# Micro Sun Sensor with CMOS Imager for Small Satellite Attitude Control

Keisuke Yoshihara, Hidekazu Hashimoto, Toru yamamoto, Hirobumi Saito, Eiji Hirokawa, Makoto Mita Japan Aerospace Exploration Agency

> Kota Magoshi Magoshi Corp.

19th ANNUAL AIAA/USU CONFERENCE ON SMALL SATELLITES



#### Contents

#### Introduction

- General description of the MSS
  - Concept
  - Functionality and Architecture
  - Design target and Current Status
- Substantial test results
  - Radiation test for COTS APS
  - Optical performance test

#### Summary

#### Introduction

#### JAXA's research and development program for next generation small satellite bus technology

- On-board computer, attitude sensor, reaction control system etc...
- Newly-developed components and subsystems are planed to be installed in the MicroLabSat-II for on-orbit demonstration.



#### **Concept of the MSS**

The general concept of the MSS is to achieve **good balance** of size, mass, power consumption and performance.

# **Design concept of the MSS**

- Adoption of the CMOS APS as detector
  - MSS's simplicity and lower power consumption.
- FPGA based signal processing
  - Simplicity and compactness of the digital electronics.
  - Flexibility in the implementation of the signal processing.
- Using COTS APS, optical filter and EEPROM
  - The state-of-the-art commercial parts are high performance and lower cost.
  - Radiation hardness is not guaranteed is verified by radiation test.

#### **Concept of the MSS**

#### Measurement principle

- Sunlight incident on the APS through a cross-shaped slit.
- The coordinates of the intersection of sun image are computed. (Centroid calculation acquires sub-pixel resolution and accuracy)
- Two axis solar aspect angle is derived from the intersection coordinates.



#### **Functionality and Architecture**

#### Function and technology

- Output of pixel coordinates of sunlight intersection for solar angle calculation in OBC.
- Raw pixel data output for APS test.
- Direct access (read/write) to ROM and RAM.
- Overcurrent detection and reconfiguration.

#### **Electronics architecture**

- Signal processing and command /telemetry handling functions are implemented in a single FPGA.
- CMOS/TTL serial data interface.
  (RS-422 is also available)



# **Design Target and Current Status**

## Design Target

| Item        | Specifications                  |
|-------------|---------------------------------|
| Dimension   | 60mm(W) * 60mm(D) * 60mm(H)     |
| Mass        | 330g                            |
| Power       | 5VDC, < 1.5W (nominal)          |
| FOV         | 90×90deg                        |
| Performance | <0.1deg (bias error, 3sigma)    |
|             | <0.01deg (random error, 3sigma) |

#### Status

- Ground Test Model (GTM) was fabricated and tested.
- GTM satisfies all MSS's design target.



#### **Radiation Test for Commercial APS**

#### Gamma rays irradiation test with Co60

- The APS operated normally and did not lose any function in 25krad expose.
- The dark current level was increased after gamma irradiation and recuperated after annealing.
- The reduction of the sensitivity was not identified.



Shift in dark current (Gamma irradiation test)

#### **Radiation Test for Commercial APS**

#### Proton irradiation test

- The APS operated normally and did not lose any function in 25krad expose.
- The increase of the dark current level and pixel-to-pixel variations of the dark current were identified.
- Some recoveries out of degradation were confirmed after annealing.
- The reduction of the sensitivity was not identified.





#### **Radiation Test for Commercial APS**

#### Summary of the radiation tests

- Minor degradation of several optical characteristics of the APS was identified in gamma and proton irradiation test.
- However the MSS is expected to maintain all functions and necessary optical performance in 25krad irradiation.

#### Objective

- To evaluate the accuracy (bias and random error) of the MSS over the whole FOV.
- To defined "transfer function".
- To evaluate the effect of spin rate on the performance of the MSS.





#### Bias error evaluation

 Bias error satisfied the target specification (<0.1deg) over whole FOV.



#### Random error evaluation

- The random error is associated with the strength of the sun incidence.
- Random error satisfied the target specification.



