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ABSTRACT 

 

 

Physiological Response of Kentucky Bluegrass under Salinity Stress 

 

 

by 

 

 

Lijun Wang, Master of Science 

Utah State University, 2013 

 

Major Professor: Dr. Paul G. Johnson 

Department: Plants, Soils and Climate 

 

 

Salinity is a major abiotic stress in plant agriculture which reduces seed 

germination, vegetative growth, and flowering, and limits crop productivity world-wide. 

Salinity causes water deficit, ion toxicity, and nutrient deficiency in plants, which can 

result in cellular damage, growth reduction, and even death. Kentucky bluegrass (Poa 

pratensis L.) is the most widely used cool-season species in cool-arid climates; 

however it has relatively poor salt-tolerance. Thus the development of Kentucky 

bluegrass genotypes with increased salt tolerance is of interest to turf breeders. One 

impediment to selection towards this goal is finding an efficient and accurate method to 

evaluate the salt tolerance. The objective of this study was to examine physiological 

responses to salt stress and to evaluate the genetic diversity among the accessions used 

in the research. Salt-tolerant accessions PI371768 (768) and PI440603 (603) and salt-

sensitive varieties Midnight and Baron were exposed to four levels of salinity imposed 

by irrigating with salt solutions of 0 dS m
-1

 (control), 6 dS m
-1

, 12 dS m
-1

, and 18 dS m
-

1
 or 24 dS m

-1
. Soil salinity was measured using Acclima Digital TDT sensors and grass 
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response to the stress was measured using turf quality ratings, stomatal conductance, 

leaf water potential and electrolyte leakage. In general, turfgrass quality, stomatal 

conductance, and leaf water potential decreased while electrolyte leakage increased 

under salinity stress. Midnight and Baron exhibited greater changes in these 

measurements, indicating more sensitivity compared to 768 and 603. The 6 dS m
-1

 

treatment had little effect on the salt-tolerant accessions. Salt tolerance of 603 and 768 

was confirmed and likewise, salt sensitivity of Baron and Midnight was confirmed. The 

genetic similarity of all cultivars used in this study was very high.  

All of the evaluation measurements were highly correlated, with water potential 

and electrolyte leakage being the most reliable and accurate methods due to the low 

standard deviations. Due to more repeatable methods and less user error, electrolyte 

leakage and turfgrass quality are recommended methods for screening salt tolerance of 

turfgrasses. 
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PUBLIC ABSTRACT 

 

 

Physiological Response of Kentucky Bluegrass under Salinity Stress 

 

 

Lijun Wang 

 

 

Salinity is a significant stress for plants world-wide. In agriculture, salts reduce 

germination, overall growth, yield, and sometimes death in crop plants. Salinity similarly 

affects turfgrass in our urban landscapes. Kentucky bluegrass (Poa pratensis L.) is the 

most widely used cool-season grass in the northern part of the United States, including 

the cool-arid West, but generally is a salt sensitive species. The overall objectives of this 

study were to study the physiological responses of Kentucky bluegrass to salt stress and 

to evaluate the genetic similarity among the cultivars used in the research.  

Four Kentucky bluegrass entries, two salt-tolerant and two salt-sensitive, were 

used in this research were exposed to four levels of salinity stress. Soil moisture sensors 

were used to measure soil salinity levels. Several measurements of plant health were used 

to evaluate stress responses including turf quality, stomatal conductance, water potential, 

and electrolyte leakage. Molecular methods were used to evaluate genetic diversity of the 

same Kentucky bluegrass accessions. 

In general, turf quality, stomatal conductance, and water potential decreased while 

electrolyte leakage increased with the increase of salt concentration. Susceptible varieties 

Midnight and Baron showed greater changes in these measurements, indicating more 

sensitivity to salts than 768 and 603. The 6 dS m
-1

treatment had little effect on the salt-

tolerant entries and had effect on the salt-susceptible accessions. Among the 

measurements used, turfgrass quality, water potential, and electrolyte leakage were the 
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most accurate. In future studies to screen salt tolerant plants, electrolyte leakage and turf 

quality are recommended methods. 
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LITERATURE REVIEW 

 

 

According to the FAO Land and Plant Nutrition Management Service in 2010, 

over 6% of the world's land, or over 400 million ha, are salt-affected, which means 

affected by either salinity or sodicity and contain sufficient concentrations of soluble salts 

to reduce the growth of most plant species (Tester and Davenport, 2003).  Much of the 

world’s land is not cultivated, but a significant proportion of cultivated land is salt-

affected. There are more than 65 million ha of such soil in Africa (Aubert, 1977), 50 

million ha in Europe (Kovda et al., 1973; Szaboles, 1979), 17.4 million ha in Australia, 

and 77.5 million ha in North, Central, and South America (Massoud, 1974). Of the 

current 230 million ha of irrigated land, 45 million ha are salt-affected (19.5 %) and of 

the 1,500 million ha under dry land agriculture, 32 million are salt-affected to varying 

degrees (Abbas et al., 1994).  

Much of the arid west of North America is salt-affected, particularly in Utah, 

Arizona, Texas, New Mexico, Nevada, and California (Szaboles, 1989). When annual 

rainfall is less than 15 inches (380 mm), salt affected soils are most prevalent because 

insufficient leaching occurs to remove salts that accumulate due to weathering of 

minerals and ground water (Pitman, 2002). The most common salts in arid and semi-arid 

climates are sodium and sulfate salts such as Na2SO4, K2SO4, CaSO4 and MgSO4. 

Irrigation water is another source of salts. Irrigation contributes to increased soil salinity 

through high evapotranspiration rates coupled with inadequate leaching, low quality 

irrigation water, and rising water tables that receive salts leached from the plant root 

(Carrow and Duncan, 1998). Saline soils also exist near sea coasts due to the tidal action 

http://www.fao.org/ag/agl/agll/spush/topic2.htm
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and airborne salt deposition, or where water tables are shallow and highly saline 

(Harivandli et al., 1992).   

Other sources of landscape salinity include salts used for roadside de-icing and 

fertilizer application (Hutchinson, 1970).  It is reported that the average application rates 

of salts on roadways are 8,000 to 14,000 kg km
-1 

(Hutchinson, 1970). The soil salt 

concentrations increase in adjacent areas by the brine flowing from the treated surface 

(Hanson and Oster, 1986). Many fertilizers, such as animal manure, sewage and sludge, 

may increase soil salinity (Langdale et al., 1973).  

In addition to soil salinity, the availability of high quality irrigation water has 

become a serious concern for many communities, rural areas and farm lands in the 

Western United States.  Surface-water supplies are fully appropriated, sometimes over 

appropriated, and many communities are dependent upon ground water (Lazarova and 

Asano, 2005). At the same time, urban areas in the western U.S. are growing rapidly and 

demanding more irrigation water for urban landscapes. Rather than meeting this demand 

by diverting water from agricultural production, one possible solution is the use of 

recycled wastewater or other low quality irrigation water sources for landscape irrigation 

(Lazarova et al., 2003).  

Throughout the United States, large volumes of municipal recycled non-potable 

water are used for urban irrigation. For example, in the Denver, CO area, approximately 

30-40 million gallons of recycled water is used for landscape irrigation every day during 

the growing season (Munns, 1993). In 2003, the National Golf Foundation (NGF) 

reported that 13% of golf courses (about 2000 golf courses) nationwide now use recycled 
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water for irrigation. However, such sources are generally higher in particulate matter and 

salinity which can lead to increased soil salinity levels (Marcum, 2008). 

Many landscape plants are susceptible to damage from high salt levels 

(Alshammary et al., 2004). Governments have placed registrations on potable water use 

for landscape irrigation, and encourage or require use of secondary, saline water sources, 

such as recycled water (Butler et al., 1974; Aronson, 1989; Blits and Gallagher, 1991; 

Harivandi et al., 1992). Therefore, the need for salt-tolerant turfgrasses and management 

for these saline conditions has increased in recent decades and will continue to increase. 

