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ABSTRACT

Existence and Multiplicity Results on Standing Wave Solutions of

Some Coupled Nonlinear Schrödinger Equations

by

Rushun Tian, Doctor of Philosophy

Utah State University, 2013

Major Professor: Dr. Zhi-Qiang Wang

Department: Mathematics and Statistics

In this dissertation, we study the standing wave solutions of some coupled nonlinear Schrödin-

ger equations (CNLS). Thanks to their wide applications in physics, such as nonlinear optics

and Bose-Einstein condensates, CNLS have been extensively studied by many authors in recent

years. However, there are still many questions that remain unanswered. In this work, we mainly

focus on the existence and multiplicity of positive standing wave solutions of a few CNLS.

First, we consider a fully symmetric coupled nonlinear elliptic system with N equations

(P1)



−∆uj + uj = µu3
j + βuj

N∑
k≥1,k 6=j

u2
k in Ω,

uj > 0 in Ω,

uj = 0 on ∂Ω,

where µ > 0, β < 0 and j = 1, · · · , N . The domain Ω ⊂ Rn is either bounded with smooth

boundaries (n = 1, 2, 3), or unbounded and radially symmetric (n = 2, 3). System (P1) is
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invariant under the action of N -th order cyclic group, which is generated by σ : [H1
0 (Ω)]N →

[H1
0 (Ω)]N

σ(u1, u2, . . . , uN ) = (u2, . . . , uN , u1).

By introducing a ZN -index and applying a Lusternik-Schnirelmann type theory, we find multi-

ple ZN -orbit solutions of (P1), and describe the dependency of the quantity of standing wave

solutions on the coupling constant β. Also, we extend these results to systems with more general

exponents 1 < 2p− 1 < 2∗ − 1, where 2∗ = 2n/(n− 2) if n ≥ 3 and 2∗ =∞ if n = 1, 2.

Second, we consider the following asymmetric elliptic system

(P2)


−∆u− au = µ1u

3 + βuv2 in Ω,

−∆v − av = µ2v
3 + βvu2 in Ω,

u, v > 0 in Ω, u = v = 0 on ∂Ω,

where µ1, µ2 ∈ R are constants; Ω ⊂ Rn is a bounded domain with smooth boundary, n = 1, 2, 3.

The parameter a is greater than the principal eigenvalue of (−∆,Ω) with zero Dirichlet boundary

conditions. In this case, system (P2) is indefinite. In certain ranges of β, determined by µ1 and

µ2, we found local bifurcations of (P2) with respect to a positive solution branch that can be

explicitly expressed. Moreover, if Ω is radially symmetric or the spatial dimension is n = 1, then

these local bifurcations become global bifurcations. Most of these global bifurcation branches in

the product space R×H1
0 (Ω)×H1

0 (Ω) can be proved to be unbounded in the negative direction of

β. Furthermore, some nonexistence results of positive solutions are also established for constants

µ1, µ2 and β satisfying certain conditions.

(107 pages)
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PUBLIC ABSTRACT

Existence and Multiplicity Results on Standing Wave Solutions of

Some Coupled Nonlinear Schrödinger Equations

Coupled nonlinear Schrödinger equations (CNLS) govern many physical phenomena, such as

nonlinear optics and Bose-Einstein condensates. For their wide applications, many studies have

been carried out by physicists, mathematicians and engineers from different respects. In this

dissertation, we focused on standing wave solutions, which are of particular interests for their

relatively simple form and the important roles they play in studying other wave solutions. We

studied the multiplicity of this type of solutions of CNLS via variational methods and bifurcation

methods.

Variational methods are useful tools for studying differential equations and systems of dif-

ferential equations that possess the so-called variational structure. For such an equation or

system, a weak solution can be found through finding the critical point of a corresponding en-

ergy functional. If this equation or system is also invariant under a certain symmetric group,

multiple solutions are often expected. In this work, an integer-valued function that measures

symmetries of CNLS was used to determine critical values. Besides variational methods, bifur-

cation methods may also be used to find solutions of a differential equation or system, if some

trivial solution branch exists and the system is degenerate somewhere on this branch. If local

bifurcations exist, then new solutions can be found in a neighborhood of each bifurcation point.

If global bifurcation branches exist, then there is a continuous solution branch emanating from

each bifurcation point.

We consider two types of CNLS. First, for a fully symmetric system, we introduce a new

index and use it to construct a sequence of critical energy levels. Using variational methods

and the symmetric structure, we prove that there is at least one solution on each one of these

critical energy levels. Second, we study the bifurcation phenomena of a two-equation asymmetric

system. All these bifurcations take place with respect to a positive solution branch that is already
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known. The locations of the bifurcation points are determined through an equation of a coupling

parameter. A few nonexistence results of positive solutions are also given.

Rushun Tian
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CHAPTER 1

INTRODUCTION

In this dissertation, we study the coupled nonlinear Schrödinger equations (CNLS),


−i ∂
∂t

Φj = ∆Φj − Vj(x)Φj + µj |Φj |2p−2Φj +
∑
k 6=j

βjk|Φk|p|Φj |p−2Φj ,

Φj = Φj(x, t) : Rn × R+ → C,

(1.0.1)

where the Vj ’s are external potentials; µj ’s and βjk = βkj ’s are constants, j, k = 1, 2, · · · , N .

The nonlinear exponent is sub-critical, i.e. 1 < p < 2∗ = 2n
n−2 if n ≥ 3 and p <∞ if n = 1, 2.

In this chapter, we shall give a brief introduction to problem (1.0.1), including some back-

ground in physics and some known results in mathematics. Next, we will list the main theories

and methods that will be used in later chapters, including variational methods and bifurcation

methods. At the end of the introduction, a short summary of our main results will be given.

The new results documented in this dissertation are:

(1) Introduce a ZN -index and use it to study multiple standing wave solutions of CNLS.

(2) Establish a couple of bifurcation results and multiplicity results for an asymmetric and

indefinite CNLS.

(3) Obtain some nonexistence results of positive standing wave solutions of an indefinite,

possibly asymmetric, CNLS.

1.1 Background

1.1.1 From the viewpoint of physics

CNLS (also called Gross-Pitaevskii equations) govern many physical phenomena, such as

nonlinear optics and Bose-Einstein condensates.

In nonlinear optics, the solution component Φj represents the jth component of a light beam



2

in Kerr-like photo-refractive media. The Kerr effect, also called the quadratic electro-optic effect

(QEO effect), is a change in the refractive index of a material in response to an applied electric

field. The constant µj is for the self-focusing or self-defocusing effect of the jth component of

the beam (self-focusing if µj > 0 and self-defocusing if µj < 0). Self-focusing is a nonlinear

optical process. A medium whose refractive index increases with the electric field intensity acts

as a focusing lens for an electromagnetic wave characterized by an initial transverse intensity

gradient. Similarly, the self-defocusing effect works as a defocusing lens. The coupling constant

βjk is for the interaction between the jth and the kth component of the beam. In a physical

experiment [33], two dimensional photo-refractive screening solutions and a two dimensional

self-trapped beam have been observed.

Another important application of (1.0.1) is to describe a low-temperature state of matter,

Bose-Einstein Condensate (BEC). A BEC is a rare state (or phase) of matter in which a large

percentage of bosons collapse into their lowest quantum state, allowing quantum effects to be ob-

served on a macroscopic scale. The bosons collapse into this state in circumstances of extremely

low temperature, near temperature values of absolute zero. The first BEC was produced by E.

Cornell and C. Wieman using rubidium atoms. In the simplest case N = 2, system (1.0.1) de-

scribes Bose-Einstein double condensate, i.e., a binary mixture in two different hyperfine states

|1〉 and |2〉. Physically, Φ1 and Φ2 are the corresponding condensates amplitudes. µ1, µ2 are the

intraspecies scattering lengths and β12 = β21 is interspecies scattering length. The sign of the

scattering length β12 = β21 determines whether the interactions of states |1〉 and |2〉 is repulsive

or attractive (c.f. [20]). Recently, Bose-Einstein condensation of the triplet states has been

observed (c.f. [43]).

1.1.2 From the viewpoint of mathematics

In this subsection, we summarize some known results about CNLS (1.0.1). Assume that all

the external potentials are identically equal to zero, i.e. Vj(x) ≡ 0, j = 1, · · · , N .

For relatively simple forms and also a wide of applications, extensive and intensive research

on (1.0.1) has been done towards two special types of solutions: solitary wave solutions and
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standing wave solutions. A typical solitary wave solution takes the form

Φj(x, t) = exp

(
i[(aj −

1

4
|v|2)t+ (

1

2
v · x+mj)]

)
uj(x− vt). (1.1.1)

where the uj ’s are real valued functions of x − vt ∈ Rn and v represents the wave speed; aj ’s

are related to phase speed and the mj ’s determine the initial phases.

Restricting our attention to solutions of this form, (1.0.1) becomes

−∆uj + ajuj = µj |uj |2p−2uj +
∑
k 6=j

βjk|uk|p|uj |p−2uj , j = 1, ..., N, (1.1.2)

When the traveling speed v equals zero, the solitary wave solutions are referred to as standing

wave solutions. Now we briefly introduce a few established results about system (1.1.2), and

also some systems with different nonlinear terms or coupling terms. Some of these results are

obtained on Rn, and some are obtained on bounded domains.

System (1.1.2) has been studied by many mathematicians. According to the relation between

aj ’s and Λ1, the principal eigenvalue of (−∆,Ω) with zero Dirichlet boundary condition, we can

distinguish two cases, the definite case and the indefinite case.

In the definite case, the operator on the left-hand side of the system induces a norm in

the product space. As a result, we can obtain the boundedness of a Palais-Smale sequence,

defined in section 1.3, from the boundedness of its energy functional values. When the spatial

dimension n = 1, the system (1.1.2) is integrable for some special values of parameters. There

are many analytical and numerical results on solitary wave solutions, see [12, 22, 23, 24, 26] and

references therein. In recent years, the studies of (1.1.2) have been extended to higher spatial

dimension cases. A couple of existence and non-existence results via variational methods can

be found in [5, 6, 9, 27, 30, 31, 34, 44]. According to a result of W.C. Troy [52], if Ω is a

ball or Rn and βjk > 0, then the positive standing wave solutions are radial. In [29], T.C. Lin

and J.C. Wei studied bounded state solutions with Zp symmetry. Moreover, different classes of

non-radial solutions have also been constructed on Rn, for β < 0 and |β| small in [29]. With

similar assumptions, but for β ≤ −1, non-radial solutions were found by J.C. Wei [55]. When
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the phase speeds of the two components are the same constant, the multiplicity of standing

wave solutions of (1.1.2) can also be studied by using bifurcation methods and index theory. In

[10], using the bifurcation method, T. Bartsch, Z.-Q. Wang and J.C. Wei studied the positive

bound state solutions of system (1.1.2) with N = 2 and parameter b = (λ1, λ2, µ1, µ2, β) ∈ R5

in Rn. In [8], T. Bartsch, E. N. Dancer and Z.-Q. Wang gave descriptions for the bifurcation

phenomena of (1.1.2) (N = 2) with respect to a positive solution branch, which had explicit

representation in terms of the unique positive solution of −∆ω + ω = ω3 on Rn or a ball. If

system (1.1.2) is fully symmetric, the multiplicity of positive solutions can be derived by using

a Lusternick-Schnirelmann type theory. In [18], E.N. Dancer, J.C. Wei and T. Weth studied

(1.1.2) for N = 2. They used the Z2-index, also called genus, to define multiple Lusternick-

Schnirelmann levels and Z2-invariant deformation flow. Multiple solutions were found in each

level set. Moreover, a recent paper by Y. Sato and Z.-Q. Wang studied the multiplicity of

standing wave solutions of a two-system with symmetry σ(u, v) = (−u, v). They found multiple

solutions of a 2-system with one positive component and a sign-changing component.

In addition to existence and multiplicity, the geometric properties of solitary wave solutions

have been studied by many authors. For a fixed N , as the interspecific competition goes to

infinity, the wave amplitudes Ui’s segregate, that is, their supports tend to be disjoint. This

phenomenon is called phase separation. See [25, 32, 51] for experimental and theoretical studies

from physical point of view. For mathematical research work in this aspect, one can consult

[11, 13, 14, 37, 47, 56, 57]. In dealing with singular perturbed problems, a type of highly

concentrated solutions arises, whose graphs display narrow peaks or spikes. These solutions

are also called point-condensation solutions. For related results, one can consult [17, 28] for

attractive cases and repulsive cases, respectively.

In the indefinite case, i.e. aj < −Λ1 for some j = 1, 2, · · · , N in system (1.1.2), the corre-

sponding energy functional loses compactness. Boundedness on the energy functional E is not

enough to derive boundedness of a P.S. sequence. Thus the variational methods are hard to

apply under the same framework as the definite case. In [36], B. Noris and M. Ramos study the

indefinite system for the fully symmetric case of (1.1.2) and N = 2 in a smooth bounded domain,



5

Ω ⊂ R3. In [46], A. Szulkin and T. Weth considered an indefinite scalar equation with periodic

potential. They used a generalized Nehari manifold, which was introduced by A. Pankov [39],

and found infinitely many ground state solutions (on a modified Nehari manifold). A few phase

separation results mentioned above are also derived for indefinite systems.

Linearly coupled systems also have important applications in physics. For instance, the prop-

agation of solitons in nonlinear fiber couplers is described by a two-coupled nonlinear Schrödinger

equations with linear coupling terms (c.f. [2]). For more results, see [19] and references therein.

In [4], A. Ambrosetti, G. Cerami and D. Ruiz considered the existence of positive ground states

and bound states of a linearly coupled nonlinear Schrödinger system. In [3], A. Ambrosetti

extends the above results to n = 1.

1.2 Preliminaries

To study the standing wave solutions of (1.0.1), we use the variational methods and bifurca-

tion methods. They are both widely used in studying elliptic partial differential equations. In

this section, we give a brief introduction to these two approaches. We need some notation.

Notation Denote a general Banach space by X and its dual space by X∗. The standard norm

of Lp functions on Ω is given by |u|p =
( ∫

Ω
|u|pdx

)1/p
, 1 < p <∞. Also, let ‖·‖ be the standard

norm on the Hilbert space H1
0 (Ω) or H1(Rn), i.e.

‖f‖ =

√∫
Ω

(|∇f |2 + f2)dx or ‖f‖ =

√∫
Rn

(|∇f |2 + f2)dx.

The meaning of ‖ · ‖ will be determined from the context. Denote the product space

H =

N︷ ︸︸ ︷
E × E × · · · × E,

where E = H1
0 (Ω) or H1(Rn) or H1

0,r(Ω). Accordingly, a vector u ∈ H is given by

u = (u1, · · · , uN ),
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and the norm in H is

‖u‖H =

N∑
j=1

‖uj‖ for any u ∈ H.

1.2.1 Variational methods

Variational methods are developed for finding weak solutions of differential equations or sys-

tems of differential equations that possess the variational structure. With this structure, the

existence of weak solutions can be transformed to the existence of critical points of a corre-

sponding energy functional. The basic idea of variational methods is generalized from solving

optimization problems using calculus. One of the earliest applications involves finding a minimal

surface with fixed boundary conditions. See [45] for a detailed introduction and more exam-

ples. In the area of scientific computing, variational methods are used to develop Finite Element

Methods, providing a powerful tool for finding approximate solutions of partial differential equa-

tions. In this dissertation, we follow the framework that has been developed since Ambrosetti

and Rabinowitz’s pioneer work [7].

Now we use a simple example to explain the application of variational methods. Consider

the following boundary value problem,

− u′′ = f(u) in (0, 1) and u(0) = u(1) = 0, (1.2.1)

where f : R → R is a continuous function. A solution u ∈ C2((0, 1)) ∩ C([0, 1]) that satisfies

(1.2.1) pointwise is called a strong solution. The energy functional associated with (1.2.1) is

E(u) =
1

2

∫ 1

0
|u′|2dx−

∫ 1

0
F (u)dx, (1.2.2)

where F (t) =
∫ t

0 f(s)ds. A function u ∈ H1
0 ([0, 1]) is a weak solution of (1.2.1), if

〈E ′(u), ϕ〉 :=

∫ 1

0
u′ϕ′dx−

∫ 1

0
f(u)ϕ = 0, ∀ϕ ∈ C∞0 ((0, 1)).
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Thus u is a critical point of E , i.e.

E ′(u) = 0. (1.2.3)

The corresponding value c = E(u) is called a critical value of E . On the other hand, equation

(1.2.1) is called the Euler-Lagrange equation of problem (1.2.3). The critical points of E are

weak solutions of (1.2.1). There is also a close relation between strong solutions and weak

solutions. Assume that u is a strong solution of (1.2.1). Multiplying both sides of (1.2.1) by

a test function ϕ ∈ C∞0 ((0, 1)) and integrating by parts, we see that any strong solution must

be a weak solution. Conversely, when the non-homogeneous term and boundary satisfy some

regularity conditions, the differentiability of weak solutions can be improved and weak solutions

can become strong solutions. See L2 estimates, Lp estimates and Schauder estimates [21] for

details. A large number of differential equations become solvable by taking weak solutions into

consideration.

The extreme values (local or global extrema) of the functional E ∈ C1(X,R) are natural

candidates of critical values. For example, if c := inf
u∈X
E(u) > −∞, then Ekeland’s variational

principle asserts that there exists a minimizing sequence {un}∞1 ⊂ X such that

E(un)→ c and E ′(un)→ 0 in X∗. (1.2.4)

If X is a finite dimensional space, then the sequence {un}∞1 must have a weakly convergent

subsequence, and the limiting point is a critical point of E .

If X is an infinite dimensional space, a minimizing sequence in X may not converge. A

sequence satisfying (1.2.4) but not converging to any point in X can be constructed. Thus we

need to introduce a compactness condition.

(PS) Assume (1.2.4). If there is a subsequence {unk} ⊂ {un} and u0 ∈ X such that unk → u0

as k → ∞, then we say E satisfies the Palais-Smale condition or (PS) condition in short.

Here the sequence {un} is called a PS sequence.

If E satisfies (1.2.4) and the (PS) condition, then the infimum of E in X gives rise to a criti-
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cal point u0. The (PS) condition is the most commonly used compactness condition in these

problems.

Besides local extrema, saddle points are another type of critical points. Saddle points cor-

respond to critical values that are characterized as minimax values over a suitable class of sets.

The first and simplest minimax result is the Mountain Pass Theorem, which was established by

Ambrosetti and Rabinowitz [7].

Mountain Pass Theorem Assume that E ∈ C1(X,R) satisfies the (PS) condition. If E(0) =

0 and

(I1) there are constants ρ, α > 0 such that E|∂Bρ ≥ α, and

(I2) there is an e ∈ X\Bρ such that E(e) ≤ 0,

then E possesses a critical value c ≥ α. Moreover c can be characterized as

c = inf
g∈Γ

max
u∈g([0,1])

E(u),

where Γ = {g ∈ C([0, 1], X)|g(0) = 0, g(1) = e}.

The above theorem is a special case of the following more general minimax theorem [41].

Saddle Point Theorem Assume that X has direct sum decomposition X = Y ⊕Z, where Y

is a finite dimensional subspace of X. Suppose E ∈ C1(X,R), satisfies the (PS) condition, and

(I3) there exists a bounded neighborhood of 0 in Y , denoted by D, a constant α such that

E|∂D ≤ α, and

(I4) there is a constant β > α such that E|Z ≥ β.

Then E has a critical value c ≥ β. Moreover c can be characterized as

c = inf
S∈Γ

max
u∈S
E(u),

where Γ = {S = h(D)|h ∈ C(D,X) and h = id on ∂D}.
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To use the minimax method, a proper linking structures in X, i.e. S ∩ Z 6= ∅ for all S ∈ Γ,

must be constructed. We refer to [42] for various of applications of the Saddle Point Theorem.

Variational methods are developed based on the variation of the level sets of the energy

functional E . To be precise, denote the level set of E below level a by

Ma = {u ∈ X|E(u) ≤ a}.

Assume that E satisfies the (PS) condition and b is a constant less than a. If there is no critical

point inMa\Mb, then there exists a nontrivial pseudo-gradient vector field for ∇E onMa\Mb.

