " node of the power distribution system The hard constraint flag field associated
Ok Operationi, of taskj activating node h with an operation. It is 1, if the operation

has HSTC or HETC.
dijk Duration ofoijk o The interval from the soft start time of an
o operation after which it actually starts
i  Starting time ofo;, HSTC Hard Start Time Constraint
, R rce f HETC Hard End Time Constraint
ijk esource 1ol SSETC Soft Start Time and Soft End Time
: Allowed delay, i.e. nominal due time +

r Set of schedulable tasks at any time o .

t Y ¢ allowed time in which a schedule can be
II, A partial schedule containirggscheduled executed

operation or! Priority rule at thei™ position of thel™

s The set of all schedulable operations at ' individual in the genetic population

e iteratione
C Conflict set, contains all the conflicting

e operations at iteratioa 1. INTRODUCTION

The earliest time at which operation

gjj : : Solar powered spacecraft that operate off the sun’s
10, Of_ taSk_' can be s_tarted ) direct energy during sunlight hours, and battedigsng
_ The earliest time at which operation eclipse periods, have an unwieldy task of sequencin
9 j OS, of taski can be finished the various subsystems’ operations for optimizedgro
. . - management. Traditional techniques rely heavilyaon
gy ~ 'helatesttime atwhich operatigriS, relatively large and highly skilled mission opecat
of taski can be started team that generates detailed time ordered sequefices
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commands to step the spacecraft through each desire2. PROBLEM FORMULATION

activity. Each sequence is carefully constructeduoh

a way as to ensure that all known operational Representation of Power Distribution

constraints are satisfied. = Sequencing is primarily

undertaken during mission planning with regular The power distribution system model is assumed to

the spacecraft’s ability to respond to unforeseemts. ink of th f that Dl lehia t
This fact, combined with the requirement to comply power sink ot the spacecrait that plays a rolehe

with the demands of the power-starved Subsystems;fulfi”ment of ‘ta.SkS’Tl...TJ . These tasks form a det
makes the sequencing job more critical. Tasks are activities that add together to form a
mission. Examples of tasks can be (a) to capture an
This paper describes an architecture that will event by the camera at point A in the orbit or (b) to
demonstrate the Genetic Algorithm (GA) approach to setup a communication link at timewith the ground
task scheduling for optimum battery charge station. The tasks can be periodically updated from

management. The architecture has been tailored fo = :
VIKSATL - CSU's small satellte - but the GA baseg ¢ dround. Every task is comprised of an ordered

core is generic enough to suit a wide variety of sequence of ‘operationsd.... Qi - There are a

spacecraft. maximum of m such operations for each task. The

actual number of operations in a taisks denoted

Some work has already been undertaken in the dield S ) ] .
bym . Every operation is associated with a specific

on-board task scheduling in spacecraft. Bernaml et
have described the design and experiment with anode. An operation in progress ‘activates’ the
Remote Agent based approach for spacecraftcorresponding node. Since every task need not activate
commanding and control. Jednigas presented online every nodem <m prevails. Activation of a nodk
and offline scheduling algorithms for spacecrafe H
employs a GA for offline scheduling. There is Idt o
literature that talks in general about autonomgpace,  ‘resource’ ry and takes a finite durationd;, .
its advantages, disadvantages and methodofogie$ Examples of nodes are a motor for reaction wheels, a
microprocessor and its peripherals, etc. This forms a
Our work focuses on autonomy for task scheduling star connected topology (Figure 1) with respect to the
from the perspective of main power bus, which acts as the central source node.