The issues of saline soils and low quality irrigation water are critically important 

because salinity is one of the most significant environmental factors limiting plant growth. 

Salinity may cause damage through various physiological effects such as water deficit, 

ion toxicity and nutrient deficiency, which result in cellular damage, growth reduction 

and plant death (Poss and Russell, 2010). In agronomic and horticultural crops, high salt 

concentrations are toxic to seed germination, vegetative growth, flowering, fruit set, and 

ultimately diminish economic yield and quality. High levels of salinity also adversely 

affect urban landscape plants, decreasing their ability to provide their environmental and 

cultural benefits. However, salt tolerant species exist among both C3 turfgrasses, and C4 

turfgrasses (Butler et al., 1974; Horst and Beard, 1977; Harivandi et al., 1992). Some 

turfgrass cultivars have been developed and marketd for their salt tolerance performance 

(Carrow and Duncan, 2011).  

The turfgrass salt tolerance mechanisms of salt-sensitive (glycophytes) and 

moderately salt-tolerant (mesophytes) are generally through osmotic adjustment, ionic 

regulation, and compartmentalization (Marcum, 2008). Turfgrass salinity tolerance has 
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been associated with osmotic adjustment and avoidance of ‘physiological drought’ 

(Harivandi et al., 1992).  Grasses use osmotic adjustment to maintain cellular turgor 

and plant growth allowing them to take up water at lower soil water potentials to 

compensate for external osmotic stress, the process of osmoregulation, or osmotic 

adjustment (Levit, 1980; Hellebust, 1976). In saline soil, dissolved solutes in the root 

zone lower the soil water potential. The general water balance of plants is affected since 

leaves need to create even lower water potential to maintain a gradient of water 

potential between the soil and the leaves. 

Salinity tolerant species can avoid ion toxicity by excluding specific ions from 

the xylem of the roots (Schubert and Läuchli, 1990). Salinity Mechanisms in some 

warm-season grass species such as zoysia (Zoysia japonica) and bermudagrass 

(Cynodon dactylon) are associated with shoot saline exclusion (Marcum and Murdoch, 

1994; Pessarakli and Touchane, 2006). Shoot saline ion exclusion is also an important 

factor influencing intraspecies salinity tolerance, i.e., at the cultivar or accession level. 

Salt-sensitive accessions were found to have higher shoot Na
+
 and Cl

-
  levels than 

saline-site, salt tolerant accessions in Festuca rubra (Hannon and Barber, 1972; Khan 

and Marshall, 1981), Cynodon dactylon, and Agrostis spp. (Wu, 1981). The 

accumulation of high concentration of Na in the shoots decreases the content of 

phospholipids in thylakoids, thus reducing the photosynthetic capacity and growth rate 

(Thomann and Muller, 1987). Energy is also spent on Na
+
 exclusion by the plant as a 

defensive response, and this energy expenditure can reach a level of diminishing returns 

resulting to eventual tissue and cell death (Apse and Blumwald, 2007).  
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Plants that cannot exclude salt from the transpiration stream must have the ability 

to compartmentalize the salt in vacuoles, thereby protecting the cytoplasm from ion 

toxicity and avoiding buildup in the cell wall which would cause dehydration (Munns, 

2005). With sequestration of Na
+
 and Cl

- 
in the cell vacuoles, the organic solutes must be 

compatible with concentration and must accumulate in the cytosol and other organelles at 

sufficient levels to balance the osmotic pressure of those accumulated ions in the vacuole 

(Flowers et al., 1977; Wyn Jones et al., 1977; Hasegawa et al., 2000; Munns, 2005). Salt-

tolerant plants that successfully accumulate ions for osmotic adjustment above 

concentrations of 100-200 mm do so by compartmentalizing them within the vacuole, 

which typically makes up 90-95% of a mature plant cell’s volume (Flowers and Yeo, 

1995).  

Many salinity studies have been focused on Kentucky bluegrass due to its wide 

use among C3 turfgrass. Kentucky bluegrass possesses poor salinity tolerance (Flowers 

et al., 1977; Khan and Marshall, 1981; Marcum and Murdoch, 1994; Qian et al., 2000, 

2001) or <3 dS m
-1

 (Maas and Hoffman, 1977). The relative salt tolerance rankings of 

turfgrass species were presented in Table 1.Yet, Kentucky bluegrass is the most widely 

used cool-season turf grass in the northern United States and throughout much of 

northern Europe and the temperate latitudes. Kentucky bluegrass possesses highly 

desirable turf quality and an ability to remain green throughout the growing season with 

supplemental irrigation in cool, arid climate areas (Huff, 2003).  

Many cultivars of Kentucky bluegrass too numerous to mention here, have been 

developed over the past several decades. Kentucky bluegrass has relatively high 

irrigation needs compared to most warm-season grasses and some drought adapted 
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species due to its shallow root system (Leksungnoen et al., 2012). However, it survives 

extended droughts through summer dormancy or quiescence (Huff, 2003).  Because of 

its poor salinity tolerance compared to many cool season turfgrasses (Marcum, 2008), 

the development of Kentucky bluegrass genotypes with increased salt tolerance is of 

interest to turf breeders.  

Although as a species Kentucky bluegrass is salt sensitive, several studies have 

reported a wide range of tolerance among Kentucky bluegrass germplasm.  According to 

Robins et al. (2009), NPGS Kentucky bluegrass accession, W6 19573, PI371768, PI 

440603, and PI372472 entries showed high salt tolerance, Midnight had moderate 

salinity-tolerance, and Baron and Brilliant were salt-intolerant cultivars. This variation 

indicates potential to genetically improve salt tolerance in this species and may indicate 

variation in how accessions tolerate salt stress. 

Leaf water potential, or plant turgor maintenance, appears to be an important 

estimate of turf growth and development (Turgeon, 2008) and has been attributed to 

differences in salt tolerance among Kentucky bluegrass cultivars (Qian et al., 2001). It 

was found that Kentucky bluegrass salt-tolerant cultivars had significantly higher relative 

water content compared to Kentucky bluegrass salt-intolerant cultivars after salt 

treatments (Koch et al., 2011). Salt-induced osmotic effects outside the roots immediately 

affect stomatal conductance, decreasing stomatal aperture (Fricke, 2004; Fricke et al., 

2006). Salinity also affects photosynthesis through stomatal closure and damage to the 

photochemical system and subsequent reduced overall growth rate (Kaymakanova and 

Stoeva, 2008; Megdiche et al., 2009). Stomatal conductance is further reduced in 

response to a decline in leaf turgor, high vapor pressure deficit in the atmosphere, or root- 
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Table 1. Relative salinity tolerance rankings of turfgrass species 

 

Common Name 

 

Scientific Name 

Salinity 

Tolerance 

 

Grass Type 

Seashore paspalum Paspalum vaginatum O. Swartz. VT-T Warm 

Alkaligrass     Puccinellia spp. VT-T Cool 

Saltgrass Distichlis stricta T Warm 

Kikuyu Pennisetum clandestinum T Warm 

Fairway wheatgrass                                 Agropyron cristatum T Cool 

Western wheatgrass Agropyron smithii T Cool 

St. Augustinegrass  Stenotaphrum secundatum           T  Warm 

Tall fescue Festuca arundinacea T Cool 

Perennial Ryegrass Lolium perenne T Cool 

Slender creeping red fescue Festuca ruba L. spp. Trichopylla                                 T Cool 

Buffalograss Buchloe dactyloides                     MT Warm 

Blue grama Bouteloua gracilis MT Warm 

Hard fescue Festuca longifolia MT Cool 

Creeping red fescue Festuca ruba L. spp. ruba MT Cool 

Common Bermudagrass Cynodon dactylon  MT Warm 

Hybrid Bermudagrass spp. Cynodon MT Warm 

Creeping bentgrass Agrostis palustris MT Cool 

Kentucky bluegrass Poa pratensis MS Cool 

Zoysiagrass Zoysia spp. MS Warm 

Carpetgrass Axonopus spp. VS Warm 

Centipedegrass Eremochloa ophiuroides VS War, 

Annual bluegrass Poa annua VS Cool 

Colonial bentgrass Agrostis tenuis VS Cool 

Rough stalk bluegrass Poa trivialis VS Cool 

Source: Adapted from Carrow, R. N., and R. R. Duncan, Salt-Affected Turfgrass Sites: 

Assessment and Management, P.34, John Wiley, Hoboken, NJ, 1998. 