The higher level set Ma can retract to the lower level set Mb along a descending flow induced

by the nontrivial vector field. Otherwise there is at least one critical point can be found in

Ma\Mb. These geometric descriptions are proved with a few of deformation lemmas. One can

find more detailed discussions in [42, 58].

For some equations or systems of equations (see [58] for assumptions on the non-homogeneous

term), the critical value defined by a minimax argument in the entire space is equivalent to the

minimum or maximum of the restricted functional on the so-called Nehari manifold

N = {u ∈ X\{θ}|E ′(u)u = 0}.

This is an infinite dimensional manifold and homomorphic to the unit sphere inX. The definition

of N may be modified in order to find solutions of a particular form.

When a system possesses some symmetries, multiple solutions are often expected and found

by using a symmetric version of variational methods. The Lusternik-Schnirelmann type theory,

LS theory for short, is one important method for studying these types of multiplicity problems.

The key step of applying LS theory is constructing a sequence of critical values by using an

index associated with the symmetry. Let E : X → R be the energy functional that is invariant

under the action of a group G, that is E(gu) = E(u) for any u ∈ X and g ∈ G. Define the index

of a G-invariant closed subset A of X to be the smallest dimension m, such that there exists a

continuous map h : A → Cm\{0} satisfying h(gu) = gh(u) for any g ∈ G. Now we can define
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the level sets of E that are characterized by indices associated with the symmetric group G, i.e.

ck := inf{c ∈ R|γ(Ec) ≥ k}.

Thus we obtain a sequence of LS levels. If these LS levels are below all symmetric energy levels,

then by using a symmetric deformation flow, we can show that each ck defines a critical value

of E , and its corresponding critical point will give rise to a solution. In this process, G-index

theory plays an important role. In particular, the well-known genus is an index induced by Z2.

1.2.2 Bifurcation methods

For a class of differential equations, certain special solutions (depending on parameters) are

relatively easy to find, and these solutions form a solution branch. On the other hand, it is

difficult to find other nontrivial solutions directly. In this case, bifurcation methods provide an

alternate approach to tackle this problem. For example, x ≡ 0 is a trivial solution of the two

algebraic equations shown in Figure 1.1a and Figure 1.1b. Besides the trivial branch x ≡ 0,

nontrivial solution branches also exist and form bifurcation branches.

In Figure 1.1a, there are two unbounded solution branches x = ±
√
λ, λ ≥ 0, emanating from

the trivial solution branch x ≡ 0. In Figure 1.1b, infinitely many bifurcation branches emanate

from trivial solution branch x ≡ 0 at λ = kπ for all integer k. They are both examples of global

bifurcations, and they also show two possibilities for global bifurcations: unbounded bifurcation

branch and bifurcation branches containing multiple bifurcation points. In the general case, the

definition of bifurcation point is the following:

Bifurcation Point Let F : X → Y be a continuous map, where X and Y are both Banach

spaces. Assume that

(i) γ = {u(t)|a ≤ t ≤ b} ⊂ X is a solution curve of F ;

(ii) u0 = u(t0) ∈ γ and there exists a point vε ∈ Bε(u0) satisfying F(vε) = 0 for any ε > 0,

then u0 is called a bifurcation point of F with respect to γ.
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Consider an operator that takes the form G(λ,u) = u− λLu +H(u) = 0, where L : H → H

is a linear operator, and H(u) = o(‖u‖). Let r(L) be the set of λ ∈ R such that there exists

v ∈ X\{0} with v = λLv. Denote

S = {(λ,u)|G(λ,u) = 0} ⊂ R×X.

In order for (µ, 0) to be a bifurcation point, a necessary condition is µ ∈ r(L). If the equation

G(λ,u) = 0 possesses a variational structure, then µ ∈ r(L) is also a sufficient condition for

(µ, 0) being a bifurcation point. More precisely, a local bifurcation theorem due to Rabinowitz

[42] is stated as follows.

Local Bifurcation Suppose E is a real Hilbert space and E ∈ C2(E,R) with DE ′(u) = Lu +

H(u), where L is a symmetric and compact operator. H(u) = o(‖u‖) as u→ 0. If µ ∈ σ(L) is

an isolated eigenvalue of finite multiplicity, then (µ, 0) is a bifurcation point for

G(λ,u) = u− λLu +H(u) = 0.

Moreover there is an r0 > 0 such that

0 λ

x

(a) Bifurcation diagram of equation x3 − λx = 0

−2π −π 0 π 2π 3π λ

x

(b) Bifurcation diagram of equation x3 − x sinλ = 0

Figure 1.1: Two simple bifurcation diagrams



12

(i) for each r ∈ (0, r0) there exist at least two distinct solutions (λi(r),ui(r)), i = 1, 2 of G = 0

having ‖ui‖ = r and |λi − µ| small.

(ii) As r → 0, (λi(r),ui(r))→ (µ, 0).

The following global bifurcation theorem is also due to Rabinowitz [40]. This theorem

provides a sufficient condition for global bifurcation, and also gives descriptions for the two

types of global bifurcation branches.

Global Bifurcation If µ ∈ r(L) is of odd multiplicity, then γ possesses a maximal sub-

continuum γµ such that (µ, 0) ∈ γµ and γµ either

(i) meets infinity in S, or

(ii) meets (µ̂, 0), where µ 6= µ̂ ∈ r(L).

See [40] for detailed proof and applications.

1.3 Summary of main results

We study the CNLS from two aspects:

(i) multiplicity of solutions of fully symmetric system with N equations, and

(ii) bifurcations and multiple solutions of asymmetric systems with two equations.

In Chapter 2, we will consider a fully symmetric system. Denote the coefficient matrix on

the right-hand side of (1.1.2) by

Σ =



µ1 β12 · · · β1N

β21 µ2 · · · β2N

...
...

. . .
...

βN1 βN2 · · · µN


, (1.3.1)
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and assume µj = µ, βjk = β for j, k = 1, · · · , N . Moreover, assume aj = 1 for j = 1, · · · , N (the

essential requirement is aj ≡ a > Λ1, where Λ1 is the principal eigenvalue of (−∆,Ω)). Then

the associated energy functional of E : H → R

E(u) =
1

2

N∑
j=1

∫
Ω

(|∇uj |2 + |uj |2)dx− µ

4

N∑
j=1

∫
Ω
|uj |4dx−

β

2

N∑
k 6=j

∫
Ω
|uj |2|uk|2dx,

is invariant under the N -th order cyclic group ZN . By virtue of this symmetry, we find a

sequence of positive solutions of (1.1.2) when β is in certain intervals.

Theorem Assume that Ω ⊂ Rn is a bounded smooth domain for n = 1, 2, 3 or an unbounded

radially symmetric domain for n = 2, 3. Also assume µj = µ, βjk = β, and aj = 1 for

j, k = 1, · · · , N .

(a) If β ≤ − µ

N − 1
, then system (1.1.2) has an infinite sequence of ZN -orbit solutions.

(b) For any positive integer m, there exists a βm ∈ (− µ

N − 1
, 0), such that system (1.1.2) has

at least m ZN -orbit solutions, if β ∈ (− µ

N − 1
, βm).

Chapter 2 consists of six sections. In section 2.1, we give an introduction of the system

and present our main results. In section 2.2, we will prove several important properties of the

corresponding variational problem. As a result, the existence of multiple solutions of (1.1.2)

is equivalent to the existence of multiple critical points of the corresponding energy functional.

In section 2.3, we introduce a new ZN -index that corresponds to the ZN -symmetry of the fully

symmetric system. A ZN -Borsuk-Ulam theorem by Wang [54] will be used to prove several

properties of this index. In section 2.4, we construct a sequence of Lusternik-Schnirelmann

levels, and prove the main theorem by using ZN -index theory proved in section 2.3. In section

2.5, we generalize the multiplicity results to more general nonlinear terms. In the last section,

in section 2.6, we will summarize the conclusions and give more comments.

In Chapter 3, we consider an asymmetric case of system (1.1.2) with two components. Let

a1 = a2 = −a in order to have a one-parameter trivial bifurcation branch Tω ⊂ R × H1
0 (Ω) ×
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H1
0 (Ω). On the other hand, µ1 6= µ2 is allowed; thus the two components of system (1.1.2) are

not interchangeable. Denote the sequence of eigenvalues of

 −∆φ = Λφ in Ω,

φ = 0 on ∂Ω,
(1.3.2)

by

0 < Λ1 < Λ2 ≤ · · · ≤ Λm ≤ · · · . (1.3.3)

We consider the indefinite case, i.e. a is greater than Λ1. Denote the positive non-degenerate

solution of the scalar equation

∆φ+ φ− φ3 = 0 in Ω, and φ = 0 on ∂Ω,

by ω. Then the local bifurcation parameter βk is determined by the k-th eigenvalue of eigenvalue

problem

−∆ψ − ψ = λkω
2ψ,

with zero Dirichlet boundary conditions. According to the values of µ1 and µ2, we study the

bifurcation phenomena in four cases,

(a) Self-focusing case: µ2 ≥ µ1 > 0;

(b) Self-defocusing case: µ1 ≤ µ2 < 0;

(c) Mixed case with negative sum: µ1 ≤ −µ2 < 0 < µ2;

(d) Mixed case with positive sum: µ1 < 0 < −µ1 < µ2.

The main results of this chapter are summarized as follows.

Theorem There are infinitely many local bifurcations in the case (a), and finitely many local

bifurcations in the rest of three cases. These bifurcations consist of positive standing wave so-

lutions of (1.1.2). If n = 1 or Ω is radially symmetric, then every local bifurcation parameter
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gives rise to a global bifurcation branch Sk with respect to Tω. For any solution (u, v) ∈ Sk,

the weighted difference
√
µ1 − βu −

√
µ2 − βv has precisely k − 1 simple zeroes. Furthermore,

the global bifurcation branches are unbounded in the negative direction of β, except possibly for

finitely many of them in the case µ1 < 0 < −µ1 < µ2.

Chapter 3 contains six sections. In section 3.1, we give a general introduction to the system

and related results. A trivial solution branch will first be defined using the non-degenerate unique

solution of a related scalar equation. Then definitions of local and global bifurcations will be

given for system (1.1.2). According to the constants µj , there are the four cases listed above.

In section 3.2, we study the self-focusing case. A framework and some important auxiliary

results will be established. In section 3.3, we study the local and global bifurcations for the

self-defocusing case and the other two mixed cases will be discussed in section 3.4. In section

3.5, we summary the bifurcation results and make a few more comments. In the last section,

we give a brief introduction to a problem that will be considered in the future.
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CHAPTER 2

MULTIPLE POSITIVE SOLUTIONS OF A DEFINITE AND FULLY SYMMETRIC

SYSTEM 1

In this chapter, we will use the variational method and a Lusternik-Schnirelmann type theory

to study the multiplicity of positive standing wave solutions of a fully symmetric CNLS.

2.1 Introduction

Assume p = 2, aj = 1, µj = µ > 0 and βjk = β < 0 for all j, k = 1, · · · , N in system (1.1.2),

then the positive standing wave solutions satisfy

 −∆uj + uj = µu3
j + βuj

∑
k 6=j u

2
k in Ω,

uj > 0 in Ω, uj = 0 on ∂Ω.
(2.1.1)

Here the domain Ω ⊂ Rn is bounded with smooth boundary if n ≤ 3, or unbounded and radially

symmetric if n = 2, 3. System (2.1.1) is fully symmetric, in the sense that if u = (u1, · · · , uN ) ∈

H solves (2.1.1), then so does any permutation of u. Let G be a subgroup of the N -th order

permutation group. We call the set {gu|u solves system (2.1.1), g ∈ G} a G-orbit solution. Our

goal is to find multiple solutions of (2.1.1) that possesses the symmetry associated with N -th

order cyclic group.

In [18], E.N. Dancer, J.C. Wei and T. Weth studied system (2.1.1) for N = 2. They

obtained infinitely many Z2-orbit solutions when β ≤ −µ, and mβ Z2-orbit solutions when

β > −µ, where mβ → ∞ as β approaches −µ from the right-hand side. To take advantage

of the symmetric structure of (2.1.1), the authors used a Lusternik-Schnirelmann type theory

and the involution invariance of the associated Nehari manifold M, i.e. for any (u1, u2) ∈ M,

there holds σ(u1, u2) = (u2, u1) ∈ M. They estimated the minimum energy on the set of fixed

points of σ in M, which was denoted by c(β). It was shown that c(β) → ∞ as β approaches

1Coauthored by Rushun Tian and Zhi-Qiang Wang [48].
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−µ from the right-hand side and there is no fixed point of σ inM when β ≤ −µ. The later fact

implies that no involution invariant solution orbit exists inM when β ≤ −µ. Next, the authors

used the Z2-index, or genus, to define a sequence of Lusternik-Schnirelmann (LS) type levels

ck := inf{c ∈ R|γ(Mc) ≥ k}, k = 1, 2, · · · . With the estimate on c(β), a sequence of σ-invariant

subsets of M with increasing indices were constructed. Then an infinite sequence of LS levels

{ck}∞1 were defined for β ≤ −µ, and a finite sequence {ck}
mβ
1 were defined for β > −µ, where

mβ → ∞ as β → (−µ)+. By using the involution equivariant deformation flow, all ck’s are

proved to be critical values of the associated energy functional and each of them gives rise to at

least one Z2-orbit solution of (2.1.1).

It is natural to expect similar multiplicity results for system (2.1.1) with N equations. In the

generalization, two difficulties arise. The first one lies in choosing a group that compatible with

the variational structure of the N -system. It is easy to see that system (2.1.1) is invariant under

the the N -th order permutation group SN , which seems to be a likely candidate for representing

the symmetry. But it is actually hard to use a non-communicative group in the framework of

variational methods. We find out that the N -th order cyclic group ZN can be employed. Let

σ : H → H be the special permutation such that for any u = (u1, u2, · · · , uN ) ∈ H,

σ(u) = (u2, u3, · · · , uN , u1). (2.1.2)

Then ZN = {Id, σ, σ2, · · · , σN−1}. Clearly, ZN is communicative. To use the invariant property

of (2.1.1), we will introduce a ZN -index and define a sequence of LS levels by using this index.

The second difficulty is finding an upper bound for those LS levels. This upper bound must

be independent of β. In [18], the authors constructed a sequence of finite dimensional spheres

in H by using the positive parts and negative parts of some nonzero functions in H1
0 (Ω) as

components. Because the positive part and negative part of the same function have separated

supports, the restriction of energy functional on this sphere does not have the coupled terms, thus

the influence of coupling coefficient β was removed. If there are more than two equations, this

construction does not work. We give a new and more general method to obtain β-independent
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upper bound of LS levels for arbitrary N ≥ 2. Moreover, when N is not prime, more iterative

arguments are required for dealing with the nontrivial proper subgroups of ZN .

Our main result is the following theorem:

Theorem 2.1.1 Assume that Ω is a bounded smooth domain (n = 1, 2, 3), or an unbounded

and radially symmetric domain (n = 2, 3) in Rn.

(a) If β ≤ − µ
N−1 , then system (2.1.1) has an infinite sequence of ZN -orbit solutions.

(b) For any positive integer m, there exists a constant βm ∈ (− µ
N−1 , 0), such that for any

β ∈ (− µ
N−1 , βm), system (2.1.1) has at least m ZN -orbit solutions.

Remark 2.1.2 Since each SN -orbit contains at most (N − 1)! ZN -orbit, the conclusions of

Theorem 2.1.1 can also be stated for SN -orbit solutions, i.e., for β ≤ − µ
N−1 , there are infinitely

many SN -orbit solutions; and for any positive integer m, there exists a β′m ∈ (− µ
N−1 , 0), such

that for β ∈ (− µ
N−1 , β

′
m), system (2.1.1) has at least m SN -orbit of solutions. Actually, we

only need to choose β′m close enough to − µ
N−1 , such that there are at least m(N − 1)! ZN -orbit

solutions of (1.3).

Remark 2.1.3 If N is not a prime number, then we can get more information about the distri-

bution of the solution orbits in terms of β. Actually, both conclusions of Theorem 2.1.1 require

induction arguments in this case. The ZN -orbit solution that consists of N identical components

can only be found on the right-hand side of − µ
N−1 . As β moves left, the solutions of (2.1.1) tend

to lose symmetry. But if a ZN -orbit solution found on the left-hand side of − µ
N−1 is invariant

under the actions of some subgroup of ZN , then its ZN -index is infinity. In this case, we cannot

claim the existence of infinitely many ZN -orbit solutions directly. We must exclude all fixed

points for every subgroup of ZN to confirm the existence of infinite many solution orbits.

The idea is reducing (2.1.1) to smaller systems in accordance with the subgroup symmetries.

Roughly speaking, we study system (2.1.1) in a subspace of H, which is the fixed space of a

subgroup of ZN . Then we obtain a smaller system since some equations in the N -system are

identical now. Note that the number of equations in reduced system is the same as the number of
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elements in this subgroup. Considering solutions that are fixed by the subgroup with prime number

elements, then for the reduced system we can use the conclusion of prime number equations.

Repeating this procedure, we get a sequence of intervals. In each of these intervals, solution

orbits with one subgroup symmetry disappear and some other type solution orbits become more

and more as β approaches the left endpoint. See the proof of Theorem 2.1.1 and Remark 2.4.8

for details.

2.2 Variational structure

In this section, we will verify the variational structure of system (2.1.1), i.e. the equivalence

of finding critical points of a modified energy functional and solving system (2.1.1). Moreover,

we shall estimate the minima of the energy functional E invariant subsets of ZN , and introduce

the ZN -symmetric deformation flow associated with E .

Recall that H is a Hilbert space with inner product (notation given in Chapter 1)

(u,v) =
N∑
j=1

∫
Ω
∇uj∇vj + ujvj ,

where u = (u1, · · · , uN ),v = (v1, · · · , vN ) ∈ H. Denote uj = (0, · · · , uj , · · · , 0) with uj ∈ H1
0 (Ω)

or H1
0,r(Ω). In order to get the positive solutions of (2.1.1), i.e. uj > 0 for all j = 1, · · · , N , we

consider the modified system


−∆uj + uj = µ(u+

j )3 + βuj

N∑
k 6=j

u2
k, in Ω,

uj = 0 on ∂Ω.

(2.2.1)

The energy functional of problem (2.2.1) is

E(u) =
1

2

N∑
j=1

‖uj‖2 −
µ

4

∫
Ω

( N∑
j=1

|u+
j |

4

)
− β

2

∫
Ω

N∑
k 6=j

u2
ju

2
k. (2.2.2)

By the Sobolev embedding theorems [1] and Proposition B.34 in [42] (see Appendix A. Lemma
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III), E is a C2 functional. We say a critical point u nontrivial, if uj 6= 0 for all j = 1, · · · , N .

Lemma 2.2.1 Every nontrivial critical point of E in H is a classical solution of (2.1.1).

Proof. Let u be a nontrivial critical point of E in H. Then for any test function vj ∈ H1
0 (Ω), the

inner product

(∇E(u),vj) = 0,

where vj = (0, · · · , 0, vj , 0, · · · , 0), and j = 1, · · · , N . Thus u is a weak solution of system

(2.2.1). Multiplying the j-th equation of (2.2.1) by u−j and integrating over Ω, we get

∫
Ω
|∇u−j |

2 +

∫
Ω

(1− β
N∑
k 6=j

u2
k)|u−j |

2 = 0.

Since β is negative, this equation implies that the H1 norm of u−J is zero. Therefore u−j =

0, or equivalently, uj ≥ 0 for j = 1, · · · , N . By the standard elliptic regularity theory and

the bootstrap arguments (see [21] for more details about implementing this procedure), each

component uj of u is a C2 function, thus u is a classical solution of (2.2.1). For the strict

positivity, rewriting the j-th equation as

−∆uj + (1− β
N∑
k 6=j

u2
k)uj = µu3

j ≥ 0,

and applying the Strong Maximum Principle, we must have uj ≡ 0 or uj > 0 for any x ∈ Ω

j = 1, · · · , N . The first possibility does not happen since u is nontrivial. So u is a classical

solution of (2.1.1). �

By Lemma 2.2.1, we can focus on finding nontrivial critical points of the functional E .