. . . At any instantt of time the source node can supply a
a. Fulfilling power demands in the satellite. fixed antity of resource hich acts as a
b. Achieving maximum battery life in terms of X quantity urceR, whi
the overall mission constraint to the distribution system.

c. Achieving optimum Depth of Discharge
(DOD) in every discharge cycle

for task i to complete operationj consumes a

N2
-

The paper has been organized as follows: Section 2
presents the problem formulation. Section 3 ousline

the autonomous scheduling architecture. Section 4 -

introduces the proposed modified GA with the Noa| d‘sﬁ‘;:;‘;’ﬁ;:e‘b Ny [T
problem specific representation and genetic opesato

Section 5 details about the VHDL implementation of

the fitness evaluation function Section 6 sumesari
the paper and discusses the results and conclusions N, T @

Figure 1 The Star Connected Configuration of the
L oad Nodes.
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Constraints the start of the mission. At timg these tasks are
scheduled and starts processing. At tiiee new task is

There are two types of constraints for the system -added to the system. Up to the release of new tatsks
resource constraints and temporal constraints. Since thgne t, problem I'ycan be solved. This leads to a table
objective is to optimize power use thereby maximizing i : i i ,
the charge of the batteries, we only consider the amoufff Potential starting times and ending times for al
of available power as the resource constraint. Duringperations involved i,
the daytime the available power is constrained by the

ower that is not used for charging. In the eclips .
Beriods, the power is restricted togthg power availeinro construct the new sefy ={T;: 101, s+1)} we
from the batteries. Here we assume that duringake a snapshot at the release time of a newt{atke

charging, the lithium-ion batteries are subjected to dperations Oljk with potential starting timeStijk <t,

constant current for approximately one-third of the tOtalhave already been implemented in the spacecraft. We
charging time. After this period the batteries are y P P '

subjected to a constant voltage. remove those operations and decrease Finally we

add tasks released &t to the remaining program.
Temporal constraints fall into two categories: HardFigure 2 shows a representation of the process.
constraints and Soft constraints. An operation can have

a. Hard Start Time Constraint — HSTC Figure 2-(a) represents the original schedule geedr
b. Hard End Time Constraint — HETC atty. At t; a new taskiT, (light grey) is added to the
c. Soft Start Time and Soft End Time — SSETC system. 2-(b) shows the snapshot at that instam. T

second operation of task 3 was in proceds @lored
The constraints that are not hard are soft. Hardlack). The operations befote have already been
constraints have to be fulfilled at specific parametercompleted (white and grey strips). Those operations
values. For example if an operation has the HSTC of Zhat were in process are left unaltered and alsmved
it implies that the operation needs to be started arom the problem space. 2-(c) shows the rescheduled
instant e = 2. Soft constraints confine the parameterssystem witho,,, at the original position.

and the scheduler tries to fulfill them. They can be that hedule has b de aridds b
violated if by no means those constraints can béNe see that once a schedule has been made anags be
satisfied. Here we assume that the duratio rocessed, new tasks can still be accommodated and

corresponding to each operation is constant, therefor‘g’rocessed provided the scheduling process is

HSTC and HETC have the same effect on scheduling. sufficiently fast.
T4 T 1 .
Scheduling 13 N ‘ @
. Tz \ \ || |
A schedule for spacecraft operations can be seen as a T: ] ‘
table of starting times;, and ending timesp, for the 2 '
© (b}
operatioro, of taski, operationj activating nodek 4 —
with respect to the technological node orders of the ii==N 2z .
tasks. Since scheduling tasks is an activity of sustained Tz \ [ | | \
pursuit, scheduling is a non-deterministic, dynamic T | |
problem with an open time horizon. We follow Raman (c
et al® to handle situations where tasks arrive non- T4 I B
deterministically in the task scheduling system. In their IHi===N I
approach the non-deterministic scheduling problem is T2 \ \ | | |
decomposed into a sequence of dynamic but T | |
deterministic scheduling problems. Let t Time

T ={T;: i O(L 9} be a set of tasks to be scheduled afigure 2 Dynamic Scheduling and Rescheduling
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3. ARCHITECTURE operate by iteratively improving a population of
candidate solutions until an acceptable solution is

The control architecture of VIKSAT1 is supervisory. found.