VS: Very sensitive; MS (Moderately sensitive); MT (Moderately tolerate); T (Tolerant); 

VT (Very tolerant).  
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generated chemical signals, which is common to both drought and salinity (Liu et al., 

2011). 

Leksungnoen et al. (2012) used stomatal conductance and leaf water potential to 

measure the difference of salt tolerance of P. pratensis.  Salt stress outside the roots 

immediately affected leaf water potential, evapotranspiration, stomatal conductance, 

electrolyte leakage, and decreasing stomatal aperture in plants (Aronson, 1989). Because 

of these responses, many studies have used these measurements to access tolerance in P. 

pratensis (Jiang and Huang, 2000; Poss and Russell, 2010; Liu et al., 2011).  

Several research projects have investigated the physiological responses of 

Kentucky bluegrass under salinity stress with attempts to identify the mechanisms 

involved in the stress tolerance observed (Poss and Russell, 2010; Leksungnoen et al., 

2012). However, these studies relate salt stress with the concentration of irrigation 

solutions rather than actual salinity stress present in the soil. Most of the studies of 

turfgrass salinity response were conducted in the greenhouse containers and hydroponic 

saltwater solutions, which were conducted in relatively controlled conditions of the 

greenhouse or laboratory (Alshammary et al., 2004; Koch and Bonos, 2010). Some 

studies use organic medium or sand culture to conduct the salt experiments for grass 

(Qian et al., 2000; Lee et al., 2002; Peel et al., 2004), which meant the saline soils were 

different from the actual field soil. To address this and to more accurately determine salt 

stress being experienced by the plants roots, soil sensors may be useful for monitoring. 

These are valid studies, but to better understand plant response in field conditions, more 

“field-like” conditions are important. 



9 
 

 

Successful cultivar development and breeding in Kentucky bluegrass is highly 

dependent on an understanding of its apomictic reproductive system. The analysis of 

apomictic levels of Kentucky bluegrass will promote the process of the screening of salt 

tolerant Kentucky bluegrass. As a facultative apomict, apomictic levels in Poa pratensis 

can vary between 25 and nearly 100% apomictic (Huff, 2003).  Currently Kentucky 

bluegrass breeding utilizes plants from a population that are space planted in a field 

setting, and surveyed during anthesis the next year for phenotypic differences. Only 

obvious differences are detected, and when the parental phenotypes are similar the ability 

to assess the level of apomixis (similarity within plants of the same population) is not 

easy. One way to estimate if constituent plants of a population are similar, regardless of 

the limitations of phenotyping, is through the use of molecular markers (Glaszman et al., 

1989; D’Hont et al., 1994).   

Amplified fragment length polymorphisms (AFLPs), simple sequence repeats or 

microsatellites (SSRs), and other minor methods have been used for fingerprinting 

varieties, cultivars and clones of plants. Amplified fragment length polymorphisms is 

robust and repeatable (Hale and Miller, 2005), but primarily marks highly variable 

genomic regions such as centromeres. The use of SSRs targets expressed sequences if 

generated from cDNA rather than genomic DNA, and therefore is less variable.  However, 

SSRs require several more procedures, such that the cost-benefit ratio warrants caution.  

Although little molecular information is available regarding Kentucky bluegrass, studies 

used AFLP markers to investigate the diversity within the species (Renganayaki and Fritz, 

2001) and for genetic mapping (Porceddu et al., 2002). 
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Given the discovery of putative salt tolerant accessions of Kentucky bluegrass, 

and the physiological measurements that best describe their mode of tolerance, it was 

necessary to understand the apparent level of similarity within plants of the tolerant 

germplasm.  This level of similarity within plants of the same populations is an indirect 

estimation of the level of apomixes, and similarity estimates would be preparatory to 

attempting hybridization with other elite Kentucky bluegrass cultivars.   
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PROJECT OBJECTIVES 

 

 

The main purpose of my research was to characterize the physiological responses 

of putatively salinity tolerant and intolerant Kentucky bluegrass under salt stress. In 

particular, my objectives were to: (1) test common salt stress physiological measurements 

and determine the most repeatable and discriminatory, (2) validate previous greenhouse 

salt screening by testing putatively tolerant and intolerant germplasm, and (3) 

characterize the breeding system (level of apomixis) in tolerant germplasm.  
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MATERIALS AND METHODS 
 
 

Experimental Design 
 

 

Four accessions of Kentucky bluegrass were selected for this study to represent a 

range of tolerances to salinity. Accessions PI 371768 and PI 440603 were identified 

previously as salt tolerant by Robins et al. (2009). These plants were originally 

established by seed obtained from the National Plant Germplasm System and then grown 

in a field plot. Plants for this study were propagated vegetatively from this plot. Two 

cultivated varieties were also chosen. ‘Midnight’ (Meyer et al., 1984) has shown to have 

moderate salinity tolerance (Robins et al., 2009). ‘Baron’ was considered salt sensitive by 

(Hurley and Ghijsen, 1980). Both of these varieties were established from seed. 

The study was conducted in a research greenhouse at Utah State University 

(Logan, UT). There were 16 pots (Diameter: 10 inches; Depth: 20 inches) filled with a 

3:1 sand/ peat moss media.  A fiberglass screen was put in the bottom of each pot to 

prevent the media from leaking out the drainage holes. During pot preparation, half the 

media was placed in the pot, an Acclima Digital TDT SD-12 moisture sensor (Acclima, 

Inc., Meridian, ID) was placed on the sand, and the pot was then filled completely. This 

placed the sensor at a depth of 10.2 cm. The pots were shaken slightly to settle the soil 

and watered to remove any air pockets around the sensors. In experiment 1, sensors were 

activated and data logged with DataSnap dataloggers (Acclima, Inc., Meridian, ID) and 

recorded using ‘SnapView’ software (Acclima, Inc.).  In experiment 2 and 3, the sensors 

were connected to a CR1000x datalogger (Campbell Scientific, Inc., Logan, UT) and data 

was collected using LoggerNet software. Plants of each of the four Kentucky bluegrass 

entries were spaced equidistantly and randomized in each pot (Fig. 1). Plants were grown 
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under an 18-hr photoperiod and temperatures of 25±5/15±5°C (day/night). 

Photosynthetically active radiation (PAR) ranged from 350 to 500 umol/m
2
.s Plants were 

irrigated with fertilizer (EC=802 us/cm) twice a week for 3 weeks after planting and prior 

to the start of salinity treatments. This ensured well-established and healthy, non-stressed 

plants at the start of the experiments. All plants were mowed weekly to a 10 cm height 

before imposing salt stress treatment.  

The experimental design used was a split plot design with four replications (Fig. 

2). Successive observations on the plants created a repeated measures design. The 

experiment was repeated three times from May to October in 2012.  Salinity treatments 

were 0, 6, 12, and 18 dS m
-1

 and prepared as described in Table 1. These treatments were 

the whole plots and four Kentucky bluegrass varieties planted within each pot were sub 

plots. Salinity treatments were increased gradually at the start of the experiment (start of 

week four after planting). Salinity levels were increased 6 dS m
-1

 each week until the 

desired level was reached. Once all salinity levels were reached, plant measurements (see 

below) began and continued for 5 weeks. Pots were irrigated twice each week with the 

goal of flushing the soil to replace the solution within each pot. 