#### Dynamic performance evaluation

- MSS data was acquired in the situation that the gimbal was rotating.
- Remarkable increase of the performance error was not identified in 6RPM.



#### Summary of the optical performance tests

- Both the bias error and the random error of the MSS satisfied the target specification.
- It was confirmed that the MSS can maintain its optical performance in the rate of 6RPM.

| Item               | Test result        | Target value |  |
|--------------------|--------------------|--------------|--|
| Bias Error [deg]   | Horizontal < 0.045 | - 0 1        |  |
| (3 sigma)          | Vertical < 0.045   | < 0.1        |  |
| Random Error [deg] | Horizontal < 0.009 | . 0.01       |  |
| (3 sigma ave.)     | Vertical < 0.0065  | < 0.01       |  |

#### Summary

- JAXA is developing the new type of Micro Sun Sensor.
- The MSS adopts a CMOS APS as a detector and a FPGA for signal processing.
- The GTM (Ground Test Model) of the MSS was fabricated and tested. The major design of the FM (flight model) could be established.
- The environmental tests for GTM are planned in this year. After the series of environmental test, the MSS FM will be stated to produce for the MicroLabSat-II.

#### Thank you for your attention !

#### Small satellite activity in Japan

| Name            | Cubesat<br>(XI)                   | Cubesat<br>(CUTE-1)               | WEOS                            | SOHLA-1                          | MicroLabSat                                            | MicroLabSat<br>2                                                      | INDEX                                               |
|-----------------|-----------------------------------|-----------------------------------|---------------------------------|----------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------|
| Organization    | Univ. of<br>Tokyo                 | Tokyo Inst.<br>of Tech.           | Chiba Inst. of<br>Tech.         | SOHLA<br>(SMEs union)            | JAXA/ISTA/<br>STDRC                                    | JAXA/ISTA/<br>STDRC                                                   | JAXA/ISAS                                           |
| Mass            | 1kg                               | 1kg                               | 50kg                            | 50kg                             | 54kg                                                   | 60kg                                                                  | 70kg                                                |
| Main<br>mission | Education,<br>technology<br>demo. | Education,<br>technology<br>demo. | Whale<br>ecology<br>observation | Training,<br>technology<br>demo. | Microsat bus<br>demo,<br>precursor<br>misson, training | Advanced<br>microsat bus<br>and space<br>technology<br>demo, training | Aurora<br>observation,<br>engineering<br>experiment |
| Launch          | 2003                              | 2003                              | 2002                            | TBD                              | 2002                                                   | TBD                                                                   | 2005                                                |
| STATUS          | In operation                      | In operation                      | In operation                    | Under<br>development             | In operation                                           | Under<br>development                                                  | Preparing for<br>launch                             |

Furthermore, several small satellite projects are also being planned by other universities and organizations in Japan.

#### MicroabSat-II Satellite

#### Main characteristics

- 50kg-class micro-satellite
- Earth oriented 3-axis attitude control
- Carry and release a nano-satellite on orbit

| Item     | Characteristics                            |  |  |  |
|----------|--------------------------------------------|--|--|--|
| Size     | 600(W)×600(D)×500(H)mm                     |  |  |  |
|          | 200(W)×200(D)×150(H)mm(NanoSat)            |  |  |  |
| Mass     | 60kg(Total), 5kg(NanoSat)                  |  |  |  |
| Power    | 100W                                       |  |  |  |
| Attitude | Earth oriented 3-Axis control              |  |  |  |
| Comm.    | Micro LabSat II ⇔ Ground Station:          |  |  |  |
|          | S-band, 4kbps(Up), 1.6Mbps(Down)           |  |  |  |
|          | NanoSat ⇔ Ground Station: S-band           |  |  |  |
|          | Micro LabSat II ⇔ NanoSat: TBD             |  |  |  |
| Orbit    | LEO, Sun synchronous                       |  |  |  |
| Launch   | TBD (The completion of development < 2008) |  |  |  |



#### 19th ANNUAL AIAA/USU CONFERENCE ON SMALL SATELLITES

#### **Experiment in collaboration with NanoSat**



#### Before release nano satellite

Experiment image in collaboration with nano-satellite