Every subsystem has its own dedicated controller. O

top of these controllers is the C&DH - the command !
and data handler. C&DH coordinates between these "] Controller =
distributed controllers for keeping track of satell == ——————"—- I :5'(,—,
activities and updating ground with data. Ground | | G ! %5
Data Analyzer 1 9n
commands to a subsystem travel trough the = =~ L——08— —~ 1 o &3
communications controller to C&DH, which filter time A —Seheduier | | Memory P2
for the subsystem controllers. Our work encompasseg FEsS=s _Interface | ! Management | !
two controllers, the power subsystem main controlle TOPSSMa
(PSSMC) and C&DH. Subsystem Interface : PSSMC
e I i
Figure 3 shows that the battery data is transmftteah Low level C&DH House |
the PSSMC to the C&DH. C&DH interfaces with the Keeping !
|
|

scheduler. The ‘task buses’ from the C&DH to the
scheduler takes the tasks to be scheduled. Evekyiga
associated with a ‘task numbei’'0{1...J} and an Figure 3 C& DH Architecture

information field that contains temporal information

pertaining to the task, the release time and the potentidhe technique has proven both popular and effective in
due time. The ‘schedule bus’ brings in the scheduled wide range of science and engineering disciplines. For
operations from the scheduler. As and when theéntroduction to simple genetic algorithms (SGA), we
operations come in they are assumed to be processingrefer to Goldbery

Whenever a new task needs to be added to th®ne major drawback of GAs is their slow execution

scheduler, the controller interrupts the scheduler, whickpeed when implemented on software or on a

halts outputting the operations and reschedules. The keynventional computer. Parallel processing has been

to successful operation is to achieve very highthe approach to overcome the speed problems of GA.

scheduler efficiency, highest schedule optimization, and

minimum processing times for schedule generation.  In this section we introduce the proposed modified GA
(MGA) for solving the task scheduling problem (TSP).

The charging and discharging of batteries are twdrhe basic components of MGA are a population,

activities that fall outside the domain of schedulabledecoding, resource profiling, fitness calculation,

tasks. They are assumed to be a part of the globgklection, crossover, and mutation. Figure 4 shows a

spacecraft metabolism and are governed separatelylock diagram of the MGA.

These two activities in turn have an effect on the

scheduler. The resource constraints and the fitnegRepresentation

function used by the scheduler for schedule

optimization are judged by whether the batteries are iWe use an indirect representation for our problem. A

charging or discharging state. rule base is used to represent a population member.
Dorndorf and Peséldeveloped this representation type

4. MODIFIED GENETIC ALGORITHM for the job shop-scheduling problem. Ozdathar
employed it for the multi-mode extension of resource

Introduced by Hollant genetic algorithms are a class constrained project scheduling problem.

of evolutionary search algorithms which are loosely
based on the mechanics of natural selection. They

Jain 4 19 Annual AIAA/USU
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Figure 4 Block Diagram
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of the M odified GA

Priority rules are probably the most frequently applieddeveloped WRUP. We have employed the weights that
heuristics for solving scheduling problems because operformed best in their study.

their ease of implementation and low complexity. The
algorithm of Giffler and Thompsdhcan be considered
as the common basis for all priority rule based

Decoder

heuristics. The problem is to identify effective priority To generate valid schedules from the schedulaklesta

rules. For an extensive summary and discussion o
priority rules refer to Panwalk&ret al., Haupgf, and
Blackstoné®.

For an ZJm operation, problem an individual's

chromosome is a string 01‘2J m entries. That is, the
chromosome is given as
(= (prlI ,...,pr'zjm )
where prlI is a priority rule such that
pr' O{SPT, LFT, LST, MST, MSLK, WRUP, FCF}
for each positiori =1,...,)_ m
J

Table 1 contains a brief mathematical definitiom fo
each priority rule we used. Here LFT denotes thesta
finish time of an operation. Ulusoy and Ozdathar

Jain

based on the rules that evolved from the GA we
propose a modification of the Giffler and ThompSon
(GT) algorithm. The GT algorithm produces active
schedules. The optimal schedule is guaranteed @ be
member of the set of active schedules.