 

Evaluation of Grasses 

 

 

To evaluate stress on the plants imposed by the salinity treatments, turfgrass 

quality, leaf water potential, stomatal conductance, and leaf electrolyte leakage were 

evaluated and/or measured throughout the experiment. The turf quality was measured 

twice a week from 12PM-3PM, stomata conductance was measured twice a week from  
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Figure 1. Four entries in a pot 
 

 

   

Figure 2. Split plot design with four replications 

 

Table 2. Composition of salinizing salts in solutions 

Electrical conductivity (EC) NaCl CaCl2 (dehydrate) 

                 dS m
-1

                                        mmol l
-1                                                     

mmol l
-1

 

6 16.35 21.82 

12 24.22 47.88 

18 30.28 74.85 
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12PM-3PM, Leaf water potential was measured twice a week from 12PM-3 PM. 

Electrolyte leakage was measured once a week. 

 

Visual rating 

 

Turf quality was visually rated on a scale from 1 to 9, where a rating of 1 

represented completely necrotic (brown) plants and where a rating of 9 represented 

healthy plants with dark green, turgid leaf blades, and a full turf canopy (Liu et al., 2011).  

Digital images were taken every week to analyze percent green cover and dark green 

color index (DGCI) (Karcher and Richardson, 2003).  A light box (length:50cm, 

width:30cm, height:70cm) with 2 LED strips (Utilitech model 29123), inside was used to 

ensure consistent light conditions throughout the experiment. All digital images were 

taken with a Sony DSC-WX9 camera and saved in JEPG format, with a color depth of 

16.7 million colors and an image size of 4608x3456 pixels. The turf quality was 

measured twice a week from 12PM-3PM. Digital images were taken once every week 

from 12pm-3pm.  

 

Plant water potential 

 

Leaf water potential was measured twice a week from 12pm to 3pm using a 

portable pressure chamber (Model 3005HGPL, Soil, Moisture Equipment Corp, Santa 

Barbara, CA, USA) (Liu et al, 2011; Leksungnoen et al., 2012).  A fully developed grass 

stem including roots was collected, and then immediately wrapped in plastic wrap. Stems 

were cut slightly above the root and placed in the pressure chamber with the cut end 

sticking out of the chamber. Pressure was gradually increased in the chamber using 
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compressed nitrogen until plant sap was observed at the cut end of the stem. This 

pressure was recorded and considered the leaf water potential. 

 

Stomatal conductance 

Stomatal conductance measurements were made twice a week using a leaf 

porometer (Model SC-1, Decagon Devices, Inc., Pullman, WA, USA). The leaf 

porometer was calibrated prior to every data collection. Because leaves were narrower 

than the porometer chamber, four to five leaf blades were excised and arranged side by 

side with the adaxial side of the leaves facing the porometer chamber. This was done as 

quickly as possible, typically less than 5 s to prevent desiccation of the leaves which 

would cause stomatal closure. 

 

Leaf temperature 

Immediately after stomatal conductance measurements, the surface temperature of 

the leaves was recorded. We used an infrared temperature sensor (Model SI-111, Apogee 

Instruments, Inc., Logan, UT, USA) connected to a digital thermometer (Model 52-II 

Dual Input Digital Thermometer, Fluke Corporation, Everett, WA, USA). The sensor was 

held 2 cm from leaf canopy.  

 

Electrolyte leakage 

Leaf electrolyte leakage (EL) was measured similar to methods described by 

Blum and Ebercon (1981) and Marcum (1998). Five to ten leaf blades were cut and 

immediately put into the plastic bags, then 2 minutes later, 0.2g leaves were weighed and 

cut into 2-cm segments, rinsed three times with distilled deionized water, and put in 20 

mL deionized water. This weighing and preparation process typically took 2 minutes.  
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Tubes were shaken at 120 rpm (Lab-Line Instruments Inc., Melrose Park, IL) for 24 h 

and then the solution was measured with a conductivity meter (Orion Star A112, 

conductivity meter, Thermo Scientific). This initial measurement is referred to as C1 and 

represents cell leakage due to stress on the plant. Leaves and solution were then 

autoclaved at 120°C, shaken again for 24 h, and again measured with the conductivity 

meter to extract all electrolytes from the cells. This measurement is referred to as C2 and 

represents the total electrolytes in the cells. Percentage of the total electrolytes that leaked 

from cells during stress treatments (EL) was calculated as EL = C1/C2 × 100. Lower EL 

indicated greater resistance to stresses. Electrolyte leakage was measured once a week.  

 

Soil moisture 

Soil moisture and soil salinity were measured in each pot throughout the 

experiments with the Acclima sensor described previously. These sensors measured 

volumetric water content, soil electrical conductivity, permittivity and soil temperature. 

In experiment 1, sensors were activated and data logged with DataSnap dataloggers 

(Acclima, Inc., Meridian, ID) and recorded using ‘SnapView’ software (Acclima, Inc.). 

In experiments 2 and 3, the sensors were activated and logged using a CR1000x 

datalogger. In all three experiments, measurement interval was 30 minutes. 

 

Statistical Analysis 
 

 
The experiment was a split plot design with four whole plots with four salinity 

treatments applied (0 dS m
-1

, 6 dS m
-1

, 12 dS m
-1

, 18 dS m
-1

). Successive observations on 

the plants created a repeated measures design. These treatments were the whole plots and 

four Kentucky bluegrass varieties planted within each pot were sub plots. Effects of 
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salinity treatments, cultivars, and treatments× cultivars interactions were analyzed by 

analysis of variance according to the Mixed procedure of SAS (version 9.0; SAS Institute, 

Cary, NC, USA). Mean differences were tested with least significant difference test at a 

probability level of 0.05.  

 

Molecular Marker Genotyping 
 

 
Four accessions of Kentucky bluegrass (PI371768, PI371742, PI371771, and 

PI440603) were found to be salt tolerant in Robins et al. (2009), and were compared with 

the cultivar Midnight. Four seeds were germinated from each of the four salt tolerant 

entries and leaf tissue was collected from each plant.  Leaves were frozen at -80 °C and 

lyophilized for 48 hours. Genomic DNA was extracted using the Qiagen DNeasy Mini-

Kits according to the manufacturer's instructions (Qiagen, Valencia, CA). Quantity and 

quality of DNA was assessed using spectrophotometry and agarose gel electrophoresis. 

AFLP markers were generated using the method of Vos et al. (1995).  Briefly, 

genomic DNA was digested with EcoRI and MseI restriction enzymes. Restricted 

genomic DNA fragments were ligated to EcoRI and MseI adapters. A 1:5 dilution of 

restricted and adapter-ligated DNA was prepared using Tris-EDTA (TE) buffer. Pre-

amplification occurred from adaptor-ligated DNA, and products were diluted (1:20) using 

TE and as templates for selective amplification. For selective amplification, 2 

combinations of primers were used: E-ACC+M-CTC and E-AGG+M-CAG. Technical 

and biological replicates were performed to remove non-reproducible markers. The 

AFLP fragments were resolved on an ABI3730 (Life Technologies, Foster City, CA) 

capillary genotyping instrument.  Markers were scored for presence (1) and absence (0) 
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of bands; bands of different electrophoretic mobilities were assumed to be non-allelic, 

while bands of the same length were assumed allelic. Band calling used the Genographer 

software (Benham, 2001). 

The SSR markers were derived from Expressed Sequence Tags of the variety 

‘Cabernet’ (Bushman, personal communication).  Fifty SSR markers were genotyped on 

the same plants used for AFLP genotyping.  Band calling of SSR markers also used 

Genographer software.    

Analyses included estimations of the average molecular similarity within 

accessions, and a cluster analysis of individual plants.  Average similarity within 

accessions was obtained using the Dice similarity coefficient (Dice, 1945), and corrected 

standard errors were obtained following Leonard et al. (1999).  Clustering of individual 

plants utilized a neighbor-joining genetic distance algorithm implemented in PAUP 

software (Swofford, 2002). 
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RESULTS 

 

 

Turf quality, stomatal conductance, and water potential of all entries decreased 

with longer exposure time as salinity increased. Likewise, but in the opposite trend, 

electrolyte leakage increased in response to higher salinity levels and with longer 

exposure to salinity stress. These trends were observed for all four Poa pratensis entries. 