Consider the N -constraint Nehari manifold associated with system (2.2.1)

M =

{
u ∈ H

∣∣∣∣∇E(u)uj = 0, and uj 6= 0 for all j = 1, · · · , N
}
. (2.2.3)
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Define functional F : H → RN

F(u) =


F1(u)

...

FN (u)

 =


‖u1‖2 − β

∫
Ω u

2
1

∑
j 6=1 u

2
j − µ

∫
Ω |u

+
1 |4

...

‖uN‖2 − β
∫

Ω u
2
N

∑
j 6=N u

2
j − µ

∫
Ω |u

+
N |4

 . (2.2.4)

Then M can be expressed as

M = {u ∈ H : F(u) = (0, · · · , 0), uj 6= 0, j = 1, · · · , N}. (2.2.5)

The following lemma shows the smoothness and non-degeneracy of this manifold, which

ensure that the limiting point of a Palais-Smale sequence exists and stays on M.

Lemma 2.2.2 Assume β < 0, then M is a C2 manifold of co-dimension N .

Proof. By Proposition B.34 [42](see Appendix A. Lemma III), Fj : H → R is a C2 functional

for any j = 1, 2, · · · , N . Differentiating F at u = (u1, · · · , uN ) ∈M, and applying the resulting

operator to test functions uj = (0, · · · , uj , · · · , 0), j = 1, · · · , N , one obtains

∇F(u)(u1, · · · ,uN ) =


∂u1F1(u)u1 · · · ∂u1FN (u)u1

...
. . .

...

∂uNF1(u)uN · · · ∂uNFN (u)uN

 =: Tu, (2.2.6)

where

∂ujFj(u)uj = 2‖uj‖2 − 2β

∫
Ω
u2
j

(∑
k 6=j

u2
k

)
− 4µ

∫
Ω
|u+
j |

4 = −2µ

∫
Ω
|u+
j |

4, j = 1, · · · , N,

∂ujFk(u)uj = −2β

∫
Ω
u2
ju

2
k = ∂ukFj(u)uk, 1 ≤ j 6= k ≤ N.

Since u ∈ M, there holds ‖uj‖2 − β
∫

Ω u
2
j

∑
k 6=j u

2
k = µ

∫
Ω |u

+
j |4 for each j. Due to the Sobolev
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embedding H1
0 (Ω) ↪→ L4(Ω) and the fact β < 0, there exists C > 0 such that

‖uj‖2 ≤ ‖uj‖2 − β
∫

Ω
u2
j

∑
k 6=j

u2
k = µ

∫
Ω
|u+
j |

4 ≤ C‖uj‖4.

Thus ‖uj‖ ≥ C−1/2 > 0. With these estimates, we get

µ

∫
Ω
|u+
j |

4 > −β
∫

Ω
u2
j

∑
k 6=j

u2
k, j = 1, · · · , N.

These inequalities imply that Tu is strictly diagonally dominant. Moreover, all the elements on

the major diagonal of Tu are negative, thus Tu is negative definite and therefore non-degenerate.

According to the Implicit Function Theorem and the fact that Fj ∈ C2 for j = 1, 2, · · · , N , the

manifold M is C2 smooth.

From the non-degeneracy of Tu, the vectors ∇F(u)uj , j = 1, · · · , N , are linearly indepen-

dent. Thus M has codimension N . �

The energy functional E is bounded from below on M. Actually, for any u ∈M,

E(u) =
1

2

N∑
j=1

‖uj‖2 −
µ

4

∫
Ω

( N∑
j=1

|u+
j |

4

)
− β

2

∫
Ω

∑
k 6=j

u2
ju

2
k

=
1

2

N∑
j=1

‖uj‖2 −
µ

4

( N∑
j=1

‖uj‖2 − 2β

∫
Ω

∑
k 6=j

u2
ju

2
k

)
− β

2

∫
Ω

∑
k 6=j

u2
ju

2
k

=
1

4

N∑
j=1

‖uj‖2

(2.2.7)

by using (2.2.2), (2.2.4) and (2.2.5). This fact will be used to estimate the minimum of H1 norm

of u ∈M and minimum of energy functional on M.

Lemma 2.2.3 Let EM be the restriction of E on M.

(i) If u is a critical point of EM, then u is a nontrivial critical point of E.

(ii) EM :M→ R satisfies the Palais-Smale condition.
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Proof (i) Assume that u is a critical point of EM, then there exist Lagrangian multipliers

λ1, λ2, · · · , λN such that
N∑
j=1

λj∇Fj(u) = ∇E(u).

To prove (i), it is sufficient to show λj = 0 for j = 1, 2, · · · , N .

By definition (2.2.3), for any u ∈M

N∑
k=1

λk∇Fk(u)uj = (∇E(u),uj) = 0, j = 1, · · · , N. (2.2.8)

It is seen from (2.2.4) and (2.2.5) that

∂ujFj(u)uj = 2‖uj‖2 − 2β

∫
Ω
u2
j

(∑
k 6=j

u2
k

)
− 4µ

∫
Ω
|u+
j |

4 = −2µ

∫
Ω
|u+
j |

4, j = 1, · · · , N,

∂ujFk(u)uj = −2β

∫
Ω
u2
ju

2
k = ∂ukFj(u)uk, 1 ≤ j 6= k ≤ N.

So (2.2.8) can be written as

Tu


λ1

...

λN

 =


0

...

0

 , (2.2.9)

where

Tu =


∂u1F1(u)u1 · · · ∂u1FN (u)u1

...
. . .

...

∂uNF1(u)uN · · · ∂uNFN (u)uN



=


−2µ

∫
Ω |u

+
1 |4 · · · −2β

∫
Ω u

2
1u

2
N

...
. . .

...

−2β
∫

Ω u
2
Nu

2
1 · · · −2µ

∫
Ω |u

+
N |4

 .

As it is shown in the proof of Lemma 2.2.2, Tu is non-degenerate on M. Then we get λ1 =

· · · = λN = 0 by solving the homogeneous linear system (2.2.9). Conclusion (i) is proved.
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(ii) Let {uk}∞1 = {(uk1, · · · , ukN )}∞1 ⊂ M be a Palais-Smale sequence of EM. Then (2.2.7)

implies that {uk}∞1 is bounded in H. Since bounded sequences in Hilbert space are weakly

compact, there exists a subsequence of {uk}∞1 , for simplicity still denoted by {uk}∞1 , and w ∈ H,

such that uk ⇀ w as k →∞. By the compact embedding H1
0 (Ω) ↪→ L4(Ω) and Hölder inequality

|w+
j |

4
4 = lim

k→∞
|(ukj )+|44 ≥ lim inf

k→∞
‖ukj ‖2 − lim sup

k→∞
β

∫
Ω

∑
l 6=j

(ukj )
2(ukl )

2 > 0, j = 1, · · · , N.

Thus w is nontrivial. For each k ≥ 1, there exist Lagrange multipliers λkj such that

o(1) = ∇EM(uk) = ∇E(uk)−
N∑
j=1

λkj∇Fj(uk), as k →∞. (2.2.10)

We want to show λkj → 0 as k →∞, for every j = 1, · · · , N . Then (2.2.10) implies that w is a

critical point of E . Applying ∇EM(uk) to uk and using the boundedness of {uk}∞1 in H,

o(1) =


∇E(uk)uk1 −

[∑N
j=1 λ

k
j∇Fj(u)

]
uk1

...

∇E(uk)ukN −
[∑N

j=1 λ
k
j∇Fj(u)

]
ukN



= −



[∑N
j=1 λ

k
j∇Fj(u)

]
uk1

...[∑N
j=1 λ

k
j∇Fj(u)

]
ukN



= −


∂uk1

F1u
k
1 · · · ∂uk1

FNu
k
1

...
. . .

...

∂ukN
F1u

k
N · · · ∂ukN

FNu
k
N




λk1
...

λkN



= (−Tw + o(1))


λk1
...

λkN

 ,

as k →∞.
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By the weakly lower semi-continuity of ‖ · ‖,

‖wj‖2 − β
∫

Ω
w2
j

∑
l 6=j

w2
l ≤ µ

∫
Ω
|w+
j |

4, j = 1, · · · , N.

Then by a similar proof for Lemma 2.2.2, Tw is negative definite. Therefore

λkj → 0, as k →∞, for all j = 1, · · · , N.

For any 1 ≤ j ≤ N , the functional ∇Fj(uk) ∈ H∗ is bounded, due to the boundedness of uk

and the continuity of ∇Fj . Thus (2.2.10) implies ∇E(uk)→ 0 as k →∞. Now for any v ∈ H,

(∇E(uk),v)→ 0, as k →∞.

On the other hand, we also have uk ⇀ w as k →∞, so (∇E(w),v) = 0 for any v ∈ H, i.e. w is

a weak solution of (2.2.1). Multiplying the first equation by w1 and integrating over Ω, we get

‖w1‖2 = µ|w+
1 |

4
4 + β

∫
Ω
w2

1

∑
j 6=1

w2
j = lim

k→∞

(
µ|(uk1)+|44 + β

∫
Ω

(uk1)2
∑
j 6=1

(ukj )
2

)
= lim

k→∞
‖uk1‖2.

The weak convergence and norm convergence indicate uk1 → w1 strongly in H1
0 (Ω). Similarly,

ukj → wj as k → ∞ in H1
0 (Ω) for j = 2, · · · , N . So uk → w as k → ∞ in H. Therefore EM

satisfies the Palais-Smale condition. �

Next, we consider the level sets of E on M

Mc = {u ∈M : E(u) ≤ c}, c ∈ R,

and the sets of critical points of E with critical value c

Kc = {u ∈M
∣∣ E(u) = c,∇E(u) = 0} = {u ∈M

∣∣ EM(u) = c,∇EM(u) = 0}.
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It is easy to see that M,Mc and Kc are all invariant under the action of SN . In particular,

they are invariant under the action of σ : H → H

σ(u1, u2, · · · , uN ) = (u2, · · · , uN , u1).

Let

1 = q0 < q1 < q2 < · · · < qa < N, for some integer a > 0

be all the distinct prime factors of N . Correspondingly, we have a sequence N = N0 > N1 >

N2 > · · · > Na > 1 defined as Nb = N/qb for 0 ≤ b ≤ a. It is easy to see that

σqb(u1, · · · , uqb ,uqb+1, · · · , u2qb , · · · · · · , u(N−1)qb+1, · · · , uN )

= (uqb+1, · · · , u2qb , · · · · · · , u(N−1)qb+1, · · · , uN , u1, · · · , uqb).

Denote the least energy on the sets of fixed points of σqb by

cqb(β) := inf{E(u)
∣∣ u ∈M, σqb(u) = u} b = 0, · · · , a.

Set cqb(β) =∞ if σqb has no fixed point on M. The following lemma shows the dependence of

cqb(β) on β.

Lemma 2.2.4 cqb(β) =∞ for β ≤ − µ
Nb−1 , and limβ↘− µ

Nb−1
cqb(β) =∞ for 0 ≤ b ≤ a.

Proof. Assume β ≤ − µ
Nb−1 . If there is a fixed point u of σqb on M, then u must take the form

u = (u1, · · · , uNb , · · · , u1, · · · , uNb) and satisfy

‖uj‖2 = (µ+ β(Nb − 1))|u+
j |

4
4 + β(Nb − 1)|u−j |

4
4 + βNb

∫ qb∑
k 6=j

u2
ku

2
j

≤ (µ+ β(Nb − 1))|u+
j |

4
4 + β(Nb − 1)|u−j |

4
4

≤ (µ+ β(Nb − 1))|u+
j |

4
4

≤ 0.
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Thus ‖uj‖ = 0 for all j = 1, · · · , qb, i.e. u = 0. This is a contradiction, since 0 /∈M. So σqb has

no fixed point on M. By definition, cqb(β) =∞.

Let u ∈ M be a fixed point of σqb for any 0 ≤ b ≤ a. If − µ
Nb−1 < β < 0, then the first

equation of M implies

‖u1‖2 = (µ+ β(Nb − 1))|u+
1 |

4
4 + β(Nb − 1)|u−1 |

4
4 + βNb

∫
Ω

qb∑
k 6=1

u2
ku

2
1

≤ (µ+ β(Nb − 1))|u+
1 |

4
4 + β(Nb − 1)|u−1 |

4
4

≤ C(µ+ β(Nb − 1))‖u1‖4,

where C > 0 is the embedding constant of H1
0 (Ω) ↪→ L4(Ω). Since C does not depend on β, we

have ‖u1‖2 ≥
µ

C(1 + (Nb − 1)β)
. Then (2.2.7) implies

EM(u) ≥ ‖u1‖2 ≥
1

C(µ+ (Nb − 1)β)
.

It is easy to see that EM(u)→∞ as β ↘ − µ
Nb−1 . Hence cqb(β)→∞ as β ↘ − µ

Nb−1 . �

In order to find critical points of EM, we need the σqb-equivariant deformation lemma, for

any integer 0 ≤ b ≤ a.

Lemma 2.2.5 Let c ∈ R, and let N ⊂ M be a relatively open and σqb-invariant neighborhood

of Kc, where qb is a factors of N . Then there exists ε > 0 and a C1-deformation η : [0, 1] ×

Mc+ε\N →Mc+ε such that for any u ∈Mc+ε\N and t ∈ [0, 1],

η(0,u) = u, η(1,u) ∈Mc−ε and σqb [η(t,u)] = η(t, σqbu). (2.2.11)

Proof Since EM satisfies the Palais-Smale condition, Kc is relatively compact in M. Note that

E and F are C2 functionals, then (2.2.10) implies that ∇EM is C1 smooth. There exists ε > 0

and δ > 0, such that

|∇EM(u)| ≥
√
δ, for any u ∈Mc+ε\(Mc−ε ∪N ).
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Consider the descending flow η : [0, 1] ×Mc+ε\N → Mc+ε determined by the following initial

value problem 
dη(t,u)

dt
= −2ε

δ
∇EM(η(t,u)),

η(0,u) = u.

Claim: η is a deformation satisfying all requirements of the lemma.

First, η is a C1 deformation since ∇EM is C1 vector field onM. Next, if u ∈Mc−ε, then by

the descending nature of the deformation flow, η(1,u) ∈Mc−ε. If u ∈Mc+ε\(Mc−ε ∪N ), then

EM(η(1,u)) =

∫ 1

0
−2ε

δ
|∇EM(η(t,u))|2dt+ EM(η(0,u)) ≤ −2ε+ EM(η(0,u)) ≤ c− ε.

Using the fact that EM and ∇EM are σqb invariant, we see that σqbη(t,u) and η(t, σqbu) satisfy

the same Cauchy problem


dη(t, σqbu)

dt
= −2ε

δ
∇EM(η(t, σqbu)) = σqb

dη(t,u)

dt
,

η(0, σqbu) = σqbu = σqbη(0,u).

Then by the uniqueness of Cauchy problem, we have σqb [η(t,u)] = η(t, σqbu). Thus the claim

holds and the lemma follows. �

2.3 A ZN -index

One of the most well-known index is perhaps the Z2-index, or genus. This index is defined

based on the Borsuk-Ulam Theorem, which asserts that any continuous odd map defined on a

reflection-invariant domain with center at the origin must have a zero. To use the ZN -symmetry,

we also need to define a compatible index, which requires a simpler version of the ZN -Borsuk-

Ulam theorem by Z.-Q. Wang (Theorem 2, [53]).

Proposition 2.3.1 Let T : Cm → Cm be a ZN -action given by

Tz = T (z1, · · · , zm) = (ei
2π
N z1, · · · , ei

2π
N zm), for any z = (z1, · · · , zm) ∈ Cm. (2.3.1)
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Let D ⊂ Cm be a bounded open neighborhood of the origin θ and invariant under T . Assume

that f : ∂D → Cn is a continuous mapping satisfying

fj(Tz) = ei2π/Nfj(z), j = 1, · · · , n. (2.3.2)

If n < m, then θ ∈ f(∂D).

Now we define an index based on the ZN -symmetry.

Definition 2.3.2 Let σ be the special permutation defined in (2.1.2). For any closed σ-invariant

subset A ⊂ M, define the ZN -index γ(A) to be the smallest m ∈ N ∪ {0} such that there exists

a continuous map h : A→ Cm \ {0} satisfying

h(σu) = Th(u), (2.3.3)

where T is defined in (2.3.1). If there is no such a map, set γ(A) =∞. Define γ(∅) = 0.

It is easy to see from the definition that if A contains a fixed point of σqb for any 1 ≤ b ≤ a,

then γ(A) =∞. Actually, assume u ∈ A satisfying σu 6= u, σqbu = u (if A contains fixed point

of σ, then we already have γ(A) =∞). Simple calculation shows

h(u) = h(σqbu) = Th(T σb−1u) = · · · = T σbh(u).

Since T σb 6= Id : Cm → Cm, one has h(u) = 0. This is a contradiction.

Remark 2.3.3 If N is not a prime number, then we can define an index for each subgroup of

ZN . According to the decomposition of N , we denote the ZNb-index by γqb. Then the Zqb-index

of a Zqb-invariant set A is the minimal dimension m such that there exists a continuous map

A→ Cm \ {0} satisfying

h(σqbu) = T qbh(u).
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On a closed σ-invariant subset A ⊂M, there are a+ 1 indices can be defined,

γq0(A), γq1(A), · · · , γqa(A).

If qd is a proper divisor of qb for some 0 ≤ d < b ≤ a, then γqd(A) ≥ γqb(A) on any closed

σqd-invariant subset A ⊂M. Moreover, if γqb(A) > 0, then γqd(A) =∞.

The following lemma investigates important properties of the ZN -index. For simplicity,

we only consider σ-invariant sets and ZN -index. Same results hold for σqb-invariant sets and

Zqb-index as well.

Lemma 2.3.4 Let A,B ⊂M be closed and σ-invariant sets. Let γ be the index that corresponds

to group ZN and T is given by (2.3.1).

(i) If A ⊂ B, then γ(A) ≤ γ(B);

(ii) γ(A ∪B) ≤ γ(A) + γ(B);

(iii) If g : A→M is continuous and σ-equivariant, i.e. g(σ(u)) = σg(u) for all u ∈ A then

γ(A) ≤ γ(g(A)).

Furthermore, if A does not contain fixed point of σqb for any 0 ≤ b ≤ a,

(iv) γ(A) > 1 implies that A is an infinite set;

(v) if A is compact, then γ(A) <∞, and there exists a relatively open and σ-invariant neigh-

borhood N of A in M such that γ(A) = γ(N ).

Finally,

(vi) if S is the boundary of a bounded and T -invariant neighborhood of zero in a m-dimensional

complex normed vector space and Ψ : S → M is continuous map satisfying Ψ(Tu) =

σ(Ψ(u)), then γ(Ψ(S)) ≥ m.
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Proof (i) Without loss of generality, assume γ(B) = m < ∞. By definition, there exists a

continuous map h : B → Cm\{0} such that

h(σ(u)) = Th(u) for all u ∈ B.

The restriction of h on A is also a continuous map satisfying (2.3.3). Since γ(A) is defined the

minimal dimension such that (2.3.3) holds, then (i) follows from Definition 2.3.2.

(ii) Suppose γ(A) = m1 and γ(B) = m2. Then there exist continuous maps

φ ∈ C(A,Cm1\{0}), and ψ ∈ C(B,Cm2\{0}),

both satisfying (2.3.3). By the Tietze Extension Theorem, there are continuous maps φ̂ ∈

C(H,Cm1) and ψ̂ ∈ C(H,Cm2) such that φ̂|A = φ and ψ̂|B = ψ. Replacing φ̂, ψ̂ by

1

N

N−1∑
j=0

e−i
2jπ
N φ̂(σju),

1

N

N−1∑
j=0

e−i
2jπ
N ψ̂(σju)

if it is necessary, we may assume that φ̂, ψ̂ both satisfy (2.3.3). Set ĥ = (φ̂, ψ̂), then

h := ĥ|A∪B ∈ C(A ∪B,Cm1+m2\{0})

satisfies (2.3.3). According to Definition 2.3.2,

γ(A ∪B) ≤ m1 +m2 = γ(A) + γ(B).