The algorithm is follows.

Step 1. At e =1we begin withII, as the null set and let

S, contain all operations with no predecessors.

Step 2. If any operation has the=1, schedule that
operation at the time from the constraint field.ddfe

the setS_ by removing the scheduled operation from it

and adding it taT, .

19 Annual AIAA/USU
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constant amount of power during that duration. The
remaining power available from the solar cells ban
used to drive the operations of the spacecraft.
Scheduling is necessary at this point because tsadn
one such operation exists, the tie is broken bgndom  to complete all the operations without disruptirng t
choice. charging process. The fitness function for thisqabrs
simply the mean flow time, an indication of how Boo
Step 4. Form the conflict setCg, which includes all all the operations can be completed while meetiey t

o ) * ) * resource constraints. Mean flow time can be catedl
operationsi 0 Sgwith g < A that activaten . Select gs

Step 3. Determineqq? = Mg <m (4;) and the node

n that 0jj corresponding tqq? activates. If more than

one operation fromC,with the priority rulepreI L f 1
there is a tie, the tie is broken by a random ahoic <F> = 3

2.CG-R (1)

Step 5. Let INj; = ij —g;j be the interval in which the
Here C, is the completion time arig the release time

selected operation,, can be placed. To find its starting
! B of taskT, .
r (1), OtOIN: of all To evaluate the fitness of an individual memberirdyr
ij 1] eclipse (when discharging), we generate a resource
the operations already scheduled during that interv ~ profile of the decoded schedule. The resource lprofi
block of the GA Core does this. The resource prafil

Step 6. Find Jdsuch that the difference between thean approximation of the time varying discharge véth
allowable resource consumptiBp, Ot 0 IN;; and piecewise constant load.

resources EiDr,jDH,kD(Nl..Nn)

ZiDr,jDH,kD(Nl__Nn)fi,-k(t) is maximum. If there is any An active operationg, of a taskT; at timet is an

operation O in S, with ~ operation that is being processed at that time, (t.&s
activating its corresponding node). There can beemo

uzi,vsm,WO{N,.N,} that hasg <t +J,the then one active operation at any timeThe active
operations and their corresponding tasks form atiset
set of active operation§&R0). The number of elements
in this set is determined by the schedule generated
resource changeover instan&€l) is defined as a time
t when any operation is either deleted or addedhé¢o t
minimn j<m ((7”.) SAO. Between twoRCIs is.an intervalk o.f constant

’ resource consumption. This resource being the murre

drawn from the batteries is designatedl as The

starting time of the selected operation is shifted

g .. —di . If more than one such operation with
uvw i

g <ty +Oexits inS,, the starting time is shifted to

Step 7. Updatell, and S, .
t ° duration of this interval is designatfq , the start time

Fitness Function of this interval byt, and the total duration of the

To achieve optimum charge levels in the battery weschedule by = maxt(+A4, 4¢, ¢ being the

need to optimize schedules while both charging andllowed delay. A resource profiler looks €IS on the

discharging. During charging, as has been alreadtime axis and creates a load profile out of thag \fer

stated, the battery is charged at a constant dufoen to Rakhmatol? et al. for a high level Li-ion battery
one-third of the total charge time. In this duratithe  discharge model. Here we outline the key resulterd

battery charges to approximately 70-80% of its fullare two battery specific parametersx and

capacity. This implies that the battery takes in a

Jain 6 19 Annual AIAA/USU
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Table 1 Mathematical Definition of the Priority Rules Used

Priority rule Formula
SPT shortest processing time mind,
LFT latest finish time minLFT,
LST latest start time minLFT, —d,
MST most total successors max‘g j ‘
MSLK minimum slack min(due _time—current _time—remaining _time)