At high salinity levels, the salt-tolerant entries (768, 603) exhibited higher turf quality, 

higher stomatal conductance, higher water potential, and lower electrolyte leakage than 

the moderately salt-tolerant (Midnight) and susceptible entries (Baron). 

The effects of salt treatment and the exposure time (date) on turf quality, water 

potential, electrolyte leakage, and stomatal conductance were significant in all three 

experiments (Tables 3, 4, and 5). The effects of entry on turf quality, water potential, 

electrolyte leakage, and stomatal conductance were significant in all experiments except 

on water potential in experiment 1 (Tables 3, 4, 5). The two-way interactions of salt and 

entry for the four measured traits were significant in all experiments except for water 

potential and stomatal conductance in experiment 1. The two-way interactions of salt and 

date were significant in all experiments. The two-way interactions of date and entry were 

significant in all experiments except for water potential and stomatal conductance in 

experiment-1 and stomatal conductance in experiment 3.  The three-way interactions of 

date, salt and entry were significant in experiment 1 for turf quality and electrolyte 

leakage experiment 1 (Table 3).  In experiment 2, the three-way interaction was 

significant for turf quality and water potential (Table 4). The three-way interaction in 

experiment 3 was significant for all traits but stomatal conductance (Table 5).  
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Table 3.  ANOVA summary of turf quality, water potential, electrolyte leakage, and 

stomatal conductance in experiment 1 

Effect  Turf 

Quality 

Water 

Potential 

Electrolyte 

leakage 

Stomata 

conductance 

Salt <0.0001 <0.0001 <0.0001 <0.0001 

Entry <0.0001 0.1642 <0.0001 0.0208 

Salt*Entry <0.0001 0.6286 <0.0001 0.3290 

Date <0.0001 <0.0001 <0.0001 <0.0001 

Date*Salt <0.0001 <0.0001 <0.0001 <0.0001 

Date*Entry <0.0001 0.2573 <0.0001 0.3340 

Date*Salt*Entry <0.0001 0.7274 0.0003 0.9992 

 

 

 

Table 4.  ANOVA summary of turf quality, water potential, electrolyte leakage, and 

stomatal conductance in experiment 2 

Effect Turf Quality Water 

Potential 

Electrolyte 

Leakage 

Stomata 

conductance 

Salt <0.0001 <0.0001 <0.0001 <0.0001 

Entry <0.0001 <0.0001 <0.0001 0.0002 

Salt*Entry 0.0012 <0.0001 0.0045 0.0003 

Date <0.0001 <0.0001 <0.0001 <0.0001 

Date*Salt <0.0001 <0.0001 <0.0001 <0.0001 

Date*Entry <0.0001 <0.0001 0.0021 <0.0001 

Date*Salt*Entry <0.0001 <0.0001 0.1015 0.9505 
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Table 5.  ANOVA summary of turf quality, water potential, electrolyte leakage, and 

stomatal conductance in experiment 3 

Effect Pr Turf 

Quality 

Pr Water 

Potential 

Pr Electrolyte 

Leakage 

Pr Stomata 

conductance 

Salt <0.0001 <0.0001 <0.0001 <0.0001 

Entry <0.0001 <0.0001 <0.0001 <0.0001 

Salt*Entry 0.0014 <0.0001 <0.0001 0.1016 

Date <0.0001 <0.0001 <0.0001 <0.0001 

Date*Salt <0.0001 <0.0001 <0.0001 <0.0001 

Date*Entry <0.0001 <0.0001 <0.0001 0.1293 

Date*Salt*Entry <0.0001 <0.0001 <0.0001 1.0000 

 

 

 

Turf quality 

Turf quality decreased over exposure time (date) within salinity levels and 

decreased as salinity levels increased. When averaged over entries, the turf quality of 

control and 6dS treatment were similar and higher than turf quality means for the 12dS 

m
-1

, 18 dS m
-1

and 24 dS m
-1

 treatments (Fig. 3). The 603 and 768 entries had higher turf 

quality than Midnight and Baron at all salinity levels, but were equal under control 

conditions. The four entries did not all respond similarly to salinity and exposure time to 

salinity, as indicated by the significant salt×entry and date×salt×entry interactions.  

Experiment-1 was unique in this work because the cultivar Brilliant was used 

instead of Baron (Fig. 3).  The use of Baron in experiments 2 and 3 was because Brilliant 

was too aggressive in spreading prior to the initiation of the experiment, and thus biased 

results.  In experiment-1, turf quality eventually decreased in all four entries at 6 dS m
-1

, 

12 dS m
-1

, 18 dS m
-1

 and 24 dS m
-1

 (Fig. 3).  At 6 dS m
-1

, Brilliant and 768 turf quality 
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ratings were similar to control ratings through the first five of the seven measurement 

dates while the other two entries showed reductions in quality beginning at the third 

measurement date.  At 12 dS m
-1

 and 24 dS m
-1

, all four entries had a reduction in turf 

quality; however, the reduction was less severe in the cultivar Brilliant.  Turf quality was 

similar in the 12 dS m
-1

 treatment and 24 dS m
-1

 treatment for Midnight and Brilliant, 

however, for 603 and 768, turf quality was higher (P<0.05) in the 12 dS m
-1

 treatment 

compared to the 24 dS m
-1

 treatment (Fig. 3). Brilliant had the highest visual quality in 

the end of experiment at highest salinity level (24 dS m
-1

) and significantly different from 

other entries (P<0.0001). Entries 768 and 603 had the similar turf quality value at highest 

salinity level (24 dS m
-1

) (P=1.000. at the end of experiment. In contrast, Midnight had 

the lowest quality values at the end of experiment (P<0.0001). 

In experiment 2, the 6 dS treatment reduced turf quality slightly for 603 and 768, 

but to a significantly greater extent for Midnight and Baron (Fig. 3). By the end of the 

experiment, Midnight turf quality sank below the rating of 6 in the 6 dS treatment, Baron 

approached a rating of 6, and the two tolerant entries remained between 7 and 8.  At 12 

dS m
-1

, Midnight ratings were near zero, Baron and 768 were just below 4, and 603 was 6.  

Entry 603 also had significantly higher turf quality at 24 dS m
-1

 (P<0.0001, Fig. 3) 

compared to the other entries at the end of experiment. 

Due to extreme salt stress and death in plants exposed to 24 dS m
-1

 levels in 

experiments 1 and 2, the highest salt level was reduced to 18 dS m
-1

 in experiment 3. In 

this experiment the 6 dS m
-1

 treatment reduced turf quality ratings to 6 (603), 5 (768), and 

4 (Midnight and Baron) (Fig. 3, P<0.01) by the end of the experiment. The graphs of the 

12 dS m
-1

 and 18 dS m
-1

 treatments had similar quality ratings for Midnight and Baron. 
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Entry 603 had highest turf quality at all salt treatments by the end of experiment (Fig. 3, 

P<0.02).   Entry 768 had an intermediate rating at 12 dS m
-1

 by the end of the experiment, 

and was significantly higher than Midnight, and Baron (P<0.008) and significantly lower 

than 603 (P=0.0013).  Midnight, Baron, and 768 had similar turf quality in the 18dS 

treatment in the end of experiment (P>0.05 Fig. 3).  

 

Water potential 

 

Main effects and interactions for water potential were significant except for 

experiment-1 (Tables. 3-5). Like turfgrass quality, water potential declined over time 

within salinity levels and decreased as salinity stress increased. When averaged over 

entries, water potential of control and 6dS treatment were similar and higher than for the 

12 dS m
-1

, 18 dS m
-1

 and 24 dS m
-1

 treatments (Fig. 4). The 603 and 768 entries had 

higher water potential than Midnight and Baron at all four salinity levels (6 dS m
-1

, 12 dS 

m
-1

, 18 dS m
-1

 and 24 dS m
-1

). However, the entries did not all respond similarly, as 

indicated by the significant two-way and three-way interactions. 