(iii) Without loss of generality, assume γ(g(A)) = m <∞. By Definition 2.3.2, there exists a

continuous map g̃ : (g(A)) → Cm\{0}, satisfying (2.3.3). Then the composite map g̃ ◦ g : A →

Cm\{0} also satisfies (2.3.3) and is continuous. Therefore,

γ(A) ≤ m = γ(g(A)).
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(iv) If A ⊂M is a finite set, then there exists m ∈ N such that

A =

{
u1, · · · ,um, σu1, · · · , σum, · · · · · · , σN−1u1, · · · , σN−1um

}
,

where each uk ∈ M (k = 1, · · · ,m) is a N -vector. Since there is no fixed point of σqb for any

0 ≤ b ≤ a, we can define map h : A→ C1\{0} as

h(σjuk) = ei
2(j+1)π

N , j = 0, · · · , N − 1, k = 1, · · · ,m.

It is easy to see that h is continuous and satisfies (2.3.3), and therefore γ(A) = 1.

(v) Denote Bρ(u) = {v ∈ H | ‖v − u‖H ≤ ρ}. Since 0 /∈ A, there exists ρ > 0 such that

A ∩ Bρ(0) = ∅. Because A does not contain fixed point of σqb for any 0 ≤ b ≤ a, there exists a

cover of A {
B̃ρ(u) =

N−1⋃
j=0

Bρ(σju)

}
u∈A

,

which does not contain any fixed point of σqb either. According to the compactness of A,

this cover admits a finite sub-cover {B̃ρ(u1), · · · , B̃ρ(um)}. Moreover, by choosing ρ > 0 small

enough, we may assume

Bρ(σku) ∩ Bρ(σlu) = ∅,

if 1 ≤ k 6= l ≤ m. Let {φk}m1 be a partition of unity on A and subordinate to {B̃ρ(uk)}m1 , i.e.,

φk ∈ C(A) with supp(φk) ⊂ B̃ρ(uk), and 0 ≤ φk ≤ 1,
∑m

k=1 φk(u) = 1, for all u ∈ A. Replacing

φk by

1

N

N−1∑
j=0

φk(σ
ju), 1 ≤ k ≤ m,

if it is necessary, we may assume that φk is σ-invariant. Then for each k, define hk : A→ C as

hk(u) =

 ei
2jπ
N φk(u), if u ∈ Bρ(σjuk), j = 0, · · · , N − 1,

0, otherwise.
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It is easy to see that h := (h1, · · · , hm) : A → Cm \ {0} is continuous and satisfies (2.3.3). By

Definition 2.3.2, γ(A) ≤ m <∞.

Assume that A is compact, 0 /∈ A, γ(A) = m < ∞, and h ∈ C(A,Cm\{0}) is the corre-

sponding map with property (2.3.3). By Tietze Extension Theorem, we may extend h such

that h ∈ C(M,Cm). Since A is compact, its image under continuous map h is also compact.

Then there exists a T -invariant open neighborhood Ñ of h(A) that is compactly contained in

Cm\{0}. Define N̄ = h−1(Ñ ). By construction, 0 /∈ h(N̄ ) and γ(N̄ ) ≤ m. On the other hand,

γ(A) ≤ γ(N̄ ) holds by using (i). Hence γ(A) = γ(N̄ ).

(vi) If γ(Ψ(S)) ≤ m − 1, then there exists a continuous map h : Ψ(S) → Cm−1\{0} that

satisfies (2.3.3). Hence the composition h ◦ Ψ : S → Cm−1\{0} is continuous and satisfies

(2.3.2). Since m − 1 < m, we get 0 ∈ h(Ψ(S)) by using Proposition 2.3.1, but this contradicts

with the definition of h. Therefore γ(Ψ(S)) ≥ m. �

2.4 Proof of the main theorem

In order to get β-independent estimates the ZN -index, we need to construct a continuous

map from a finite dimensional sphere toM that is compatible with the ZN -symmetry. Precisely,

we will define a finite dimensional space Cm that is isomorphic to Cm. Denote the unit sphere

in Cm by S2m−1. Then we need to construct a continuous map ψ : S2m−1 →M such that

ψ(ei
2π
N u) = σψ(u), for all u ∈ S2m−1.

Proposition 2.4.1 gives the construction for bounded domains and Proposition 2.4.2 gives the

construction for radially symmetric, possibly unbounded, domains.

Proposition 2.4.1 Let Ω be a bounded domain in Rn with n ≤ 3. Then for any m ≥ 1, there

exists a 2m− 1 dimensional sphere S2m−1 and a continuous map ψ : S2m−1 →M, such that

ψ(ei
2π
N u) = σψ(u), for all u ∈ S2m−1.
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Proof Consider the case n = 2 first. We use the polar coordinate system on Ω. Without loss of

generality, assume that the origin is an interior point of Ω, then there exists ρ0 > 0, such that

D := {(ρ, t)|0 ≤ ρ < ρ0, 0 ≤ t < 2π} ⊂ Ω.

Divide D into N parts D1, D2, · · · , DN , where

Dj =

{
(ρ, t) ∈ D

∣∣∣∣2π(j − 1)

N
≤ t < 2πj

N
, 0 ≤ ρ < ρ0

}
, j = 1, 2, · · · , N.

Let 0 < ρ1 < ρ2 < · · · < ρm < ρm+1 := ρ0 be a partition of (0, ρ0). Choose m functions

U1
1 , · · · , Um1 ∈ H1

0 (Ω), such that the support of Uk1 is contained in D1 ∩ {(ρ, t)|ρk < ρ < ρk+1},

and ‖Uk1 ‖ = 1. Define

Ukj (ρ, t) = Uk1 (ρ, t− 2(j − 1)π/N), ρk < ρ < ρk+1,
2(j − 1)π

N
< t <

2jπ

N
, j = 2, · · · , N. (2.4.1)

and let uk(ρ, t) =
∑N

j=1 U
k
j (ρ, t), k = 1, · · · ,m. According to the definition, Uki U

l
j = 0 if i 6= j

or k 6= l, i, j = 1, · · · , N and k, l = 1, 2, · · · ,m. Define Cm to be the space spanned by uk, i.e.

Cm =

{ m∑
k=1

rke
iθkuk

∣∣∣∣rk ∈ R+, θk ∈ [0, 2π), and θk = 0 if rk = 0

}
.

Clearly, Cm can be identified as a 2m-dimensional linear subspace of H, and the unit sphere in

Cm can be represented as

S2m−1 =

{ m∑
k=1

rke
iθkuk ∈ Cm

∣∣∣∣ m∑
k=1

r2
k = 1

}
. (2.4.2)

Define map ψ : S2m−1 →M

ψ

( m∑
k=1

rke
iθkuk(ρ, t)

)
=

(
U∗1 (ρ, t), U∗2 (ρ, t), · · · , U∗N (ρ, t)

)
, (2.4.3)
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where

U∗j (ρ, t) =

√
µ‖
∑m

k=1 rkU
k
j (ρ, t− θk)‖

|
∑m

k=1 rkU
k
j (ρ, t− θk)|24

∣∣∣∣ m∑
k=1

rkU
k
j

(
ρ, t− θk

)∣∣∣∣, j = 1, 2, · · · , N.

Then it is easy to see that ψ is continuous (see Appendix A. Lemma I), U∗j 6= 0 for j = 1, · · · , N ,

U∗i U
∗
j = 0 for i 6= j, and

ψ

(
ei

2π
N

m∑
k=1

rke
iθkuk(ρ, t)

)
= ψ

( m∑
k=1

rke
i(θk+ 2π

N
)uk(ρ, t)

)
=

(
U∗2 (ρ, t), U∗3 (ρ, t), · · · , U∗N (ρ, t), U∗1 (ρ, t)

)
= σψ

( m∑
k=1

rke
iθkuk(ρ, t)

)
.

If n = 3, we choose the cylindrical coordinates and define

D := {(ρ, t, h)|0 ≤ ρ < ρ0, 0 ≤ t < 2π, |h| ≤ h0} ⊂ Ω for some h0 > 0.

Then divide D into N parts along t direction in the same manner as we did for n = 2, and

consider the functions of the form

Ũkj (ρ, t, h) = φk(h)Ukj (ρ, t),

where φk(h) is continuous function with suppφ ⊂ (−h0, h0), and Ukj is defined in (2.4.1). For

n = 1, we divide a subinterval of Ω into N equal parts, i.e.

D =
N⋃
j=1

Dj ⊂ Ω where Dj =

{
x+

(j − 1)L

N

∣∣∣∣x ∈ D1

}
and L = length of D.

Choose m independent functions that have separated supports in D1, and denote these functions

by Uk1 (x) for k = 1, · · · ,m. For each fixed k, define Ukj (x) = Uk1 (x+ (j − 1)L/N). Then (2.4.2),

(2.4.3) will give the corresponding construction of S2m−1 and ψ for the case n = 1 and 3. �
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Proposition 2.4.2 Let Ω be a radially symmetric domain in Rn, n = 2, 3. Then for any m ≥ 1,

there exists a 2m − 1 dimensional sphere S2m−1 and a continuous map ψ : S2m−1 →M, such

that

ψ(ei
2π
N u) = σψ(u), for all u ∈ S2m−1.

Proof Divide Ω into N radially symmetric open subsets: Ωj , j = 1, · · · , N such that

Ω =
N⋃
j=1

Ωj , Ωj ∩ Ωk = ∅, if j 6= k.

Let S1 be the unit circle and denote O = S1 × Ω.

Let r = |x| and consider functions in the form Uj(t, r) = Uj(t, |x|). Fix m ≥ 1. Choose m

functions Uk(t, r) =
∑N

j=1 U
k
j (t, r), k = 1, · · · ,m, such that for each k

(a) Ukj ∈ C1(O);

(b) suppUkj (·, ·) ⊂ S1 × Ωj ;

(c) suppUkj (t+ 2iπ/N, ·) ∩ suppUkj (t+ 2lπ/N, ·) = ∅, for all t and 1 ≤ i 6= l ≤ N ;

(d) for any t,
∑N

j=1 |Ukj (t, ·)|4 6= 0.

Moreover, assume suppUk(·, ·) ∩ suppU l(·, ·) = ∅ if k 6= l (which can be accomplished by slicing

each Ωj into m annuli), and

‖Uk(t, ·)‖ = 1, for any t ∈ [0, 2π).

Then the following space can be identified as an m-dimensional complex space

Cm =

{ m∑
k=1

dke
iθkUk

∣∣∣∣dk ∈ R+, θk ∈ [0, 2π), and θk = 0 if dk = 0, k = 1, · · · ,m
}
,

and the unit sphere in Cm is

S2m−1 =

{ m∑
k=1

dke
iθkUk ∈ Cm

∣∣∣∣ m∑
k=1

d2
k = 1

}
. (2.4.4)
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For any vector Y =
∑m

k=1 dke
iθkUk in S2m−1, let V (Y ) : O → R be

V (Y )(t, r) =

√
µ‖
∑m

k=1 dku
k(t− θk, r)‖

|
∑m

k=1 dku
k(t− θk, r)|24

∣∣∣∣ m∑
k=1

dku
k(t− θk, r)

∣∣∣∣.
Now define map ψ : S2m−1 →M

ψ(Y ) = ψ

( m∑
k=1

dke
iθkuk

)
=

(
V (Y )(t∗1, ·), V (Y )(t∗2, ·), · · · , V (Y )(t∗N , ·)

)
, (2.4.5)

where for j = 1, 2, · · · , N , t∗j = 2(j − 1)π/N . The construction of V shows

V (Y )(t∗i , ·)V (Y )(t∗j , ·) = 0,

for i 6= j. Then ψ is continuous (see Appendix A. Lemma I) and

ψ

(
ei

2π
N Y

)
= ψ

(
ei

2π
N

m∑
k=1

dke
iθkuk

)

= ψ

( m∑
k=1

dke
i(θk+ 2π

N
)uk
)

=

(
V (ei

2π
N Y )(t∗1, ·), V (ei

2π
N Y )(t∗2, ·), · · · , V (ei

2π
N Y )(t∗N , ·)

)
=

(
V (Y )(t∗1 +

2π

N
, ·), V (Y )(t∗2 +

2π

N
, ·), · · · , V (Y )(t∗N +

2π

N
, ·)
)

=

(
V (Y )(t∗2, ·), · · · , V (Y )(t∗N , ·), V (Y )(t∗1, ·)

)
= σψ

( m∑
k=1

dke
iθkuk

)
= σψ(Y ).

�

Remark 2.4.3 The construction of finite dimensional sphere S2m−1 and continuous map ψ in

Proposition 2.4.2 also works for bounded domains if n = 2 or 3. Actually, we only need to select

a ball that is entirely contained in Ω, and consider this ball as the radial domain in Proposition

2.4.2.
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Next, we construct multiple critical points of EM by using the ZN -index.

Definition 2.4.4 Define the Lusternik-Schnirelmann type level on M with Zqb-symmetry as

cqbk := inf{c ∈ R|γqb(M
c) ≥ k},

where k = 1, 2, · · · and 0 ≤ b ≤ a.

Remark 2.4.5 There is a sequence of Lusternik-Schnirelmann (LS) levels {cqbk } for each sub-

group ZNb ⊂ ZN . The following Lemmas are stated for group ZN , but they can be easily modified

for its subgroups. On the other hand, according to Remark 2.3.3, if qd|qb then cqbk ≥ c
qd
k for any

k. There is generally no comparison between cqbk and cqdk if (qb, qd) = 1, where (m,n) denotes the

largest common divisor of m and n.

We need some estimates on the index γ of critical level sets. Similar as the previous section,

the conclusions and proofs are given for the group ZN for simplicity. This assumption surely

makes no difference if N is a prime number.

Lemma 2.4.6 For c < min0≤b≤a{cqb(β)}, the ZN -index of Kc is finite, i.e. γ(Kc) < ∞. And

there exists ε > 0 such that

γ(Mc+ε) ≤ γ(Mc−ε) + γ(Kc).

Proof. Since EM satisfies the Palais-Smale condition, the set Kc is compact. By the definition of

c(β) and the assumption c < min0≤b≤a{cqb(β)}, there is no fixed point of σqb in Kc for 0 ≤ b ≤ a.

By Lemma 2.3.4 (v), γ(Kc) <∞ and there exists a relatively open σ-invariant neighborhood N

of Kc such that γ(N ) = γ(Kc).

For ε > 0 small, let η : [0, 1]×Mc+ε →Mc+ε be the C1-deformation given by Lemma 2.2.5.

Then η(1, ·) is a continuous and σ-equivariant map fromMc+ε\N toMc−ε. Using Lemma 2.3.4

(iii), we have γ(Mc+ε\N ) ≤ γ(Mc−ε), and therefore

γ(Mc+ε) ≤ γ(Mc+ε\N ) + γ(N ) ≤ γ(Mc−ε) + γ(Kc).
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The proof is complete. �

Lemma 2.4.7 (i) For every m, cm <∞ is bounded independently of β < 0.

(ii) cm → c∗ as m→∞, where min0≤b≤a{cqb(β)} ≤ c∗ ≤ ∞.

(iii) If c := cm = cm+1 = · · · = cl < min0≤b≤a{cqb(β)} for some l ≥ m, then γ(Kc) ≥ l−m+ 1.

(iv) If cm < min0≤b≤a{cqb(β)}, then Kcm 6= ∅, and Mcm contains at least m ZN -orbit critical

points of EM.

Proof. (i) By Proposition 2.4.1, or 2.4.2 if Ω is radial, there exists continuous map ψ : S2m−1 →

M satisfying (2.3.3), i.e.

ψ

(
ei

2π
N

m∑
k=1

rke
iθkuk(ρ, t)

)
= σψ

( m∑
k=1

rke
iθkuk(ρ, t)

)
.

Then Lemma 2.3.4 (vi) implies γ(ψ(S2m−1)) ≥ m, and therefore cm ≤ supu∈S2m−1 E(ψ(u)) <∞.

By the definition of ψ and the construction of S2m−1, the value of supu∈S2m−1 E(ψ(u)) does not

depend on β. Hence (i) follows.

(ii) If the conclusion is not true, it must hold that c∗ < min0≤b≤a{cqb(β)} such that cm → c∗ as

m→∞, since {cm} is a monotone increasing sequence. With similar argument as the proof of

Lemma 2.4.6, there exists ε > 0 corresponding to c∗, such that

γ(Mc∗+ε) ≤ γ(Mc∗−ε) + γ(Kc∗).

Choosing m large such that cm > c∗ − ε, then the above inequality and Lemma 2.4.6 imply

γ(Mc∗+ε) <∞. Now we choose m′ > γ(Mc∗+ε) and then the corresponding cm′ ≥ c∗+ ε, which

is a contradiction. Thus min0≤b≤a{cqb(β)} ≤ c∗ ≤ ∞.

(iii) By Definition 2.3.2,

γ(Mc−ε) ≤ m− 1 and γ(Mc+ε) ≥ l for all ε > 0.



40

Then γ(Kc) ≥ l −m+ 1 follows from Lemma 2.4.6.

(iv) If cm < min0≤b≤a{cqb(β)}, then we get γ(Kcm) ≥ 1 by choosing l = m in (iii). Hence Kcm

is not empty. If c1 < · · · < cm, then Mcm contains at least m ZN -orbits of critical points of E .

If ci = cj for some i < j ≤ m, then γ(Kci) > 1. By Lemma 2.3.4 (iv), Kci is an infinite set.

Hence in either case we have at least m ZN -orbit critical points of EM. �

Now we are ready to prove the main theorem.

Proof of Theorem 2.1.1 Denote the sequence of all distinct factors of N by

1 = q0 < q1 < q2 < · · · < qa < N.

Clearly, if a = 0 then N is prime. Also, denote Nb = N/qb for 0 ≤ b ≤ a. We will apply

mathematical induction to a.

Part (a) First, consider a = 0. In this case, N is a prime number, thus ZN has no nontrivial

proper subgroup. According to Lemma 2.2.4, cq0(β) = c(β) =∞ for β ≤ − µ
N−1 . Using Lemma

2.4.7 (i) and (ii), we get an increasing sequence of LS levels, namely {cm}∞1 . Then Lemma

2.4.7 (iii) implies that cm is a critical value for every m, and there exists at least one critical

point, denoted by um, which corresponds to the critical value cm. Choosing um ∈ Kcm for every

positive integer m, we obtain a sequence of nontrivial ZN -orbit critical points of EM, which are,

according to Lemma 2.2.1, 2.2.3 nontrivial ZN -orbit solutions of system (2.1.1).

Next, consider the cases a = 1, i.e. N is the square of a prime number. When β ≤ − µ
N1−1 ,

Lemma 2.2.4 implies min{cq0(β), cq1(β)} =∞. Then using Lemma 2.4.7 (i)-(iii), we can define

an infinite sequence of LS levels {cm}∞1 , which yields an infinite sequence of ZN -orbit solutions

of system (2.1.1). Now we need to extend the existence of infinitely many ZN -orbit solutions to

interval (− µ
N1−1 ,−

µ
N−1 ].

Consider solutions of system (2.1.1) in the form

(u1, · · · , uq1 , u1, · · · , uq1 , · · · , u1, · · · , uq1), (2.4.6)



41

which are clearly solutions of the reduced system too,


−∆uj + uj = [µ+ β(N1 − 1)]u3

j + βN1

q1∑
k 6=j

u2
kuj , in Ω,

uj > 0 in Ω, uj = 0 on ∂Ω, j = 1, · · · , q1.

(2.4.7)

This system can be viewed as system (2.1.1) with µ̃ = µ+β(N1−1), β̃ = βN1 and Ñ = q1. Since

q1 is prime, we can use the conclusion for a = 0, i.e. if µ̃ > 0 and β̃ < − µ̃

Ñ − 1
, or equivalently

µ+ β(N1 − 1) > 0 and βN1 ≤ −
µ+ β(N1 − 1)

Ñ − 1
, (2.4.8)

system (2.4.7) has an infinite sequence of Zqa-orbit solutions. According to (2.4.6), system (2.1.1)

thus has an infinite sequence of ZN -orbit solutions when (2.4.8) holds. Solve β from (2.4.8), we

get −
µ

N1 − 1
< β ≤ − µ

N1Ñ − 1
= − µ

N1q1 − 1
= − µ

N − 1
. Part (a) is proved in this case.