WRUP  weighted resource utilization and precedenceax 0.1S |+ 0.8, R,

FCF first come first First element ofS,

B. These parameters are estimated from the battefhen the objective is to maximize charge
profiling data. The battery model can be descrired slack(xk =a —-0). «kcan be seen as the amount of

) charge less then the capacity.
azj[1+ 2y e’ (L_r)}i t)dr (2 sdlection
0

o ) ) We use roulette wheel selection technique to séhaxt
wherei(t) is the discharge current ahdis the battery inqividuals for applying the genetic operators of
time to failure or lifetime. The parametarhas been crossover and mutation. The idea behind rouletteeivh
loosely termed by the authors as the battery charggelection technique is that each individual is give
capacity before the battery started to dischargeBas  chance to become a parent in proportion to itggisn It
the measure of the battery non-linearity. For a&giv s called roulette wheel selection as the chandes o
load profile of duration T we can define selecting a parent can be seen as spinning a t®ulet

wheel with the size of the slot for each parenngei

p A v | proportional to its fithess. Those with the largisiess
o= j[“ 2y e }' t)dr (3)  (slot sizes) have more chance of being chosens,Tihu
0 m=1 is possible for one member to dominate all the rsthe

o ] . and get selected a high proportion of the time.
The output of a load profiler is a piecewise comsta

profile. It can be expressed by a set of step fanst Crossover

. : The problem representation allows us to emplo
|(t):Z|k_l[U (t_tk—l)_u(t_tk)] 4) standgrd crossovlgr. We consider two individualspfo);
k=t crossover, P1 and P2, from which two offspring
individuals O1 and O2 are computed. We use onet poin
crossover. In this we draw a random numlggr

withl< q<J. The first q positions of Ol are taken

Theno can be expressed as

32021 4 _ — 32m2(T =
g 2, gAMb _ g imiT) from P1 while the remaining ones are taken from P2.
o= 1| B +2)] —
k=0 m=1 ﬁ m =]
pr.ol _ pr.*,if i O{l...q}
' pr®2if i O{q+1...3}
Jain 7 14 Annual AIAA/USU
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For the offspring02, the firstq members are taken mux2
from P2 and the remaining members are taken fRIm ]

Mutation RL

4 subl acmi1
By mutation we alter a member of the population mod ] — muld
randomly to maintain the diversity. For priorityleu _ |

base encoding the mutation operator is definedras: ] X

each positioni =1,...,J)_m of an individuall, a new Ci.
) Kl
priority rule
| Figure 5 VHDL Implementation of Fitness Function
pr, O{SPT, LFT, LST, MST, MSLK,WRUP, FCF} for the Charging Period

is randomly drawn with a probability gf ... Itis 1€ outer loop computes

then replaced by a random rule.

n-1
I | A +2Valug
5.REAL TIME IMPLEMENTATION kz; "[ K nnerLOOp]

To employ the system for task scheduling on aThe inner loop runs 10 times. This is becauseatses
spacecraft the system need to be implemented in retalls off very rapidly after that. The outer loog i
time. Since the core of the scheduler is aexecutedn times, nbeing the number dRCls of the
computationally intensive genetic algorithm, FPGAS|pad profile.
can be used for its implementation. The most
computationally expensive part of the GA being theThe complete fitness evaluation consists of sixnmai
fitness function, we present an FPGA basedhlocks. Multipliers perform signed floating point
implementation of it. multiplication. It accepts two normalized IEEE ding
precision floating point values. The exponents are
We use IEEE 754 single precision floating pointadded together. The 24 bit mantissas are multiplied
representation of the data being computed. Thigesulting in a 48 bit result. The result is eitlits 46
implementation assumes that the various input galuethry 24 or 45 thru 23 depending on bit 47. It reewii
are present from the constraintd (T,t, ), resource only one cycle to produce a result. Adders add and
_ subtract two floating point numbers depending oa th
profiler (1,) frames () or the decoder; ) blocks  gjgn of the inputs. The constraint data is caledat
(Figure 4). These values are available in 32-bEHE before and fed to the fithess evaluation modules
format. through multiplexers. This simulates the data
availability from the constraints and profiler bksc We
Implementation of the fitness function for the dayg  follow Tand®, and Dos¥ et al. to implement the
iS intuitive. It contains a subtraction unit (signe exponentiation module. It performs floating point
addition), an accumulator and a multiplier. Fig&re exponentiation. In this approach the inpuis divided
shows a block diagram representation of it. Figbire as
shows a block diagram of the implementation of the
fitness function for the eclipse period. It corsisf two