In experiment 1, the effect of salt was significant, but the effect of entry was not 

significant. Interactions of salt×entry, date×entry, and date×entry×salt were not 

significant (Table 3). The 6 dS m
-1

  treatment did not significantly affect water potential 

for every entry (P>0.9), but as the salinity levels increased to 12 dS m
-1

  and 24 dS m
-1

, 

the water potential was quickly declined lower than that of control (P<0.05, Fig. 4). 

However, the water potential in 12 dS m
-1

 treatment and 24 dS m
-1

 treatment was similar 

for each entry (P>0.2). Interestingly, Brilliant had lowest water potential in the end of 

experiment at 24 dS/m
-1

 level (P<0.0001, Fig. 4) while 603 and 768 had highest water 

potential in the 24 dS/m
-1

 level at the end of experiment (Fig. 4). 
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Figure 3. Turfgrass quality ratings of five Kentucky bluegrass entries at three salinity 

levels plus control during three experiments during 2012. Error bars represent standard 

error of the mean. 
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In experiment 2, the 6dS treatment did not affect water potential in three of the 

four entries, except for Baron (p<0.0001). Figure 4 shows the similar trends in 12 dS m
-1

  

and 24 dS m
-1

 treatments for 603 (P>0.9). The water potential means of 12 dS m
-1

 and 24 

dS m
-1

  treatment for 768, Midnight, and Baron were significantly different (P<0.001), 

with Midnight having the lowest values by the end of the experiment. When entries were 

compared at similar salt levels, the means of 603 and 768 were similar, and likewise 

Baron and Midnight (P>0.1).  The 603 and 768 entries had the highest water potential by 

the end of experiment at 24 dS/m
-1

 level (P<0.0001).  

In experiment 3, the trends of the 6 dS m
-1

 and control treatments were not 

significantly different (Fig. 4) such that 6dS treatment did not influence water potential 

for entries in the experiment (P>0.8).  The values of water potential of 12 dS m
-1

 and 18 

dS m
-1

 were also similar within each entry, except for Baron (P<0.0001). By the end of 

experiment at 18 dS m
-1

 level, the water potential of 603 was about -1.0 MPa, and Baron 

was about -1.36 MPa. 603 has significantly higher water potential than Midnight and 

Baron (P<0.001).  By the end of experiment at 18 dS m
-1

 level, the water potential of 603 

was about -1.0 MPa, Baron was about -1.36 MPa, and Midnight was about -1.15 MPa. 

Entry 603 had significantly higher water potential than Baron and Midnight (P<0.001).  

The 603 entry had the least reduction in water potential, followed by 768, Midnight, and 

then Baron (Fig. 4.).     

 

Stomatal conductance 

 

The stomatal conductance of all entries decreased as salt stress increased and with 

increasing time of exposure to salt stresses (Fig. 5). The main effects of salt, date, and  
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Figure 4. Water potential of five Kentucky bluegrass entries at three salinity levels plus 

control during three experiments during 2012. Error bars represent standard error of the 

mean. 
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their two-way interaction were significant in experiment 1.  All main effects and two-way 

interactions were significant in experiment 2, and all main effects and the salt×date 

interaction were significant in experiment 3 (Table 3-5).  

In experiment 1, the stomatal conductance decreased as exposure time (date) to 

salt increased and as salinity levels increased; however, the declines were sporadic (Fig. 

5). Additionally, the 6 dS m
-1

  and 12 dS m
-1

 treatment did not affect stomatal 

conductance significantly for all entries (P>0.05) except for Baron at 12 dS m
-1

 level 

(P<0.01).  The lack of significant entry effects (Table 2) is highlighted in Figure 5 where 

the  entries also had no significant differences by the end of experiment at 24 dS m
-1

 level 

(P>0.05). Thus, stomatal conductance was not able to discriminate among the varieties 

and salt treatments in experiment 1. 

In experiment 2, stomatal conductance gradually differentiated salt treatments by 

the end of the experiment and were much less sporadic.  The overall means of stomatal 

conductance of 6 dS m
-1

 treatment and control were not significantly different for entries 

except Midnight (P<0.05) (Fig. 5), but the stomatal conductance in 12 dS m
-1

 and 24 dS 

m
-1

 treatments were significantly lower by the end of the experiment. The means at 12dS 

and 24dS m
-1

 treatment were also not significantly different within 603 and Midnight 

entries but higher in 12 dS m
-1

 compared to 24 dS m
-1

 treatment for 768 and Baron (Fig. 

5).  When comparing across entries, the means at 12 dS m
-1

 and 24 dS m
-1

 treatment were 

not significantly different (P<0.05).  Entry 603 had the highest stomatal conductance by 

the end of experiment at 24 dS m
-1

 level (P<0.005).  

In experiment 3, trends were apparent and consistent but separation between 

means was less than in experiment 2. The means of 603 and Midnight in the control and 6 
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dS m
-1

 are very similar, while the means of 768 and Baron in the 6 dS m
-1

 treatment 

declined over time compared to control (Fig. 5). The declining trends of all four entries 

for 12 dS m
-1

 and 18 dS m
-1

 treatments were similar, and showed 603 and Midnight 

declining to near 100, while 768 and Baron declined nearly to zero (Fig. 5). Entry 603 

had the highest mean of stomatal conductance compared to other entries by the end of 

experiment within 18 dS m
-1

 level (P<0.005).  

 

Electrolyte leakage (EL) 
 

Unlike the other measurements where low values mean greater stress or response 

to stress, electrolyte leakage measurements increase in response to stress. Additionally, 

whereas other measures were made 4-6 times during each experiment, electrolyte leakage 

(EL) measurements were made only 3-4 times during each experiment. In general, EL 

increased as salinity levels increase and over time at a given salinity level (date) (Fig. 6). 

All the main effects and two-way interactions were significant; only the effect of 

date×salt×entry was not significant in experiment 2 (Tables 3-5).   

In experiment 1, 6 dS m
-1

 treatment increased the EL for all entries (P<0.0001, 

Fig. 6). However, the means of 12 dS m
-1

  and 24 dS m
-1

  are very similar,  the pattern of 

12 dS m
-1

  and 24 dS m
-1

  treatments were not significantly different from each other 

(P>0.05). Brilliant and Midnight had similar values of EL by the end of experiment at 24 

dS m
-1

 level (P>0.05), and those values were higher than for 603 and 768.  603 and 768 

were not significantly different from each other (P>0.05)  

In experiment 2, EL increased in all salt levels with comparison to the control 

treatment, but the increase in 603 was not always significant (Fig. 6). By the end of the 

experiment, all four treatments were significantly different for each entry.  At 12 dS m
-1

, 
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Figure 5. Stomatal conductance of five Kentucky bluegrass entries at three salinity levels 

plus control during three experiments during 2012. Error bars represent standard error of 

the mean. 
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Midnight had the highest EL and 603 the lowest. At 24 dS m
-1

, Midnight and Baron had 

similar high EL values, followed by 768, and then 603 had the lowest EL (Fig. 6).   

In experiment 3, the means of 6 dS m
-1

  and 12 dS m
-1

  salt treatments were not 

significant for 603 (P>0.05).  However, the effect of the 6 dS m
-1

 treatment on EL was 

significant and much greater for other entries (P<0.005).  At 12 dS m
-1

, 768 and Baron 

had similar patterns of high EL values, followed by Midnight, and then followed by 603.  

The 18 dS m
-1

  trends were similar to those of 12 dS m
-1

, as all the means of all entries in 

the 12 dS m
-1

  and 18 dS m
-1

  treatments were not significant (P>0.05). Entry 603 had the 

lowest EL among all entries in the end of experiment at 18 dS m
-1

 level (P<0.0001) while 

768, Midnight and Baron had similar EL values (P>0.05).  