Consider the case a = 2. If (q1, q2) = 1, then the proof is exactly the same as the case a = 1

(The difference is N1 6= q1 now, but this is not important. We only need q2 to be prime, which

is satisfied here). If (q1, q2) > 1, then q2 = q2
1. For β ≤ − µ

N2−1 , Lemma 2.2.4 implies that

min{cq0(β), cq1(β), cq2(β)} = ∞, and then infinitely many ZN -orbit solutions of system (2.1.1)

can be found by using LS levels corresponding to ZN -symmetry. In order to obtain infinitely

many ZN -orbit solutions for − µ
N2−1 < β ≤ − µ

N−1 , we consider solution in the form,

(u1, · · · , uq2 , u1, · · · , uq2 , · · · , u1, · · · , uq2). (2.4.9)

For this type of solutions, system (2.1.1) is reduced to a system of q2 equations


−∆uj + uj = [µ+ β(N2 − 1)]u3

j + βN2

q2∑
k 6=j

u2
kuj , in Ω,

uj > 0 in Ω, uj = 0 on ∂Ω, j = 1, · · · , q2.

(2.4.10)

Let µ̃ = µ + β(N2 − 1) and β̃ = βN2, then system (2.4.10) can be view as system (2.1.1) with
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q2 equations. Since q2 has only one prime factor, we can use the conclusion for a = 1 here, i.e.

system (2.4.10) has infinitely many Zq2-orbit solutions if µ̃ > 0 and β̃ ≤ − µ̃
q2−1 . Solving for β,

we see that if − µ
N2−1 < β ≤ − µ

N−1 , then system (2.4.10) has infinitely many Zq2-orbit solutions.

According to (2.4.9), system (2.1.1) also has infinitely many ZN -orbit solutions. The Part (a)

is also proved for a = 2.

Now assume that part(a) holds for a = p − 1 > 1, then we look at the case a = p. First,

if β ≤ − µ
Np−1 , then we get infinitely many ZN -orbit solutions with increasing LS levels defined

with ZN -symmetry, by using Lemma 2.2.4 and Lemma 2.4.7. Next, we extend the existence of

infinitely many solutions to − µ
Np−1 < β ≤ − µ

N−1 . Consider solutions in the form,

(u1, · · · , uqp , u1, · · · , uqp , · · · , u1, · · · , uqp), (2.4.11)

then system (2.1.1) is reduced to a system of qp equations


−∆uj + uj = [µ+ β(Np − 1)]u3

j + βNp

qp∑
k 6=j

u2
kuj , in Ω,

uj > 0 in Ω, uj = 0 on ∂Ω, j = 1, · · · , qp.

(2.4.12)

Let µ̃ = µ + β(Np − 1) and β̃ = βNp. By the induction assumption, system (2.4.12) has

infinitely many Zqp-orbit solutions if µ̃ > 0 and β̃ < − µ̃
qp−1 . Solving for β, we see that if

− µ
Np−1 < β ≤ − µ

N−1 , then system (2.4.12) has infinitely many Zqp-orbit solutions. According to

(2.4.11), system (2.1.1) also has infinitely many ZN -orbit solutions. The Part (a) is also proved

for a = p.

By mathematical induction, Part (a) holds for any positive integer a. Then the factorization

of N indicates that Part (a) also holds for any integer N .

Part (b) First, consider that N is a prime number. By Lemma 2.4.7 (i), for any given positive

integer m, there exists a LS level cm = cq0m <∞ defined independently of β. On the other hand,

Lemma 2.2.4 implies that c(β) → ∞ as β ↘ − µ
N−1 . Therefore there exists βm > − µ

N−1 such

that c(β) > cm for any β ∈ (− µ
N−1 , βm). According to Lemma 2.4.7 (iii), there is at least one
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critical point that corresponds to each cm, which implies that there exist at least m ZN -orbit

solution of system (2.1.1) for β ∈ (− µ
N−1 , βm).

Next, assume that N is a composite number. Note that q1, the smallest nontrivial factor of

N , must be prime. Consider the solution in the form (2.4.6), then system (2.1.1) will reduce to

a smaller system (2.4.7). Let µ̃ = µ + β(N1 − 1), β̃ = βN1 and Ñ = q1, then system (2.4.7)

can be viewed as system (2.1.1) with prime number of equations, provided µ̃ > 0. Thus by the

conclusion proved for N prime, for any given integer m > 0, there exists β̃m > − µ̃
q1−1 , such

that system (2.4.7) has at least m Zq1-orbit solution for any β̃ ∈ (− µ̃
q1−1 , β̃m). Note that in

this interval, µ̃ > 0 is automatically satisfied. Now we change back to the original notations,

β = β̃/N1, − µ̃
(q1−1)N1

< β < β̃m
N1

. Define βm = β̃m/N1, then we can restate the conclusion as:

for any given integer m > 0, there exists βm > − µ
N−1 such that system (2.1.1) has at least m

solutions in the form (2.4.6) for all β ∈ (− µ
N−1 , βm). Thus Part (b) is proved. �

Remark 2.4.8 Denote the sequence of distinct factor of N as above. When b changes from 1

to a, we obtain a sequence of numbers between − µ
N−1 and − µ

Na−1 (for prime number N , the

following discussion is unnecessary since − µ
N−1 = − µ

Na−1). Between two of these consecutive

numbers, say − µ
Nb1−1 > −

µ
Nb2−1 with b1 < b2, one has the following facts:

1. solutions with Zqb-symmetry for b ≤ b1 does not exist;

2. solutions with Zqb-symmetry for b > b1 may exist;

3. if qb2 is prime, then the number of solutions with Zqb2 -symmetry will be getting larger and

larger as β ↘ − µ
Nb2−1 .

In other words, when β moves from − µ
N−1 to the left-hand side of − µ

Na−1 , the solution orbits

tend to lose symmetry. On the right-hand side of − µ
N−1 , system (2.1.1) has totally symmetric

solution orbits, i.e. solution orbits with N identical components. On the left-hand side of − µ
Na−1 ,

there is no solution orbit possessing symmetry of ZN or any of its subgroups.
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2.5 Generalization

Our methods can be used to study a more general version of system (2.1.1)


−∆uj + uj = µ|uj |2p−2uj + β

∑
k 6=j
|uk|p|uj |p−2uj , in Ω,

uj > 0 in Ω, uj = 0 on ∂Ω, j = 1, · · · , N

(2.5.1)

where µ > 0 is a constant and Ω ⊂ Rn is smooth bounded domain for n ≥ 1, or radially

symmetric (possibly unbounded) domain for n ≥ 2. The nonlinear exponent p satisfies

1 < p <
2∗

2
=


n

n− 2
, n ≥ 3,

∞, n = 1, 2.

With obvious changes (of notations, essentially) of the proof of Theorem 2.1.1, we can obtain

the following theorem. The details are omitted.

Theorem 2.5.1 (a) If β ≤ − µ
N−1 , then system (2.5.1) has an infinite sequence of ZN -orbit

solutions.

(b) For any positive integer m, there exists a βm ∈ (− µ
N−1 , 0), such that for β ∈ (− µ

N−1 , βm),

system (2.5.1) has at least m ZN -orbit solutions.

Similar like Remark 2.4.8, we can obtain more information regarding the distribution of solutions

when N is composite. Details are omitted.

2.6 Summary

In this chapter, we use variational methods and the symmetric structure to find multiple

solutions of system (2.1.1). A Nehari manifoldM with co-dimension N is defined. By restricting

the energy functional E onM, we exclude the trivial solution and semi-trivial solutions, but we

still have all nontrivial solutions contained in M.

While implementing the variation method, a critical point is usually located as a minimizer

of the energy functional on some set. In order to find multiple solutions, we introduce a new ZN -
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index and use it to construct a sequence of Lusternik-Schnirelmann type levels. A minimizing

sequence with certain symmetry will converges to a point that stays on the minimal level. In

other words, the symmetry, or the ZN -index, provides a way to divide the Nehari manifold into

different levels. Then solutions are found as minimizers on those levels. The ZN -index and the

construction of continuous map from finite dimensional sphere to M with property (2.3.3) are

the main novelties of this work.
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CHAPTER 3

EXISTENCE AND BIFURCATION RESULTS ON POSITIVE SOLUTIONS OF SOME

ASYMMETRIC ELLIPTIC SYSTEMS1

In this chapter, we will study the bifurcation phenomena and multiplicity of positive stand-

ing wave solutions of some two-equation asymmetric CNLS, including the self-focusing, self-

defocusing and two mixed cases. The information obtained about local and global bifurcation

structures is of independent interests. Moreover, we also obtain some nonexistence results of

positive solutions.

3.1 Introduction

Consider the positive standing wave solutions of (1.1.2) with N = 2, a1 = a2 = −a and

β12 = β21 = β, then we get the following elliptic system


−∆u− au = µ1u

3 + βuv2 in Ω,

−∆v − av = µ2v
3 + βvu2 in Ω,

u, v > 0 in Ω, u = v = 0 on ∂Ω.

(3.1.1)

Here Ω ⊂ Rn is a bounded domain with smooth boundary and n ≤ 3. µ1 and µ2 are real

numbers. In contrast with the assumption on the system (2.1.1), µ1 and µ2 are not necessarily

equal to each other. Thus system (3.1.1) is generally asymmetric. If µj > 0, then the j-th

component is called self-focusing; if µj < 0, then j-th component is self-defocusing. Then there

are four cases: focusing-focusing, defocusing-defocusing and two mixed cases. Note that the

two mixed cases are not essentially equivalent, since their sum being positive or negative will

result in different global bifurcation phenomena. For fixed µ1 and µ2, the coupling constant

β determines bifurcation points along a trivial solution branch of (3.1.1), and also determines

some nonexistence intervals of positive solutions. Let Λ1 be the principal eigenvalue of (−∆,Ω)

1Coauthored by Rushun Tian and Zhi-Qiang Wang [49, 50].
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with zero Dirichlet boundary condition.

Our work is mostly inspired by a recent paper of T. Bartsch, E.N. Dancer and Z.-Q. Wang

[8]. Precisely, the authors studied system (3.1.1) in the definite case, i.e. a < Λ1, and obtained

an infinite sequence of bifurcations with respect to

Tω :=

{
(β, uβ, vβ)

∣∣∣∣uβ =

(√
µ2 − β

µ1µ2 − β2

)
ω, vβ =

(√
µ1 − β

µ1µ2 − β2

)
ω, β > −√µ1µ2

}
,

where ω is the unique positive standing solution of scalar Schrödinger equation with cubic

nonlinearity

−∆ω + ω = ω3 in Ω, ω = 0 on ∂Ω.

They first used the method of spectral analysis to find an infinite sequence of local bifurcations

with respect to Tω. In the case Ω being a radial domains or the spatial dimension n = 1, local

bifurcations become global bifurcations, due to Rabinowitz’s bifurcation results [40]. Then the

authors studied global bifurcations by establishing a new Liouville type theorem and investigat-

ing the nodal property of a weighted difference between the two solution components along each

bifurcation branch.

In this chapter, we consider the indefinite case of system (3.1.1), which is determined by

a > Λ1. In this case, the trivial solution branch Tω is expressed in terms of the positive solution

of Cahn-Hillards equation (3.1.2), instead of the positive solution of the above Schrödinger type

equation. Moreover, there are infinitely many bifurcations along Tω in the focusing-focusing

case, and finitely many bifurcations along Tω in the other three cases. In [36], B. Noris and M.

Ramos also studied indefinite system (3.1.1). They obtained an infinite sequence of solutions

for any β small enough under symmetric condition µ1 = µ2 > 0. Comparing with our result

in the focusing-focusing case, they do not require the domain to be radial to obtain infinitely

many solutions for β < 0 small. But on the other hand, they must have symmetric system, i.e.

µ1 = µ2 > 0. Also, their method only deals with the spatial dimension n = 3.

Without loss of generality we may assume Λ1 < 1 and take a = 1. Our main goal is to

obtain the bifurcations of (3.1.1) with respect to a known solution branch that can be explicitly
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expressed. We now define this trivial branch.

3.1.1 A trivial solution branch

Let ω be the unique positive solution of the scalar equation

−∆ω − ω = −ω3 in Ω, and ω = 0 on ∂Ω, (3.1.2)

where Ω ⊂ Rn is a bounded domain with smooth boundary, n ≤ 3. For the existence and

uniqueness of ω, one may consult Theorem 2.5 [38] for detailed proof. By the standard regularity

theory and the Strong Maximum Principle [21]

ω ∈ C2(Ω) ∩ C(Ω) and
∂ω

∂ν
> 0 on ∂Ω, (3.1.3)

where ν is outer normal vector on ∂Ω. It is easy to see that

uβ =

(√
µ2 − β

β2 − µ1µ2

)
ω, vβ =

(√
µ1 − β

β2 − µ1µ2

)
ω, (3.1.4)

solve (3.1.1) for β ∈ I, which is an interval determined according to the values of µ1 and µ2

(solve β such that the coefficients of ω in (3.1.4) are real) as follows:

I =


(−∞,−√µ1µ2), in the case 0 < µ1 ≤ µ2,

(−∞,√µ1µ2)\(µ1, µ2), in the case µ1 < µ2 < 0,

(−∞, µ1], in the case µ1 < 0 < µ2 or µ1 = µ2 < 0.

(3.1.5)

Then we obtain a trivial solution branch of (3.1.1)

Tω := {(β, uβ, vβ) : uβ, vβ are given by (3.1.4), β ∈ I} ⊂ R×H,

here H = H1
0 (Ω)×H1

0 (Ω).
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3.1.2 The notions of local and global bifurcations

The general description of bifurcation is given in Chapter 1, Section 1.2. We call

(β∗, uβ∗ , vβ∗) ∈ Tω

a local bifurcation point of (3.1.1) with respect to Tω, or a local bifurcation point for short, if

there exists a sequence of points {(βm, um, vm)}∞1 ⊂ R×H, such that (βm, um, vm) solves (3.1.1)

and

(βm, um, vm)→ (β∗, uβ∗ , vβ∗) as m→∞.

Accordingly, β∗ is called a local bifurcation parameter. Denote the set of all nontrivial solutions

(non-trivial relative to Tω) of (3.1.1) by

S = {(β, u, v) ∈ R×H|(β, u, v) solves system (3.1.1)} \ Tω.

Local bifurcation parameter β0 becomes a global bifurcation parameter, if there exists a con-

nected component S0 ⊂ S ∪{(β0, uβ0 , vβ0)}, such that (β0, uβ0 , vβ0) ∈ S and one of the following

situations occurs:

(i) S0 is unbounded in R×H;

(ii) S0 ∩ Tω\{(β0, uβ0 , vβ0)} 6= ∅.

This definition was given by Rabinowitz’s bifurcation theorem [40]. One can find more detailed

discussions and applications in [42].

3.1.3 A related eigenvalue problem

Let ω be the unique ground state solution of (3.1.2). The following eigenvalue problem plays

an important role in determining the bifurcation parameters,

−∆φ− φ = λω2φ in Ω, φ = 0 on ∂Ω. (3.1.6)
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Denote the sequence of distinct eigenvalues of (3.1.6) by

λ1 < λ2 < λ3 < · · · < λk0 < · · · , (3.1.7)

and the multiplicity of λk by nk. The non-degeneracy of ω implies that λk 6= −3 for any k ∈ N.

In fact, it is easy to see λ1 = −1. Also as k → ∞, we have λk → ∞. Thus (3.1.6) has

finitely many negative eigenvalues and infinitely many positive eigenvalues. Let λk∗+1 be the

least eigenvalue greater than 0. If we assume more precisely Λl < 1 ≤ Λl+1 for some l, where

Λ1 < Λ2 ≤ Λ3 ≤ ... are the eigenvalues of (−∆,Ω) with zero Dirichlet boundary condition, then

we have
∑k∗

j=1 nj ≥ l (
∑k∗

j=1 nj ≥ l + 1 if 1 = Λl+1).

Besides the minimal eigenvalue, 1 is another important value that we need to compare with

(3.1.7). Let λk0+1 be the least eigenvalue of (3.1.6) that is greater than 1.

3.1.4 Main results

We study (3.1.1) from three perspectives. First, we will give a nonexistence result. The

conclusions are given for a system slightly more general than (3.1.1). Second, we study the

local bifurcations of (3.1.1) along Tω. At last, when n = 1 or Ω is radial, we study the global

bifurcation branches with respect to Tω. As a result, the existence of multiple bifurcation

branches implies the existence of multiple solutions of (3.1.1) when β is in certain range.

Comparing with [8], here we can consider all real values of µ1 and µ2. Precisely, there are

four cases,

a. 0 < µ1 ≤ µ2;

b. µ1 ≤ µ2 < 0;

c. µ1 ≤ −µ2 < 0 < µ2;

d. µ1 < 0 < −µ1 < µ2.

In the process of studying the nonexistence and bifurcation problems, we use the same framework

for the four cases. But, on the other hand, the conclusions and proofs are still different in many
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places. To clearly show our results, we first summary the main results as three theorems, with

detailed descriptions omitted. Then in the following sections, we will restate the complete

version of the theorems for each case, and present the proofs accordingly. A few of results will

be established independently of the four cases, so they will only be proved once and then reused

when they are needed in the other cases. One may consider the arguments for the self-focusing

case, the case we shall discuss first, as a framework.

To explain the local bifurcation theorem, we define two auxiliary functions:

f(β) =
β2 − 2β(µ1 + µ2) + 3µ1µ2

β2 − µ1µ2
, (3.1.8)

and

g(β) = −4(µ1 + µ2)β3 + 2(µ2
1 + 10µ1µ2 + µ2

2)β2− 12µ1µ2(µ1 + µ2)β + 2µ1µ2(µ1 + µ2)2. (3.1.9)

These two functions, as we can see in later sections, are naturally derived from the definition

and verification of bifurcations.

Our first result is

Theorem A Let βk be a solution of f(β) = λk for some λk given in (3.1.7). Then βk is a

bifurcation parameter, if and only if g(βk) 6= 0. In other words, the following set contains all

bifurcation parameters of (3.1.1) with respect to Tω

{βk ∈ I | f(βk) = λk, g(βk) 6= 0, k ≥ 1}.

Moreover, if the multiplicity of λk is odd, then βk is a global bifurcation parameter, and the

corresponding bifurcation branch Sk is a solution branch of (3.1.1).

Remark 3.1.1 Theorem A gives the necessary and sufficient conditions for the existence of

local bifurcations, also global bifurcations with respect to Tω, provided that the multiplicity of the

bifurcation parameter is odd. The equation f(β) = λk is used to find the k-th possible bifurcation
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parameter, and the inequality g(βk) 6= 0 is used to verify that bifurcation indeed occurs at βk.

When n = 1 or Ω is radially symmetric, the multiplicity of every λk is odd. Then we have

the following theorem to describe the global bifurcation branches.

Theorem B If n = 1 or Ω is radially symmetric. Then every bifurcation parameter found

in Theorem A gives rise to a global bifurcation branch Sk with respect to Tω in the sense of

Rabinowitz’s theorem [40]. Moreover, if (u, v) ∈ Sk then the weighted difference
√
µ1 − βu −

√
µ2 − βv has precisely k−1 simple zeroes. Except, possibly, finitely many branches found in the

case µ1 < 0 < −µ1 < µ2, all other bifurcation branches are unbounded in the negative direction

of β.

About the nonexistence of positive solutions, our results are given for a more general indefi-

nite system, 
−∆u− au = µ1u

3 + βuv2 in Ω,

−∆v − bv = µ2v
3 + βvu2 in Ω,

u > 0, v > 0 in Ω, u = v = 0 on ∂Ω,

(3.1.10)

where Ω ⊂ Rn, n ≤ 3 is a bounded domain with smooth boundary.

Theorem C Assume that a ≥ Λ1, b ≥ Λ1. System (3.1.10) does not have positive solutions,

in any one of the following cases,

(i) 0 ≤ µ1 ≤ µ2, β ≥ −√µ1µ2, and at least one of the last two inequalities holds strictly;

(ii) µ1 ≤ β ≤ µ2 ≤ 0, and at least one of the first two inequalities holds strictly, or a 6= b;

(iii) µ1 ≤ min{β, 0}, 0 ≤ µ2, and the first inequality holds strictly, or b > Λ1.