log 2
loops — the inner loop computes the following. X =(32m+ j)( g )+ (r1+r 2)
32
10 e—,BQmZ(T—tK—AK) _e—,Bzmz(T—tk)
; IBZmz
Jain 8 18' Annual AIAA/USU
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where mand jare integers andrland r2are real

numbers such thtl+r 2| < (log 2)/64. From this the
exponential function is derived as

e :2mx2j/32x (p(r)+1)

6. RESULTS & CONCLUSIONS

Experimental Design

The first problem consisted of 40 tasks with a
maximum of 10 operations per task. The minimum
duration was set for a task to 0.5 and the maxirntwm
7.5. A total of 320 operations were generated. The
battery parametersr and B were chosen to be 40000

and 0.2. We followed RakhmatSet al. for choosing
the battery parameters. The starting time wascsét t
The total number of nodes that were consideredS0as
They were randomly assigned to each operation with
the constraints that no two operations of a taskilge
same node. All the tasks had hard duration comssrai

We studied the GA based scheduling on two sets dfiDC). 35 out of the 320 operations were assigraed h
problems. Both the problems were tested for chgrginstarting/ending time constraints (HSTC/HETC). The
and discharging times. Those problems were gentratéest of the tasks had SSETC. The assignment of the
randomly. We simulated the scheduling process usinjmes for HSTC and HEST was done manually but
MATLAB. For the design of the fitness evaluator we fandomly. All the tasks were to complete all the
used QUARTUS from ALTERA. The fitness evaluator Operations in 100 units of time including 12 unifs
was programmed in VHDL

Test Case |

Jain

X2

Inner Loop

delay. Apart from that every task had a due time
associated with it. The population size was chdsdre
POP [1{20, 30,40} and the GA was run for GEN
(0{40, 30, 20}generations. The probability of mutation
was fixed to 0.01.

mul3 acmil

X mul4 addl muls

acm2

1/p2m?

I x H ]+ 1] %

Outer Loop

Figure 6 VHDL Implementation of the Fitness Function for Eclipse Period
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Three variants of the GA were tested with respethé  Observation (Charging)
probability of crossover — 0.40, 0.63 and 0.90. The
same problem was used for charge optimization whil®uring charging, the emphasis was to complete the

both charging and discharging. tasks as soon as possible, while fulfilling reseurc
constraints. The best time for three different
Test Casel | combinations of population size and generation toun

are summarized in Table 3. Figure 8 shows the
This test case has 6 tasks with up to 5 operattach  variation of fitness for different crossover probisibs.
and the durations generated at random. The main
emphasis was to limit the number of RCIsto 6 ssl®  Table 4 compares the fitness results obtained fiwm
be able to test the VHDL based fitness evaluatt®80 A hardware evaluator and MATLAB. For most of the
the small number of tasks allowed us to validae thtime the decoded schedule will follow both the
scheduler by comparing its results to the resuttnf  constraints. But there can be sets of tasks whose
and exhaustive search. The constraints were cauert completion times can be well beyond the nominal due
to IEEE 754 single precision floating point fornfat  times supplied by the controller. In this study we

analysis. ‘forgive’ those violations. A more stringent GA can
have a penalty associated with such
Observations (Discharging) schedules.