 

Salinity and soil moisture parameters    

 

During each experiment, salt solutions were applied from the surface as a drench 

with the intent to flush the soil solution with the applied salt solution (Fig. 7).  The bulk 

conductivity increased as the pots were irrigated with the treatments, and then gradually 

decreased as soil moisture levels decreased until the next salt solution irrigation event. 

The bulk conductivity measurement after irrigation tended to increase at least until the 

middle of each experiment. However, salinity levels limited the ability of the soil sensors 

to measure soil moisture and salinity since the maximum ECbulk measured by the sensor 

is 6.5 dS m
-1

. In the 12dS m
-1

 and 24 dS m
-1

 treatments, this quickly exceeded those bulk 

conductivity limits and measurements were not obtained.  
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Figure 6. Electrolyte leakage of five Kentucky bluegrass entries at three salinity levels 

plus control during three experiments during 2012. Error bars represent standard error of 

the mean. 
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Figure 7. Bulk conductivity as measured by Acclima sensors at three salinity levels 

during three experiments during 2012. 
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Correlations    

From Tables 6-8, the absolute value of the correlation coefficients are above 0.7, 

and all values are significant at P<0.01. This indicates a strong association between each 

pair of measurements. As turf quality decreased, water potential and stomatal 

conductance decreased and electrolyte leakage increased.  

 

Table 6. Pearson correlation coefficients of electrolyte leakage, turf quality, water 

potential, and stomatal conductance measurements in experiment 1. 

 

Electrolyte 

Leakage Turf Quality Water Potential 

Stomatal 

Conductance 

Electrolyte 

Leakage 

1 -0.81** -0.86** -0.84** 

Turf Quality -0.81** 1 0.84** 0.84** 

Water Potential -0.86** 0.84** 1 0.87** 

Stomatal 

Conductance 

-0.84** 0.84** 0.87** 1 

Symbols *, ** are used to show significance at the α = 0.01, and 0.001 levels 
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Table 7. Pearson correlation coefficients of experiment 2 

 Electrolyte 

Leakage 

Turf Quality Water Potential 

Stomatal 

Conductance 

Electrolyte 

Leakage 

1 -0.87** -0.86** -0.85** 

Turf Quality -0.87** 1 0.80** 0.83** 

Water Potential -0.86** 0.80** 1 0.74** 

Stomatal 

Conductance 

-0.86** 0.83** 0.74** 1 

Symbols *, ** are used to show significance at the α = 0.01, and 0.001 levels 

 

 

Table 8. Pearson correlation coefficients of experiment 3 

 Electrolyte 

Leakage 

Turf Quality Water Potential 

Stomatal 

Conductance 

Electrolyte 

Leakage 

1 -0.86** -0.85** -0.88** 

Turf Quality -0.86** 1 0.82* 0.89** 

Water Potential -0.85** 0.82** 1 0.87** 

Stomatal 

Conductance 

-0.88** 0.89** 0.87** 1 

Symbols *, ** are used to show significance at the α = 0.01, and 0.001 levels 
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Molecular marker genotyping 

 

As entry 603 has been shown to have the lowest EL, and the lowest declines in 

other measures, it is consistent with its characterization as a salt tolerant source of 

Kentucky bluegrass.  Prior to its incorporation into a breeding line, or its introgression 

into elite Kentucky bluegrass lines, an assessment of apomixis is necessary to predict if it 

will remain true-to-type  Apomixis can best be assessed using an average similarity of 

molecular marker bands within plants of the 603 accession.  By comparing to other salt 

tolerant accessions and the cultivar Midnight (highly apomictic), its relative level of 

apomixis can be estimated. 

The average similarity within the two accessions and the cultivar Midnight ranged 

from 0.937 to 0.995 (Table 9). The highest similarity within entries was for PI371768 

using AFLP markers, while the lowest was for PI440603 using SSR markers. Both 

marker systems showed similar results, although AFLP result tended give slightly higher 

values. The similarity of 768 was so high with AFLP markers that the plants sampled 

from this accession were likely all identical from a molecular perspective.  Midnight is 

considered highly apomictic and its similarity value was 0.94. Thus, the accessions that 

all had high average similarity values, including the two salt tolerant accessions included 

in the physiological studies above, would also be considered highly apomictic. 

The plants within each accession clustered with bootstrap support (Fig. 7). The 

768 and 742 plants also formed a subgroup with support. The horizontal distance between 

plants corresponds to the genetic difference between plants and entries. Thus, the most 

genetic distance lied between entries, as might be expected for an apomictic species.  

PI660603 had the lowest average similarity value as an entry, and also had the longest 
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branch lengths between its constituent plants. Conversely, PI371768 was the most similar 

and almost had no horizontal branch difference.   

 

Table 9. Similarity of polymorphic bands in five Poa genotypes 

Enter ID N Marker Type 
Mean 

Similarity 
SE 

PI371768 4 AFLP 0.995 0.0029 

PI371742 5 AFLP 0.986 0.0024 

PI371771 8 AFLP 0.969 0.0051 

PI440603 4 AFLP 0.937 0.0431 

PI371771 4 SSR 0.956 0.0275 

PI440603 4 SSR 0.966 0.0060 

Midnight 4 SSR 0.964 0.0046 
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Figure 8. Neighbor-joining cluster analysis of four Poa pratensis accessions and the 

cultivar Midnight. 
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DISCUSSION 
 
 

Salinity tolerance in Kentucky bluegrass is often studied in terms of 

morphological (turf quality) and physiological (leaf water potential, stomata conductance, 

electrolyte leakage) criteria. Like in other literature, relative water content and shoot 

growth of salt-sensitive turfgrass species was reported to decrease more quickly under 

salinity stress than for a salt-tolerant species (Suplick-Ploense, 2002; Alshammary et al., 

2004; Liu et al., 2011). In Kentucky bluegrass cultivars (Midnight, PI372742, 

PI4368223), turf quality and relative water content and stomatal conductance declined 

with increasing salt concentration and the duration of salinity treatment (Leksungnoen et 

al., 2012).   

In this study, water potential, stomata conductance and turf quality showed earlier 

and more severe decline, leaf EL showed an earlier and sharper increase (more leakage) 

in Midnight and Baron than that in 603 and 768 at the 12 dS m
-1

, 18 dS m
-1

, and  

24 dS m
-1 

treatment levels (Figs. 3-6). Previously, 768 and 603 were reported to have 

more salinity tolerance, Brilliant and Baron were considered salt-susceptible, and 

Midnight was considered moderately salt-tolerant (Robins et al., 2009). Overall, our 

results confirmed the tolerance of 603 and 768, with 603 being the most tolerant, and 

found little differences among the less tolerant group of Midnight, Brilliant, and Baron.  

Previous studies showed that variation among Kentucky bluegrass cultivars in salt 

tolerance existed (Marcum, 2008; Poss and Russell, 2010), but the responses or 

mechanisms used by the cultivars to tolerate the stress, and the general ranking of 

tolerance appear to differ. For example, Koch reported that Kentucky bluegrass salt-

tolerant cultivar Diva had significantly higher relative water content compared to the salt-
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sensitive P-105 under salinity stress in hydroponic environments (Koch et al., 2011). 

However, according to Leksungnoen et al. (2012), a susceptible Kentucky bluegrass had 

higher leaf water potential than other salt-tolerant entries at high salinity levels. The 768 

and 603 lines in this study had higher leaf water potential than the susceptible Kentucky 

bluegrass varieties Brilliant and Baron when conducted salt solutions. Thus entry 768 and 

603 have more capability to adjust water potential to survive in higher salt concentration 

conditions than Brilliant and Baron. 

Previous studies have exhaustively showed variation among cultivars of salt 

tolerance in Kentucky bluegrass existed (Marcum, 2006; Poss and Russell, 2010). 