Remark 3.1.2 The conclusions of Theorem C are divided into three parts in order to match

the four cases of µ1 and µ2.

Remark 3.1.3 There are a few bifurcation diagrams in the following sections and the no positive

solution regions are also labeled in these graphs. Note that, the conclusions of the theorems are
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more or less more general than the graphs, since we try to illustrate all conclusions in one graph

for each case, which requires all assumptions must be satisfied at the same time.

At last, for technical reasons, when we discuss the bifurcations, the following relaxed system

will be considered first,


−∆u− u = µ1u

3 + βuv2, in Ω

−∆v − v = µ2v
3 + βvu2, in Ω

u = v = 0, on ∂Ω.

(3.1.11)

Later on, after the bifurcations are verified, the positivity of these bifurcation solutions will be

recovered by using the Strong Maximum Principle. So we will get the bifurcations of original

system (3.1.1).

3.2 The self-focusing case

As it was mentioned in Chapter 1, in the case (a), 0 < µ1 ≤ µ2, system (3.1.1) is called

self-focusing. We assume 0 < µ1 ≤ µ2 throughout this section. For simplicity, let us prove the

nonexistence result theorem first.

3.2.1 Nonexistence of positive solutions

In this case, the nonexistence theorem is stated as follows:

Theorem 3.2.1 Let Ω be a smooth bounded domain in Rn (n ≤ 3). System (3.1.10) has no

solution, if β ≥ −√µ1µ2, a ≥ Λ1, b ≥ Λ1 and at least one of the three inequalities holds strictly.

Proof. Let φ1 be the eigenfunction of (−∆,Ω) that corresponds to Λ1. Multiplying the first

equation of (3.1.10) by µ
− 1

4
1 φ1 and the second equation by µ

− 1
4

2 φ1, adding the two equations

together, and integrating over Ω, we get the following estimates from the assumptions

(Λ1 − a)

∫
Ω
µ
− 1

4
1 φ1udx+ (Λ1 − b)

∫
Ω
µ
− 1

4
2 φ1vdx

=

∫
Ω
φ1(µ

3
4
1 u

3 + βµ
− 1

4
1 uv2 + βµ

− 1
4

2 u2v + µ
3
4
2 v

3)dx
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≥
∫

Ω
φ1(µ

3
4
1 u

3 − µ
1
4
1 µ

1
2
2 uv

2 − µ
1
2
1 µ

1
4
2 u

2v + µ
3
4
2 v

3)dx

=

∫
Ω
φ1

[
µ

1
4
1 u(µ

1
2
1 u

2 − µ
1
2
2 v

2) + µ
1
4
2 u(µ

1
2
2 v

2 − µ
1
2
1 u

2)

]
dx

=

∫
Ω
φ1(µ

1
2
2 v

2 − µ
1
2
1 u

2)(µ
1
4
2 v − µ

1
4
1 u)dx

=

∫
Ω
φ1(µ

1
4
1 u+ µ

1
4
2 v)(µ

1
4
1 u− µ

1
4
2 v)2dx.

The inequality in the third line is strict, if β > −√µ1µ2 and u, v > 0. This yields a contradiction,

since the first expression is non-positive and the last expression is strictly positive. If β =

−√µ1µ2, the right hand side is equal to zero only if µ
1
4
1 u− µ

1
4
2 v = 0. Now if a > Λ1 or b > Λ1,

then the first expression is strictly negative. This is also get a contradiction. Thus the theorem

is proved. �

3.2.2 Local bifurcations

The next lemma gives the necessary conditions such that local bifurcations of system (3.1.11)

with respect to Tω exist.

Lemma 3.2.2 All the possible bifurcation parameters of (3.1.11) are determined from the fol-

lowing equations about β:

f(β) = λk, k = k0 + 1, k0 + 2, · · · ,

where f is defined as (3.1.8), λk is the k-th eigenvalue of (3.1.6) and k0 is defined below (3.1.7).

Let βk be a solution of f(β) = λk, and let Vk be the kernel space of the linearization of (3.1.11)

at (βk, uβk , vβk). Then dimVk = nk, where nk is the multiplicity of λk.

Proof. Linearizing (3.1.11) at (β, uβ, vβ) ∈ Tω, we get

 −∆φ− φ = 3µ1u
2
βφ+ βv2

βφ+ 2βuβvβψ,

−∆ψ − ψ = 2βuβvβφ+ 3µ2v
2
βψ + βu2

βψ.
(3.2.1)
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To simplify notations, denote

A = 3µ1
µ2 − β

β2 − µ1µ2
+ β

µ1 − β
β2 − µ1µ2

=
3µ1µ2 − 2βµ1 − β2

β2 − µ1µ2
,

B = 2β

√
(µ1 − β)(µ2 − β)

(β2 − µ1µ2)2
=

2β
√

(µ1 − β)(µ2 − β)

β2 − µ1µ2
,

C = 3µ2
µ1 − β

β2 − µ1µ2
+ β

µ2 − β
β2 − µ1µ2

=
3µ1µ2 − 2βµ2 − β2

β2 − µ1µ2
.

Using (3.1.4) and the above notations of A,B and C, we can rewrite system (3.2.1) as

 −∆φ− φ = (Aφ+Bψ)ω2,

−∆ψ − ψ = (Bφ+ Cψ)ω2.
(3.2.2)

If φ and ψ are linearly dependent, then (3.2.2) can be reduced to one equation. Precisely, let

γ be the solution of Aγ + B = Bγ2 + Cγ, then for β ∈ I (the interval given by (3.1.5)), the

equation has solutions

γ± =
A− C ±

√
(C −A)2 + 4B2

2B
.

Now multiplying the second equation of (3.2.2) by γ±, then subtracting the resulting equation

from the first equation, and at last replacing B − Cγ± with Bγ2
± − Aγ±, one can observe that

φ− γ±ψ solves

−∆(φ− γ±ψ)− (φ− γ±ψ) = (A−Bγ±)ω2(φ− γ±ψ). (3.2.3)

Simple calculation shows A − Bγ− = Bγ+ + C = f(β) and A − Bγ+ = Bγ− + C = −3. We

use the constant γ+ in (3.2.3). Since −3 is not an eigenvalue of (3.1.6), equation (3.2.3) implies

that φ− γ+ψ = 0, i.e. φ = γ+ψ. Then ψ solves

−∆ψ − ψ = (Bφ+ Cψ)ω2 = (Bγ+ + C)ω2ψ = f(β)ω2ψ. (3.2.4)

If (3.2.4) has nontrivial solution, then system (3.2.1) has nontrivial solution (γ+ψ,ψ). The

linearized system (3.1.11) therefore has nontrivial kernel space, and then bifurcation may happen.

On the one hand, (3.1.7) is an increasing sequence of eigenvalues with
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λk →∞ as k →∞, and λ1 = −1, λk0 ≤ 1 < λk0+1.

On the other hand, f is an increasing homomorphism from (−∞,−√µ1µ2) to (1,∞), as shown

in Figure 3.1. Thus f(β) = λk has a unique solution β = βk for every k ≥ k0 + 1. As we

discussed above, (3.2.1) then has nonempty kernel space

Vk = {(γ+ψ,ψ) : ψ is an eigenfunction of (3.1.6) associated to λk}, (3.2.5)

and a local bifurcation of (3.1.11) may occur at (βk, uβk , vβk). Also it is easy to see from (3.2.5)

that dimVk = nk, where nk is the multiplicity of λk as eigenvalue of (3.2.1). �

Next we need to verify that the bifurcations indeed happen at the possible bifurcation points

found in Lemma 3.2.2.

Lemma 3.2.3 Let βk be the solution of f(β) = λk, k ≥ k0 + 1. Then βk is a local bifurcation

parameter if and only if g(βk) 6= 0, where g is defined as (3.1.9).

Proof. Denote the energy functional associated with system (3.1.11) by

Eβ(u, v) =
1

2

∫
Ω

(|∇u|2 − u2 + |∇v|2 − v2)dx− 1

4

∫
Ω

(µ1u
4 + µ2v

4)dx− β

2

∫
Ω
u2v2dx.

According to Sobolev embeddings and Proposition B34 [42], it is easy to see that Eβ ∈ C2(H,R).

Then by Theorem 8.9 [35], we only need to show that the Morse index of Eβ changes at

β

λ

f(β)

−√µ1µ2

1

µ2µ1

Figure 3.1: Graph of f in the case 0 < µ1 ≤ µ2
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(βk, uβk , vβk) for every bifurcation parameter βk. The Hessian of Eβ at (uβ, vβ), Hβ : H×H → R,

is represented as

Hβ[(φ, ψ)2] =

∫
Ω

(|∇φ|2 − φ2 + |∇ψ|2 − ψ2)−
∫

Ω
[3µ1u

2
βφ

2 + 3µ2v
2
βψ

2

+ β(v2
βφ

2 + 4uβvβφψ + u2
βψ

2)]

=

∫
Ω

(|∇φ|2 − φ2 + |∇ψ|2 − ψ2)−
∫

Ω
[A(β)φ2 + 2B(β)φψ + C(β)ψ2]ω2.

(3.2.6)

When β is close to βk, the Taylor expansion of Hβ at β = βk is

Hβ = Hβk + (β − βk)H ′βk + o(|β − βk|).

Thus on the produce space Vk × Vk, H ′βk is represented as

H ′βk [(γ+ψ,ψ)2] = −
∫

Ω
[A′(β)γ2

+ + 2B′(β)γ+ + C ′(β)]ω2ψ2, (3.2.7)

where ψ is the eigenfunction of corresponding to λk. Now the conclusion is true if and only

if H ′βk [(γ+ψ,ψ)2] is either positive definite or negative definite. To see that we need to take

derivative of A,B and C. Direction calculation shows

A′(β) =
−(2µ1 + 2β)(β2 − µ1µ2)− (3µ1µ2 − 2βµ1 − β2)2β

(β2 − µ1µ2)2

=
2µ1(β2 − 2βµ2 + µ1µ2)

(β2 − µ1µ2)2
,

B′(β) =
(2µ1µ2 − 3(µ1 + µ2)β + 4β2)(β2 − µ1µ2)− 4β2(µ1µ2 − (µ1 + µ2)β + β2)

(β2 − µ1µ2)2
√

(µ1 − β)(µ2 − β)

=
(µ1 + µ2)β3 − 6µ1µ2β

2 + 3µ1µ2(µ1 + µ2)β − 2µ2
1µ

2
2

(β2 − µ1µ2)2
√

(µ1 − β)(µ2 − β)
,

C ′(β) =
−(2µ2 + 2β)(β2 − µ1µ2)− (3µ1µ2 − 2βµ2 − β2)2β

(β2 − µ1µ2)2

=
2µ2(β2 − 2βµ1 + µ1µ2)

(β2 − µ1µ2)2
.
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Substituting the three expressions into (3.2.7) and noting γ+ = −
√

(µ1 − β)/(µ2 − β), we get

H ′βk [(γ+ψ,ψ)2] = −
∫

Ω
[A′(β)γ2

+ + 2B′(β)γ+ + C ′(β)]ω2ψ2 =
g(β)

(β2 − µ1µ2)2(β − µ2)

∫
Ω
ω2ψ2.

Clearly, H ′βk [(γ+ψ,ψ)2] is positive definite if and only if g(β) < 0 and negative definite if and

only if g(β) > 0, for β ∈ I. Therefore if g(βk) 6= 0, the Morse index of Eβ changes at (uβk , vβk).

According to Theorem 8.9 [35], (βk, uβk , vβk) is a bifurcation point. �

So far we have found the local bifurcations of system (3.1.11). To find the local bifurcations

of system (3.1.1), we need to verify the positivity of bifurcation solutions that we find out in

Lemma 3.2.2 and Lemma 3.2.3.

Lemma 3.2.4 Let (βk, uβk , vβk) ∈ Tω be a bifurcation point of (3.1.11) for any k ≥ k0+1. Then

there exist a sequence of solutions of (3.1.11), denoted by {(β(l)
k , u

(l)
k , v

(l)
k )} ⊂ R ×H, such that

(β
(l)
k , u

(l)
k , v

(l)
k )→ (βk, uβk , vβk) as l→∞, and u

(l)
k > 0, v

(l)
k > 0. In other words, (βk, uβk , vβk) is

also a bifurcation point of (3.1.1).

Proof. By the definition of bifurcation point, there exist a sequence of solutions of (3.1.11)

{(β(l)
k , u

(l)
k , v

(l)
k )} ⊂ R×H that satisfies

(β
(l)
k , u

(l)
k , v

(l)
k )→ (βk, uβk , vβk) in R×H as l→∞.

Thus we only need to verify u
(l)
k > 0 and v

(l)
k > 0, at least for l large enough.

Since Ω is bounded, then it follows from Sobolev embeddings, Hölder inequality, Lp estimates

and Schauder estimate (c.f. [21]) that u
(l)
k , v

(l)
k ∈ C1

0 (Ω) (see Appendix A. Lemma II). Then

u
(l)
k → uβk and v

(l)
k → vβk in H1

0 (Ω) implies that

‖u(l)
k − uβk‖C1

0
→ 0, ‖v(l)

k − vβk‖C1
0
→ 0 as l→∞.

According to (3.1.3) and (3.1.4), there exists L1 > 0 large enough such that

∂u
(l)
k

∂ν
≤ ∂ω

2∂ν
< 0,

∂v
(l)
k

∂ν
≤ ∂ω

2∂ν
< 0 for l ≥ L1.
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Using the continuous differentiability of u
(l)
k and v

(l)
k , there exists an open neighborhood B of

∂Ω such that u
(l)
k (x) > 0, v

(l)
k (x) > 0 for all l ≥ L1 and x ∈ B ∩ Ω. On the other hand, there

exists L2 > 0 such that

min
x∈Ω\B

u
(l)
k (x) ≥ 1

2
min
x∈Ω\B

ω(x), min
x∈Ω\B

v
(l)
k (x) ≥ 1

2
min
x∈Ω\B

ω(x),

for all l ≥ L2. Choose L = max{L1, L2}, then for l ≥ L, the above arguments imply that

u
(l)
k > 0 and v

(l)
k > 0 in Ω. Thus we obtain a sequence of positive solutions to system (3.1.11)

that converge to (uβk , vβk). The lemma is proved. �

Theorem 3.2.5 The trivial solution branch Tω exists on (−∞,−√µ1µ2). There are infinitely

many local bifurcations of (3.1.1) along Tω with k ≥ k0 + 1.

Proof. In Lemma 3.2.2, all the possible bifurcation parameters are found. Now, according to

Lemma 3.2.3, we only need to check g(βk) for k ≥ k0 + 1. Recall the definition of g in (3.1.9),

we have two estimates

g(0) = 2µ1µ2(µ1 + µ2)2 > 0,

and

g′(β) = −12(µ1 + µ2)β2 + 4(µ2
1 + 10µ1µ2 + µ2

2)β − 12µ1µ2(µ1 + µ2) < 0,

for all β ∈ (−∞, 0). Thus g(β) > 0 on (−∞,−√µ1µ2). Therefore we have the fact that {βk}∞k0+1

is a sequence of bifurcation parameters of system (3.1.11).

Next, by Lemma 3.2.4, there is a sequence of positive solutions of (3.1.11) converging to each

bifurcation point. Thus the local bifurcations of (3.1.11) are also local bifurcations of (3.1.1).

Hence the theorem is proved. �

3.2.3 Global bifurcations

By Theorem 3.2.5, we have obtained infinitely many local bifurcations of (3.1.1) in the self-

focusing case. According to Rabinowitz’s global bifurcation theorem, when the multiplicity nk is
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odd, the corresponding bifurcation is a global bifurcation, i.e. there is a continuous bifurcation

branch emanating from (βk, uk, vk). In particular, if n = 1 or the domain Ω is radially symmetric,

nk = 1 for each k. Thus every local bifurcation is actually a global bifurcation. Next we study

the property of global bifurcations of (3.1.1).

The following lemma extends the positivity of bifurcation solutions to the whole branch Sk

for every k ≥ k0 + 1.

Lemma 3.2.6 Let k ≥ k0 + 1 and βk be a bifurcation parameter. If there exists a connected

bifurcation branch Sk emanating from Tω at (βk, uβk , vβk), then all solution pairs (u, v) on Sk

are strictly positive in Ω.

Proof. With the same arguments used in the proof of Lemma 3.2.4, the weak solutions of (3.1.11)

found on Sk are C2 functions. Using (3.1.3) and (3.1.4), all solutions on the trivial solution

branch Tω are strictly positive, i.e. for any (β, uβ, vβ) ∈ Tω,

uβ > 0, vβ > 0 in Ω, and
∂uβ
∂ν

> 0,
∂vβ
∂ν

> 0. (3.2.8)

Here β < µ1 and ν is the outer normal vector on ∂Ω. Fix a bifurcation point (βk, uβk , vβk).

Since Sk is connected, if (β, u, v) ∈ Sk is close enough to (βk, uβk , vβk), then (β, u, v) also satisfies

(3.2.8). Actually, (3.2.8) can be continued along Sk and the following inequalities hold

∆u+ (µ1u
2 + βv2)u = −u ≤ 0, ∆v + (µ2v

2 + βu2)v = −v ≤ 0. (3.2.9)

Therefore all solutions of (3.1.11) on Sk have two nonnegative components, i.e. for any (β, u, v) ∈

Sk, u ≥ 0, v ≥ 0 in Ω. Then by the Strong Maximum Principle, u or v is either strictly positive

or identical to zero in Ω.

Next, we exclude trivial solutions and semi-trivial solutions.

Claim 1 Sk does not contain trivial solution (0, 0). Otherwise if (β̂, 0, 0) ∈ Sk for some β̂, then

(β̂, 0, 0) becomes a bifurcation point connecting Sk and trivial solution branch {(β, 0, 0)|β ∈ R}.
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Thus the linearized system at (0, 0)

−∆φ− φ = 0, ∆ψ − ψ = 0, in Ω, φ = ψ = 0 on ∂Ω,

has nonzero solution. Therefore 1 must be an eigenvalue of (−∆,Ω), and φ, ψ are corresponding

eigenfunctions. Since the principal eigenvalue Λ1 < 1, the eigenvalues corresponding to φ and

ψ are greater than or equal to Λ2. Thus φ and ψ are both sign-changing functions. But then

the solutions of (3.1.11) on Sk and close enough to (0, 0) will have negative parts. This is a

contradiction, so Claim 1 holds.

Claim 2 Sk does not contain semi-trivial solutions (U, 0) or (0, V ), where U, V > 0. It is enough

to show that there is no solution of the form (U, 0). We multiply the first equation of (3.1.11)

by the first eigenfunction of (−∆,Ω) and integrate both sides of the equation over Ω. Since the

first eigenvalue Λ1 < 1, a contradiction follows from the equations, if U is positive. With the

same argument, the branch does not contain semi-trivial solutions of the form (0, V ) either.

At last, combining the two claims, the lemma is proved. �

In the sense of Rabinowitz’s theorem [40], each global bifurcation branch is either unbounded,

or contains multiple bifurcation points. In the following lemma, we use a result from ordinary

differential equations to rule out the second possibility.

We call ξ a zero of function f , if f(ξ) = 0 in the case n = 1, or if f(ξ,0) = 0 in the cases

n = 2, 3. Moreover, ξ is a simple zero of f , if x = ξ is of multiplicity 1.

Lemma 3.2.7 Assume that n = 1 or Ω is radial domain. Let βk be the k-th bifurcation pa-

rameter. Then for any solution (u, v) ∈ Sk, the weighted difference
√
µ1 − βu −

√
µ2 − βv has

precisely k − 1 simple zeroes. In particular this property implies

Sk ∩ Tω = {(βk, uβk , vβk) | f(βk) = λk}.

And for each k ≥ k0 + 1, the above set contains only one bifurcation point.
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Proof. Fix k ≥ k0 + 1, then for (β, u, v) ∈ Sk close to (βk, uβk , vβk) but β 6= βk, we have

u = uβk + (β − βk)γ+(βk)ψk + o(β − βk) and v = vβk + (β − βk)ψk + o(β − βk).