4000

For the first test case it was observed that wiith t
initial random rule bases, even the best membeenwh ;500!
decoded to schedules fail to complete the taskausec
the battery runs out( turns out to be negative). As the 2000}

GA progresses the best members start to decode
schedules that complete the tasks but with littelks-

i.e. more depth of discharge. Towards the finabrilne
slack increases substantially, thus achieving th
objective of the scheduler. Figure 7 shows the ageer
fitness versus the number of generations as the G !
progresses during discharging. The three plotsfare
three different rates of crossover. It is evideotf the -3000; : 10 15 20 25 0
Figure 7 that increasing the probability of crossolvas Iterations

a prominent effect on the value of the optimal sotu

achieved Table 2 summarizes the optimal solutiongigure 7 Graph of Mean Fitness vs. Iteration for
found for the various crossover probabilities. Eclipse Period

10001

ot

Mean Fitness

-1000

For the second test case the VHDL based evaluator

evaluated the fithess that closely resembled theltse Table 2 Impact of Probability of Crossover
from MATLAB. The limitation that arises is due thet (Discharging)
single precision representatians 80/4° which in our Mode  POP GEN AVG
case turns out to be 20. This limits the time fdiick a Perosoer  SOLUTION
schedule can be laid out. Increasing the precisfahe 30 30 40% 2556
representation can overcome this problem. The numbeDischarging 30 30 63% 2929
of clock cycles for a 25 MHz clock to evaluate the 30 30 90% 3585
fitness comes to about 23673mber of RCI . For our . 30 30 50% 99

) , Charging
test case with &RCls, the frequency of operation was 30 30 73% 98.8
3.9 KHz; i.e. approximately 3900 evaluations can be 30 30 99% 98.4
done in 1 sec.
Jain 10 18’ Annual AIAA/USU
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Figure 8 Graph of Mean Fitness vs. Iteration for
Daylight Period

Table 3 Impact of Population Size

(Discharging)
Mode
; AVG
(F'ltngss POP GEN SOLUTION
criteria)
Dischargin 20 40 3266
(Slaclg) 9 30 30 3585
40 20 2818
20 40 102
Charging
(Time) 30 30 98
40 20 92
Table 4 Comparison of Actual and Expected
Outputs
Actual Output Expected Output

148.4131662 148.1432301
89.0912356 89.0912356
2555.619 2555.7

7. CONCLUSIONS & FUTURE WORK

subsystem representation enabled schedule gemeratio
with multiple tasks running at the same time. Tsigie

the optimizer the primary assumption was that the
optimizer is being controlled and informed by some
‘higher entities’. The tasks that comprised thesmis
were of two categories.

(a) Tasks that are to be completed at some specific
times during the mission. Most of them are knoavn
priori. Some of them are added dynamically during
flight. Additions can be made because of changes in
mission objectives or due to unforeseen events.

(b) Tasks that are to be completed as and when
necessary. There are no hard bounds on the times at
which those tasks are to be completed. It may be
necessary that some tasks precede others. Thesissu
dealt by the higher entities.

To respond to non-preemptive events the schedaker h
to operate at very high speeds. Very high-speed
operation can be achieved using FPGAs. The fitness
evaluators were implemented in FPGA and they
performed satisfactorily. Using clocks of still hiay
frequency will boost the speed even further.

The growing abundance of FPGA/ASIC, higher
operating frequencies and radiation hardening are
incentives for further research with them for tipace
applications.

An all-hardware implementation at the computational
core of a big system is less prone to getting stottk
faulty loops. But this reliability has a cost. The
complex computations that are often programmed in
software are difficult to realize in hardware. Tkey
component of our future research will be to reduce
these complicated computations to smaller but €mpl
ones by employing mathematical tools. One pivotal
point will be to reduce the complexity of exachéts
evaluation functions for the GA by using some
approximate replacements, and in the end compegsati
for the lost accuracy.
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