However, in one previous study, salinity tolerance rankings were reported as 

Baron>Brilliant>Eagleton>Cabernet>Midnight (Grieve et al., 2006), while in another 

study the tolerance of Midnight was higher than Baron and Brilliant (Torello and 

Symington, 1984).  For this reason, we deemed it necessary to conduct salinity trials that 

included Midnight and Brilliant alongside our internal salt tolerant lines.  Although the 

overall tolerance across experiments in our study was 603≥768>Brilliant>Midnight, 

Brilliant showed high turf quality and stomata conductance at high salinity levels (12 dS 

m
-1

 and 24 dS m
-1

) in experiment-1. This apparent tolerance may have actually occurred 

because Brilliant had high plant vigor prior to initiation of the study, higher than the other 

entries because of different propagation techniques. This appeared to provide it with a 

competitive advantage by expanding and competing for space with the other entries. 

Because of this, we used Baron, another putatively salt intolerant variety in its place for 

experiments 2 and 3.  Similar to Brilliant, Baron has also been included in salinity 

tolerance research and has shown variable results (Horst and Taylor, 1983; Torello and 
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Symington, 1984). According to the performance of turf quality, water potential, stomatal 

conductance and electrolyte leakage, in experiments 2 and 3, the salt-tolerance rank was 

603≥768>Midnight>Baron as expected.  

Stomatal conductance showed no significant differences between control and 6dS 

m
-1

 treatment, and no significant differences among 12 dS m
-1

, 18 dS m
-1 

dS and  

24 dS m
-1 

treatments. However, control and 6dS m
-1

 treatment were significantly different 

from 12, 18, and 24 dS m
-1

 treatments. This bifurcation indicated that there was no 

significant difference of effects on turfgrass between control and 6 dS m
-1 

treatment, and 

also between 12 dS m
-1 

to 24 dS m
-1

. The salt tolerance of Kentucky bluegrass was 

already exceeded at 12dS m
-1

, therefore no further stress responses were observed at 18 

dS m
-1

or 24 dS m
-1

.  

Plants open their stomata to create leaf a water potential gradient between the leaf 

and the atmosphere, which enables plant leaves to absorb and pull out water from soil 

(Taiz and Zeiger, 2006).  Root water potential must be lower than the soil solution to 

absorb the water from soil. Salts reduce soil solution water potential, and as a result 

plants must lower their root water potential to create the gradient to absorb water from 

soil. In this study, water potential declined for all entries as the soil EC increased, or in 

other words, all varieties lowed their water potential to absorb water from soil.  Midnight 

and Baron reduced their water potential much lower than 603 and 768 entries at salinity 

levels above 6 dS m
-1

.  

Electrolyte leakage (an indicator of cell membrane stability) and tissue yield (an 

indicator of overall vigor) has been widely used for screening tolerance of drought-

related stresses in plants, including sorghum (Sorghum bicolor L.) (Sullivan and Ross, 
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1979), wheat (Triticum aestivum L.) (Blum and Ebrecon, 1981), tomato (Lycopersicon 

esculentum M.) (Chen et al., 1982), and turfgrasses (Marcum, 1998; Su et al., 2007). It 

was  reported that significant correlations existed between EL and salt stress injury 

(relative water content, Na
+
 and K

+
 leaf content, and yield) in wheat (Farooq and Azam, 

2006).  In the current study, EL increased as salinity level increased, and as water 

potential, stomatal conductance and turf quality decreased (Fig. 6).  These findings were 

similar to previous studies (Liu et al., 2011; Leksungnoen et al., 2012), which means that 

all the parameters can be effectively used to evaluate the relative salinity tolerance. 

Entries 603 and 768 had the lower EL than Midnight, Brilliant and Baron under all 

salinity levels in all experiments (Fig. 6).  

The soil parameters of the root zone were effectively measured by the Acclima 

sensors, but levels of ECbulk is limited as well as interpretation of ECe. One major 

limitation was the threshold of electrical conductivity measurable by these probes.  The 

bulk conductivity was limited by a maximum ECbulk of 6.5 dS m
-1

 in these probes, which 

prevented us from obtaining bulk conductivity measurements in excess of 6.5 dS m
-1

. In 

this experiment, our control, EC6, and EC12 solution treatments were measurable within 

this threshold, but higher treatments were not.  As a result, parameters such as water 

content, bulk conductivity, and temperature in the soil were not able to be measured when 

the bulk conductivity increased above 6.5 dS m
-1

.   

Cultivars showing increased salinity tolerance by way of turf quality and stomatal 

conductance coincided with plants that had higher water potential and lower EL 

measurements. The results showed that 603 and 768 were the salt-tolerant entries among 

KBG, which is consistent with the previous studies (Robins et al., 2009), and that 603 
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was more tolerant than 768.  The salt-tolerance of Baron, previously described as salt 

sensitive, were similar to Midnight, which was previously described as moderately 

tolerant. These different responses of cultivars compared to previous work could be 

explained in a number of ways. One difference is in experimental methods. Previous 

studies have used hydroponic methods compared to our overhead irrigated methods. The 

hydroponic method may cause less stress resulting in higher percent green ratings than 

the overhead-irrigated methods (Koch and Bonos, 2011). 

Other possible reasons of different results could be due to environment, such as 

temperature and the salts used in the salinity treatments. Even if the experiments were all 

conducted in greenhouse, the temperature, day length, humidity, light intensity can be 

different.  And also the discrepancy between runs can be partially attributable to the 

plants being at different stages of vegetative growth before initiation of the experiment, 

or due to the time of year of the experiments. In our work, experiment-1 was conducted 

in the spring when plants were exposed to initially lower light intensity but increasing 

closer to summer. Experiment 2 was conducted in summer, as the plants were subjected, 

high light intensity, higher air and leaf temperatures despite good climate control, and 

lower relative humidity. Experiment 3 was conducted in the fall as the plants were 

exposed to lower light intensities and cooler temperatures. Despite this issue, genotype 

responses were relatively consistent across the experiments.  

Among four measurements: turf quality, water potential, stomatal conductance, 

and electrolyte leakage used in the research, all measurements were highly correlated due 

to the high coefficients (Tables 6-8).  Turf quality is the easiest and most efficient way to 

measure the responses, however it is very subjective. However, because of convenience 
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and efficiency, turf quality should be still used in future work. The stomatal conductance 

measurements are difficult in part because grass leaves are narrow, requiring several 

leaves to be arranged across the instrument’s measurement chamber. This creates 

experimental error. In addition, light conditions influence stomatal conductance 

measurements to a great extent. Because of these sources of variation in the measurement, 

the standard deviation of these measurements is very high compared to water potential 

and electrolyte leakage measurements (Figs. 3-6). Water potential and electrolyte leakage 

are very reliable and accurate methods due to the low standard deviations (Figs. 3-6). The 

electrolyte leakage methods are less affected by environment.  
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CONCLUSION 

 

 
The four salt tolerant accessions all had high similarity among plants within 

accessions. This high similarity indicates high levels of apomixis. Both AFLP and SSR 

markers were similar.  

In general, the salt tolerance of KBG cultivars in this study can be divided into 

two groups: salt-tolerant and salt-sensitive. Entries 603 and 768 are salt-tolerant entries, 

Midnight and Baron are salt-sensitive cultivars. These groupings are based on evaluations 

of turf quality, water potential, electrolyte leakage and stomatal conductance.   

Each of the measurements used to evaluate salinity response was effective, 

however the standard deviation of stomatal conductance is large and the data was not as 

reliable at other measurement methods. Among all parameters evaluating the salt 

tolerance of turfgrass, electrolyte leakage and water potential are the most accurate and 

reliable parameter. Among all the measurements, measuring visual quality is the fastest 

and direct way to evaluate the salt tolerance of Kentucky bluegrass cultivars. Measuring 

water potential can be time consuming, but the measurements are accurate. Electrolyte 

leakage measurements are highly accurate, but time to collect samples is relatively high. 

In the future field study, electrolyte leakage is highly recommended for screening salt 

tolerance of turfgrasses.   
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