Here ψk is the k-th eigenfunction of (3.1.6) (c.f. [15]). Let α = [(µ1 − β)/(µ2 − β)]1/2, then the

weighted difference

αu− v = (β − βk)(αγ+(βk)− 1)ψk + o(β − βk),

has precisely k − 1 simple zeroes provided β is close to βk. Here we use the facts that ψk has

precisely k − 1 simple zeroes [16] and that αγ+(βk) < 0. Now h = αu − v solves, in radial

coordinates, the equation

−h′′ − N−1
r h′ − h = αµ1u

3 + αβv2u− µ2v
3 − βu2v

=
(
µ1u

2 + (µ1 − β)1/2(µ2 − β)1/2uv + µ2v
2
)
h.

This equation implies that all zeros of h are simple. Otherwise the uniqueness of solution of the

above equation yields h ≡ 0, hence αu = v. Note that (u, v) is positive solution of (3.1.11). By

the uniqueness of positive solution of (3.1.2), we get u = uβ, v = vβ, which is a contradiction.

Therefore αu− v has precisely k − 1 simple zeros for every

(β, u, v) ∈ Sk\{(βk, uβk , vβk)}.

For different values of k, αu−v has different number of zeros. Thus two branches with different k

are disjoint. Moreover, the equation f(β) = λk has a unique solution βk for each k ≥ k0+1. This

one-to-one correspondence indicates that each bifurcation branch contains only one bifurcation

point. The lemma is proved. �

According to Rabinowitz’s bifurcation theorem, Lemma 3.2.7 indicates that the global bifur-

cation branches must be unbounded in R×H. Note that Lemma 3.2.7 is established independent

of the different values of µ1 and µ2, so we will use it directly for other cases of µ1 and µ2.

In the next lemma, we want to show that each branch is bounded for β contained in a
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compact set. Thus the bifurcation branches must be unbounded in the negative direction of β.

Note that Theorem 3.2.1 implies that the bifurcation branches do not cross β = 0.

Lemma 3.2.8 Assume that n = 1 or Ω is radially symmetric. For fixed integer k ≥ k0 + 1, if

there is a global bifurcation branch Sk, then for β contained in a compact subset of I,

{(β, uβ, vβ) ∈ Sk|(µ1 − β)1/2uβ − (µ2 − β)1/2vβ has at most k zeroes, β ∈ I}

is bounded. Here the interval I is defined in (3.1.5).

Proof. Rewriting system (3.1.1) in radial variable r = |x| for n = 2 or 3, we may assume that

u and v are functions of r with r ∈ (a, b) and 0 ≤ a < b < ∞. If the conclusion is not true,

then there exist an integer k and a sequence {(βm, um, vm)} ⊂ Sk (radial, if n ≥ 2) such that

βm → β ≤ µ1, ‖um‖∞ → ∞ or ‖vm‖∞ → ∞ as m → ∞. Set εm = min{‖um‖−1
∞ , ‖vm‖−1

∞ }

and choose rm such that um(rm) = ‖um‖∞ if ‖um‖∞ ≥ ‖vm‖∞; otherwise, choose rm such that

vm(rm) = ‖vm‖∞. Let

ũm(r) = εmum(rm + εmr), ṽm(r) = εmvm(rm + εmr).

Then {ũm}∞1 , {ṽm}∞1 are bounded in L∞ and satisfy the system


−ũ′′m −

εm(n− 1)

rm + εmr
ũ′n − ε2mũm = µ1ũ

3
m + βmṽ

2
mũm,

−ṽ′′m −
εm(n− 1)

rm + εmr
ṽ′n − ε2mṽm = µ2ṽ

3
m + βmũ

2
mṽm,

(3.2.10)

on the scaled domain (a − rm)ε−1
m < r < (b − rm)ε−1

m . Along a subsequence, (ũm, ṽm) converge

in C2
loc as m→∞ towards a solution (u, v) of the following system



−u′′ − n− 1

c+ r
u′ = µ1u

3 + βv2u,

−v′′ − n− 1

c+ r
v′ = µ2v

3 + βu2v,

u, v ≥ 0.

(3.2.11)
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Here c ≥ 0 and r > −c. Set am =
a− rm
εm

, bm =
b− rm
εm

, then am, bm converge in [−∞,∞] and

u, v may defined in one of the following intervals: (−c,∞), (−∞, c). By Lemma 3.2.6, u > 0 and

v > 0 in Ω. Since 0 < µ1 ≤ µ2, Theorem 2.6 [8] yields the fact that (µ1 − β)1/2u− (µ2 − β)1/2v

has infinitely many zeroes. This is a contradiction, since (µ1 − βm)1/2um − (µ2 − βm)1/2vm has

at most k zeroes for every m. Therefore Sk is bounded for β in any compact subset of I. �

Combining Theorem 3.2.5, Lemma 3.2.6, Lemma 3.2.7 and Lemma 3.2.8, we get the global

bifurcation diagram Figure 3.2 in the case n = 1 or Ω is radially symmetric.

Theorem 3.2.9 There is a global bifurcation branch of system (3.1.1) for every k ≥ k0 + 1. All

these branches are unbounded in the negative direction of β. The bifurcation diagram is shown

in Figure 3.2.

Remark 3.2.10 Different from the other cases (b)-(d), there is no semi-trivial solution branches

in this case.

3.3 The self-defocusing case

In the previous section, we establish the local and global bifurcation results for the self-

focusing case. In this section, we study the self-defocusing case, i.e. µ1 ≤ µ2 < 0, which is an

assumption made through out this section.

Recall the definition of k0, which is determined by λk0 ≤ 1 < λk0+1. For simplicity, we

assume k0 < 1. Otherwise, we replace k0 by the largest integer k̃ such that λk̃ < 1.

H norm

β

Tω

−√µ1µ2

Sk0

Sk0+1

Sk0+m

µ2µ1

Tω Trivial branch

Sk Bifurcation branch

No positive solution

No semi-trivial solution for any β

Figure 3.2: Bifurcation diagram in the case 0 < µ1 < µ2
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3.3.1 Nonexistence of positive solutions

In this case, we have the nonexistence result of positive solution of system (3.1.10) for β in

a finite interval.

Theorem 3.3.1 Let Ω be a smooth bounded domain in Rn (n ≤ 3). If µ1 ≤ β ≤ µ2, b ≥ a and

at least one of the three equalities holds strictly, then (3.1.10) has no positive solution.

Proof. Multiplying the first equation of (3.1.10) by v, then integrating over Ω, we get

∫
Ω

(∇u∇v − auv)dx =

∫
Ω

(µ1u
3v + βuv3)dx. (3.3.1)

Similarly, multiplying the second equation by u and integrating over Ω,

∫
Ω

(∇u∇v − buv)dx =

∫
Ω

(µ2uv
3 + βu3v)dx. (3.3.2)

Subtracting (3.3.2) from (3.3.1), one obtains

0 ≤ (b− a)

∫
Ω
uvdx = (µ1 − β)

∫
Ω
u3vdx+ (β − µ2)

∫
Ω
uv3dx ≤ 0.

Since one or both of the above inequalities will hold strictly, if one or more inequalities in the

assumptions hold strictly, we obtain a contraction if system (3.1.10) has solutions with two

positive components. The theorem is proved. �

3.3.2 Local bifurcations

Next, we study the local bifurcations with respect to Tω.

Lemma 3.3.2 All the possible bifurcation parameters of (3.1.11) are determined from the fol-

lowing equations about β:

f(β) = λk, k = 1, · · · , k0,

where f is defined as (3.1.8) and λk is the k-th eigenvalue of (3.1.6). Let βk be a solution of
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f(β) = λk, and let Vk be the kernel space of the linearization of (3.1.11) at (βk, uβk , vβk). Then

dimVk = nk, where nk is the multiplicity of λk.

Proof. The proof is similar to the proof of Lemma 3.2.2. Actually, we only need to consider

the behavior of function f . In this case, f is a monotone decreasing homomorphism from

I = (−∞, µ1) to (−∞, 1), as shown in Figure 3.3. Comparing with (3.1.7), there are finite many

possible bifurcation parameters determined from f(β) = λk with 1 ≤ k ≤ k0. It is worth to

mention that since the smallest eigenvalue of (3.1.6) is −1, there is no bifurcation points for β

on the lower branch of graph of f other than µ2. Linearized system (3.1.11) at (βk, uβk , vβk) is

(3.2.1), and its kernel space can be represented as (3.2.5). Thus dimVk = nk. �

Theorem 3.3.3 The trivial solution branch Tω exists on (−∞,√µ1µ2)\(µ1, µ2). There are

finitely many local bifurcations of (3.1.11) along Tω with 1 ≤ k ≤ k0. And they are also local

bifurcations of (3.1.1), except at k = 1.

Proof. By Lemma 3.3.2, there are k0 + 1 possible bifurcation parameters, and µ1, µ2 are two of

them. Actually, they are both corresponding to equation f(β) = λ1. It is easy to see that when

µ1 < µ2 there are two semi-trivial branches,

T1 = {(β, ω/
√
−µ1, 0) : β ∈ R} and T2 = {(β, 0, ω/

√
−µ2) : β ∈ R}.

1

−1

β

λ

f(β) µ1 µ2

Figure 3.3: Graph of f in the case µ1 < µ2 < 0
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They meet with Tω at (µ1, ω/
√
−µ1, 0) and (µ2, 0, ω/

√
−µ2), respectively. If µ1 = µ2 =: µ, then

the two semi-trivial solution branches T1 and T2 are connected by line segment

Tθ =

{(
µ,

ω√
−µ

cos θ,
ω√
−µ

sin θ

)
: θ ∈

(
0,
π

2

)}
⊂ R×H.

Tθ intersects Tω at θ = π/4. See [18] for more detailed discussion.

Now we consider the other parameters, i.e. {βk}k2. According to Lemma 3.2.3, we only need

to check g(βk) 6= 0 for 2 ≤ k ≤ k0, then {βk}k2 are indeed bifurcation parameters. Lemma 3.3.2

implies that all these parameters are contained in interval (−∞, µ1). Direct calculation shows

g′(β) = −12(µ1 + µ2)β2 + 4(µ2
1 + 10µ1µ2 + µ2

2)β − 12µ1µ2(µ1 + µ2) > 0,

for all β < µ1. Thus g strictly increasing on (−∞, µ1). On the other hand, evaluating g at the

right endpoint, we get g(µ1) = −2µ1(µ1−µ2)3 < 0. So g(βk) < 0 for 2 ≤ k ≤ k0. Therefore {βk}k2

are bifurcation parameters of (3.1.11). Apply Lemma 3.2.4, {βk}k2 are bifurcation parameters

of system (3.1.1). �

3.3.3 Global bifurcations

When nk is odd, local bifurcations become global bifurcations, in particular when n = 1 or

Ω is radially symmetric. In addition, we hope to prove that all global bifurcation branches are

unbounded in the negative direction of β. So we need to verify Lemma 3.2.6 and Lemma 3.2.8

for µ1 ≤ µ2 < 0.

Lemma 3.3.4 Let βk be a bifurcation parameter for any 2 ≤ k ≤ k0. If there exists a connected

bifurcation branch Sk emanating from Tω at (βk, uβk , vβk), then all solution pairs (u, v) on Sk

are strictly positive in Ω.

Proof. First, the Strong Maximum Principle implies that all solution on bifurcation branches are

nonnegative. This can be shown by using the same arguments in the proof of Lemma 3.2.6. Then

we need to exclude the trivial solution and semi-trivial solutions. It is equivalent to establish the
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two claims in the proof of Lemma 3.2.6. The first claim, which rules out the trivial solution, is

independent of the values of µ1 and µ2, so the arguments used in Lemma 3.2.6 are still applicable

in this case. The second Claim is used to remove the possibility of semi-trivial solutions, which

requires some work.

It is enough to show that Sk does not contain semi-trivial solution in the form (U, 0), and the

possibility of semi-trivial solution in the form (0, V ) can be removed in the same way. Assume

that Sk contains (U, 0). The linearized system at (U, 0)

 −∆φ− φ = 3µ1U
2φ,

−∆ψ − ψ = βU2ψ,

should have nontrivial kernel space. Using the first equation of (3.1.11) and the uniqueness of

positive solution of (3.1.2), we get U = (
√
−1/µ1)ω, and the above two equations become

−∆φ− φ = −3ω2φ, −∆ψ − ψ = − β

µ1
ω2ψ. (3.3.3)

The special form of U implies that (U, 0) ∈ T1, which is the semi-trivial solution branch defined in

Theorem 3.3.3. Since the principal eigenvalue of (3.1.6) is −1, from the first equation of (3.3.3)

we get φ = 0, and from the second equation of (3.3.3) we get β ≥ µ1. Since µ1 ≤ β < 0, the

above system has nonzero solution only if β/µ1 = −λk for 1 < k ≤ k0. But the corresponding

solution to the second equation will be a sign-changing function. For (u, v) ∈ Sk close to (U, 0), v

can be viewed as a small perturbation of 0 that is dominated by ψ (see the expansion in Lemma

3.2.7), thus it is also a sign-changing function. This contradicts with the fact that all solutions

of (3.1.11) on Sk are nonnegative. Therefore Sk does not contain semi-trivial solution (U, 0).

Follows from the two Claims, all solutions on the global bifurcation branches are positive. �

Using Lemma 3.2.7, we can rule out the possibility that Sk contains multiple bifurcation

points. Hence each global bifurcation branches must be unbounded. Now we show that Sk can

only be unbounded in the negative direction of β.

Lemma 3.3.5 Assume that n = 1 or Ω is radially symmetric. For fixed integer 2 ≤ k ≤ k0, if



69

there is a global bifurcation branch Sk, then for β contained in a compact subset B ⊂ I, which

is defined in (3.1.5), the following set

{(β, uβ, vβ) ∈ Sk|(µ1 − β)1/2uβ − (µ2 − β)1/2vβ has at most k zeroes, β ∈ B},

is bounded in R×H.

Proof. Prove by contradiction. With the same contradiction assumptions in Lemma 3.2.8, we

arrive at the limiting system (3.2.11). Since µ1 ≤ µ2 < 0, the Strong Maximum Principle implies

u ≡ 0 and v ≡ 0. Actually, for every m, ũm(am) = 0, ũm(bm) = 0, ṽm(am) = 0, ṽm(bm) = 0.

Without loss of generality, assume ‖um‖∞ ≥ ‖vm‖∞, then ũm achieves its maximum at 0, i.e.

ũm(0) = 1 and ũ′m(0) = 0. We consider the case that limiting interval is (−c,∞), and the other

case (−∞, c) is similar. If am → −c < 0, then

u(−c) = lim
m→∞

ũm(am) = 0.

Notice that the limiting system (3.2.11) implies

u′′ +
n− 1

c+ r
u′ ≥ 0,

then by the Strong Maximum Principle and the assumption ũm(am) = 0 for any m, we get

u ≡ 0, which is a contradiction since u(0) = 1. If am → 0, the C2
loc convergence of implies

u′(0) = 0. But we also have u′′(0) > 0, which implies that u achieves strict local minimum at

v = 0, a contradiction. Thus the conclusion holds for the self-defocusing case. �

With all lemmas in hand, we can describe the global bifurcations for µ1 ≤ µ2 < 0. There

are two semi-trivial bifurcation branches T1 and T2, which are defined in the same way as we

discussed in Theorem 3.3.3. Combining Theorem 3.3.3, Lemma 3.3.4, Lemma 3.3.5 and Lemma

3.2.7, we obtain the following bifurcation theorem in the defocusing case.

Theorem 3.3.6 Assume that n = 1 or Ω is radially symmetric. Also assume 2 ≤ k ≤ k0.
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(i) If µ1 < µ2 < 0, the trivial solution branch Tω exists on two separated intervals of β:

(−∞, µ1]∪ [µ2,
√
µ1µ2). On the interval (−∞, µ1), there are k0−1 bifurcation parameters,

with 2 ≤ k ≤ k0. Each of them gives rise to a unbounded bifurcation branch of (3.1.1)

when n = 1 or Ω is radially symmetric.

(ii) If µ1 = µ2 < 0, Tω is defined on (−∞, µ1), and there are k0−1 local bifurcation parameters,

which give k0 − 1 unbounded global bifurcation branches when n = 1 or Ω is radially

symmetric.

The global bifurcation diagram in this case is shown in Figure 3.4

3.4 The two mixed cases

In this section we discuss the mixed case, i.e. µ1 < 0 < µ2. Here we distinguish two sub-

cases: −µ1 ≥ µ2 and −µ1 < µ2. Most of the results for these two sub-cases can be established

with the same arguments, whereas, the latter case is more complicated and a new phenomenon

appears. In this section, assume λk0 ≤ 1 < λk0+1.

We still start with a nonexistence theorem.

3.4.1 Nonexistence of positive solutions

Theorem 3.4.1 Let Ω be a smooth bounded domain in Rn (n ≤ 3). If β ≥ µ1, b ≥ a ≥ Λ1 and

at least one of the three inequalities holds strictly, then (3.1.11) has no positive solution.

µ2µ1
β

T2
T1

√
µ1µ2

H norm

S2

Tω

Sk0

Tω Trivial branch
Sk Bifurcation branch

T1&T2 Semi-trivial solution
No positive solution

Figure 3.4: Bifurcation diagram in the case µ1 < µ2 < 0
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Proof. If µ1 ≤ β ≤ µ2, the nonexistence of positive solution follows from the same argument as

Theorem 3.3.1. If β > µ2, multiplying the second equation by φ1 and integrating over Ω, we get

0 ≥ (Λ1 − b)
∫

Ω
φ1vdx ≥ µ2

∫
Ω
v3φ1dx ≥ 0.

If any of the three inequalities in the assumption holds strictly, then there will be a contradiction,

unless v = 0. Thus (3.1.10) has no positive solution when β ≥ µ1. �

3.4.2 Local bifurcations

For fixed µ1 and µ2, there are finitely many local bifurcation parameters determined from

the next lemma.

Lemma 3.4.2 All the possible bifurcation parameters of (3.1.11) are determined from the fol-

lowing equations about β:

f(β) = λk, k ≥ 1,

where f is defined as (3.1.8) and λk is the k-th eigenvalue of (3.1.6). Let Vk be the kernel space

of the linearization of (3.1.11) at (βk, uβk , vβk). Then dimVk = nk.

Proof. The derivation of equations f(β) = λk, including linearization of (3.1.11) and then the

reduction, is the same as the proof of Lemma 3.2.2. Therefore we only need to study the behavior

of f and compare with the sequence of eigenvalues (3.1.7), then the location and quantity of

possible bifurcation parameters can be determined.

If −µ1 > µ2 > 0, it is easy to see from the expressions of f and f ′ that

f is strictly decreasing on (−∞, µ1), lim
β→µ−1

f(β) = −1, lim
β→−∞

f(β) = 1.

The graph of f is shown in Figure 3.5. Therefore, the equation f(β) = λk has unique solution

for each 1 ≤ k ≤ k0 and has no solution if k ≥ k0 + 1.
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If −µ1 < µ2, then there are possibly more bifurcation parameters. Define a constant ξ as

ξ :=
2µ1µ2 + (µ1 − µ2)

√
−µ1µ2

µ1 + µ2
.

It is easy to see that

ξ <
2µ1µ2

µ1 + µ2
< µ1, f(

2µ1µ2

µ1 + µ2
) = 1, f(µ1) = −1,

and

f ′(x) > 0, on (−∞, ξ), f ′(x) < 0, on (ξ, µ1), lim
β→−∞

f(x) = 1.

Denote I1 = [ 2µ1µ2
µ1+µ2

, µ1] and I2 = (−∞, 2µ1µ2
µ1+µ2

). On I1, there exist k0 bifurcation parameters

µ1 = β1 > β2 > · · · > βk0 ,

which correspond to λ1, λ2, . . . , λk0 respectively. On I2, f is concave down and achieves its global

maximum at ξ. Moreover, f approaches 1 as β → −∞ and as β approaches the right endpoint

2µ1µ2
µ1+µ2

. Each λk with λk < f(ξ) and k > k0 gives rise to two possible bifurcation parameters.

The graph of f is shown in Figure 3.6. Comparing with (3.1.7), there are at least k0 possible

bifurcation parameters on I1, and possibly more on I2.

Linearized system (3.1.11) at (βk, uβk , vβk) is (3.2.1), and its kernel space can be expressed

as (3.2.5). Thus dimVk = nk. �

Remark 3.4.3 In the case µ2 > −µ1 > 0, there may be more than k0 global bifurcation

1

−1

β

λ

µ1 µ2f(β)

Figure 3.5: Graph of f in the case µ1 ≤ −µ2 < 0 < µ2
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branches. Define ξ in the same way as the proof as Lemma 3.4.2, then it is easy to see f(ξ) > 1.

If there exists m ≥ 1 such that f(ξ) > λk0+m, then for each i = 1, ...,m there exist exactly two

values of β such that f(β) = λk0+i. We denote them by βk0+i and β′k0+i, which satisfy

β′k0+1 > β′k0+2 > ... > β′k0+m > ξ > βk0+m > ... > βk0+1.

This is also a sequence of possible bifurcation parameters.

Furthermore, f achieves its maximum at ξ and the maximum value is

fmax =
5µ2

1µ
2
2 − 2µ3

1

√
−µ1µ2 + 2µ3

2

√
−µ1µ2

µ2
1µ

2
2 + 2µ2

1µ2
√
−µ1µ2 − 2µ1µ2

2

√
−µ1µ2 − 2µ3

1µ2 − 2µ1µ3
2

=
5t2 + 2

√
−t− 2t3

√
−t

t2 − 2t
√
−t+ 2t2

√
−t− 2t− 2t3

(t = µ2/µ1)

=
5s4 + 2s+ 2s7

s4 + 2s3 + 2s5 + 2s2 + 2s6
(s =

√
−t).

It is easy to see fmax →∞ as s→∞. Therefore there are more and more bifurcation parameters

can be solved from f(β) = λk as
√
−µ2/µ1 →∞.

Theorem 3.4.4 The trivial solution branch Tω exists on (−∞, µ1). There is one semi-trivial

solution branch T1 = {(β, ω/
√
−µ1, 0) : β ∈ R} emanating from Tω. And

(i) if −µ1 > µ2, there are k0 − 1 local bifurcations with 2 ≤ k ≤ k0;

(ii) if −µ1 < µ2, denote I1 = [2µ1µ2
µ1µ2

, µ1] and I2 = (−∞, 2µ1µ2
µ1µ2

). Then on I1, there exist k0

1

−1

β

λ

ξ

µ1 µ2

f(β)

Figure 3.6: Graph of f in the case µ1 < 0 < −µ1 < µ2
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bifurcation parameters (including µ1). On I2, there exist m pairs of bifurcation parameters,

where the m pairs of bifurcation points are characterized in Remark 3.4.3, provided f(ξ) >

λk0+m.

Proof. Direct calculation verifies the existence of the semi-trivial bifurcation branch T1. Now we

focus on nontrivial bifurcations.

According to Lemma 3.2.3, we need to check g(βk) 6= 0 for all βk solved from Lemma 3.4.2

with k ≥ 2. When µ1 < 0 < µ2, g is a polynomial of degree 3 with negative leading coefficient

and

g(β) = 2(µ1 + µ2 − 2β)
[
(µ1 + µ2)β2 − 4µ1µ2β + µ1µ2(µ1 + µ2)

]
.

A direct calculation shows that g(µ1) < 0 and ξ is the only negative zero of g. Thus g is negative

on (ξ, µ1] and positive on (−∞, ξ).

In both cases (i) and (ii), the bifurcation parameters {βk}k02 ⊂ (ξ, µ1], thus g(βk) 6= 0 and

they are bifurcation parameters by using Lemma 3.2.3. In the subcase (ii), g is not equal to

zero except possibly at ξ. Thus there are another m pairs of bifurcation parameters in this case,

provided f(ξ) > λk0+m.

At last, the positivity of solutions follows from Lemma 3.2.4. �

Remark 3.4.5 If f(ξ) = λkξ for some kξ > k0, then this λkξ is a possible bifurcation parameter.

But it cannot be verified by using Lemma 3.2.2 since g(ξ) = 0.

3.4.3 Global bifurcations

When N = 1 or Ω is radially symmetric, all bifurcation parameters give rise to global

bifurcation branches.

Lemma 3.4.6 Let βk be a bifurcation parameter and k ≥ 2. If there exists a connected bifur-

cation branch Sk emanating from Tω at (βk, uβk , vβk), then all solution pairs (u, v) on Sk are

strictly positive in Ω.
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Proof. By the same arguments used in Lemma 3.2.6, we can show that all solutions on bifurcation

branch Sk, k ≥ 2 are nonnegative. Now, we only need to verify the two claims given in Lemma

3.2.6. The proof of Claim I does not require the assumptions on µ1 and µ2, then it also holds

for this case.

Consider Claim II, i.e. no semi-trivial solution on Sk. First, we can rule out semi-trivial solu-

tion in the form (U, 0) by using the same argument in the proof of Lemma 3.3.4. Second, system

(3.1.11) does not have semi-trivial solution in the form (0, V ) either. Otherwise, multiplying

the second equation of (3.1.11) by the first eigenfunction of (−∆,Ω) and integrating over Ω, the

left-hand side of the equation is negative but the right-hand side is positive. A contradiction.

Thus Sk will not meet any semi-trivial solution.

The lemma follows from the two claims. �

According to Lemma 3.2.7, Sk does not contain multiple bifurcation points, therefore each

global bifurcation branches must be unbounded. We now prove a lemma to show that Sk can

only be unbounded in the negative direction of β.

Lemma 3.4.7 Assume that n = 1 or Ω is radially symmetric. For fixed integer k ≥ 2, if there

is a global bifurcation branch Sk, then for β contained in a compact subset B ⊂ I, which is

defined in (3.1.5),

{(β, uβ, vβ) ∈ Sk|(µ1 − β)1/2uβ − (µ2 − β)1/2vβ has at most k zeroes, β ∈ B}

is bounded.

Proof. First, we can use the same blow-up assumptions and obtain the limiting system (3.2.11).

If ‖vm‖∞ ≤ ‖um‖∞, applying the Strong Maximum Principle to the first equation, we get u ≡ 0

then v ≡ 0, which is a contradiction. If ‖vm‖∞ ≥ ‖um‖∞, then u ≡ 0, v(0) = 1 and

−v′′ − N − 1

c+ r
v′ = µ2v

3.
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The above equation can be viewed as system (3.2.11) with u ≡ 0 and v ≥ 0. Then according

to Theorem 2.6 [8],
√
µ1 − βu −

√
µ2 − βv has infinity many zeros. By the Strong Maximum

Principle, we have v ≡ 0, which contradicts with v(0) = 1.

Therefore Sk is bounded for β in any compact subset of (−∞, µ1). �

Now, we summary the global bifurcations of case (c) and (d) in the following theorems.

Figure 3.7 illustrate the behaviors of bifurcation branches in the two mixed cases.

Theorem 3.4.8 Assume n = 1 or Ω is radially symmetric. If µ1 < 0 < µ2, there are k0

global bifurcation branches of (3.1.11). They are all unbounded in the negative direction of β.

Except the semi-trivial bifurcation branch T1, the other bifurcation branches are also bifurcation

branches of (3.1.1).

Proof. It follows from Theorem 3.4.4, Lemma 3.2.7 and Lemma 3.4.7. �

µ2µ1
β

T1

H norm

Sk0

Tω
S2

Tω Trivial branch
T1 Semi-trivial branch
Sk Bifurcation branch
No positive solution

(a) µ1 ≤ −µ2 < 0 < µ2

µ2µ1
β

T1

H norm

Sk0

TωS2

Tω Trivial branch
T1 Semi-trivial branch
Sk Bifurcation branch
No positive solution

(b) µ1 < 0 < −µ1 < µ2

Figure 3.7: Bifurcation schematic diagrams in the case µ1 < 0 < µ2.
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Theorem 3.4.9 Assume that n = 1 or Ω is radially symmetric. In the case (d) if λk0+m+1 ≥

f(ξ) > λk0+m for some m ≥ 1, then for each i = 1, ...,m, βk0+i (resp. β′k0+i) is a bifurcation

parameter and gives rise to a global bifurcation branch Sk0+i (resp. S ′k0+i) with respect to Tω.

For k = k0 + 1, ..., k0 +m, any solution (u, v) ∈ Sk (or S ′k) satisfies that
√
µ1 − βu−

√
µ2 − βv

has precisely k− 1 simple zeroes, and either Sk and S ′k are both unbounded in negative direction

β or they are actually the same bifurcation branch.

Proof. According to Theorem 3.4.8, there are m pairs of bifurcation parameters if λk0+m+1 ≥

f(ξ) > λk0+m for some m ≥ 1. If n = 1 or Ω is radially symmetric, then there are global bifurca-

tion branches emanating from each of these bifurcation point. But different from the bifurcation

parameters βk with 2 ≤ k ≤ k0, Lemma 3.2.7 cannot distinguish the global bifurcation branches

emanating from βk0+i and β′k0+i. Thus there may be bounded bifurcation branch connecting

βk0+i and β′k0+i.

If there is a method that can be used to distinguish Sk0+i and S ′k0+i, then these two branches

are unbounded in the negative direction of β by the same arguments in the proof of Theorem

3.4.8. �

3.5 Summary

In this chapter, we use the bifurcation method to find multiple solutions of (3.1.1). The

existence of trivial solution branch Tω is derived from the known solution ω of scalar equation

(3.1.2). Note that the non-degeneracy of ω plays an important role in reducing the linearized

system (3.2.1) to one equation. Then for the reduced equation, the sequence of eigenvalues of

(3.1.7) induce the bifurcation parameters of (3.1.11) through an auxiliary function of β with

parameters µ1 and µ2. In verifying the bifurcations and the positivity of global bifurcation

branches, the proofs are different for the cases characterized by µ1 and µ2. In the last case,

µ1 < 0 < −µ1 < µ2, the boundedness of some global bifurcation branches cannot be determined

by using Lemma 3.2.7.

Comparing with Chapter 2, this method requires less symmetry for the system. But, since

this method relies on the reduction of linearized system to a scalar equation, it is hard to
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generalize the results to system with more than two components. And the global bifurcation

results rely on the assumptions: n = 1 or Ω is radial.

3.6 Future work

Let V : Rn → R+ be a function satisfying

(V) infRn V (x) > 0 and V (x)→∞ as |x| → ∞.

Then consider the following system


−∆u+ V (x)u− λu = µ1u

3 + βuv2 in Rn,

−∆v + V (x)v − λv = µ2v
3 + βvu2 in Rn,

u, v > 0 in Rn, u, v ∈ H1
V (Rn),

(3.6.1)

where λ is a positive constant, µ1, µ2, β ∈ R and

H1
V (Rn) =

{
u ∈ H1(Rn)|

∫
Rn
V (x)u2dx <∞

}
.

Denote the sequence of eigenvalues of −∆ + V (x) on Rn with Dirichlet boundary condition by

0 < Λ1(V,Rn) < Λ2(V,Rn) ≤ Λ3(V,Rn) ≤ · · · .

If λ > Λa(V,Rn), then system (3.6.1) is indefinite. Now the question we want to answer is

whether similar bifurcation results can be established for the system (3.6.1), with proper as-

sumptions on µ1, µ2 and the coupling constant β are satisfied.
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CHAPTER 4

SUMMARY AND CONCLUSIONS

In this dissertation, we considered the standing wave solutions of coupled nonlinear Schrödinger

equations (CNLS),


−i ∂
∂t

Φj = ∆Φj − Vj(x)Φj + µj |Φj |2p−2Φj +
∑
k 6=j

βjk|Φk|p|Φj |p−2Φj ,

Φj = Φj(x, t) : Rn × R+ → C,

(4.0.1)

where standing wave solutions take the following form: Φj(x, t) = eiajtuj(x, t) and uj : Rn ×

R+ → R. By imposing different assumptions on the coefficients, the reduced system of (4.0.1)

with standing wave solutions can be classified into many categories.

A large number of established results on the standing wave solutions of (4.0.1) concern

the existence or asymptotic behavior of solutions in the definite case. In contrast, results on

multiplicity, in particular in the indefinite case, are relatively few. In this dissertation, we studied

the multiplicity of standing wave solutions in following two cases: definite and fully symmetric

case, in which system (4.0.1) becomes

 −∆uj + uj = µu3
j + βuj

∑
k 6=j u

2
k in Ω,

uj > 0 in Ω, uj = 0, j = 1, . . . , N on ∂Ω,
(4.0.2)

and indefinite and asymmetric case, in which system (4.0.1) becomes


−∆u− au = µ1u

3 + βuv2 in Ω,

−∆v − av = µ2v
3 + βvu2 in Ω,

u, v > 0 in Ω, u = v = 0 on ∂Ω.

(4.0.3)

For system (4.0.2), we used variational methods and a ZN -symmetric structure to find multi-
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ple solutions. To find positive solutions, a Nehari manifoldM with co-dimension N was defined.

By restricting the associated energy functional E onM, we excluded the trivial solution and all

semi-trivial solutions. A new ZN -index were introduced in order to find multiple critical points.

Then a Lusternik-Schnirelmann type of arguments were used to divide the Nehari manifold into

a sequence of level sets, and minimizers of E found on these levels were proved to be critical

points of E , by using the corresponding ZN -invariant deformation flow. Since ZN has proper

subgroups when N is not prime, some induction arguments are required.

For system (4.0.3), we used the bifurcation methods to find multiple solutions. Since (4.0.3)

is indefinite, a PS sequence does not necessarily have a convergent subsequence. Thus variational

methods do no apply directly. On the other hand, a trivial solution branch Tω of (4.0.3) can be

derived from the non-degenerate positive solution ω of a scalar equation. We linearized (4.0.3)

along Tω, and found out that the linearized system had nonempty kernel spaces for some values

of β. According to bifurcation theory, local bifurcations may happen and new solutions may

exist in a neighborhood of these β’s. We verified local bifurcations at those values of β by using

Morse indices of the associated energy functional. When n = 1 or Ω is radial, unbounded global

bifurcation branches emanate from Tω at most of the bifurcation points. Thus multiple solutions

are found on these branches for every β small enough.

The new results of this dissertation are summaries as follows:

(1) Introduce a ZN -index and use it to study multiple standing wave solutions of CNLS.

(2) Establish a couple of bifurcation results and multiplicity results for an asymmetric and

indefinite CNLS.

(3) Obtain some nonexistence results of positive standing wave solutions of an indefinite,

possibly asymmetric, CNLS.
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APPENDIX A

LEMMAS I, II, III

We verify a few assertions that are required in Chapter 2 and Chapter 3.

Lemma I The map ψ : S2m−1 →M defined in Chapter 2 (2.4.3) or (2.4.5) is continuous.

Proof. The proofs for definition (2.4.3) and definition (2.4.5) are similar, so we only prove for

the first case. Recall definition (2.4.3),

ψ

( m∑
k=1

rke
iθkuk(ρ, t)

)
=

(
U∗1 (ρ, t), U∗2 (ρ, t), · · · , U∗N (ρ, t)

)
,

where, according to the construction of uk(ρ, t),

U∗j (ρ, t) =

√
µ‖
∑m

k=1 rkU
k
j (ρ, t− θk)‖

|
∑m

k=1 rkU
k
j (ρ, t− θk)|24

∣∣∣∣ m∑
k=1

rkU
k
j

(
ρ, t− θk

)∣∣∣∣
=

√
µ
∑m

k=1 rk‖Ukj (ρ, t− θk)‖∑m
k=1 r

2
k|Ukj (ρ, t− θk)|24

∣∣∣∣ m∑
k=1

rkU
k
j

(
ρ, t− θk

)∣∣∣∣
=

√
µ
∑m

k=1 rk∑m
k=1 r

2
k|Ukj (ρ, t− θk)|24

∣∣∣∣ m∑
k=1

rkU
k
j

(
ρ, t− θk

)∣∣∣∣
=

√
µ
∑m

k=1 rk∑m
k=1 r

2
k|Uk1 |24

∣∣∣∣ m∑
k=1

rkU
k
j

(
ρ, t− θk

)∣∣∣∣.
For each 1 ≤ j ≤ m, the facts that the supports of Ukj are separated and ‖Ukj ‖ = 1 are used.

Assume zj =
∑m

k=1 r
(j)
k eiθ

(j)
k uk(ρ, t) ∈ S2m−1, j = 1, 2. Then

‖ψ(z1)− ψ(z2)‖H =

N∑
j=1

‖U∗(1)
j (ρ, t)− U∗(2)

j (ρ, t)‖

=
N∑
j=1

∥∥∥∥C(1)

∣∣∣∣∣
m∑
k=1

r
(1)
k U

k(1)
j (ρ, t− θ(1)

k )

∣∣∣∣∣− C(2)

∣∣∣∣∣
m∑
k=1

r
(2)
k U

k(2)
j (ρ, t− θ(2)

k )

∣∣∣∣∣
∥∥∥∥

≤ (C(1) + C(2))

N∑
j=1

m∑
k=1

∥∥∥r(1)
k Ukj (ρ, t− θ(1)

k )− r(2)
k Ukj (ρ, t− θ(2)

k )
∥∥∥

≤ (C(1) + C(2))
N∑
j=1

m∑
k=1

∥∥∥r(1)
k eiθ

(1)
k Ukj (ρ, t− θ(1)

k )− r(2)
k eiθ

(2)
k Ukj (ρ, t− θ(2)

k )
∥∥∥
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= (C(1) + C(2))
m∑
k=1

‖z1 − z2‖H,

where C(j) =

√
µ
∑m

k=1 r
(j)
k∑m

k=1[r
(j)
k ]2|Uk1 |24

is a nonzero constant depending on zj , j = 1, 2. The estimate

show that ψ is locally Lipschitz continuous, thus continuous. �

Lemma II Assume that (u, v) is a H1
0 (Ω) solution of system


−∆u− au = µ1u

3 + βuv2 in Ω,

−∆v − bv = µ2v
3 + βvu2 in Ω,

u, v > 0 in Ω, u = v = 0 on ∂Ω,

where a, b, µ1, µ2 are real numbers. Ω ⊂ Rn is bounded, n ≤ 3. Then u, v ∈ C1
0 (Ω).

Proof. The lemma is proved by using the boot-strap arguments.

If n = 1 or n = 2, then by Sobolev embedding H1
0 (Ω) ↪→ L∞(Ω) and Hölder inequality, it

holds that

µ1u
3 + βuv2 ∈ L∞, µ2v

3 + βvu2 ∈ L∞.

According to the Lp estimates, u, v ∈W 2,∞(Ω). Using Sobolev embedding W 2,∞ ↪→ C(Ω), it is

easy to see that

µ1u
3 + βuv2 ∈ C(Ω), µ2v

3 + βvu2 ∈ C(Ω).

Next, by Schauder estimate, we get u, v ∈ C2(Ω) ∩ C1
0 (Ω).

If n = 3, we need more steps. By Sobolev embedding H1
0 (Ω) ↪→ L6(Ω) and Hölder inequality,

it holds that

µ1u
3 + βuv2 ∈ L2, µ2v

3 + βvu2 ∈ L2.

According to L2 estimates, we get u, v ∈W 2,2(Ω). Again, using Sobolev embedding W 2,2(Ω) ↪→

Cα(Ω) for 0 < α < 1/2. Consequently,

µ1u
3 + βuv2 ∈ Cα(Ω), µ2v

3 + βvu2 ∈ Cα(Ω).
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At last, by Schauder estimate, there holds u, v ∈ C2(Ω) ∩ C1
0 (Ω). �

The following lemma is from [42] (Proposition B.34). Since it is frequently used in this work,

we put it here for the readers’ convenience.

Lemma III Let Ω be a bounded domain in Rn whose boundary is a smooth manifold. Let p

satisfy

(p̂1) p ∈ C1(Ω× R,R), and

(p̂2) there are constants a1, a2 > 0 such that

|pξ(x, ξ)| ≤ a1 + a2|ξ|s−1

where 0 ≤ s < n+2
n−2 and n ≥ 3. If

P (x, ξ) =

∫ ξ

0
p(x, t)dt

and

I(u) =

∫
Ω

(
1

2
|∇u|2 − P (x, u(x)))dx,

then I ∈ C2(H1
0 (Ω,R)).
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